
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
3
83
9/
v
2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

River bank erosion and lateral accretion linked to hydrograph

recession and flood duration in a mountainous snowmelt-dominated

system

Nicholas A Sutfin1,1, Joel Rowland2,2, Mulu Fratkin2,2, Sophie Stauffer2,2, Rosemary
Carroll3,3, Wendy Brown4,4, and Kenneth H Williams5,5

1Case Western Reserve University
2Los Alamos National Laboratory
3Desert Research Institute
4Rocky Mountain Biological Laboratory
5Lawrence Berkeley National Laboratory

November 30, 2022

Abstract

Observed and projected global changes in the magnitude and frequency of river flows have potential to alter sediment dynamics

in rivers, but the direction of these changes is uncertain. Linking changes in bank erosion and floodplain deposition to hydrology

is necessary to understand how rivers will adjust to changes in hydrologic flow regime induced by increasing societal pressures

and increased variability of climatic conditions. We present analysis based on aerial imagery, an aerial lidar dataset, intensive

field surveys, and spatial analysis to quantify bank erosion, lateral accretion, floodplain overbank deposition, and a floodplain

sediment budget in an 11-km long study segment of the meandering East River, Colorado, USA, over 60 years. Assuming steady

state conditions over the study period, our measurements of erosion and lateral accretion close the sediment budget for a smaller

2-km long intensive study reach. We analyzed channel morphometry and snowmelt-dominated annual hydrologic indices in this

mountainous system to identify factors influencing erosion and deposition in nine study sub-reaches. Results indicate channel

sinuosity is an important predictor for both lateral erosion and accretion. Examination of only hydrologic indices across the

study segment regardless of sub-reach morphology, indicate that the duration of flow exceeding baseflow and the slope of the

annual recession limb explain 59% and 91% of the variability in lateral accretion and erosion, respectively. This work provides

insight into hydrologic indices likely to influence erosion and sedimentation of rivers and reservoirs under a shifting climate and

hydrologic flow regimes in snowmelt-dominated systems.
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Abstract 27 

 Changes in the magnitude and frequency of river flows have potential to alter 28 

sediment dynamics and morphology of rivers globally, but the direction of these changes 29 

remains uncertain. A lack of data across spatial and temporal scales limits understanding 30 

of river flow regimes and how changes in these regimes interact with river bank erosion 31 

and floodplain deposition. Linking characteristics of the flow regime to changes in bank 32 

erosion and floodplain deposition is necessary to understand how rivers will adjust to 33 

changes in hydrology from societal pressures and climatic change, particularly in 34 

snowmelt-dominated systems. We present a lidar dataset, intensive field surveys, aerial 35 

imagery and hydrologic analysis spanning 60 years, and spatial analysis to quantify bank 36 

erosion, lateral accretion, floodplain overbank deposition, and a floodplain fine sediment 37 

budget in an 11-km long study segment of the meandering gravel bed East River, 38 

Colorado, USA. Stepwise regression analysis of channel morphometry in nine study 39 

reaches and snowmelt-dominated annual hydrologic indices in this mountainous system 40 

suggest that sinuosity, channel width, recession slope, and flow duration are linked to 41 

lateral erosion and accretion. The duration of flow exceeding baseflow and the slope of 42 

the annual recession limb explain 59% and 91% of the variability in lateral accretion and 43 

erosion, respectively. This strong correlation between the rate of change in river flows, 44 

which occurs over days to weeks, and erosion suggests a high sensitivity of sedimentation 45 

along rivers in response to a shifting climate in snowmelt-dominated systems, which 46 

constitute the majority of rivers above 40° latitude.  47 

 48 

Plain Language Summary 49 
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  Changing climatic conditions are poised to alter the timing and magnitude of 50 

precipitation, snowpack, snowmelt and the balance of water and sediment within river 51 

corridors. Understanding how these changes affect the stability of land along rivers is 52 

important for securing infrastructure, maintaining healthy ecosystems, preserving water 53 

quality, and understanding the fate and transport of contaminated sediment. This 54 

research uses aerial imagery, laser topographic scanning technology, field 55 

measurements of water and soil, and historical river flow data to examine linkages 56 

between river flows and erosion and deposition of sediment along the floodplain of a 57 

mountain river over 60 years. Results show that river bank erosion is linked to the rate at 58 

which the river flows decrease following snowmelt-driven peaks and that the amount of 59 

sediment that is deposited along the river banks is linked to the duration of flooding. 60 

These results have important implications for understanding how rivers and freshwater 61 

resources may be impacted by shifting climatic conditions and hydrologic regimes.  62 

1 Introduction 63 

 A large number of studies have quantified long-term channel migration and 64 

episodic bank erosion, but have been limited in the examination of the link between 65 

hydrology and accretion and erosion, particularly in snowmelt-dominated systems. 66 

Annual hydrologic trends including the magnitude, frequency, timing, duration, and rate 67 

of change in discharge are important aspects of river flow regimes (N. LeRoy Poff et al., 68 

1997) that facilitate erosion and deposition in channels and along floodplains (Wohl et 69 

al., 2015). Field observations and remotely sensed imagery have been used to quantify 70 

bank erosion and lateral accretion and to better understand planform change and river 71 

dynamics associated with changes in water and sediment supply (James E. Pizzuto, 72 

1994; Micheli & Kirchner, 2002a, 2002b; S. S. Day et al., 2013b, 2013a; Lenhart et al., 73 

2013; J. C. Rowland et al., 2016; Schook et al., 2017; Schwenk et al., 2017; Caponi et 74 
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al., 2019; Grams et al., 2020), but detailed analysis of flow regimes have not been 75 

correlated with these observations.  76 

 Both lateral and vertical accretion have been negatively correlated with relative 77 

elevation and horizontal distance from the channel (G. Day et al., 2008; Hupp et al., 78 

2008; Metzger et al., 2020), and studies examining hydrology have focused on peak 79 

discharge magnitude. Lateral accretion and channel narrowing have been attributed to 80 

periods of decreased mean peak flow in the snowmelt-dominated Green River (Grams et 81 

al., 2020). Moderate values of maximum annual peak discharge in the snowmelt-82 

dominated Powder River, MT, has been linked to net floodplain deposition, whereas 83 

larger flows resulted in net erosion (James E. Pizzuto, 1994). Larger peak discharges in 84 

snowmelt-dominated systems facilitate germination of cottonwoods and point bar 85 

accretion (Schook et al., 2017; Metzger et al., 2020; James E. Pizzuto, 1994).  86 

 Linkages between hydrology and successful establishment of riparian vegetation 87 

influence point bar stabilization and accretion. Increased flood duration and slower 88 

recession limbs can regulate successful establishment of riparian vegetation (Merritt & 89 

Wohl, 2002; Nilsson et al., 2010; Benjankar et al., 2014; Caponi et al., 2019). The 90 

duration between bankfull flow events has been referred to as the “window of 91 

opportunity” for riparian vegetation to germinate and has been shown to be highly 92 

correlated with point bar accretion (Balke et al., 2014). Timing is crucial for the 93 

successful germination and establishment of cottonwood seedlings during the recession 94 

limb of snowmelt-dominated annual peak flows in the western US (Friedman et al., 1996; 95 

Mahoney & Rood, 1998; Merritt & Wohl, 2002; Nilsson et al., 2010). Morphological 96 

effects of changes in riparian vegetation and point bar accretion have been documented 97 

with regard to damming and river flow regulation (Cooper et al., 1999; Merritt & Cooper, 98 

2000; N. Leroy Poff et al., 2010) and changes in hydrology associated with climate (Wolf 99 

et al., 2007; Schook et al., 2017). These relationships between hydrochory (water 100 
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dispersal of seeds) and point bar stabilization highlight the potential importance of timing 101 

of peak discharge, flood duration, and the slope of the recession limb on sediment 102 

dynamics in snowmelt dominated systems. 103 

Examination of floodplain erosion commonly focuses on physically-based models 104 

that incorporate geomechanics to described three primary classes of bank erosion. 105 

Cantilever failures, planar shear, and slip or rotational failures arising from river bank 106 

undercutting due to excess bank shear stress, and destabilization due to positive pore 107 

pressures during bank drainage (Thorne & Tovey, 1981; Simon et al., 2000; 108 

Langendoen & Simon, 2008; Langendoen & Alonso, 2008). 109 

A common fluvial geomorphic approach to quantify bank erosion and channel 110 

migration is to estimate or measure near-bank velocities (Parker et al., 1982; J. E. 111 

Pizzuto & Meckelnburg, 1989). This approach has provided a basis for estimating 112 

excess bank shear stress acting on channel margins as a function of flow depth 113 

(Partheniades, 1965; Darby et al., 2007). Other studies have found correlations between 114 

bank erosion rates and the radius of curvature (Hooke, 1980; Begin, 1981; Nanson 115 

Gerald C. & Hickin Edward J., 1983; Hooke, 2007) but direct correlations between these 116 

variables is seldom significant. Correlations with curvature have shown to be stronger 117 

when considering a smoothed average along bends, a decay function with increasing 118 

distance downstream, or a quasi-linear lag downstream (Furbish, 1991; Güneralp & 119 

Rhoads, 2009; Sylvester et al., 2019). Because reach sinuosity captures aspects of 120 

curvature, it is likely to influence bank erosion and channel migration. 121 

Because the hydrologic aspects of bank erosion and migration modeling efforts 122 

mentioned above focus primarily on channel morphology and flow depth, consideration 123 

of other aspects of the flow regime are needed. Bank erosion and channel widening 124 

have been linked with the duration and magnitude of peak discharge (Hooke, 1979) and 125 

annual peak discharge in snowmelt-dominated systems (James E. Pizzuto, 1994). Some 126 
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bank erosion models consider the duration of flow (Langendoen & Alonso, 2008; 127 

Langendoen & Simon, 2008). Positive pore pressure of saturated banks combined with 128 

the loss of supporting pressure when stage declines make slip and rotational bank 129 

failures likely (Rinaldi & Casagli, 1999). These bank failures triggered by positive pore 130 

pressure are common in flashy systems dominated by rainfall and maximum annual 131 

peaks that decline within a single day, but this phenomenon does not typically occur in 132 

snowmelt-dominated systems where recession limbs span days to weeks. Detailed 133 

examination of the rate of change in snowmelt-dominated flows have not been examined 134 

in detail, but likely influence river bank stability and erosion on seasonal scales 135 

(Wolman, 1959; Simon et al., 2002). Thus, additional hydrologic indices such as the rate 136 

of change offer the potential to provide a more robust understanding of the hydrologic 137 

drivers of bank erosion.  138 

In the literature cited above, many studies either provide detailed analysis of 139 

bank erosion at very small spatial scales (ie…a single bend) or long-term estimates of 140 

river migration and/or floodplain deposition at broad spatial scales. The spatially focused 141 

studies allows for direct attribution of geomorphic change to site-specific flow conditions, 142 

but commonly lack a longer term analysis of hydrology needed to integrate these results 143 

over time. Similarly, erosion and deposition studies often occur independently limiting 144 

the ability to attribute the hydrological drivers and timing to sediment fluxes to and from 145 

the floodplain.  146 

Quantifying the unique hydrological drivers for erosion and deposition 147 

independently may facilitate the prediction of changes in net exchanges between rivers 148 

and floodplains under changing hydrological conditions. This is of particular importance 149 

under future climate change poised to greatly alter snowmelt-dominated river flow 150 

regimes (Adam et al., 2009). Insights on erosion and depositional controls in temperate 151 

snowmelt systems have direct relevance to river systems in the western US where >50% 152 
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of total runoff and 70% of mountainous runoff is derived from snow. River hydrology that 153 

is dominated by similar snowmelt-driven peak flows associated with spring thaw controls 154 

river dynamics across the northern high-latitudes (Adam et al., 2009; McClelland et al., 155 

2012). 156 

 The objective of this research was to identify detailed aspects of the hydrologic 157 

flow regime (e.g., peak magnitude, duration, timing of peak, slope of the recession limb) 158 

that most significantly influence bank erosion and floodplain accretion in a snowmelt 159 

dominated system, while also accounting for differences in channel morphology (e.g., 160 

sinuosity, channel slope, width). Thus, we quantify both the rates and patterns of bank 161 

erosion and floodplain deposition across a large range of spatial and temporal scales. 162 

We also calculated a sediment budget to verify our accounting of eroded and accreted 163 

floodplain sediment. In doing so, we validate a simplified approach to estimate 164 

hydrologic influence on channel migration using remotely sensed imagery and historic 165 

hydrologic data. 166 

The research presented here is motivated by our efforts to quantify carbon 167 

storage and dynamics in a mountainous region along the floodplain of the East River 168 

near Crested Butte, Colorado, USA, in order to better inform the incorporation of 169 

floodplain dynamics in Earth System models to better quantify terrestrial carbon 170 

dynamics. Potential for changes in hydrology of snowmelt-dominated systems as a 171 

result of climate change (Middelkoop et al., 2001; Adam et al., 2009; Schneider et al., 172 

2013) and resulting shifts in sediment dynamics are poised to alter terrestrial organic 173 

carbon dynamics in snowmelt-dominated floodplains, where carbon storage is 174 

substantial (Sutfin et al., 2016; Sutfin & Wohl, 2017; Lininger et al., 2018, 2019). 175 

    176 

2 Study Area 177 
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We studied an 11-km long segment of the East River approximately 3.5 km down 178 

valley from Gothic, CO, (Figure 1) near Crested Butte. At the downstream end of the 179 

study segment, the East River drains approximately 134 km2 and has an annual average 180 

precipitation of 64 cm (SNOTEL, 2017). The study segment lies directly downstream of 181 

steep, confined, mountainous tributaries that incise through sandstones, mudstones, 182 

shales, granodiorite and metamorphosed byproducts of the uplifted White Rock pluton in 183 

the Elk Mountains of Colorado (Gaskill et al., 1991). Within the floodplain reach, the East 184 

River is a gravel-cobble bed, sinuous alluvial river approximately 20-m wide on average 185 

and bounded by lateral Pinedale glacial moraines, landslide deposits, and outcrops of 186 

Mancos Shale along the bed and valley walls. Sedges, grasses, and willows dominate 187 

the vegetation along the floodplain with isolated trees, dominantly blue spruce, scattered 188 

along the reach, but rarely located along the river banks. Throughout the floodplain, 189 

extensive beaver activity results in dams, lodges and the introduction of large wood from 190 

the surrounding hillslopes. Floodplain fine overbank sediment is dominated by silt-size 191 

particles with varying proportions of sand, clay, and minimal gravel content (Malenda et 192 

al., 2019). Beneath fine sediment, the floodplain is composed of gravel and cobbles, and 193 

contains lenses of finer, sorted material. Erosion of underlying gravels and undercutting 194 

of fine overbank sediment commonly result in cantilever failure of grass-covered blocks 195 

along the East River 11-km long study segment (Figure 1D, S1).  196 

The East River is a snowmelt-dominated, gravel bed river. The annual 197 

hydrograph is characterized by a gradual rising limb as temperatures warm and snow 198 

melts in the spring months of April and May. An annual peak flow commonly occurs in 199 

the latter half of May or early half of June after peak snowmelt, followed by a gradual 200 

recession limb that takes place over weeks (21 days on average) at which discharge 201 

returns to baseflow conditions sometime between September and November. Although 202 

there is a dearth of data on the sediment regime near the study site, existing studies 203 



 9 

further downstream provide some insight into the East River study segment. The East 204 

River channel bed surface is characterized by a median grain size of 0.09 m at the 205 

USGS Almont gauging station near the confluence with the Gunnison River ~25 km 206 

downstream from the study site (Andrews, 1984). Bed mobility analysis along the 207 

Gunnison near Grand Junction, CO indicates that bedload transport occurs when 208 

discharge is nearly half the bankfull flow (Pitlick & Steeter, 1998). 209 

210 
Figure 1. Map of study area on the East River near Crested Butte, Colorado, USA. The 211 
floodplain was delineated by “flooding” a 0.5-m resolution lidar digital elevation model 212 
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along the 11-km long study segment, which was divided into 9 study reaches (A) based 213 
on changes in valley slope. The depth of fine sediment was measured across the 214 
floodplain at 1847 points and interpolated across the upper 2 km, intensive study reach 215 
(B) consisting of reach 1 and approximately half of reach 2, ending at the downstream 216 
extent of the black box in (A). Masks of the river channel, depicted in various colors, 217 
were derived for all seven time periods (C), and used to determine lateral accretion and 218 
erosion, typically occurring as cantilever failures in the study area (D). Shades of blue 219 
beneath the channel masks in C indicate relative depth of water across the delineated 220 
floodplain, from which previous channel locations can be identified. 221 

 222 

Limited land-use impacts have influenced the watershed upstream of the 11-km 223 

long study segment of the East River. From 1880 to 1890, a silver mine operated along 224 

Copper Creek upstream of Gothic, CO, the present location of the Rocky Mountain 225 

Biological Laboratory. The mining area is now designated as US Forest Service (USFS) 226 

national forest and wilderness area. Land use along the 11-km long study segment 227 

consists of small privately owned parcels and U.S. Forest Service (USFS) land, on which 228 

ranchers graze cattle for limited portions of the year (Theobald et al., 1996). Limited 229 

property access restricted our field investigations to the upper 2 km, intensive study 230 

reach (Figure 1A; Reach 1 and half of reach 2). Although flow diversions exist within the 231 

11-km long study segment, they were present prior to beginning of the study period in 232 

1955 and they primarily capture runoff from tributaries before they reach the East River.  233 

 234 

3 Materials and Methods 235 

 Spatial analysis of aerial lidar, repeat aerial imagery, historical hydrologic flow 236 

analysis, surface water flow measurements, measurements of floodplain fine sediment 237 

depth, and multiple linear regression were used to estimate a sediment budget and 238 

examine linkages between hydrology and bank erosion, accretion, and channel 239 

migration rates over 60 years (Figure 2).  240 

3.1 Terrain Analysis and Study Reach Delineation 241 



 11 

Aerial lidar was collected in August of 2015 for the entire East River watershed 242 

(Wainwright & Williams, 2017) and was used for all topographic analysis.. Average bare-243 

ground point cloud density of lidar was 4.29 points/m2 resulting in a total accuracy with 244 

root mean squared error of 0.05 m at the 95% confidence level. A hydro-flattened, bare-245 

ground DEM with a horizontal resolution of 0.5 m was derived from the lidar point cloud 246 

data. Based on local valley slope, we divided the ~11-km long floodplain segment into 247 

nine study reaches. We calculated the valley slope using a best-fit line of elevation 248 

points extracted from the 2015 DEM and spaced every 10 meters down the valley 249 

center. We detrended the slope of the 9 sub-reaches using the raster calculator in QGIS 250 

and recombined them to generate a floodplain DEM with zero down-valley slope and a 251 

maximum total relief of 5.44 m. We artificially entrenched the flat lidar water surface by 2 252 

meters and used the r.fill.dir Grass tool in QGIS to flood the detrended DEM at a depth 253 

of six meters to delineate the approximate extent of the floodplain. We verified the 254 

digitally delineated floodplain extent with field observations of distinct breaks in slope, 255 

such as the base of lateral moraines, toes of alluvial fans, and abutments to incised 256 

bedrock outcrops.  257 

3.2 Channel Position and Movement using Aerial Imagery 258 

 We used aerial images from six dates (i.e., 1955, 1973, 1983, 1990, 2001, 2012) 259 

obtained from the US Geological Survey, US Department of Agriculture, and the US 260 

Forest Service, and satellite imagery from 2015 to quantify morphological change over 261 

time (Figure S2). All imagery was resampled to 1-m resolution to allow direct comparison 262 

between images. We georeferenced the 2015 imagery using the 2015 lidar DEM dataset 263 

as a reference using >6 control points including the corners of buildings, intersections of 264 

roads and fences, and the base of mature trees. All other images were georeferenced (if 265 

not already done so by the source agency) through comparison with similar point types 266 

in the 2015 georeferenced image. 267 
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To analyze channel characteristics and compare changes over time, we 268 

generated binary channel masks for each set of aerial imagery (Rowland & Stauffer, 269 

2020). For color imagery between 1973 and 2015, we generated masks of bankfull river 270 

extent using red-green-blue (RGB) color bands and the normalized difference water 271 

index (NDWI) to classify the channel water surface in each image (Figure 1C; 272 

McFeeters, 1996) using the object-oriented classification software, eCognition. To 273 

control for variations in water levels between images, regions of tan and grey gravel and 274 

sand bars devoid of vegetation and exposed, un-vegetated bank faces were included in 275 

the channel mask as an estimate of bankfull extent (Gurnell, 1997; Richard et al., 2005; 276 

Mount & Louis, 2005; Fisher et al., 2013; J. C. Rowland et al., 2016; Donovan et al., 277 

2019). The black and white 1955 USDA photos required manual delineation of the 278 

channel mask. 279 
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 280 

Figure 2 Data sets used and generated for resulting analyses 281 

Metrics calculated to quantify the channel and floodplain attributes for the nine 282 

valley reaches and entire 11-km long study segment included: valley, floodplain, and 283 

channel areas; valley and channel lengths; elevation change along the reach; valley and 284 

channel slopes; sinuosity; average channel width; and valley confinement. The channel 285 

area relative to the area of delineated valley floor defined valley confinement as a proxy 286 
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for potential of the floodplain to accommodate channel migration, dissipate energy 287 

during overbank flow, and facilitate overbank deposition. Channel sinuosity measures 288 

the channel length divided by the straight down-valley length. Channel slope was 289 

calculated as the valley slope divided by channel sinuosity.  290 

Linear erosion, and accretion rates were determined for each bank pixel using 291 

the Spatially Continuous Riverbank Erosion and Accretion Measurements algorithm 292 

(SCREAM; Rowland et al., 2016, Rowland and Stauffer, 2020b).  Linear rates represent 293 

the distance that a river bank face moves in a given time interval by measuring the 294 

Euclidean distance between a bank pixel in one river mask and the closest bank pixel at 295 

the subsequent river mask. Eroded and accreted floodplain areas derived from 296 

SCREAM were divided by the number of years within that time period and the channel 297 

length to estimate linear rates of erosion and accretion. Three sources of error are 298 

associated with our measurements of linear change: image registration, image 299 

classification and the accuracy of SCREAM output (Rowland et al., 2016). Average 300 

estimated registration error for the 1-m imagery from 1973 to 2015 was 0.58 m. Poor 301 

image quality of the 1955 photographs prevented direct estimates of error using this 302 

method, so we have assigned a registration error equal to two times the highest error 303 

(1.2 m) in areas for the period between 1955-1973. Errors associated with area-based 304 

erosion and accretion measurements as a result of image mis-registration for each time 305 

period were assigned as percentage of change in areas following the methodology 306 

detailed in Rowland et al. (2016). Total measurement errors were estimated by 307 

combining registration, classification, and methodological errors in quadrature (Rowland 308 

et al. 2016)) (Table S1).  309 

3.3 Vertical Accretion Rates 310 

We estimated long-term point bar vertical accretion rates using a combination of 311 

field-based measurements of fine-grained deposit thickness and changes in channel 312 
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position from aerial imagery between 1973 and 2015. Images from 1955 were excluded 313 

from this analysis because of the uncertainty associated with the poor-quality images. In 314 

2016, along the upper 2 km, intensive study reach (Figure 1A, reach 1 and half of reach 315 

2), we measured thickness of fine-grained deposits at 324 locations on 21 transects by 316 

inserting a soil probe into the floodplain surface until refusal at bedrock or gravel-size 317 

material (>2mm) (Sutfin & Rowland, 2019). Mean migration rate was estimated from 318 

SCREAM output along bends (Figure S3) and the distance between each transect point 319 

and the channel was converted into duration since channel occupation by dividing by the 320 

bend averaged migration rate. We used the total depth in locations previously occupied 321 

by the channel to represent an average point bar deposition rate over each time period 322 

examined. The measured depth of fine sediment (di) was then divided by the duration 323 

since occupation by the river channel (ti, when fine sediment depth would have been 324 

equal to zero) to estimate a mean vertical accretion rate (ai; Equation 1).  325 

   𝑎𝑖 =
𝑑𝑖

𝑡𝑖
    (1) 326 

Potential predictors of overbank vertical accretion rates, across the upper 2 km, 327 

intensive study reach were assessed through stepwise multiple linear regression. 328 

Variables examined for this analysis were similar to those described above, with the 329 

following additions. Distance from the channel was measured in the field. Relative 330 

elevation from the bankfull stage at the transect was extracted from the lidar at the top of 331 

point bars where bar sand/gravel transitioned into vegetation cover. Along each transect, 332 

channel width, valley width, and the ratio between the two (valley confinement) were 333 

measured from the imagery in GIS. Localized valley slope, channel slope, and sinuosity 334 

were measured using GIS extending approximately 50 m upstream to 50 m downstream 335 

of the transect. Mean values of radius of curvature, lateral accretion rate, and erosion 336 

rate were calculated along each meander bend. Measurements were denoted as either 337 
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being on the inside or outside of a bend. The angle of each transect was used as a 338 

proxy for the angle of each river bend relative to the down valley direction from 0-90º. 339 

3.4 Estimating floodplain sediment volumes 340 

We estimate volumes of fine grained (less ~ 2mm in grain diameter) sediments 341 

deposited on top of the gravel-rich channel and point bar deposits. In addition to the soil 342 

probe measurements collected on point bar transects (Section 3.3), 1,587 343 

measurements were made along the upper 2 km intensive study reach (Figure 1A, 344 

Reaches 1 and 2; Sutfin & Rowland, 2019). We subtracted these depth measurements 345 

from the DEM elevations using the raster calculator in QGIS to calculate an absolute 346 

elevation of underlying gravel/bedrock. We then generated a triangular irregular network 347 

(TIN) of the gravel-bedrock surface elevation using the interpolate tool in QGIS. By 348 

subtracting elevations of this interpolated surface from the ground surface elevations, we 349 

created a spatially continuous isopach map of fine-grained floodplain sediment. The 350 

interpolated depth of fine sediment was zero in areas occupied by the 2015 channel. To 351 

correct for this we used the close gap Saga tool in QGIS (threshold = 0.1). The thickness 352 

of fine-sediment thickness during 2015 was interpolated across the channel using a 3 m 353 

buffer that extended beyond the locally thin deposits covering active point bars. This 354 

estimated sediment depth available for erosion in previous years. We calculated eroded 355 

volumes by multiplying the areas of eroded regions derived from the aerial imagery for 356 

each time interval by the interpolated isopach map of fine sediment within those mapped 357 

areas. 358 

Using the estimated vertical accretion rates from our soil probe transects we 359 

estimated an average deposition rate for laterally accreted regions along the channel 360 

and developed a multiple linear regression model to estimate overbank deposition on the 361 

stable floodplain surface. For the laterally accreted areas, we used the average 362 

migration rates at bends described above in section 3.3.  This approach determined the 363 
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portion of contemporary floodplain that would have been formed by lateral accretion for 364 

the entire period between 1973-2015. A reach-based average migration rate and 365 

resulting mean migration distance along the probe transects were used to estimate an 366 

average vertical accretion rate from all points within the mean migration distance during 367 

the 42 years (Table S2). This average rate was multiplied by the mapped accretion 368 

areas from the aerial photos and SCREAM output to provide a volume of laterally 369 

accreted sediments. 370 

Overbank deposition rates beyond 10 m were calculated for each cell using a 371 

multiple linear regression model including only the two strongest predictor variables, 372 

distance from the channel and relative elevation from the channel (Figure S4). The 373 

proximity grid Saga tool in QGIS was used to create a grid based on distance from the 374 

channel for images from the six years. Floodplain elevation relative to the channel was 375 

calculated by subtracting the minimum elevation from the detrended 2015 DEM 376 

floodplain surface (derivation described above in section 3.1). This assigned a relative 377 

elevation to every raster pixel. The river channel buffered by three meters on both sides 378 

was subtracted from the relative elevation grid and the close gap tool in QGIS was used 379 

to interpolate elevations across the channel.  380 

The distance-from-channel raster and the detrended-valley DEM were used as 381 

input to the vertical accretion rate regression model equation in the raster calculator to 382 

generate raster grids of estimated overbank deposition rates for all six time periods. 383 

Overbank sediment deposition estimates of volume were made by multiplying calculated 384 

rates by the number of years in the respective time interval, summing all pixel values for 385 

each period, and multiply that value by the area of each pixel (0.25 m2). Vertical 386 

accretion within abandoned channels was estimated using the vertical accretion rate of 387 

0.033 m y-1 within the first 10 m from the channel for periods following cutoff occurrence. 388 

Aggradation of previously abandoned channels was based on the relative vertical and 389 
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horizontal distance from the active bankfull channel at distances exceeding 10 m. Rates 390 

of volume of sediment accreted and eroded during each time period were estimated by 391 

dividing the total volume of sediment by the number of years in each time period. 392 

3.5 Streamflow Data and Hydrologic Analysis  393 

Streamflow was measured 22 times near the Crested Butte city water pump 394 

house in the upper 2 km, intensive study reach, from October, 1st, 2014, to September, 395 

30th, 2017, and a stage-discharge rating curve was created against stage data recorded 396 

every 15 minutes (r2 = 0.99) (Carroll & Williams, 2019). To extend the flow record prior to 397 

2014, we regressed measured discharge at the 2-km intensive study reach against data 398 

from the US Geological Survey stream gage on the East River at Almont (gage # 399 

09112500) 25 km downstream (r2 = 0.97; Figure 4A). Using this regression, we 400 

generated a synthetic hydrograph for the study site from 1934-2018 using the Almont 401 

streamflow data (Table S3). A comparison of the synthetic hydrograph and flows 402 

measured between 2014 and 2018 showed a strong agreement with a Nash-Sutcliffe 403 

Efficiency coefficient (NSE) of 0.97 (Figure 4B). Flow frequency analysis was conducted 404 

on the entire synthetic hydrograph to determine annual statistics for the continuous 82 405 

years. Analysis of possible hydrological drivers for erosion and deposition examined the 406 

synthetic hydrograph from 1955 to 2015 to correspond with the aerial imagery analysis.  407 

We used R software (R Core Team, 2017) to extract synthetic hydrograph 408 

characteristic between 1955 and 2015. An average minimum flow value of 0.49 m3 s‐1  409 

during the low-flow months of October, November, December, January, February, and 410 

March were used as a reference baseflow condition. Bankfull flow was estimated as 8 411 

m3 s‐1 based on field observations and hydrologic analysis indicates an approximate 412 

recurrence interval of 1.2 years. The mean value for the day of the year on which peak 413 

flow occurred, the last day exceeding bankfull flow conditions, and the last day 414 

exceeding baseflow conditions were calculated for each time period. The maximum and 415 
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mean values within each time period were calculated for annual hydrograph peak 416 

magnitude, peak timing, annual volume of discharge, the annual volume of water above 417 

bankfull flow, duration between the first and last day of flow exceeding baseflow, the 418 

number of days on which baseflow occurred, the annual volume of discharge exceeding 419 

bankfull, duration between the first and last day of flow exceeding bankfull flow, the 420 

number of days on which bankfull flow occurred, and the cumulative number of days 421 

since the last bankfull flow, the total recession slope from the annual maximum peak to 422 

baseflow (herein referred to as the total recession slope), the bankfull recession slope 423 

from bankfull stage to baseflow (herein referred to as the bankfull recession slope), and 424 

the number of peaks above bankfull flow. Recession slopes were estimated as the 425 

positive slope of the line between peak of bankfull discharge and the first occurrence of 426 

baseflow conditions.  427 

An additional analysis was conducted to examine diel fluctuations in discharge 428 

associated with the slope of the recession limb of each annual hydrograph. A regression 429 

analysis of 15-minute streamflow data from the same USGS gauge and measured flow 430 

at the study site from 2015-2019 yielded an r2 = 0.94. This regression was used to 431 

extend the study site discharge data to span the duration of the 15-minute data from 432 

1988-2018. Hourly data were extracted from this 15-minute discharge data and the 433 

maximum and minimum daily values were determined for years with peak annual flow 434 

exceeding 6 m3s-1. On days with maximum flows below 10 m3s-1 and minimum flow 435 

above 5 m3s-1 the number and magnitude of diel fluctuations greater than 2 m3s-1 were 436 

summed. Correlations were examined between the maximum recession slope and the 437 

number, the summed magnitude, and the average magnitude of diel fluctuations to occur 438 

within the defined recession window. 439 

 440 

3.6 Statistical Analyses 441 
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The number of potential variables for all multivariate regression models used to identify 442 

significant predictors was reduced to minimize collinearity of predictor variables prior to 443 

multiple linear regression. Starting with the most strongly correlated variable and working 444 

sequentially through variables with decreasing correlation values, variables were 445 

eliminated as potential predictors for the regression model if they were moderately cross 446 

correlated (r > 0.7) with another more strongly correlated variable (Dormann et al., 2013) 447 

already selected as a predictor.  Stepwise multiple linear regression was conducted 448 

using the stats package lm function in R statistical software to examine possible 449 

predictor variables and determine the best regression model for: (1) the area of accreted 450 

and (2) the area of eroded floodplain along nine study reaches, and (3) vertical 451 

floodplain deposition rate estimated from measurements of floodplain fine sediment 452 

depth along the upper 2 km, intensive study reach over the 6 time periods. Multiple 453 

linear regression assumptions of normality and homoscedasticity of model residuals 454 

were met with power transformations and verified using the Shapiro-Wilk normality test 455 

(shapiro.test function) and the non-constant error variance test in R (ncv.test function), 456 

for which details are provided in supporting material. Variables were included in stepwise 457 

multiple linear regression to identify the best regression model based on minimizing the 458 

Akaike Information Criteria (AIC). 459 

In addition to the stepwise linear regression for all nine study reaches in the six 460 

time periods, we examined univariate correlations between hydrologic variables and 461 

both erosion and accretion during the six time periods along the entire 11-km study 462 

segment.  463 

 464 

 465 

 466 

 467 
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 468 

 469 

 470 

4. Results  471 

4.1 Channel and floodplain metrics 472 

The floodplain delineation of the entire 11-km long study segment resulted in a valley 473 

bottom area of 2.65 km2 with a total valley length of 10.62 km and a total valley slope of 474 

0.64%. Despite the occurrence of 21 channel chute cutoffs in the 60-year time period, 475 

channel slope and the sinuosity for the entire river segment remained relatively constant 476 

during the six periods examined. Channel slope along the entire 11-km long study 477 

segment varied from 0.34% to 0.36% over the 60-year time period. Sinuosity fluctuated 478 

about a mean value of 1.81  0.04 m/m (SD) with a minimum and maximum of 1.77 to 479 

1.89 (Table 1).  480 
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Table 1. Morphological characteristics of the entire 11 km long study segment of the East River derived from remotely sensed 481 
imagery and lidar for each time period. Channel width was calculated as a mean of channel width pixel values from SCREAM and 482 
standard deviations of those averages are provided following each mean. 483 

Year 
Floodplain 
area (km2) 

Channel 
Area (km2) 

Channel 
Length (km) 

Sinuosity 
(m/m) 

Channel 
slope (%) 

Confinement 
(m2/m2) 

Mean channel 
width (m) 

1955 2193.6 459.0 20.08 1.89 0.339 0.17 25 ± 2 

1973 2254.0 398.7 19.29 1.82 0.353 0.15 20 ± 2 

1983 2222.3 430.3 18.80 1.77 0.362 0.16 23 ± 3 

1990 2295.4 357.3 18.90 1.78 0.361 0.13 19 ± 3 

2001 2275.4 377.3 19.39 1.83 0.352 0.14 21 ± 3 

2011 2296.2 356.5 18.81 1.77 0.362 0.13 19 ± 1 

2015 2312.2 340.4 18.98 1.79 0.359 0.13 17 ± 1 

 484 

Table 2. Morphological characteristics of nine study reaches derived from remotely sensed imagery and lidar. Values are averaged 485 
from the seven images spanning 60 years and standard deviations of those averages are provided following each mean. 486 

Reach 

Valley 
area 
(m2) 

Valley 
Length 

(m) 

Valley 
slope 
(%) 

Floodplain 
area (m2) 

Channel Area 
(m2) 

Channel 
Length (m) Sinuosity (m/m) 

Channel slope 
(%) 

Confinement 
(m2/m2) 

Channel 
width (m) 

1 344236 1471 0.94 294462 49774 ± 6292 2860 ± 130 1.94 ± 0.09 0.48 ± 0.02 0.14 ± 0.02 18 ± 3 

2 489119 2126 0.74 405784 83334 ± 6234 4735 ± 143 2.23 ± 0.07 0.33 ± 0.01 0.17 ± 0.01 18 ± 2 

3 232658 910 0.55 199873 32785 ± 6046 1740 ± 99 1.91 ± 0.11 0.29 ± 0.02 0.14 ± 0.03 19 ± 3 

4 93445 595 0.86 76134 17311 ± 1495 903 ± 60 1.52 ± 0.10 0.57 ± 0.04 0.19 ± 0.02 20 ± 2 

5 330488 1142 0.68 283494 46994 ± 5334 2419 ± 170 2.12 ± 0.15 0.32 ± 0.02 0.14 ± 0.02 20 ± 2 

6 378666 924 0.56 344169 34497 ±4194 1448 ± 248 1.57 ± 0.27 0.37 ± 0.06 0.09 ± 0.01 22 ± 3 

7 302210 855 0.33 271371 30839 ± 6166 1490 ± 116 1.74 ± 0.14 0.19 ± 0.02 0.10 ± 0.02 21 ± 3 

8 126101 1175 0.54 89108 36992 ± 2469 1583 ± 26 1.35 ± 0.02 0.40 ± 0.01 0.29 ± 0.02 23 ± 3 

9 355743 1420 0.46 299779 55965 ± 8114 2001 ± 53 1.41 ± 0.04 0.33 ± 0.01 0.16 ± 0.02 23 ± 4 

 487 
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Valley slope ranged from 0.33% to 0.94% along each of the 9 delineated study reaches 488 

with a mean of 0.36  0.19% (SD; Table 2). Mean valley confinement for the time period was 489 

0.16  0.02 m2/m2 (mean  SD). Study reach 8 is the most confined reach (Cv = 0.29  0.02) and 490 

is located toward the downstream end of the 11-km long study segment where the tributary 491 

alluvial fan from Brush Creek constricts the East River valley. Reach sinuosity (P) averaged 492 

over the time period is also lowest in study reach 8 at 1.35 ± 0.02 m/m (Figure 3). The highest 493 

reach mean sinuosity (P = 2.23 ± 0.07) occurred in reach 2, which is moderately confined (Cv = 494 

0.17  0.01) (Table 2).   495 

Averaged over all time periods, channel width generally increased from upstream 496 

reaches to downstream reaches (Table 2), but fluctuated through time across the entire study 497 

segment. Although the channel mean width fluctuated with intervals of widening followed by 498 

narrowing, there was a net overall decrease over the 60-year time period. The average channel 499 

width for the entire 11-km long study segment decreased from a high of 25 ± 2 m in 1955 to a 500 

minimum of 17 ± 1 m in 2015. The greatest width reduction (~5 m) occurred between 1955 and 501 

1973, but a substantial decreased of >4 m also occurred during two time periods between 2001 502 

and 2015.  503 

4.2 Channel Migration and Floodplain Area 504 

 The net balance between total area of eroded and accreted floodplain by the East River 505 

varied over the six time periods, with estimated accretion greater than erosion in four out of six 506 

time periods (Table 3). Over the entire 60-year period accretion exceeded erosion by 120,036 ± 507 

43,973 m2, equal to 5.3% of the total area of the valley bottom. This accretion total includes the 508 

area of 21 abandoned channels arising from meander bend cutoffs. The highest rate of change 509 

in floodplain sediment balance occurred from 1983-1990 with a mean accretion rate outpacing 510 

erosion by a factor of four (Table 3; Figure 3). There was an observed decrease in channel 511 

width during this period, followed by a period dominated by erosion and channel widening. The 512 
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period between 1973 and 1983 was dominated by the largest erosion rates observed in this 513 

study, and was accompanied by an observed increase in channel width (Table 1, 3; Figure 3A).  514 

 515 

Figure 3 Bar plots of estimated accretion, erosion, and net difference (accretion minus erosion) 516 

in linear rates along the entire 11-km long study segment (A) and volume of floodplain fine 517 

sediment along the upper 2 km, intensive study reach (B) during each time period examined 518 

over the 60 year study period.  519 
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Table 3. Area accreted and eroded across the entire 11-km long study segment and hydrologic  520 

flow indices on the East River during the six time periods of the study.   521 

 522 
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4.3  Floodplain Vertical Accretion 523 

 Measured total depths of floodplain fine sediment above gravel and bedrock across the 524 

floodplain ranged from 0 to 1.41 m with a mean value of 0.41 ± 0.25 m (Table S2). A reach-525 

based average migration rate of 0.24±0.05 m y-1 resulted in a mean migration distance of 526 

~10.0±2.1 m along the probe transects for the entire period between 1973-2015 (Table S2). 527 

Error presented in the values above were propagated from the mean standard deviation of the 528 

estimated mean migration rates derived from the SCREAM analysis. Using our estimated 529 

vertical accretion rates at each point, we estimated an average vertical accretion rate of 530 

0.033±0.003 m y-1 among all points within the closest 10 m from the channel. The best 531 

performing multiple linear regression model explains ~60% of the variability in vertical accretion 532 

rates (r2=0.60, p<0.001) using distance from the channel, relative elevation from the channel, 533 

valley confinement, local channel slope (all with p<0.001), and whether the survey point was on 534 

the inside of a bend (p=0.023; Table S4). A cell-by-cell multiple linear regression model of 535 

estimates of vertical accretion rates (rva) across the floodplain (Figure S3) for each time period 536 

was developed based on distance from the channel (p< 0.001) and relative elevation from the 537 

channel (p<0.001). This model explained ~54% of the variability in long-term vertical accretion 538 

rates over the 42-year time period between 1973 and 2015 (r2=0.54, p<0.001) such that more 539 

deposition occurred closer to the channel and at lower elevations across the floodplain (Figure 540 

S3). 541 

4.4 Eroded and Accreted Sediment Volumes 542 

Estimated volumes of eroded and accreted sediment from the upper 2 km, intensive 543 

study reach were used to examine changes in volumes of floodplain sediment over the six time 544 

periods. Sediment input to and output from the floodplain during the six time periods ranged 545 

from 1145 ±258 to 17,324 ±2610 m3 and 2713 ±113 to 11519 ±1851 m3, respectively (Table 4). 546 

The difference between accreted and eroded volumes represent the net sediment change, 547 



 27 

which ranged from -6273 ±2018 (where negative values indicate net erosion) to 10,683 ±3792 548 

m3 of sediment (Figure 3B, Table 4).  549 

Estimated eroded volume exceeded accreted volume in all but one (i.e., 1955-1973) of 550 

the six periods resulting in a net loss of sediment over the total 60-year time period (Figure 3B). 551 

Although the resulting estimated sediment balance after 60 years was a net loss of 3919±5091  552 

m3 across the floodplain, this net difference falls within the error of the estimate and suggest 553 

closure of the sediment budget. 554 
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Table 4. Floodplain area and sediment volume eroded, accreted, and the net change between accretion and erosion along the  555 
upper 2 km, intensive study reach.  556 

 1955 - 1973 1973 - 1983 1983 - 1990 1990 - 2001 2001 - 2011 2011 - 2015 Total 

Duration (y) 
18 ± 0.3 10 ± 0.3 7 ± 0.3 11 ± 0.3 10 ± 0.3 4 ± 0.3    

Area eroded (m2)a 12228 ± 5060 12428 ± 2113 7341 ± 1835 16774 ± 2684 13317 ± 2530 3752 ± 1538    

Mean Depth of Eroded 
bank material (m) 

0.54 ± 0.01 0.60 ± 0.01 0.58 ± 0.01 0.69 ± 0.01 0.61 ± 0.01 0.72 ± 0.01    

Volume Eroded  (m3)b  
-6640 ± 2751 -7476 ± 1277 -4272 ± 1071 -11519 ± 1851 -8080 ± 1541 -2713 ± 1113 -40700 ± 4169 

Mean erosion rate 
(m3/y) 

-369 ± 153 -748 ± 130 -610 ± 155 -1047 ± 171 -808 ± 156 -678 ± 283    

Mean bank area 
erosion rate (m2/y)c 

-0.02 ± 0.01 -0.04 ± 0.01 -0.03 ± 0.01 -0.06 ± 0.01 -0.04 ± 0.01 -0.04 ± 0.02    

Point bar area of 
accretion from (m2)d 

28392 ± 4356 12391 ± 1735 14534 ± 2035 13612 ± 2178 14493 ± 1884 7403 ± 1851    

Mean vertical 
accretion within 
eroded areas (m)e 

0.59 ± 0.01 0.33 ± 0.01 0.23 ± 0.01 0.36 ± 0.01 0.33 ± 0.01 0.13 ± 0.01    

Estimated accretion 
along point bars (m3)f 

16865 ± 2608 4089 ± 587 3357 ± 493 4941 ± 803 4783 ± 640 977 ± 255    

Overbank deposition 
(m3)g 

459 ± 92 302 ± 61 213 ± 44 305 ± 62 322 ± 66 168 ± 36    

Total volume accreted 
(m3)h 

17324 ± 2610 4391 ± 590 3570 ± 495 5246 ± 806 5105 ± 643 1145 ± 258 36780 ± 2921 

Mean accretion rate 
(m3/y) 

962.43 ± 145.87 439.11 ± 60.462 509.97 ± 73.961 476.9 ± 74.406 510.54 ± 66.126 286.16 ± 67.924    

Net volume (m3) 
10684 ± 3792 -3085 ± 1407 -702 ± 1179 -6273 ± 2018 -2975 ± 1670 -1568 ± 1142 -3920 ± 5091 

a Area eroded from banks estimated by SCREAM (Rowland et al., 2016) 557 
b Volume calculated directly in GIS 558 
c Mean vertical area of bank eroded estimated as the mean erosion rate divided by the total channel length 559 
d Area of point bar accretion estimated by SCREAM 560 
e Vertical accretion estimated as the product of the duration of each time period and accretion rates derived from measured probe transect of fine floodplain sediment depths described in section 3.3 561 
f Volume of accretion estimated as the product of accreted areas identified by SCREAM and mean vertical accretion rates   562 
g Estimates of overbank deposition derived from the regression model described in section 3.4 in which vertical accretion rates of each DEM cell were summed and the total was multiplied by the number of years in each time 563 
period.  564 
h The sum of accreted volumes from point bars and overbank deposition565 
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4.5 Hydrologic linkages with floodplain sediment  566 

Although the six time periods studied were unequal in duration, average flow conditions 567 

were similar for most time periods, with one drier and one wetter period (Figure 4C; Table 3). 568 

The mean annual and peak discharges within the reach averaged 1.9 and 12.1 m3 s-1 569 

respectively from 1935 to 2017. The period between 2012 and 2015 was a relatively dry interval 570 

with the least average number of days above both baseflow conditions and bankfull stage, the 571 

least mean and max annual volume of flow, the lowest maximum and mean peak flow, and the 572 

lowest mean and maximum total recession slope of all time periods (Table 3). Conversely, the 573 

period between 1991 and 2001 was a relatively wet interval with the highest mean duration 574 

above baseflow, the highest maximum peak flow, a relatively high total annual volume of 575 

discharge, and a relatively high number of peaks above bankfull flow conditions. 576 
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 577 

Figure 4 Discharge at the East River study site and Almont stream gauge. (A) Linear regression 578 
between measured discharge at Almont and the study site (r2=0.97 ), (B) modeled discharge the 579 
study site based on the regression analysis (NSE=0.97), and (C) Modeled annual hydrographs 580 
for the 60-year study period (1955-2015) and an inset closeup of the hydrograph recession 581 
limbs. Thin, light blue lines are annual hydrographs, the shaded blue area is the 95% 582 
confidence interval, and colored lines represent mean hydrographs for the six time periods.  583 

 584 

 Multiple stepwise linear regression indicates that floodplain sediment exchange along 585 

the nine study reaches during the six time intervals are explained primarily by the hydrologic 586 
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conditions and the sinuosity of the channel at the beginning of each period (Table S5). Laterally 587 

accreted area (AL) with the appropriate power transformation (𝜆 = 0.2626) was most significantly 588 

influenced by a positive correlation with sinuosity (P; p <0.0001), the maximum number of days 589 

above the reference baseflow condition (Dbase; p <0.05), the mean channel width (w) of the 590 

study reach (p<0.05), and the maximum bankfull recession slope (Rbf) (r2 = 0.55, p < 0.1).  591 

 AL
0.26263 = -6.591 + 0.015Dbase + 3.142P + 0.240w + 21.432 Rbf (2)   592 

The area of floodplain erosion (EA) across the nine study reaches over the 6 periods was best 593 

explained by a positive correlation with the maximum total recession slope from peak to 594 

baseflow conditions (Rtotal; p<0.0001) and sinuosity (P; p <0.001) and a negative correlation with 595 

the maximum time between the first and last day flow exceeded baseflow (Tbase) (r2 = 0.59, p < 596 

0.05; Table S5).  597 

 EA
0.10101 = 2.058 + 5.190 Rtotal + 0.157 P – 0.002 Tbase  (3) 598 

Examination of the hydrologic variables alone explain a much higher portion of the 599 

variability in erosion and accretion along the entire 11-km study segment. Linear regression for 600 

the entire 11-km long study segment indicated that lateral accretion was best explained by the 601 

maximum number of days flow was above bankfull stage (r2 = 0.59, p = 0.074; Figure 5A). The 602 

most significant hydrologic variable for explaining the area of erosion along the 11-km long 603 

study segment was the mean slope of the hydrograph recession from peak to baseflow 604 

conditions (r2 = 0.91, p = 0.003; Figure 5B).  605 

 606 
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 607 

Figure 5 Linear regression of eroded and accreted areas and diel fluctuations. Each point 608 
represents each of the six time intervals for which data from all nine study reaches are 609 
combined. (A) The number of days that flow exceeded bankfull flow conditions is a significant 610 
predictor of accreted area (r2=0.59, p = 0.074) and (B) the maximum recession slope frame of 611 
the total recession slope from peak to baseflow is a significant predictor of eroded area (r2=0.91, 612 
p = 0.003). (C) The recession limb of the 2017 annual hydrograph illustrates fluctuations of 613 
discharge in response to snowmelt during daily warming and cooling, which can exceed 2 m3 s-614 
1, but do not show a strong correlation with the maximum recession slope (r2=0.29) (D). In A, B, 615 
and D, the dashed lines represent the linear regression model and the gray shaded area 616 
represents the 95% confidence intervals. In C the red line represents the bankfull flow stage and 617 
the blue shaded area represents the window in which diel fluctuations were examined.  618 
 619 

Our analysis did not show a strong correlation between the maximum recession slope 620 

and observations of associated diel fluctuations since 1988. The number, the summed 621 

magnitude, and the mean magnitude of diel fluctuations in discharge exceeding 2 m3s-1 within 622 

the defined window around bankfull flow (5 < Qbf < 10 m3s-1) were poorly correlated with the 623 

maximum recession slope. The strongest correlation existed with the summed magnitude of diel 624 

fluctuations during each recession limb (r2<0.3; Figure 5D). 625 
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 626 

5. Discussion 627 

5.1 Floodplain volume and the sediment budget 628 

 Our floodplain fine sediment budget closed within the range of error (3920 ± 5091 m3), 629 

suggesting that our approach accurately accounted for erosion and deposition. Estimates of 630 

bank erosion along cut banks and deposition along point bars are relatively robust because they 631 

were measured with calculated error from aerial imagery and based on measured depths and 632 

long-term average deposition rates. Our results linking horizontal and vertical distance from the 633 

channel with overbank deposition are consistent with published research (Asselman & 634 

Middelkoop, 1995; Hupp et al., 2008; G. Day et al., 2008). However, this approach used the 635 

total depth of sediment deposited over the 42 year period between 1973 and 2015, which does 636 

not account for deposition and subsequent erosion occurring at time scales shorter than our 637 

averaging. For these reasons, estimate of overbank sediment deposition in our sediment budget 638 

likely contain the highest uncertainty among values in our sediment budget. However, our 639 

analysis captures an average aggradation rate for each time period, effectively accounting for 640 

feedbacks between annual and decadal time scales appropriate for our analysis. Annual 641 

processes that may influence floodplain processes on decadal time scales include successful 642 

germination and establishment of riparian vegetation and cyclical patterns in channel widening 643 

and narrowing. 644 

 645 

5.2 Linkages between flow duration and floodplain accretion    646 

 Potential for increased successful establishment of riparian vegetation associated with 647 

longer duration of flows and a slower recession limb of snowmelt-dominated systems (Merritt & 648 

Wohl, 2002) may explain our observed relationships between accretion and flow duration. The 649 

floodplain along our study segment of the East River is devoid of cottonwoods, but willow (Salix 650 

spp.) are present and share similar relationships between hydrochory and successful seedling 651 
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establishment in snowmelt-dominated systems (Karrenberg et al., 2002; Woods & Cooper, 652 

2005; Cooper et al., 2006). The number of days above baseflow and days above bankfull flow 653 

are the most significant hydrologic variable for lateral accretion at the 9 study reaches and the 654 

11-km long study segment, respectively. Accretion could be aided by successful establishment 655 

of willows along point bars during sustained high flows and observed diel fluctuations, which 656 

resemble the stepped recession limb most successful at seedling establishment in Merritt & 657 

Wohl (2002). Channel narrowing associated with stabilization of vegetated point bars (Friedman 658 

et al., 1996; Balke et al., 2014; Caponi et al., 2019) can force flow to outer banks and encourage 659 

subsequent bank erosion (Merritt & Cooper, 2000; Zen et al., 2017) and widening in cyclical 660 

patterns observed on meandering rivers (Hooke, 2008; Cantelli et al., 2004). Alternating periods 661 

of channel narrowing and widening have commonly been observed in the field (Hooke, 2008; 662 

Cantelli et al., 2004). The period between 2012 and 2015 is the only exception in this alternating 663 

pattern on the East River and may have arisen from a reduction in erosion associated with the 664 

lowest maximum total recession slope in the study period. 665 

 Our observations show that the erosion and accretion that facilitate channel migration of 666 

the East River are accompanied by channel cutoffs. Progressive increases in sinuosity of the 667 

East River were truncated by 21 chute cutoffs during the study period. During that time period 668 

the channel maintained a relatively stable sinuosity within each study reach and along the 11-669 

km long study segment (Table 1; Figure 3A). Many observations and most models that predict 670 

channel cutoffs include only neck cutoffs, which by definition occur only after sinuosity reaches 671 

a threshold that causes two river bends to meet (Howard, 1996; Hooke, 2004; Zinger et al., 672 

2011). Along a study reach of the Sacramento River exceeding 150 km, Micheli & Larsen (2011) 673 

made observations similar to those we present here. The occurrence of 27 chute cutoffs helped 674 

maintained an average sinuosity of 1.38 ± 0.018 (1.37-1.41) over the course of 93 years on the 675 

Sacramento River. Micheli & Larsen (2011) and Hooke (2004) also hypothesize that cutoffs 676 

occurred at some threshold of sinuosity and/or discharge.  677 
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 678 

5.3  Linkages between recession slope and bank erosion 679 

 Stepwise regression analysis of erosion at the nine study reaches and linear regression 680 

at the 11-km long study segment suggest that the total recession slope is strongly linked to the 681 

occurrence of bank erosion on the snowmelt-dominated East River. While accounting for 682 

changes in sinuosity, the maximum duration between the first and last day of flow exceeding 683 

baseflow conditions and the total recession slope are significant predictors in the stepwise 684 

regression analysis. The total recession slope has the highest significance among variables in 685 

the model (p<0.0001).  The maximum total recession slope alone explains 91% of the variability 686 

in bank erosion when considering the entire 11-km long study segment, highlighting its 687 

importance on bank erosion.  688 

 Limited observations have previously only suggested that the recession limb slope could 689 

be a significant factor in bank erosion. Although Pizzuto (1994) attributed observed bank 690 

erosion on the order of 30% of the channel width in the snowmelt-dominated Powder River, 691 

Montana, to elevated discharge for approximately 7 days, they also suggested a steep 692 

recession limb in 1978 may have been partially responsible. Similarly, Hooke (1979) suggested 693 

the recession limb slope could have played a role in observed bank erosion in a temperate 694 

flashy systems, but they lacked temporal resolution necessary to examine the rate of change in 695 

flow. The role of the recession limb as a mechanism for bank erosion, however, likely varies 696 

substantially between the temperate stormy system examined by Hooke and snowmelt-697 

dominated discharge of the East River.  698 

 Observations presented here that link the total recession limb slope with erosion may 699 

involve a combination of mechanisms. On the East River, we observe that high flows erode 700 

underlying fluvial gravels resulting in planar cantilever failures of the fine grain upper portion of 701 

the bank (Figure 1D, S1). Shifting oblique directions in subsurface hydraulic gradient observed 702 

on the East River (Malenda et al., 2019), could change the magnitude and direction of confining 703 
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pressure on the outside of river bends where erosion occurs and shifts hyporheic flow toward 704 

apposing meander bends. This change in hydraulic gradient could produce a positive pore 705 

pressure along banks with a seepage face, triggering slump bank erosion (Rinaldi & Casagli, 706 

1999; Fox et al., 2007). Although it is possible that some bank failures in the study area have 707 

been triggered by positive pore pressure, these types of failures often occur in stormy systems 708 

that experience flash floods with dramatic changes in discharge occurring over the course of a 709 

single day or several hours. Additionally, slump failures commonly occur along much higher 710 

banks (>4m) composed of heterogeneous bank material (Simon et al., 2000; Langendoen & 711 

Simon, 2008; S. S. Day et al., 2013b). Slump scarps provide evidence of occurrence, but scarps 712 

are not observed on the East River, and cantilevers failures are the primary mechanism of bank 713 

failure. 714 

 Conceptually, the loss in confining pressure explains the link between our field 715 

observations and the total recession slope in our analysis. Following undercutting of banks 716 

composed of fine sediment, the loss of supporting pressure with rapidly declining stage can 717 

result in tension cracks of undercut banks that trigger bank failure (Rinaldi & Casagli, 1999). 718 

River banks in flashy systems are likely to retain significant water following a rapid recession 719 

limb, which adds to their weight and could facilitate failure of undercut banks. The gradual 720 

decline in flow stage occurring over the course of days to weeks on the East River, and 721 

characteristic of snowmelt-dominated systems, is likely to allow silt-dominated soils to drain so 722 

that undercut banks are not as heavy. Diel fluctuations in discharge (2 to 5 m3s‐1) during peak 723 

flow recessions on the East River near bankfull stage (~8 m3s‐1; Figure 5C), however, could 724 

facilitate wet and even saturated conditions of river banks. These rapid changes in discharge 725 

(Q) equate to daily changes in flow depth (d) of approximately 0.02 to 0.03 m at the gauging 726 

station which has an approximate bankfull width (w) of 14 m. Although there is a strong 727 

correlation between total recession slope and erosion, recession slope is not correlated with diel 728 

fluctuations in our analysis (Figure 5D). Therefore our data do not draw a strong correlation 729 
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between erosion and diel fluctuations. Because the mechanistic linkage between recession 730 

slope and bank erosion in snowmelt-dominated systems in not understood, we suggest that 731 

more work is required to assess the role of diel fluctuations.  732 

 733 

5.4 Influence of shifting hydrologic regimes on floodplain sediment fluxes 734 

Linkages between hydrology and floodplain fine sediment dynamics presented here 735 

elucidate implications for snowmelt-dominated systems, particularly under shifting climatic 736 

conditions. Observed changes in snowpack, upward shifts in the rainfall-snowfall transition, 737 

rapid warming and earlier snowmelt, and increased rain-on-snow events, are altering snow-melt 738 

dominated hydrographs (Stewart et al., 2004; Clow, 2009; Kampf & Lefsky, 2016; Praskievicz, 739 

2016; Painter et al., 2018). The coldest snowmelt regimes are likely to experience increased 740 

spring hydrograph peaks, whereas transitional snowmelt regimes may experience lower spring 741 

peaks and more winter peak events (Nijssen et al., 2001). Snowmelt-dominated hydrographs 742 

characterized by a single dominant peak with relatively little response to rain may shift to mimic 743 

characteristics of mixed rain on snow regimes that generate higher flows in the winter with 744 

possibility of multiple peaks (Hammond & Kampf, 2020). Predicted increase in the frequency or 745 

magnitude of storms (Bates et al., 2008) could make extreme floods in mountainous regions – 746 

like the one that occurred in the Colorado Front Range in 2013 – more common, which could 747 

greatly alter floodplain sediment dynamics and residence times (Sutfin & Wohl, 2019). Although 748 

observations and projections of floods do not indicate an increase in magnitude across rivers 749 

with all types of flow regimes, floods are occurring more often (Hirsch & Archfield, 2015; 750 

Mallakpour & Villarini, 2015). Higher frequency of storms has potential for more frequent floods 751 

and associated recession limbs. These changes would by definition shift otherwise predictable 752 

snowmelt dominated systems to more flashy systems with increased variability and more rapidly 753 

rising and receding limbs, but how changes could influence sediment dynamics are uncertain. 754 
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The changes in annual average snowpack and timing of snowmelt are poised to change 755 

flow durations, the slope of recession limbs, and sediment dynamics, but the direction of these 756 

changes in unknown. Let’s consider a transition to flashier systems in response to consistent 757 

warming, less snowpack, and increased rain-on-snow events. Because higher flows are being 758 

distributed throughout more of the year, this type of shift is likely to result in more frequent, 759 

lower magnitude peaks with steeper recession limbs. If flow magnitude or the duration of flow is 760 

the dominant factor for erosion, as some studies suggest (Hooke, 1979; James E. Pizzuto, 761 

1994; Langendoen & Alonso, 2008; Langendoen & Simon, 2008), the erosional response to this 762 

transition is likely to be limited. If the recession slope is the most important influence on bank 763 

erosion, as our results suggest, this transition could increase the erosional response. This 764 

erosional response paired with our findings that a positive correlation exists between floodplain 765 

accretion and the duration of overbank flow, supported by others (Asselman & Middelkoop, 766 

1995; Hupp et al., 2008), flashier systems could limit overbank deposition while encouraging 767 

bank erosion.  768 

 769 

Conclusion 770 

 Our findings linking measured bank erosion and the annual snowmelt-dominated 771 

recession limb slope of the East River provide previously undocumented insight into snowmelt 772 

dominated systems, which comprise the majority of mountainous headwater streams and rivers 773 

above 40° latitude. Here we present results that integrate long-term, 60 years, of high-resolution 774 

(1-m pixels) remotely-sensed change analyses with extensive field observations that document 775 

deposition rates and patterns ranging from individual point bars to entire floodplain reaches over 776 

individual seasons to decades. By combining these results with detailed hydrological analysis of 777 

the East River we are able to isolate the specific component of this snowmelt-dominated 778 

hydrograph individually responsible for erosion and deposition. This analysis suggests that the 779 

floodplain sediment budget is balanced along the East River intensive study reach, which 780 
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supports the accuracy of our analysis within the calculated error. The more complex stepwise 781 

regression models indicate that channel morphometry (i.e., width, sinuosity) likely influences 782 

erosion and accretion associated with hydrologic variables along the nine study reaches. Our 783 

results linking channel accretion to the duration of flow above baseflow conditions support prior 784 

work by others regarding accretion and flow duration above a set threshold. A strong correlation 785 

between the annual recession slope and erosion along the entire study segment suggests that 786 

the faster snowmelt-dominated hydrographs decline the more bank erosion is likely to occur. 787 

These findings emphasize the importance of flow steadiness and rate of change in erosion and 788 

sediment dynamics beyond the typical peak magnitude and duration of bankfull discharge. 789 

Thus, observed and future changes in hydrologic flow regime with changes in snowpack, 790 

snowmelt, and the rain-snow transition are likely to drive changes in the relative balance of 791 

floodplain erosion and deposition in mountainous headwaters systems. Similar changes in 792 

floodplain sediment fluxes may also occur in northern high-latitude rivers characterized by 793 

snowmelt dominated hydrographs. These changes will alter river dynamics, sediment, carbon, 794 

and nutrient fluxes, and potentially negatively impact infrastructure within river corridors. 795 
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# This code will examine to hydrograph dataset, select matching days  
# and times and conduct a regression that can be used to fill in missing data 
# Author: Nicholas A. Sutfin 
# Date: Oct. 18th 2017, last modified May 8th, 2020 
 
library("plyr") 
#library("smwrBase", lib.loc="~/R/win-library/3.2") 
library("lattice") #, lib.loc="C:/Program Files/R/R-3.3.0/library") 
library("lubridate") 
library("hydroGOF") 
 
# Set user space  
loadpath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/' 
savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_1.91_BestFit/' # 
Calculating slope as line between 1st and last points (2p) 
setwd(loadpath) 
 
All_DailyQ_1935_2020 = read.csv("All_DailyQ_1935_2020.csv", stringsAsFactors = F) 
#"All_DailyQ_1910_2020.csv", stringsAsFactors = F) 
 
# Load ALmont data for 2015-2017 as csv file, convert to SI units, code the date as a date, and 
define the year 
Alm_Q <- read.csv("ER_AlmQ_2015-2019.csv", header=TRUE) 
Alm_Q$Q_cfs = as.numeric(as.character(Alm_Q$Q_cfs)) 
Alm_Q$Alm_Q_cms = Alm_Q$Q_cfs*0.0283168 
Alm_DailyQ = as.data.frame(Alm_Q) 
Alm_DailyQ = ddply(Alm_DailyQ, ~date, summarise, Alm_Q_cms = mean(Alm_Q_cms)) 
Alm_Qdaily <- Alm_DailyQ[order(as.Date(Alm_DailyQ$date, format="%m/%d/%y")),] 
Alm_Qdaily$Date = as.Date(Alm_Qdaily$date, "%m/%d/%y") 
Alm_Qdaily$year = year(Alm_Qdaily$Date) 
Alm_Qdaily$month = month(Alm_Qdaily$Date) 
Alm_Qdaily$Calday = day(Alm_Qdaily$Date) 
Alm_Qdaily$day = yday(Alm_Qdaily$Date) 
 
# Load Pump house data for 2015-2017 as csv file, convert to SI units, code the date as a date, 
and define the year 
#PH_Qdaily <- read.csv("ER_PH_2015-17Q.csv", header=TRUE ) 
PH_Data <- read.csv("ER_PHQ_2014-2018.csv", header=TRUE) 
PH_DailyQ = ddply(PH_Data, ~date, summarise, PHQ_cms = mean(PHQ_cms)) 
PH_Qdaily <- PH_DailyQ[order(as.Date(PH_DailyQ$date, format="%m/%d/%y")),] 
PH_Qdaily$Date = as.Date(PH_Qdaily$date, "%m/%d/%y") 
PH_Qdaily$year = year(PH_Qdaily$Date) 
PH_Qdaily$month = month(PH_Qdaily$Date) 
PH_Qdaily$Calday = day(PH_Qdaily$Date) 



PH_Qdaily$day = yday(PH_Qdaily$Date) 
names(PH_Qdaily)[2]<-paste("PH_Q_cms") 
 
#_____________________________________________________________________________
____ 
# Find matching dates and create new dataset 
DailyQ_diff <- setdiff(PH_Qdaily$Date, Alm_Qdaily$Date) 
DailyQ_int <- intersect(PH_Qdaily$Date, Alm_Qdaily$Date) 
 
# Find PH Q data for dates overlapping the with Almont gage 
PH_DailyQ_match <- PH_Qdaily[PH_Qdaily$Date %in% DailyQ_int, ] 
# Find Almont gauge data that overlaps with pump house study site data  
Alm_DailyQ_match <- Alm_Qdaily[Alm_Qdaily$Date %in% DailyQ_int, ] 
# Merge the two overlapping datasets side my side by matching dates 
All_DailyQ_15_18 <- cbind(Alm_DailyQ_match, PH_DailyQ_match) 
 
rows = length(All_DailyQ_15_18$PH_Q_cms) #[All_DailyQ_15_18$day > 105 & 
All_DailyQ_15_18$day < 319]) 
Qmat <- matrix(0, rows, 3) 
Q = as.data.frame(Qmat) 
names(Q)[1]=paste("PH") 
names(Q)[2]=paste("AL") 
names(Q)[3]=paste("day") 
 
# April 15th = 105 Nov 15th = 319, so 104-320 is good 
Q$PHDate = All_DailyQ_15_18$Date[which(is.na(All_DailyQ_15_18$PH_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
Q$PH = All_DailyQ_15_18$PH_Q_cms[which(is.na(All_DailyQ_15_18$PH_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
Q$ALDate = All_DailyQ_15_18$Date[which(is.na(All_DailyQ_15_18$PH_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
Q$AL = All_DailyQ_15_18$Alm_Q_cms[which(is.na(All_DailyQ_15_18$Alm_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
Q$day = All_DailyQ_15_18$day[which(is.na(All_DailyQ_15_18$Alm_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
 
Qreg <- lm(Q$PH ~ Q$AL, data = Q) 
summary(Qreg) 
Qreg # adjusted R squared = 0.97 
 
# For all days: PHQ = -0.081804 + 0.211284(Alm) 
# Excluding frozen days, regression output: PHQ = 0.010948 + 0.211611(Alm) 
 
par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5, lwd = 1) 



plot(All_DailyQ_15_18$Alm_Q_cms, All_DailyQ_15_18$PH_Q_cms, col = "blue", 
     xlab = expression(paste("Discharge at Almont (m"^"3", "s"^"-1",")")),  
     ylab = expression(paste("Discharge (m"^"3", "s"^"-1",")"))) 
lines(All_DailyQ_15_18$Alm_Q_cms, Qreg$coefficients[1] + 
Qreg$coefficients[2]*All_DailyQ_15_18$Alm_Q_cms,  
      col = "black") 
par(cex = 1) 
#points(Q$AL, Q$PH, pch = 19, col = "red") 
text(10, 15, expression("r"^{2} ~"= 0.97"), cex = 1.5) 
 
# Load Almont discharge data from 1910 to 2020, cut data to timeframe of interest (1955-2015) 
# and convert to cms 
#_____________________________________________________________________________
____ 
Alm_Qdaily_1910_2020 <- read.csv("Alm_Q_cfs_1910_2020.csv", header=TRUE) 
Alm_Qdaily_1910_2020$Alm_Q_cms = Alm_Qdaily_1910_2020$Alm_Q_cfs*0.0283168 
Alm_Qdaily_1910_2020$Date = as.Date(Alm_Qdaily_1910_2020$Date, "%m/%d/%Y") 
 
All_DailyQ_1910_2020 = Alm_Qdaily_1910_2020 
All_DailyQ_1910_2020$year = format(All_DailyQ_1910_2020$Date, "%Y") 
All_DailyQ_1910_2020$month = format(All_DailyQ_1910_2020$Date, "%m") 
All_DailyQ_1910_2020$day = format(All_DailyQ_1910_2020$Date, "%d") 
All_DailyQ_1910_2020$yday = yday(All_DailyQ_1910_2020$Date) 
All_DailyQ_1910_2020$Mod_PH_Q_cms = Qreg$coefficients[1] + 
Qreg$coefficients[2]*All_DailyQ_1910_2020$Alm_Q_cms 
 
# Use regression to extend daily Q for PH based on Almont flow 
#_____________________________________________________________________________
____ 
# regression output: PHQ = x + y(Alm) 
par(mfrow=c(1,1), mar=c(4,5,3,2), cex = 1.5) 
All_DailyQ_2014_2020 = All_DailyQ_1910_2020[37987:length(Alm_Qdaily_1910_2020$Date), ] 
 
#_____________________________________________________________________________
____ 
# plot observed vs. modeled data for East River and calculate Nash-Sutcille and RMSE 
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.1) 
 
Date = All_DailyQ_2014_2020$Date 
Modeled_PHQ = subset(All_DailyQ_2014_2020, Date > "2014-9-30") 
#min(WaterYear15):max(WaterYear15))) 
 
# Select only uniqe values 
Observed_PHQ = All_DailyQ_15_18[,c(3,9)] 



 
PH_Q_int <- intersect(Observed_PHQ$Date[order(Observed_PHQ$Date)], 
Modeled_PHQ$Date[order(Modeled_PHQ$Date)]) 
Modeled_Q_match <- Modeled_PHQ[Modeled_PHQ$Date %in% PH_Q_int, ] 
Observed_Q_match <- Observed_PHQ[Observed_PHQ$Date %in% PH_Q_int, ] 
PHQ_15_18 = cbind(Modeled_Q_match, Observed_Q_match) 
 
Qreg2 <- lm(PHQ_15_18$PH_Q_cms ~ PHQ_15_18$Alm_Q_cms, data = All_DailyQ_15_18) 
summary(Qreg2) 
Qreg2 
 
par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5, lwd = 1) 
# Plot Almont flow data 
plot(All_DailyQ_15_18$Date, All_DailyQ_15_18$Alm_Q_cms, lwd = 2, type = "l", 
     col = "black", xlab = "Year", ylab = expression(paste("Discharge (m"^"3", "s"^"-1",")")), lty = 
5, cex = 1.5) 
# Plot observed ER study site flow data 
lines(PHQ_15_18$Date[order(PHQ_15_18$Date)], 
PHQ_15_18$PH_Q_cms[order(PHQ_15_18$Date)], lty = 1, col = "blue", lwd = 2, type = "l",  
     xlab = expression(paste("Discharge (m"^"3", "s"^"-1",")")), ylab = "Time (years)") 
#polygon(PHQ_15_17$date, PHQ_15_17[,5], col = "blue") 
 
# Plot modeled ER study site flow data 
lines(PHQ_15_18$Date[order(PHQ_15_18$Date)], 
PHQ_15_18$Mod_PH_Q_cms[order(PHQ_15_18$Date)], col = 'red', lwd = 2, lty = 2) 
legend("topright", col = c("black", "blue", "red"), lty = c(5,1,2),  
       lwd = 2, legend = c('Almont', 'Observed', 'Modeled')) 
 
NSE(PHQ_15_18[,10],PHQ_15_18[,8]) 
text(10, 15, expression("NSE = 0.97"), cex = 1.5) 
# Nash-Sutcliffe coeeficient = 0.97 
 
#_____________________________________________________________________________
____ 
# Format data for hydrograph analysis 
write.csv(All_DailyQ_2014_2020,"All_DailyQ_2014_2020.csv") 
write.csv(All_DailyQ_1910_2020,"All_DailyQ_1910_2020.csv") 
 
ER_Q_35_20 <- All_DailyQ_1910_2020[All_DailyQ_1910_2020$year > 1934, ] 
write.csv(ER_Q_35_20, "All_DailyQ_1935_2020.csv") 
 
################################### 
# Create plots of Almont and East RIver 



#_____________________________________________________________________________
____ 
par(mfrow=c(1,1), mar=c(4,5,1,1), cex = 1) 
All_Q_1910_2020 = All_DailyQ_1910_2020  
ER_Q_55_20 <- All_Q_1910_2020[All_Q_1910_2020$year > 1954, ] 
 
#_____________________________________________________________________________
____ 
# Create a stacked plot of hydrographs for the period of record  
#_____________________________________________________________________________
____ 
 
par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5) 
 
# Create an initial plot to add hydrographs from all years 
plot(ER_Q_55_20$yday[ER_Q_55_20$year == 1955], 
ER_Q_55_20$Mod_PH_Q_cms[ER_Q_55_20$year == 1955], type = "l",   
    ylim = c(0,25), xlab = "Day of Year",  
    ylab = expression(paste("Modeled discharge (m"^"3", "s"^"-1",")")), lwd = 1,  
    main = "East River 1955-2015") 
 
# Create a smaller zoomed in plot to add hydrographs from all years 
#plot(ER_Q_55_20$day[ER_Q_55_20$year == 1955], ER_Q_55_20[ER_Q_55_20$year == 1955, 
3], type = "l",   
 #    ylim = c(0,11), xlim = c(160,220), xaxt = "n", xlab = "Day of Year", ylab = "Discharge (cms)", 
lwd = 1, main = "East River 1955-2017") 
 
# Create a list of unique years for the period of interest 
years = unique(ER_Q_55_20$year) 
 
# A for loop to plot hydrographs for all years on top of one another  
for (i in 1:65) { 
  years2plot = years[i] 
  print(years2plot) 
  dat.yr = subset(ER_Q_55_20, year == years2plot) 
  print(dat.yr) 
  lines(dat.yr$yday, dat.yr$Mod_PH_Q_cms, col = "royalblue1", lwd = 1) 
} 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
AllFlow = ddply(ER_Q_55_20, ~yday, summarise, 
                MeanFlow = mean(Mod_PH_Q_cms), 
                LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
                UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 



 
# Plot a transparent band representing the 95% confidence level                                     
polygon(c(AllFlow$yday,rev(AllFlow$yday)),c(AllFlow$LCI,rev(AllFlow$UCI)),border=NA,  
        col = rgb(red = 0.0, green = 0.0, blue = 0.5, alpha = 0.25)) 
 
 
#------------------------------------------- 
# Plot mean hydrographs for 6 time intervals 
 
Q_55_73 = ER_Q_55_20[ER_Q_55_20$year < 1974, ] 
Q_74_83 = ER_Q_55_20[ER_Q_55_20$year > 1973 & ER_Q_55_20$year < 1984, ] 
Q_84_90 = ER_Q_55_20[ER_Q_55_20$year > 1983 & ER_Q_55_20$year < 1991, ] 
Q_91_01 = ER_Q_55_20[ER_Q_55_20$year > 1990  & ER_Q_55_20$year < 2002, ] 
Q_02_11 = ER_Q_55_20[ER_Q_55_20$year > 2001  & ER_Q_55_20$year < 2012, ] 
Q_12_17 = ER_Q_55_20[ER_Q_55_20$year > 2011, ] 
Q_12_15 = ER_Q_55_20[ER_Q_55_20$year > 2011  & ER_Q_55_20$year < 2016, ] 
 
 
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.5) 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow73 = ddply(Q_55_73, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow73$yday, type = "line", #ylim = c(0, 11), 
      Flow73$MeanFlow, col = "red", lwd = 2.5, 
     xlab = "Day of the year", ylab = "Discharge (cms)") # Plot the mean hydrograph value 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow83 = ddply(Q_74_83, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow83$yday,  
      Flow83$MeanFlow, col = "orange", lwd = 2.5) # Plot the mean hydrograph value 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow90 = ddply(Q_84_90, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow90$yday, 
      Flow90$MeanFlow, col = "yellow", lwd = 2.5) # Plot the mean hydrograph value 



 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow01 = ddply(Q_91_01, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow01$yday, 
      Flow01$MeanFlow, col = "green", lwd = 2.5) # Plot the mean hydrograph value 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow11 = ddply(Q_02_11, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow11$yday, 
      Flow11$MeanFlow, col = "darkblue", lwd = 3.5) # Plot the mean hydrograph value 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow17 = ddply(Q_12_15, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow17$yday, 
      Flow17$MeanFlow, col = "black", lwd = 2.5) # Plot the mean hydrograph value 
 
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.2) 
legend(280, 25, legend = c("1955-1973", "1974-1983", "1984-1990", "1991-2001", "2002-2011", 
"2012-2015"),  
       col = c("red", "orange", "yellow", "green", "darkblue", "black"), 
       lty = 1.2, lwd = 2.5, bg = "gray85") 
 
#************************************************************ 
 
###Stream Flow Frequency Analysis and Recession Limb Quantification 
 
################################## 
# From time lapse photos and the stage data, bankfull stage appears to occur at about 4 cms 
################################## 
 
#setwd(loadpath) 
#All_DailyQ_1935_2020 = read.csv("All_DailyQ_1935_2020.csv", stringsAsFactors = F) 
#"All_DailyQ_1910_2020.csv", stringsAsFactors = F) 
data = All_DailyQ_1935_2020 #"All_DailyQ_1910_2020.csv", stringsAsFactors = F) 
dat.er = data[ ,c(2,3,5:9)] 



dat.er$flow.er = dat.er$Mod_PH_Q_cms 
 
# estimate lowflow conditions and a reference basflow by which to measure the recession limb 
Lowflow = mean(na.omit(dat.er$flow.er[dat.er$month %in% list("10","11","12","1","2","3")])) 
Baseflow =  1.91 #Lowflow #mean(na.omit(dat.er$flow.er[dat.er$month %in% list("9")])) 
BFQ = 8 # define a threshold approximation for bankfull discharge 
# Estimated bankkfull at 8 cms 
 
# Initialize storage variables  
years = unique(dat.er$year) # Unique years for indexing (using water years (10/01-9/30)) 
years = years[years > 1934] 
 
# Aggregate Yearly (or monthly) data by mean, median, max, and min (or anything else) 
x = subset(dat.er, year %in% c(1935:2019)) 
statistics = as.data.frame(as.list(aggregate(flow.er ~ year ,data = x, FUN=function(x) c(mean 
=mean(x), median=median(x), max = max(x),min = min(x))))) 
 
maxflow = as.data.frame(matrix(ncol=10,nrow =85))#length(years))) 
# define the list of column names for the dataframe 
names(maxflow) = c("year","peakdate","flow.er","BFflow", "BF_EndDay", "enddate", 
"TotalSlope","BFslope","BF_StartDay","PeakSlope") 
 
for (k in 2:85){ 
  # Skip years where insufficient data was collected using a # of days in year as threshold. bad 
  if (length(dat.er$Date[dat.er$year == years[k]]) < 250) { 
  }  
  else { 
    # find peak flows greater than 500cfs and corresponding year and Date 
    dat.sub = subset(dat.er, year == years[k]) # Subset larger data set 
    dat.sub$Date = as.Date(dat.sub$Date, format="%Y-%m-%d")  
    medianflow = mean(dat.sub$flow.er[dat.sub$month %in% list("10","11","12")]) 
 #median(na.omit(dat.sub$flow)) # find median flow (used as a threshold, need better method) 
    maxflow[k,3] = max(na.omit(dat.sub$flow.er)) # find and store peak flows 
    maxflow[k,1] = years[k] # store year 
    index = tail(which(dat.sub$flow.er == maxflow[k,3]), n=1) # find index of peak flow to 
detrmine the exact Date 
    maxflow[k,2] = as.character(dat.sub$Date[index]) # Date of peak flow 
    #as.Date(index, origin = dat.sub$Date[1]) # 
     
    # Bankfull flow 
    if (max(dat.sub$flow.er >= 8)) { 
      indX1 = min(which(dat.sub$flow.er >= 8)) # index the date flow rises above BF 
      indX = max(which(dat.sub$flow.er >= 8)) # index the date flow drops below BF 
      BF_start = as.character(dat.sub$Date[indX1]) # Assign first date flow exceeds BF 



      maxflow[k,9] = BF_start # Assign first date flow exceeds BF 
      BF_end = as.character(dat.sub$Date[indX]) # Assign last date flow drops below BF 
      maxflow[k,5] = BF_end # Assign last date flow drops below BF 
      maxflow[k,4] = dat.sub$flow.er[indX] 
    } 
    else { 
      maxflow[k,5] = NA 
      maxflow[k,4] = NA 
      maxflow[k,9] = NA 
      indX = NA 
      BF_start = NA 
      BF_end = NA 
      print(years[k]) 
      } 
     
    ## Extracting Recession limb 
    # This section finds the Dates corresponding to the peakflow (already found above) and a 
later 
    # Date corresponding to "normal" flow conditions. I am currently using the median but it's a 
bad 
    # metric. 
    # Starting at the index of the peak flow Date, step forward one day (increasing the index by 1) 
and 
    # check if the flow that day is a certain percentage from the median value.  
    PeakDate = as.character(dat.sub$Date[index]) # used for extracting recession limb  
    maxdepth = maxflow[k,3] # used for extracting recession limb 
    repeat{ 
      index = index+1 
      maxdepth = dat.sub$flow.er[index] # flow one day later 
      if (is.na(maxdepth)){ # check if no flow was recorded 
      } else if (Baseflow > (maxdepth)){ # Check if flow is within X% of median value 
        break # was preiously ((medianflow) + Qmin) > maxdepth)) 
        # The "index" term now identifies the obs where Q reaches a baseflow condition ~0.8cms 
      } else if (index == length(dat.sub$flow.er)) { 
        print(paste(dat.sub$year[1])) # identify the year 
        break 
        # This forces the loop to break if Q never falls below baseflow 
      } 
    } 
   #*************************************** 
    # Indexing for bankfull slope calculation 
    BFDate = maxflow[k,5] 
 
    if (is.na(maxflow[k,5]) == FALSE) { 



        repeat{ 
      indX = indX+1 #increment one more day after last BF flow 
      BFQ = dat.sub$flow.er[indX] # flow one day later 
      if (is.na(BFQ)){ # check if no flow was recorded and do nothing 
      } else if (Baseflow > (BFQ)){ # Check if flow is within threshold of median value was 
previously ((medianflow) + Qmin > (BFQ)) 
        break # Exist loop if Q drops below baseflow and saved that Q value as BFQ 
      } else if (indX == length(dat.sub$flow.er)) {  
        print(paste(dat.sub$year[1])) 
        break # Exit loop if flow does not drop below baseflow 
      } 
    } 
    } 
     
    BaseDate = as.character(dat.sub$Date[index]) 
    maxflow[k,6] = as.character(dat.sub$Date[index]) 
    #FirstDate = dat.sub$Date[1] #Set the first date of the year 
     
    # Convert Dates to yday for duration calculations 
    BaseDay=yday(BaseDate) 
    PeakDay=yday(PeakDate) 
    BF_endDay=yday(BF_end) 
    BF_startDay=yday(BF_start) 
    Last_index=length(dat.sub$Date) 
    LastDay = yday(dat.sub$Date[Last_index]) 
    BaseFlow_Date = as.Date(BaseDay, origin = dat.sub$Date[1]) 
     
    ######################################################################### 
    # Calculate and plot slopes of recession limb at various stages 
    #________________________________________________________________________ 
     
    # Calculate recession slope based on best fit regression line between all points 
    TotSlopeQ = dat.sub$Mod_PH_Q_cms[dat.sub$yday %in% c(PeakDay:BaseDay)] 
    TotSlopeDate = dat.sub$Date[dat.sub$yday %in% c(PeakDay:BaseDay)] 
    TotSlopeReg = lm(TotSlopeQ ~ TotSlopeDate) 
    summary(TotSlopeReg) 
     
    maxflow[k,7] = -1*TotSlopeReg$coefficients[2] #((maxflow[k,3])-Baseflow)/(BaseDay-
PeakDay) # Slope of line from start to end of recession limb 
    plot(dat.sub$Date, dat.sub$Mod_PH_Q_cms, type = "line", main = paste(years[k]), 
         ylab = "Discharge (cms)", xlab = NA) 
    points(TotSlopeDate, TotSlopeQ, pch = 19, col = "violet") 
    lines(TotSlopeDate, predict(TotSlopeReg), col = "purple", lwd = 2) 
     



    # Calculate slope as line between two points 
    #maxflow[k,7] = (maxflow[k,3]-Baseflow)/(BaseDay-PeakDay) 
    #plot(dat.sub$Date, dat.sub$Mod_PH_Q_cms, type = "line", main = paste(years[k]), 
     #    ylab = "Discharge (cms)", xlab = NA) 
    #points(TotSlopeDate, TotSlopeQ, pch = 19, col = "violet") 
    #QPoints = c(maxflow[k,3],Baseflow) 
    #TotDayPts =c(PeakDate, BaseDate) 
    #DayPoints = as.Date(TotDayPts, "%Y-%m-%d") 
    #lines(DayPoints, QPoints, col = "purple", lwd = 2) 
     
     
    # Calculate the recession slope from the peak to bankfull flow as the best fit line  
    if (is.na(maxflow[k,4])) { 
      maxflow[k,10] = NA #Calculate slope of highest peak lower than bankfull to baseflow 
    } 
    else { 
     
    # Calculate recession slope based on best fit regression line between all points   
    PeakSlopeQ = dat.sub$Mod_PH_Q_cms[dat.sub$yday %in% c(PeakDay:BF_endDay)] 
    PeakSlopeDate = dat.sub$Date[dat.sub$yday %in% c(PeakDay:BF_endDay)] 
    PeakSlopeReg = lm(PeakSlopeQ ~ PeakSlopeDate) 
    summary(PeakSlopeReg) 
    points(PeakSlopeDate, PeakSlopeQ, pch = 20, col = "pink") 
    lines(PeakSlopeDate, predict(PeakSlopeReg), col = "red", lwd = 2) 
    maxflow[k,10] = -1*PeakSlopeReg$coefficients[2] #((maxflow[k,3])-
(maxflow[k,4]))/(BF_endDay-PeakDay) #SLope from peak to bankfull 
     
    # Calculate slope as line between two points 
    #maxflow[k,10] = (maxflow[k,3]-maxflow[k,4])/(BF_endDay-PeakDay) 
    #points(PeakSlopeDate, PeakSlopeQ, pch = 20, col = "pink") 
    #QPoints = c(maxflow[k,3],maxflow[k,4]) 
    #PeakDayPts =c(PeakDate, BF_end) 
    #DayPoints = as.Date(PeakDayPts, "%Y-%m-%d") 
    #lines(DayPoints, QPoints, col = "red", lwd = 2) 
    } 
     
    # Calculate the bankfull slope from bankfull to base flow  
    if (is.na(maxflow[k,4])) { 
      maxflow[k,8] = NA #Calculate slope of highest peak lower than bankfull to baseflow 
    } 
    else { 
      # Calculate recession slope based on best fit regression line between all points 
      BFSlopeQ = dat.sub$Mod_PH_Q_cms[dat.sub$yday %in% c(BF_endDay:BaseDay)] 
      BFSlopeDate = dat.sub$Date[dat.sub$yday %in% c(BF_endDay:BaseDay)] 



      BFSlopeReg = lm(BFSlopeQ ~ BFSlopeDate) 
      summary(BFSlopeReg) 
      points(BFSlopeDate, BFSlopeQ, pch = 20, col = "lightblue") 
      lines(BFSlopeDate, predict(BFSlopeReg), col = "blue", lwd = 2) 
      maxflow[k,8] = -1*BFSlopeReg$coefficients[2] 
 
      # Calculate slope as line between two points 
      #maxflow[k,8] = (maxflow[k,4]-Baseflow)/(BaseDay-BF_endDay) 
      #points(BFSlopeDate, BFSlopeQ, pch = 20, col = "lightblue") 
      #QPoints = c(maxflow[k,4],Baseflow) 
      #BFDayPts =c(BF_end,BaseDate) 
      #DayPoints = as.Date(BFDayPts, "%Y-%m-%d") 
      #lines(DayPoints, QPoints, col = "blue", lwd = 2) 
       
    } 
   
    # Save year-days for duration calculations 
    maxflow[k,11] = BF_startDay 
    maxflow[k,12] = PeakDay 
    maxflow[k,13] = BF_endDay 
    maxflow[k,14] = BaseDay  
    maxflow[k,15] = BF_endDay - BF_startDay # Duration Of recession Limb 
    maxflow[k,16] = BaseDay - PeakDay # Duration Of recession Limb 
    maxflow[k,17] = BaseFlow_Date 
    maxflow[k,18] = LastDay # Last recorded day of the year 
     
    # Cumulative days before and after bankfull 
    if (is.na(BF_endDay)==FALSE) { # If there was a bankfull flow (i.e., BF_endDay is not NA) 
      maxflow[k,19] = LastDay - BF_endDay  # Calculate the days since BF ended 
    } 
    else { # if there was no bankfull flow that year... 
      maxflow[k,19] = LastDay + maxflow[k-1,19] # add the total number of days in the year to the 
days since BF in the previous year 
    } 
     
    if (is.na(BF_endDay)==FALSE) { # If there was a bankfull flow (i.e., BF_endDay is not NA) 
      maxflow[k,20] = BF_startDay + maxflow[k-1,19] # Days since bankfull  
    } 
    else { 
     maxflow[k,20] = LastDay + maxflow[k-1,19] 
    } 
    BaseStart = min(which(dat.sub$flow.er >= Baseflow))  
    maxflow[k,21] = dat.sub$yday[BaseStart] 
     



    } 
} 
 
names(maxflow) = c("year","peakdate","flow.er","BFflow", "BF_EndDate", "enddate",  
                   "TotalSlope","BFslope","BF_StartDate","PeakSlope","BF_startDay", 
                   "PeakDay","BF_endDay","Base_endDay","BankfullDuration","RecDuration", 
                   "BaseFlow_Date","LastDay", "CummDaysAfterBF", "CummDaysBeforeBF", 
                   "Base_startDay") 
 
#maxflow = na.omit(maxflow) # Remove missing flow  
#if (is.na(maxflow[,2]) == FALSE) {} 
#maxflow$peakdate = as.Date(maxflow$peakdate) 
#maxflow$enddate = as.Date(maxflow$enddate)  
maxflow$duration = yday(maxflow$enddate)-yday(maxflow$peakdate) # Duration Of recession 
Limb 
 
# Generate ranks (note that R ranks opposite of what is desired) 
maxflow$rank = (length(maxflow$year)+1)-rank(maxflow$flow.er)  
maxflow$RI = (length(maxflow$year)+1)/maxflow$rank  
# Calculate excedence probablity 
maxflow$exceedence = 1/maxflow$RI  
#maxflow$NonBFdays = maxflow$LastDay - (maxflow$BF_endDay - maxflow$BF_startDay) 
#THis does not account for days before first and last BF day that do not have BF flow 
maxflow$BaseDuration = maxflow$Base_endDay - maxflow$Base_startDay #THis does not 
account for days before first and last BF day that do not have BF flow 
 
maxflow1 = maxflow[2:85,] 
maxflow = maxflow[,c(1,9,2,5,6,3,4,7,10,8,20,21,22,23,26,11:19,24,25)] 
 
setwd(savepath) 
write.csv(maxflow1, file = "Maxflow1_6.29.20_Base_1.91_BestFit.csv") 
write.csv(maxflow, file = "Maxflow_6.29.20_Base_1.91_BestFit.csv") 
 
#******************************************************** 
# Create plots 
maxflow1$enddate = as.Date(maxflow1$enddate, format="%Y-%m-%d") 
maxflow1$peakdate = as.Date(maxflow1$peakdate, format="%Y-%m-%d") 
 
plot(flow.er ~ maxflow1$RI, maxflow1, log = 'x', 
     xlab = "Recurrence Interval (years)", 
     ylab = "Annual Maximum discharge (cfs)", 
     main = "Flood Frequency Curve of Estimated Peak Flows")  
 
rm(list=setdiff(ls(), c("maxflow","dat","dat.almont","dat.bc","dat.er", 



                        "hydrobounds","statistics","yearstats","years","colfunc", 
                        "loadpath","savepath","mod2","best.span", "Baseflow"))) 
 
 
########## 
# 
#   Recession Limb Characteristics 
# 
########## 
 
 
hydrobounds = as.data.frame(matrix(ncol = 2, nrow = 85)) # create data frame for flow regime 
characteristics  
names(hydrobounds) = c("start","end") # create colums for end and start dates for bankfull 
flow 
#hydrobounds$start = maxflow$BF_StartDay 
#hydrobounds$end = maxflow$BFdata 
hydrobounds$EndDay = maxflow$BaseDay # assign the ending date  
#maxflow$BF_StartDate = as.Date(maxflow$BF_StartDay) 
 
for (k in 1:85){ 
  #print(k) 
  years2plot = years[k] # create a list of each of the 83 years of record 
  dat.sub = subset(dat.er, year%in%years2plot) # create a subset of data for the current year 
  FirstDate = dat.sub$Date[1] #Set the first date of the year 
   
  #____________________________________________ 
  # Calculate cummulative annual volume of water discharged by East River 
  #dat.sub$yearVol[1] = dat.sub$flow.er[1]*86400   # set initial flow volume for 1st day 
  dat.sub$AnnualVol[1] = dat.sub$flow.er[1]*86400   # set initial flow volume for 1st day 
   
  for (n in 2:length(dat.sub$Date)){ # create for loop to add consecutive Q resulting in 
cumulative annual Q 
    dat.sub$AnnualVol[n] =  dat.sub$AnnualVol[n-1] + dat.sub$flow.er[n]*86400 # sum each 
consecutive flow volume for cummulative volume 
  } 
   
  #print(n) 
  maxflow$AnnualVol[k] = dat.sub$AnnualVol[n] # assign the total ANnual volume of discharge 
for each year 
  dat.sub$BFVol = NA #create column for bankfull flow volume and fill with NA 
   
  #____________________________________________ 
  # Calculate cummulative volume of overbank flow discharged by the East River 



  for (m in 1:length(dat.sub$Date)) { 
     
    if (is.na(maxflow$BF_StartDate[k]) == FALSE) { 
      # Set initial volume for first day above Bankful flow 
    dat.sub$BFVol[which(maxflow$BF_StartDate[k]==dat.sub$Date)] = 
dat.sub$flow.er[which(maxflow$BF_StartDate[k]==dat.sub$Date)]*86400   # set initial flow 
volume for 1st day 
    #Create indices for the start and end of bankfull flow 
    BF_StartIndex = which(maxflow$BF_StartDate[k]==dat.sub$Date) # Index the row for the first 
day of bankful flow begins 
    BF_EndIndex = which(maxflow$BF_EndDate[k]==dat.sub$Date) #index the row for the last 
day of bankful flow ends 
     
    #Creat a loop to add cumulative volume of bankfull discharge  
    for (p in BF_StartIndex+1:(BF_EndIndex-BF_StartIndex)) { # create for loop to add consecutive 
Q resulting in cumulative annual Q 
      #print(p) 
      # Old calculations that estimates max BF volume for all days between 1st and last day of 
bankfull flow. THis is an iver estimate 
      dat.sub$BFVol[p] = dat.sub$BFVol[p-1] + dat.sub$flow.er[p]*86400 # sum each consecutive 
flow volume for cummulative volume 
      #print(dat.sub$Date[p]) 
      } 
    maxflow$BFVol[k] = dat.sub$BFVol[p] # Assign yearly volume of flow above bankful to the 
annual summary 
  } 
  else { 
   dat.sub$BFVol[m] = NA #Assign days without bankful flow as NA values 
   maxflow$BFVol[k] = NA #Assign years without bankful flow as NA values 
   p=NA 
    
  } 
  } 
 
  hydrobounds$cvol.er[k] = dat.sub$AnnualVol[length(dat.sub$AnnualVol)] 
  hydrobounds$BFVol[k] = dat.sub$BFVol[max(which(is.na(dat.sub$BFVol) == FALSE))] 
 
  ### Model peaks and valleys 
 
  baseflowinitial = mean(dat.sub$flow.er[dat.sub$month %in% list("1","2")]) # Set initial 
baseflow conditions as the mean of flow in Jan and Feb 
  baseflowend = mean(dat.sub$flow.er[dat.sub$month %in% list("12")]) # Set ending baseflow 
conditions as the mean flow in Dec  
   



  #create column index for the peaks defined by a rise in flow followed by a decline in flow 
ocurring in three consecutive days  
  peaks = which(diff(sign(diff(dat.sub$flow.er)))==-2)+1  
  #create column index for the valleys defined by a decrease in flow followed by an increase in 
flow ocurring in three consecutive days  
  valleys = which(diff(sign(diff(dat.sub$flow.er)))==2)+1 
 
  peakbase = dat.sub$flow.er[peaks]-baseflowinitial 
  #print(peakbase) 
  valleybase = dat.sub$flow.er[valleys] - baseflowinitial 
  hydrographstart = 1 # Define HYDRGRAPHSTART  
   
  for (n in 1:length(peakbase)){ 
    if (length(valleys) < 1){ 
      hydrographstart = peaks[n] 
      peaks[n] 
      break 
    } 
   
    if(peakbase[n] > 40){ # Check if threshold was met 
      if (peaks[n] < valleys[1])  { # Check if first peak is greater than threshold 
        hydrographstart = peaks[n] 
        break 
        }  
      else { 
        firstvalley = max(valleys[valleys<peaks[n]]) 
        } 
 
        hydrographstart = firstvalley 
        break 
      } 
  } 
 
  bankfullflow = dat.sub$flow.er[dat.sub$flow.er > 8] 
  maxflow$bankfullvol[k] = sum((bankfullflow)*86400) # sum the volume of water exceeding 
bankfull flow 
  maxflow$bankfulldays[k] = length(bankfullflow) 
  hydrobounds[k,1] = hydrographstart 
  BaseDays = dat.sub$flow.er[dat.sub$flow.er > Baseflow] 
  maxflow$BaseflowDays[k] = length(BaseDays) 
  maxflow$NonBFdays[k] = maxflow$LastDay[k] - maxflow$bankfulldays[k] 
 
  if (k%%10 == 0){ 
 



  } 
  hydrobounds$startdate[k] = as.character(dat.sub$Date[hydrobounds$start[k]]) 
 
} 
 
# Write csv file of the temporary dat.sub datasheets for each year 
#setwd(savepath) 
write.csv(maxflow, "AnnualStats_6.29.20_Base_1.91_BestFit.csv", row.names = TRUE)  
 
rm(list=setdiff(ls(), c("maxflow","dat","dat.almont","dat.bc","dat.er", 
                        "hydrobounds","statistics","yearstats","years","colfunc", 
                        "loadpath","savepath","mod2", "best.span"))) 
 
#### Extract Local Peaks above a specific flow rate above "bankfull" 
#library("signal", lib.loc="~/R/win-library/3.2") 
library("signal") 
 
# Estimated bankkfull at 8 cms 
 
for (k in 1:85){ 
  years2plot = years[k] 
  dat.sub = subset(dat.er,year == years2plot) 
  x1 = dat.sub$flow.er 
  x1 
  y1 = dat.sub$day 
 
  #myfilter = butter(1, .2, type = 'low', plane='z')   
  myfilter2 = filter(filt = sgolay(p = 12, n = 23), x = x1) # PEak FIlter started at 11 
  #myfilter3 = fftfilt(rep(1, 10)/10, x1, n = 365) 
  myfilter4 = filter(filt = sgolay(p = 7, n = 15), x = x1) # p = 5, n = 17 # 10 & 15 Oct 2017 # VALLEY 
filter good as it gets 
   
  #yfiltered = as.matrix(filter(myfilter, x1)) # apply filter 
  yfiltered = myfilter2 
  zfiltered = myfilter4 
  ##print("************************************************") 
  ##print(years2plot) 
  plot(dat.sub$flow.er,type = "n", main = paste(years2plot)) 
  lines(yfiltered,col = "red") 
  lines(dat.sub$flow.er) 
  points(dat.sub$flow.er) 
   
  #points(yfiltered[peaks]~dat.sub$day[peaks], pch = 19) 
   



  # PEaks 
  peaks = which(diff(sign(diff(yfiltered)))==-2)+1 #identify the peaks by setting a threshold 
where the next point decresaes by 2 
  ##print(peaks) 
  points(yfiltered[peaks]~dat.sub$yday[peaks], pch = 20, col = "orange") 
  peaks2keep = (peaks[yfiltered[peaks] > 8]) 
  ##print("peaks 2 keep") 
  ##print(length(peaks2keep)) 
  #SortPeaks <- peaks2keep[order(dat.sub$flow.er)] 
  ###print(SortPeaks) 
  ##print(peaks2keep) 
  points(yfiltered[peaks2keep]~dat.sub$yday[peaks2keep], pch = 19, col = "red") 
 
  # Valleys 
  valleys = which(diff(sign(diff(zfiltered)))==2)+1 #identify the trophs by setting a threshold 
where the next point incresaes by 2 
  print("valleys") 
  print(valleys) 
  points(zfiltered[valleys]~dat.sub$yday[valleys], pch = 20, col = "green") 
  valleys2keep = (valleys[zfiltered[valleys] < 100]) 
  print("valleys2keep") 
  print(valleys2keep) 
  points(zfiltered[valleys2keep]~dat.sub$yday[valleys2keep], pch = 19, col = "blue") 
   
  #PeakFlows = yfiltered(dat.sub$flow.er[peaks2keep]) 
   
  truepeak = c() 
  truepeak[1] = tail(which(dat.sub$flow.er == maxflow$flow.er[k]), n=1) # FInd the date of the 
max flow and assign to peak flow 
  ###print(truepeak) 
   
  RealPeaks = c() 
  leftthresh = c() 
  rightthresh = c() 
  PeakCount = 1 
  #NotPeak = 0 
  p = 0 
  Rp = 0 
  IsPeak = c() 
 
  for (n in 1:length(peaks2keep)) { 
     
    if (length(peaks2keep) == 0){ # If no peaks exceed bankfull... 



      #truepeak = yday(maxflow$peakdate[k]) #Determine julian day of max peakflow if below 
bankfull 
      ###print(peaks2keep) 
      PeakCount = 0 
      ##print(PeakCount) 
      break 
    }  
 
     
    IsPeak[n] = "N" 
    leftthresh[n] = max(valleys2keep[valleys2keep < peaks2keep[n]]) # identify the valley 
immediately before each peak above bankfull 
    rightthresh[n] = min(valleys2keep[valleys2keep > peaks2keep[n]]) # identify the valley 
immediately after each peack aboe bankfull 
    p=p+1 
     
    ##print(valleys2keep) 
    ##print(leftthresh[n]) 
    ##print(peaks2keep[n]) 
    ##print(rightthresh[n]) 
    ##print(years[k]) 
    ##print(leftthresh[n]) 
    ##print(dat.sub$flow.er[leftthresh[n]]) 
    ##print(peaks2keep[n]) 
    ##print(dat.sub$flow.er[peaks2keep[n]]) 
    ##print(rightthresh[n]) 
    ##print(dat.sub$flow.er[rightthresh[n]]) 
    #if (abs(yfiltered[peaks2keep[n]]-yfiltered[leftthresh[n]]) < 5 |  # was <50 eliminates  
    #   abs(yfiltered[peaks2keep[n]]-yfiltered[rightthresh[n]]) < 4){   # was <50 
    #q = 0 
    if ( 
        ((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2)  
          &  # peaks that are  >2 cms from valey to left  
        (dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 2 & # peaks that are 
>2 cms from valey to right 
        ((dat.sub$flow.er[rightthresh[n]]) < 10 | (dat.sub$flow.er[leftthresh[n]]) < 10) & 
        #(n < length(peaks2keep) & peaks2keep[n+1] < rightthresh[n]) | 
        if (n > 1) { 
          TRUE 
          if (peaks2keep[n-1] < leftthresh[n]) { 
            TRUE 
            } 
            else { 
              FALSE 



              #IsPeak[n] = "N" 
              } 
          } else {TRUE} #JUst changed this from FALSE to TRUE 
        ) 
    { 
          truepeak[n] = leftthresh[n]-1+tail(which(dat.sub$flow.er[leftthresh[n]:rightthresh[n]] == 
max(dat.sub$flow.er[leftthresh[n]:rightthresh[n]])),n=1) 
          Rp = Rp + 1 
          RealPeaks[Rp] = peaks2keep[n] 
          IsPeak[n] = "Y" 
          #print("1st check ____________________________________") 
          #print(peaks2keep[n]) 
          #print(IsPeak[n]) 
          ##print(p) 
          ##print("1st Peaks to keep") 
          ##print(peaks2keep[n]) 
          ##print(dat.sub$flow.er[peaks2keep[n]]) 
          ##print(rightthresh[n]) 
          ##print(dat.sub$flow.er[rightthresh[n]]) 
          ##print("Real peaks") 
          ##print(length(RealPeaks)) 
          ##print(RealPeaks) 
          ##print(RealPeaks[p]) 
          ##print(peaks2keep[n-1])  
          ##print(RealPeaks[p-1]) 
          }  
     
    else { 
      ##print("Length of peaks 2 keep") 
      ##print(length(peaks2keep)) 
      ##print("RealPeaks") 
      ##print(length(RealPeaks)) 
      IsPeak[n] = "N" 
     
    if (length(peaks2keep) == 2 & n == 1) { #length(RealPeaks == 0)) { 
      #Rp = Rp + 1 
      RealPeaks[1] = peaks2keep[n]  
      IsPeak[n] = "Y" 
      Rp = Rp + 1 
      RealPeaks[Rp] = peaks2keep[n] 
      ##print(length(RealPeaks)) 
      ##print("conditional met") 
      ##print(length(RealPeaks)) 
      #print("3rd check____________________________________") 



      #print(peaks2keep[n]) 
      #print(IsPeak[n]) 
    } else { 
     
    #Check all but the last and first point for issues 
    if ((n > 1) & (n < length(peaks2keep))) { # NEED TO CORRECT THIS LINE 
      ##print("checking small cluster peaks") 
      #print("4th check____________________________________") 
      #print(peaks2keep[n]) 
      #print(IsPeak[n]) 
      IsPeak[n] = "N" 
      #TRUE 
       
    if(   
      (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 2) & 
        (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) < 2))# |  
         #(dat.sub$flow.er[leftthresh[n]] > 10))  
         & 
        ((IsPeak[n-1] == "N") &  
         (dat.sub$flow.er[leftthresh[n]] < 10 | dat.sub$flow.er[leftthresh[n-1]] < 10 )))  |  
       
      (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) < 2) & 
       (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2)) &  
       (dat.sub$flow.er[leftthresh[n]] < 10) & 
      (leftthresh[n] > peaks2keep[n-1] | IsPeak[n-1] == "N") &  
      rightthresh[n] < peaks2keep[n+1]) 
       #& (IsPeak[n-1] == "N") 
       # THis creates an error because there is no value when there is no peak detected 
      ) 
      {  
      #TRUE 
      truepeak[n] = leftthresh[n]-1+tail(which(dat.sub$flow.er[leftthresh[n]:rightthresh[n]] == 
max(dat.sub$flow.er[leftthresh[n]:rightthresh[n]])), n=1) 
      Rp = Rp + 1 
      RealPeaks[Rp] = peaks2keep[n] 
      IsPeak[n] = "Y" 
      #print("5th check ____________________________________") 
      #print(peaks2keep[n]) 
      #print(IsPeak[n]) 
      ##print(Rp) 
      ##print("2nd Peaks to keep") 
      ##print(peaks2keep) 
      ##print(peaks2keep[n]) 
      ##print(peaks2keep[n-1]) 



      ##print(dat.sub$flow.er[peaks2keep[n]]) 
      ##print(rightthresh[n]) 
      ##print(dat.sub$flow.er[leftthresh[n]])       
      ##print(dat.sub$flow.er[peaks2keep[n]]) 
      ##print("Real peaks") 
      ##print(length(RealPeaks)) 
      ##print(RealPeaks) # Results in NA with no detected peak 
      ##print(RealPeaks[Rp]) 
      ##print(RealPeaks[Rp-1]) 
 
    } 
       
    } else { 
    IsPeak[n] = "N" 
    #print("6th check____________________________________") 
    #print(peaks2keep[n]) 
    #print(IsPeak[n]) 
     
    } 
       
    #Check last point and first point for discrepencies  
      if (n == length(peaks2keep)) {  
        #print("8th check____________________________________") 
        #print(peaks2keep[n]) 
        IsPeak[n] = "N" 
        #print(IsPeak[n]) 
        TRUE 
         
        if(  ((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2 & 
             (dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 1 & # peaks that 
are >2 cms from valey to right 
             (dat.sub$flow.er[leftthresh[n]]) < 10 & 
             leftthresh[n] > peaks2keep[n-1]) | 
              
          (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 2) & 
           (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) < 2)) & 
           #(IsPeak[n-1] == "N"| 
            (leftthresh[n] != rightthresh[n-1]))  #|  
           
          #(((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) < 2) & 
          # (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2)) &  
          # (dat.sub$flow.er[leftthresh[n]] < 10))# & 
          # leftthresh[n] > peaks2keep[n-1] &  
           #rightthresh[n] < peaks2keep[n+1]) 



        ) 
        {  
          TRUE 
          truepeak[n] = leftthresh[n]-1+tail(which(dat.sub$flow.er[leftthresh[n]:rightthresh[n]] == 
max(dat.sub$flow.er[leftthresh[n]:rightthresh[n]])), n=1) 
          Rp = Rp + 1 
          RealPeaks[Rp] = peaks2keep[n] 
          IsPeak[n] = "Y" 
          #print("9th check ____________________________________") 
          #print(peaks2keep[n]) 
          #print(IsPeak[n]) 
        } 
         
      } else { 
        FALSE 
        if (n == 1) { 
          #print("10th check ____________________________________") 
          #print(peaks2keep[n]) 
          #print(IsPeak[n]) 
          ##print(dat.sub$flow.er[peaks2keep[n]]) 
          ##print(dat.sub$flow.er[rightthresh[n]]) 
          TRUE 
           
           
          if ((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 2 & 
              (dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2 &  
              dat.sub$flow.er[leftthresh[n]] < 10 & 
              dat.sub$flow.er[rightthresh[n]] < 10 & 
              rightthresh[n] < peaks2keep[n+1]) { 
            TRUE 
            IsPeak[n] = "Y" 
            Rp = Rp + 1 
            RealPeaks[Rp] = peaks2keep[n] 
            #print("11th check____________________________________") 
            #print(peaks2keep[n]) 
            #print(IsPeak[n]) 
          } 
        } 
      } 
       
    } 
    } 
    if (length(RealPeaks) == 0 & length(peaks2keep) != 0) { 
      #TRUE 



      RealPeaks[1] = 1 
    } 
    PeakCount = length(RealPeaks) #PeakCount + p 
    ##print("PeakCount") 
    ##print(PeakCount)  
  } 
 
  truepeak = na.omit(truepeak) 
  ##print(truepeak) 
  ##print(peaks2keep) 
  #points(dat.sub$flow.er[truepeak]~dat.sub$day[truepeak], pch = 19) 
  #points(yfiltered[valleys]~dat.sub$day[valleys], pch = 19, col = "blue") 
   
  #hydrobounds$peak[k] = length(truepeak) 
  hydrobounds$peak[k] = PeakCount 
  bankfullflow = dat.sub$flow.er[dat.sub$flow.er > 8] # define bankfull flow threshold 
  hydrobounds$bankfullvol[k] = sum((bankfullflow)*86400) # sum the volume of water 
exceeding bankfull flow 
  hydrobounds$bankfulldays[k] = length(bankfullflow) 
   
} 
 
 
yearstats = cbind(maxflow[,-c(4,5)],hydrobounds[,-c(1,2)],statistics[,-1]) 
# You will have to rename the headers in excel unless I get some time to go back and clean 
things up a bit 
 
#setwd(savepath) 
write.csv(yearstats,"YearlyStatistics_6.29.20_Base_1.91_BestFit.csv") 
 
 
rm(list=setdiff(ls(), c("maxflow","dat","dat.almont","dat.bc","dat.er", 
                        "hydrobounds","statistics","yearstats","years","colfunc", 
                        "loadpath","savepath","mod2", "best.span"))) 
 
 
# This code will average variables for periods between imagery along the East River 
 
# Author: Nicholas A. Sutfin 
# Date: April 2020 
 
library("plyr") 
#library("smwrBase", lib.loc="~/R/win-library/3.2") 
library("lattice") #, lib.loc="C:/Program Files/R/R-3.3.0/library") 



library("lubridate") 
library("hydroGOF") 
 
# User space same as save path from steps 1-4 
savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_1.91_BestFit/' # 
Calculating slope as line between 1st and last points (2p) 
setwd(savepath) 
# Load ALmont data for 2015-2017 as csv file, convert to SI units, code the date as a date, and 
define the year 
#Alm_Q <- read.csv("ER_AlmQ_2015-2017.csv", header=TRUE) 
AnnualStats <- read.csv("YearlyStatistics_6.29.20_Base_1.91_BestFit.csv", header=TRUE) 
AnnualStats$period = NA 
 
for (i in 2:length(AnnualStats$year)) { 
  #AnnualStats$TimeSinceBF[i] = AnnualStats$BF_startDay[i] + AnnualStats$DaysSinceBF[i-1] 
  if (AnnualStats$year[i] < 1955){ 
    AnnualStats$period[i] = "before1955" 
  } 
  if (AnnualStats$year[i] > 1954 & AnnualStats$year[i] < 1974){ 
    AnnualStats$period[i] = "1955to1973" 
  } 
  if (AnnualStats$year[i] > 1973 & AnnualStats$year[i] < 1984){ 
    AnnualStats$period[i] = "1974to1983" 
  } 
  if (AnnualStats$year[i] > 1983 & AnnualStats$year[i] < 1991){ 
    AnnualStats$period[i] = "1984to1990" 
  } 
  if (AnnualStats$year[i] > 1990 & AnnualStats$year[i] < 2002){ 
    AnnualStats$period[i] = "1991to2001" 
  } 
  if (AnnualStats$year[i] > 2001 & AnnualStats$year[i] < 2012){ 
    AnnualStats$period[i] = "2002to2011" 
  } 
  if (AnnualStats$year[i] > 2011 & AnnualStats$year[i] < 2016){ 
    AnnualStats$period[i] = "2012to2015" 
  } 
  if (AnnualStats$year[i] > 2015){ 
    AnnualStats$period[i] = "after2015" 
  } 
} 
 
#na.rm(AnnualStats) 
 
DecadalStats = ddply(AnnualStats, ~period, summarise,  



                     MeanPeakDay = mean(PeakDay),  
                     MeanPeakQ = mean(flow.er), MaxPeakQ = max(flow.er), 
                     MeanBFDuration = mean(BankfullDuration, na.rm=TRUE), MaxBFDuration = 
max(BankfullDuration, na.rm=TRUE), 
                     MeanBFDays = mean(bankfulldays, na.rm=TRUE), MaxBFDays = max(bankfulldays, 
na.rm=TRUE), 
                     MeanBaseDuration = mean(BaseDuration, na.rm=TRUE), MaxBaseDuration = 
max(BaseDuration, na.rm=TRUE), 
                     MeanBaseDays = mean(BaseflowDays, na.rm=TRUE), MaxBaseDays = 
max(BaseflowDays, na.rm=TRUE), 
                     MeanDaysAfterBF = mean(CummDaysAfterBF, na.rm=TRUE), MaxDaysAfterBF = 
max(CummDaysAfterBF),  
                     MeanDaysB4_BF = mean(CummDaysBeforeBF, na.rm=TRUE), MaxDaysB4_BF = 
max(CummDaysBeforeBF, na.rm=TRUE),  
                     MeanNonBFdays = mean(NonBFdays, na.rm=TRUE), MaxNonBFdays = 
max(NonBFdays, na.rm=TRUE), 
                     MeanBaseDay = mean(Base_endDay, na.rm=TRUE), MeanBF_EndDay = 
mean(BF_endDay, na.rm=TRUE),   
                     MeanPeaks = mean(peak, na.rm=TRUE), MaxPeaks = max(peak, na.rm=TRUE),  
                     MeanTotSlope = mean(TotalSlope, na.rm=TRUE), MaxTotSlope = max(TotalSlope, 
na.rm=TRUE), 
                     MeanBFSlope = mean(BFslope, na.rm=TRUE), MaxBFSlope = max(BFslope, 
na.rm=TRUE), 
                     MeanPeakSlope = mean(PeakSlope, na.rm=TRUE), MaxPeakSlope = max(PeakSlope, 
na.rm=TRUE), 
                     MeanAnnualVol = mean(AnnualVol), MaxAnnualVol = max(AnnualVol), 
TotAnnualVol = sum(AnnualVol), 
                     # ALtered 6.26.2020 to include volume for days above BF rather than all days 
between first and last BF days 
                     MeanBFVol = mean(bankfullvol,na.rm=TRUE), MaxBFVol = 
max(bankfullvol,na.rm=TRUE), 
                     TotBFDuration = sum(BankfullDuration, na.rm=TRUE), TotBaseDuration = 
sum(BaseDuration, na.rm=TRUE), 
                     TotNonBFdays = sum(NonBFdays, na.rm=TRUE), TotBF_EndDay = sum(BF_endDay, 
na.rm=TRUE), 
                     TotDaysB4_BF = sum(CummDaysBeforeBF, na.rm=TRUE), TotDaysAfterBF = 
sum(CummDaysAfterBF), 
                     TotBFVol = sum(BFVol, na.rm=TRUE)) 
 
#setwd(savepath) 
write.csv(DecadalStats, "TimePeriodStats_6.29.20_1.91_BestFit.csv", row.names = TRUE) 
 
# This code will examine 15 min hydrograph datasets from the ALmont gage and East RIver 
study site 



# to quantify fluctuations above and below bankfull along the recession limb 
 
# Author: Nicholas A. Sutfin 
# Date: Oct. 18th 2017 
 
# This code will examine to hydrograph dataset, select matching days  
# and times and conduct a regression that can be used to fill in missing data 
# Author: Nicholas A. Sutfin 
# Date: Oct. 18th 2017 
 
library(plyr) 
library(chron) 
library(tidyr) 
#library(smwrBase, lib.loc=~/R/win-library/3.2) 
library(lattice) #, lib.loc=C:/Program Files/R/R-3.3.0/library) 
library(lubridate) 
library(hydroGOF) 
library(OHLCMerge) 
library(corrplot) 
library(lmtest) 
library(car) 
library(MASS) 
library(Hmisc) 
 
# Set user space on LANL PC 
loadpath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode' 
savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode' 
setwd(loadpath) 
#setwd("/Users/306722/Documents/EastRiver/ER_Rcode") 
 
# Load ALmont data for 2015-2017 as csv file, convert to SI units, code the date as a date, and 
define the year 
Alm_15Q <- read.csv("Almont_30minQ_1987_2020.csv", header=TRUE) #load USGS discharge 
data 
Alm_15Q$Discharge_cfs = 
as.numeric(levels(Alm_15Q$Discharge_cfs))[Alm_15Q$Discharge_cfs] # convert Q factors to 
numeric values 
which(is.na(Alm_15Q$Discharge_cfs) == TRUE) #Check for NA values 
Alm_15Q$AlmQ_cms = Alm_15Q$Discharge_cfs*0.0283168 # Calulate Q conversion from cfs to 
cms 
which(is.na(Alm_15Q$Discharge_cfs) == TRUE) # check for NA values after numeric conversion 
 
Alm_15Q$date = as.Date(Alm_15Q$date, format="%m/%d/%y") # convert Q factors to numeric 
values 



Alm_15Q$DaTime = paste(Alm_15Q$date, Alm_15Q$time) 
Alm_15Q$DateTime = as.POSIXct(Alm_15Q$DaTime, format = "%Y-%m-%d %H:%M") 
Alm_15Q$year = year(Alm_15Q$Date) 
Alm_15Q$month = month(Alm_15Q$Date) 
Alm_15Q$Calday = day(Alm_15Q$Date) 
Alm_15Q$Yday = yday(Alm_15Q$Date) 
#Alm_15Q$Yday = yday(Alm_15Q$Date) 
Alm_15Q = as.data.frame(Alm_15Q) 
#________________________________________________________________ 
# Load Pump house data for 2015-2017 as csv file, convert to SI units, code the date as a date, 
and define the year 
PH_10Q <- read.csv("PHQ_2014_2018.csv", header=TRUE) 
#PH_10Q <- read.csv("PH_10Q.csv", header=TRUE) #load East RIver pump house discharge data 
PH_10Q$DateTime = as.POSIXct(PH_10Q$date, format = "%m/%d/%y %H:%M") 
PH_10Q$year = year(PH_10Q$DateTime) 
PH_10Q$month = month(PH_10Q$DateTime) 
PH_10Q$Calday = day(PH_10Q$DateTime) 
PH_10Q$Time = format(as.POSIXct(strptime(PH_10Q$DateTime, "%Y-%m-%d %H:%M",tz="")) 
,format = "%H:%M") 
PH_10Q$Yday = yday(PH_10Q$DateTime) 
PH_10Q = as.data.frame(PH_10Q) 
#plot(PH_10Q$DateTime, PH_10Q$PHQ_cms, type = "l", col = "blue") 
 
#_______________________________________________________________ 
# Find matching date-time combinations and create new dataset 
#PH_Q_match =  
Alm_15Qnew1  = Alm_15Q[,c(4,6,7,8,9,2,10)][!duplicated(Alm_15Q$DateTime),] 
Alm_15Qnew = Alm_15Qnew1[which(is.na(Alm_15Qnew1$DateTime) == FALSE),] 
PH_10Qnew  = PH_10Q[,c(2:8)] 
 
Q_int <- intersect.POSIXct(PH_10Qnew$DateTime, Alm_15Qnew$DateTime) 
Alm_Q_match <- Alm_15Qnew[Alm_15Qnew$DateTime %in% Q_int, ] #Alm_15Q[Q_int, ] # 
PH_Q_match <- PH_10Qnew[PH_10Qnew$DateTime %in% Q_int, ] #PH_10Q[Q_int, ] # 
Q_diff <- setdiff(PH_Q_match$DateTime, Alm_Q_match$DateTime) 
#which(PH_Q_match$DateTime == NA) 
#which(Alm_Q_match$DateTime == NA) 
All_Qmatch <- cbind(Alm_Q_match, PH_Q_match) 
 
# Create a smaller zoomed in plot to view Q around Bankfull Q (8 cms) 
plot(All_Qmatch$DateTime, All_Qmatch$PHQ_cms, type = "l",   
    ylim = c(5,10), xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1, main = "East River 2015 
recession") 
 
# Plot discharge data 



plot(All_Qmatch$DateTime, All_Qmatch$AlmQ_cms, col = "blue", type = "l") 
lines(All_Qmatch$DateTime, All_Qmatch$PHQ_cms, col = "royalblue", type = "l")      
#____________________________________________________________ 
# Linear regression between the Almont and PH gauges 2014-2016 
 
Qreg <- lm(All_Qmatch$PHQ_cms ~ All_Qmatch$AlmQ_cms, data = All_Qmatch) 
summary(Qreg) 
Qreg # adjusted R squared = 0.95 
# For all days: PHQ = -0.081804 + 0.211284(Alm) 
# Excluding frozen days, regression output: PHQ = 0.010948 + 0.211611(Alm) 
 
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1, lwd = 1) 
plot(All_Qmatch$AlmQ_cms, All_Qmatch$PHQ_cms, col = "blue", 
     xlab = "Discharge at Almont (cms)", ylab = "Discharge at Study Site (cms)") 
lines(All_Qmatch$AlmQ_cms, Qreg$coefficients[1] + 
Qreg$coefficients[2]*All_Qmatch$AlmQ_cms,  
      col = "black") 
par(cex = 0.6) 
#points(All_Qmatch$AlmQ_cms, All_Qmatch$PHQ_cms, pch = 19, col = "red") 
text(10, 15, expression("r"^{2} ~"= 0.94"), cex = 1.5) 
 
# Use regression to extend daily Q for PH based on Almont flow 
#_____________________________________________________________________________
____ 
# regression output: PHQ = -0.081804 + 0.211284(Alm) 
 
# Reduce Almont Data size 
Alm_15Q_sel = Alm_15Qnew[((Alm_15Qnew$time == "0:00") | (Alm_15Qnew$time == "1:00") 
| (Alm_15Qnew$time == "2:00") |  
                            (Alm_15Qnew$time == "3:00") |(Alm_15Qnew$time == "4:00") | 
(Alm_15Qnew$time == "5:00") | 
                            (Alm_15Qnew$time == "6:00") |(Alm_15Qnew$time == "7:00") | 
(Alm_15Qnew$time == "8:00") | 
                            (Alm_15Qnew$time == "9:00") |(Alm_15Qnew$time == "10:00") | 
(Alm_15Qnew$time == "11:00") | 
                            (Alm_15Qnew$time == "12:00") |(Alm_15Qnew$time == "13:00") | 
(Alm_15Qnew$time == "14:00") | 
                            (Alm_15Qnew$time == "15:00") | (Alm_15Qnew$time == "16:00") | 
(Alm_15Qnew$time == "17:00") | 
                            (Alm_15Qnew$time == "18:00") | (Alm_15Qnew$time == "19:00") | 
(Alm_15Qnew$time == "20:00") | 
                            (Alm_15Qnew$time == "21:00") | (Alm_15Qnew$time == "22:00") | 
(Alm_15Qnew$time == "23:00") | 
                            (Alm_15Qnew$time == "24:00")), ] 



All_Q_1987_2020 = Alm_15Q_sel[which(is.na(Alm_15Q_sel$AlmQ_cms) == FALSE), ] #[ 
,c(6,1,7:9,2,10,4)]  
All_Q_1987_2020$Mod_PHQ_cms = Qreg$coefficients[1] + 
Qreg$coefficients[2]*All_Q_1987_2020$AlmQ_cms 
 
# Plot a zoomed in window of the recession limb for 2017 
Flow2017 = All_Q_1987_2020[All_Q_1987_2020$year == 2017,] 
Recession2017 = Flow2017[Flow2017$month == 6,] 
Recession2017 = Recession2017[Recession2017$Calday > 6,] 
DailyQ = ddply(Recession2017, ~Yday, summarise,  
              MeanQ = median(Mod_PHQ_cms), 
              DateTime = min(DateTime)) 
 
Rmax = max(Recession2017$DateTime) 
Rmin = min(Recession2017$DateTime) 
window1 <- data.frame(xmin=Rmin, xmax=Rmax, ymin=8, ymax=11) 
window2 <- data.frame(xmin=Rmin, xmax=Rmax, ymin=5, ymax=12) 
 
 
ggplot(data=Recession2017, aes(x=DateTime, y=Mod_PHQ_cms)) + 
  geom_path() + 
  geom_line(data = DailyQ, aes(x = DateTime , y = MeanQ, colour = 003399)) + 
  geom_line(data=Recession2017, aes(x=DateTime, y=Mod_PHQ_cms)) +  
  labs(y = expression(paste("Discharge (m"^"3", "s"^"-1",")")), x = "") + 
  theme(axis.title.x = element_blank()) + 
  theme(text = element_text(size=13)) + 
  scale_y_continuous(minor_breaks = seq(6,16,1), breaks = seq(6,16,2)) + 
  geom_rect(data=window2, aes(xmin=Rmin, xmax=Rmax, ymin=5, ymax=10), fill="blue", 
alpha=0.20, inherit.aes = FALSE) + 
  geom_rect(data=window1, aes(xmin=Rmin, xmax=Rmax, ymin=7.95, ymax=8.05), fill="red", 
alpha=0.5, inherit.aes = FALSE) 
 
 
  #geom_rect(x=x, aes(xmin=Rmin, xmax=Rmax, ymin=8, ymax=11, alpha=.5))  
  #geom_density(aes(, alpha=.5)) 
 
 
#################################################################### 
 
#################################################################### 
#   Recession Limb Characteristics 
#################################################################### 
 
#################################################################### 



 
 
 
years = c("1988","1989","1990","1991","1992","1993","1994","1995","1996", 
          "1997","1998","1999","2000","2001","2002","2003","2004","2005", 
          "2006","2007","2008","2009","2010","2011","2012","2013","2014", 
          "2015","2016","2017","2018","2019")  
 
DielYears = data.frame("Years" = years) 
DielYears$PeakDate = as.POSIXlt(All_Q_1987_2020$DateTime[1], format = "%Y-%m-%d 
%H:%M:%S") 
par(cex = 1, mar = c(4,4,2,1)) 
BFmin = 5 
BFmax = 10 
DielFluctuation = 2 
 
for (p in 1:length(years)) { 
  DataYear = years[p] 
  DielData =  subset(All_Q_1987_2020, year%in%DataYear) 
  DielRec = 0 
  AllDiel = 0 
  DielYears$PeakFlow[p] = max(DielData$Mod_PHQ_cms[which(is.na(DielData$Mod_PHQ_cms) 
== FALSE)]) #max(DielData$Mod_PHQ_cms) 
  DielYears$PeakDate[p] = as.POSIXlt(DielData$DateTime[max(which(DielData$Mod_PHQ_cms 
== DielYears$PeakFlow[p]))], format = "%Y-%m-%d %H:%M:%S") 
  DielYears$PeakDay[p] = yday(DielYears$PeakDate[p]) 
  DielYears$PostPeakDays[p] = max(DielData$Yday) - DielYears$PeakDay[p] 
  PeakIndex = which(DielData$DateTime == DielYears$PeakDate[p]) 
  DielPeaks = c() 
  DielTotal = 0 
  maxDiel = 0 
  minDiel = 0 
  #print("________________________") 
  #print(years[p]) 
  #print(DielPeaks) 
  #print(minDiel) 
  #print(maxDiel) 
  #print(AllDiel) 
  #print(DielRec) 
   
   
  #Find unique days for the year on record 
  UniqDays = unique(DielData$Yday) 
  PostPeakUniq = UniqDays[UniqDays > DielYears$PeakDay[p]] 



 
  if (DielYears$PeakFlow[p] > 6) { 
     
    for (r in 2:length(UniqDays)) { 
      # Assign daily max and min discharge values 
      DailyFlow = subset(DielData, DielData$Yday == UniqDays[r]) 
      Dmax = max(DailyFlow$Mod_PHQ_cms) 
      #DmaxIndex = which(DailyFlow$Mod_PHQ_cms == Dmax) 
      Dmin = min(DailyFlow$Mod_PHQ_cms) 
       
      if (((Dmax < BFmax) | (Dmin > BFmin)) & ((Dmax - Dmin) > DielFluctuation)) { 
        AllDiel = AllDiel + 1 
      } 
      DielYears$AllDiel[p] = AllDiel # Record number of times Q crosses BF during the entire year 
    } 
    #print("----------------------") 
    #print(years[p]) 
    #print("YES") 
    for (q in 1:length(PostPeakUniq)) { 
      # Assign daily max and min discharge values 
      DailyFlow = subset(DielData, DielData$Yday == PostPeakUniq[q]) 
      Dmax = max(DailyFlow$Mod_PHQ_cms) 
      #DmaxIndex = which(DailyFlow$Mod_PHQ_cms == Dmax) 
      Dmin = min(DailyFlow$Mod_PHQ_cms) 
       
      if (((Dmax < BFmax) | (Dmin > BFmin)) & ((Dmax - Dmin) > DielFluctuation)) { 
 
        DielRec = DielRec + 1 
        DielPeaks[DielRec] = DailyFlow$Yday # Index the day of year for each Q that crosses BF 
after peak flow 
        #print(length(DielPeaks)) 
        #print(DielPeaks) 
        maxDiel = max(DielPeaks) 
        minDiel = min(DielPeaks) 
        DielRange = Dmax - Dmin 
        DielTotal = DielTotal + DielRange 
        DielYears$minDiel[p] = minDiel 
        DielYears$maxDiel[p] = maxDiel 
         
        # Plot portion of recession limb within bankfull window 
        days = c(minDiel, maxDiel) 
        Qlow = c(BFmin, BFmin) 
        Qhigh = c(BFmax, BFmax) 
        #plot(DielData$day, DielData$Mod_PHQ_cms, type = "l",  main = paste(years[p]), 



             #ylim = c(6,10), xlim = c(DielYears$minDiel[p]-1,DielYears$maxDiel[p]+1),  
             #xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1) 
        #lines(c(0,250), c(8,8), col="blue") 
         
        # plot a transparent band around the bankfull window 
        #polygon(c(days, rev(days)), c(Qlow, Qhigh), border = NA,  
                #col = rgb(red = 0.0, green = 0.0, blue = 0.5, alpha = 0.4)) 
      } 
      AveDielRange = DielTotal/DielRec 
      DielYears$TotalDielRange[p] = DielTotal 
      DielYears$AveDielRange[p] = AveDielRange 
      DielYears$DielRec[p] = DielRec # Record number of times Q crosses BF during recession limb 
       
    } 
    #plot(DielData$day, DielData$Mod_PHQ_cms, type = "l",  main = paste(years[p]), 
         #xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1) 
  } 
   
  else { 
    #print("----------------------") 
    #print(years[p]) 
    #print("NO") 
    DielYears$TotalDielRange[p] = NA 
    DielYears$AveDielRange[p] = NA 
    DielYears$DielRec[p] = NA 
    DielYears$minDiel[p] = 0 
    DielYears$maxDiel[p] = 0 
    } 
  } 
 
DielYears 
 
# THis data was combined with the average statistics form the hydrologic and 
# imagery analysis to produce the datasheet used below 
 
##############################################################################
################################### 
# Conduct Multiple Regression to examine role of diel fluctuations on erosion 
##############################################################################
################################### 
 
# Load data on Mac with slope analysis from primary 60 year analysis derived from daily mean 
data 
# Set user space  



savepath = 
'/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_0.49_2p_corrected/' # 
Calculating slope as line between 1st and last points (2p) 
setwd(savepath) 
write.csv(DielYears,"DielRecessionDate_6.30.20_2cms_>6_5_10.csv") 
 
# Load other hydrologic variables from baoder analysis and 6 year hydro record 
YearlyHydroStats <- read.csv("DielRecessionRegData_6.29.20.csv", header=TRUE) 
 
# cbind annual hydrologic data with diel data  
DielRegData = cbind(DielYears, YearlyHydroStats) 
 
DielRegData = DielRegData[(which(is.na(DielRegData$DielRec) == FALSE)), ] 
 
for (i in 1:length(DielRegData$Years)) { 
  if (DielRegData$DielRec[i] == 0) { 
    DielRegData$AveDielRange[i] = 0 
  } 
} 
   
#=============================================================== 
#Assign variables 
#RespVar = DielRegData$AveDielRange 
Preds = subset(DielRegData, select = c(6:9,16:18)) #c(3:6,9:52)) 
Preds[, c(1:7)] <- sapply(Preds[, c(1:7)], as.numeric) 
 
# examine subset correlations 
par(mfrow=c(1,1), mar=c(3,3,3,2), cex = 1.3) 
DataCorr = cor(Preds, method = "pearson")  
corrplot(DataCorr) 
 
CorrT = rcorr(as.matrix(Preds), type = "pearson") 
CorrRtable = data.frame(CorrT$r) 
CorrPtable = data.frame(CorrT$P) 
CorrT 
 
write.csv(CorrRtable, file = "DielData_RCorrs_6.30.20_2cms_>6_5_10.csv") # with new data 
from new stats calculated June 2020 
write.csv(CorrPtable, file = "DielData_PCorrs_6.30.20_2cms_>6_5_10.csv") 
 
############################################### 
# Number of Diel Fluctuations  
#_______________________________________________ 
 



cor.test(Preds$TotalSlope, Preds$DielRec) 
DielRecReg = lm(Preds$TotalSlope ~ Preds$DielRec, data=Preds) 
summary(DielRecReg) 
 
ggplot(Preds, aes(x=TotalSlope, y=DielRec)) +  
  geom_point(color='#D55E00', size = 3) +  
  geom_smooth(method=lm, color='#2C3E50', linetype="dashed") + 
  theme(text = element_text(size=13)) + 
  labs(title = "2cms fluctuations >6cms from 5-10cms window", 
       y=expression(paste("Number of diel fluctuations > 2 m"^"3", "s"^"-1")),  
       x = expression(paste("Slope of recession limb (m"^"3", "s"^"-1", "day"^"-1",")"))) 
 
############################################### 
# Total sum magnitude of diel fluctuation 
#_______________________________________________ 
 
cor.test(Preds$TotalSlope, Preds$TotalDielRange) 
 
ggplot(Preds, aes(x=TotalSlope, y=TotalDielRange)) +  
  geom_point(color='#D55E00', size = 3) +  
  geom_smooth(method=lm, color='#2C3E50', linetype="dashed") + 
  theme(text = element_text(size=13)) + 
  labs(title = "2cms fkuctuations >6cms from 5-10cms window", 
       y=expression(paste("Summed magnitude of diel fluctuation")),  
       x = expression(paste("Slope of recession limb (m"^"3", "s"^"-1", "day"^"-1",")"))) 
 
############################################### 
# Average magnitude of diel fluctuation 
#_______________________________________________ 
 
cor.test(Preds$TotalSlope, Preds$AveDielRange) 
 
ggplot(Preds, aes(x=TotalSlope, y=AveDielRange)) +  
  geom_point(color='#D55E00', size = 3) +  
  geom_smooth(method=lm, color='#2C3E50', linetype="dashed") + 
  theme(text = element_text(size=13)) + 
  labs(title = "2cms fkuctuations >6cms from 5-10cms window", 
       y=expression(paste("Average magnitude of diel fluctuation (m"^"3","s"^"-1", ")")),  
       x = expression(paste("Slope of recession limb (m"^"3", "s"^"-1", "day"^"-1",")"))) 
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Introduction  

Figures and tables below are cited within the text of Sutfin et al. to provide supporting 
information and summary data. In addition, we briefly provide explanation of the 
statistical transformations conducted for analyses and referenced in the text. 

Multiple linear regression model residuals met assumptions of homoscedasticity and 
normality (at the 95% confidence level) after a natural log transform of annual floodplain 
vertical accretion rate and boxcox power transformations with lambda (!) exponent 
coefficients of 0.1010101 and 0.2626263 for the area of floodplain eroded and laterally 
accreted, respectively. Eroded and accreted areas appearing in equations 2 and 3 in the 
main text contain exponents of the reciprocal of these lambda values, necessary if one 



 
 

 
 

were to attempt calculation of erosion or accretion based on parameters listed in those 
equations. 

 

Figure S1: Bank erosion commonly observed along the East River. The upper fine-
grained portion of floodplain sediment collapses in large blocks on the outside of channel 
bends. Following undercutting and erosion of underlying sandy gravel, channel banks 
crack (A, C) and eventually fall into the channel (A, B, D) where they remain on the 
channel bed at low flows (A, B) and can be buried by gravel during higher flows (C,D).  



 
 

 
 

 

Figure S2. At each bend where a transect of measured depths was located, linear 
erosion rates along the bank (depicted as the outer bank in 1973 by the yellow-red 
spectrum) and accretion rates (depicted as the inner bank in 2015 by the yellow-blue 
spectrum) were averaged within a rectangle. The rectangle was drawn to capture the 
accreted bank pixels with a boundary defined by the approximate location where the 
outer bank from 1973 intersect the outer bank from 2015 (thin black line). The difference 
in the horizontal distances (xi and xi-1) between consecutive depth measurements (di and 
di-1) was divided by the mean migration rate to determine the duration of sediment 
deposition at each point (ti). Vertical accretion rate at each point was then calculated by 
the difference in measured depth between consecutive points divided by the time 
between points. This point-by-point method was conducted in addition to that described 
in the main text, but yielded inconsistent results as a function of small changes in 
floodplain topography and possible alternative periods of point bar erosion and 
deposition, so this analysis was not used for the results presented.  
 
 
 
 
 
 



 
 

 
 

 

Figure S3 Example from the 2015 pixel grid calculations. Distance from the channel (A) for each time period and relative elevation 
(B) for all time periods were used in a multiple linear regression to estimate mean overbank vertical accretion rate (rva) across the 
floodplain (C) using the following equation. ln(rva) = 1.204490 – 0.072038x – 1.205276z where x is distance from the channel along a 
transects orthogonal to the channel and z is elevation from the channel. As indicated in the legend, areas in red on the vertical 
accretion map are those identified from SCREAM analysis from differences in channel masks in consecutive years. Long-term 
deposition from measured depths within 10 m from the active channel indicated a mean vertical accretion rate of 3.3 cm y-1, which 
was applied to the area of lateral accretion. Overbank deposition outside of the red accreted areas was estimated using relationships 
determined in multiple regression equation 3. 



 
 

 
 

TABLES 

 

Years Erosion Accretion 
1973-1983 17% 14% 
1983-1990 25% 14% 
1990-2001 16% 16% 
2001-2011 19% 13% 
2011-2015 41% 25% 

Table S1 .  Percentage error in floodplain area estimates from SCREAM, as calculated and outlined by Rowland et al. (2016). As described in 
the text, estimates of error for the time period between 1955 and 1973 were not obtainable through SCREAM, thus errors presented in Table 1 
and Figure 3 are estimated as two times the maximum error from other time periods. 

Table S2. Field and remotely sensed data for stepwise multiple linear regression of measured floodplain fine sediment depths at 315 points 
across 51 transects.  

Table S3. Annual hydrologic indices for synthetic hydrographs at the East River study site constructed using a linear regression with the USGS 
East River at Almont stream gage and parameters extracted using code provided.  

  



 
 

 
 

Variable 

Floodplain vertical accretion 

Considered Included 

Surface elevation (m) ✗ ✓** 

Elevation of gravel surface (m) ✗  

Distance from the channel (m) ✗ ✓*** 

Relative elevation from the channel (m) ✗  

Duration (years) ✗  

Channel width (m) ✗  

Valley width (m) ✗ ✗ 

Confinement (m2/m2) ✗ ✓** 

Reach valley slope (m/m) ✗  

Reach sinuosity (m) ✗ ✗ 

Reach channel slope (m/m) ✗  

Local valley slope (m/m) ✗  

Local sinuosity (m/m) ✗  

Local Channel slope (m/m) ✗ ✗ 

Bend orientation angle ✗ ✗ 

Radius of curvature ✗ ✓- 

Inside of bend ✗ ✗ 

Outside of bend ✗  

Table S4. Variables considered (✗) before elimination following reduction of collinearity and 

examined (✗) using stepwise multiple linear regression for vertical accretion. Among variables 

examined, those marked with (✓) indicate variables retained in the optimal multiple linear 

regression model. Significance of variables in the regression model is denoted at confidence 

levels of 99.9% ***, 99% **,  95% *, 90% . , or not significant <90% -  



 
 

 
 

Variable 

Floodplain area along nine reaches over 6 
time periods  Entire study segment over 6 time periods 

Considered 

Examined 

Considered 

Examined 

Erosion Accretion Erosion Accretion 

Channel slope 
✗ ✗ ✗   

    

Valley Slope 
✗ 

    
    

Confinement 
✗ ✗ ✗   

    

Mean Channel width  
✗ ✗ ✓*   

    

Sinuosity ✗ ✓** ✓***   
    

Mean Day of Peak Flow ✗ 
 

✗ ✗ 
  

Mean Peak Flow (m3s-1) ✗ 
  ✗ 

  
Max Peak Flow (m3s-1) ✗ 

  ✗ 
  

Mean Bankfull Duration (days) ✗ ✗ 
 

✗ 
  

Max Bankfull Duration (days) ✗ 
  ✗ 

  
Mean Days Above Bankfull Flow  ✗ 

  ✗ 
  

Max Days Above Bankfull Flow  ✗ 
 

✗ ✗ 
 

✓. 

Mean Duration Above Baseflow  (days) ✗ 
 ✗ ✗ 

  
Max Duration Above Baseflow (days) ✗ ✓* ✗ ✗ 

  
Mean Days Above Baseflow  ✗ ✗ 

 
✗ 

  
Max Days Above Baseflow ✗ 

 
✓* ✗ 

  
Mean Days Since Bankfull Flow ✗ 

  ✗ 
  

Max Days Since Bankfull Flow ✗ 
  ✗ 

  
Mean Day Baseflow Ends ✗ 

  ✗ 
  

Mean Day Bankfull Flow Ends ✗ ✗ 
 

✗ 
  

Mean No. Peaks Above Bankfull ✗ 
  ✗ 

  
Maximum No. Peaks Above Bankfull ✗ 

  ✗ 
  

Mean Total Recession Slope (m3 s-1 day-1) ✗ 
  ✗ 

  
Max Total Recession Slope (m3 s-1 day-1) ✗ ✓*** 

 
✗ ✓** 

 

Mean Bankfull Recession Slope (m3 s-1 day-1) ✗ 
  ✗ 

  
Max Bankfull Recession Slope (m3 s-1 day-1) ✗ 

 
✓. ✗ 

  
Mean Total Annual Volume (km3) ✗ 

  ✗ 
  

Max Total Annual Volume (km3) ✗ 
  ✗ 

  
Mean Bankfull Volume (km3) ✗ 

  ✗ 
  

Max Bankfull Volume (km3) ✗ ✗ 
 

✗ 
  

Power transformation coefficient (lambda) 
  0.1010101 0.2626263 

  
NA NA 

Coefficient of determination (r2)   0.59 0.55 
  

0.91 0.59 

Regression model p-value   <0.0001 <0.0001 
  

0.003 0.074 

 
Table S5. Variables considered (✗) before elimination following reduction of collinearity 

and examined (✗) using stepwise multiple linear regression for lateral erosion and 

accretion. Among variables examined, those marked with (✓) indicate variables retained 

in the optimal multiple linear regression model. Significance of variables in the 

regression model is denoted at confidence levels of 99.9% ***, 99% **,  95% *, 90% . , or 

not significant <90% - 

 
 
 



 
 

 
 

Table S6. Correlation matrix for variables considered in multiple linear regression 

analysis to examine linkages between hydrologic flow conditions, erosion, and accretion. 

 

 

 


