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Abstract

The South American rainfall Dipole (SAD) is a renowned spatial structure present in the austral summer as part of the South

American monsoon system. SAD phases have been related with extreme precipitations and severe droughts across South

America, but are yet to be predicted. Here, we reveal $2$ robust and reliable intraseasonal windows in the accumulated SAD

index where we can forecast its quantile-state between $5$ to $15$ and $60$ to $70$ days in advance ($99\%$ significance

level). These windows are insensitive to variations in the pole’s size and accumulation window, and results are consistent

across different quantiles states (median, tercile, and quartile). Our method, which is based on analysing the lagged mutual

information between future and present states, could be used in the development of early-warnings for extreme rainfall events.

Moreover, it is unrestricted to the present analysis, being applicable to other stationary signals where a forecast is missing.
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Key Points:9

• Introduce a method to find statistically significant transitions between the quan-10

tile states of stationary time-series.11

• Reveal forecasting windows at intraseasonal time-scales for tercile and quartile states12

of the South American rainfall Dipole index.13

• Report 2 robust and reliable time-windows at 5 to 15 and 60 to 70 days, where14

we can forecast SAD states with 99% confidence.15
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Abstract16

The South American rainfall Dipole (SAD) is a renowned spatial structure present in17

the austral summer as part of the South American monsoon system. SAD phases have18

been related with extreme precipitations and severe droughts across South America, but19

are yet to be predicted. Here, we reveal 2 robust and reliable intraseasonal windows in20

the accumulated SAD index where we can forecast its quantile-state between 5 to 15 and21

60 to 70 days in advance (99% significance level). These windows are insensitive to vari-22

ations in the pole’s size and accumulation window, and results are consistent across dif-23

ferent quantiles states (median, tercile, and quartile). Our method, which is based on24

analysing the lagged mutual information between future and present states, could be used25

in the development of early-warnings for extreme rainfall events. Moreover, it is unre-26

stricted to the present analysis, being applicable to other stationary signals where a fore-27

cast is missing.28

Plain Language Summary29

The South American Dipole (SAD) is a spatially-extended rainfall system present30

in the austral summer. Its dipole behaviour means that it is composed of two regions31

(or poles): when one regions shows an increase in precipitation the other region shows32

a decrease in precipitation, and vice-versa. Forecasting future SAD behaviour is partic-33

ularly important as its extreme states have been associated with floods or droughts over34

these regions (which include highly populated areas, such as São Paulo, Brazil). Here,35

we introduce a method to predict the dipole’s future-state from statistical and informa-36

tion theory analyses. Our main results show that there are two time-windows where fore-37

casting future SAD states is possible: from 5 to 15 days and from 60 to 70 days. These38

windows belong to the intraseasonal time-scale (from 10 to 90 days), which is a gener-39

ally challenging time-scale to have predictions and where forecasts are scarce.40

1 Introduction41

South America (SA) has a broad range of climate behaviours (Garreaud & Aceituno,42

2007; Cavalcanti, 2016), both in space and time. This stems from its latitude extension43

that covers from equatorial to mid latitudes, its topography and heterogeneous vegeta-44

tion, as well as its dependence on multiple modes of climate variability. Among the lat-45

ter phenomena, we can highlight SA’s climate dependence on El Niño Southern Oscil-46

lation (ENSO) at inter-annual time-scales (Ropelewski & Halpert, 1987; Barreiro & Tipp-47

mann, 2008; Barreiro, 2010) and the Madden-Julian Oscillation (MJO) at intraseasonal48

(IS) time-scales (Alvarez et al., 2016, 2017; Shimizu et al., 2017). These are the leading49

modes on their corresponding time scales and alter regional climate through, for exam-50

ple, modulating the frequency of occurrence of frontal systems, extra-tropical cyclones,51

or mesoscale convective systems.52

Recently, it has been shown that different modes characterize IS variability depend-53

ing on the season (C. S. Vera et al., 2018). The wet season (October-April) is charac-54

terized by the presence of a dipole-like spatial structure, which can be revealed by a prin-55

cipal component analysis of the rainfall field. This structure is known as the South Amer-56

ican rainfall Dipole (SAD) (Nogués-Paegle & Mo, 1997; Boers et al., 2014), with cen-57

ters located at the South Atlantic Convergence Zone (SACZ) and over Southeastern South58

America (SESA). The dry season (May-September), on the other hand, exhibits a mono-59

pole behaviour, centered at SESA. In our work we will focus on the SAD during the sum-60

mer season as it is the rainy season over most of South America.61

The SAD characterizes the IS variability of the South American Monsoon System62

(SAMS) (C. Vera et al., 2006; Barros et al., 2002), and has been mainly related to the63

activity of the MJO (Alvarez et al., 2016, 2017; C. S. Vera et al., 2018). The MJO has64
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a characteristic time scale of about 30−80 days and can impact South America through65

two mechanisms: (a) a tropical-tropical one, involving changes in the divergent circu-66

lation as the MJO propagates eastward, and (b) a tropical-extratropical one, taking place67

through the excitation and dispersion of Rossby waves from the Indo-Pacific to the At-68

lantic region (Paegle et al., 2000; Carvalho et al., 2004; De Souza & Ambrizzi, 2006; Gon-69

zalez & Vera, 2014; Shimizu & Ambrizzi, 2016; Alvarez et al., 2016; Barreiro et al., 2019).70

In particular, the dipole phase when the SACZ center is enhanced [weakened] and the71

SESA center is weakened [enhanced], has been associated with phases 8-1 [3-4] of the MJO.72

Moreover, SAD phases have been related with extreme precipitation events and severe73

droughts across SA (Carvalho et al., 2002; Boers et al., 2013), which have severe socioe-74

conomic impact in highly populated areas, such as São Paulo or Buenos Aires, and are75

yet to be predicted. Hence, being able to predict SAD’s behaviour at the IS time-scales76

in order to develop early-warnings for extreme rainfall events is highly important.77

In this work, we reveal the existence of intraseasonal (IS) predictability windows78

in the Accumulated SAD (ASAD) index during the months of December to March. Our79

methodology is based on defining a quantile-state time-series from the ASAD index and80

on using the lagged mutual information (MI) to quantify the average amount of infor-81

mation shared by present and future quantile-states. Our results show that, from present82

quantile-states, we can forecast at 5 to 15 days and 60 to 70 days ahead – to the best83

of our knowledge, IS forecast at 60 to 70 days has never been achieved before. These two84

predictability windows emerge robustly, i.e., insensitive to changes in our control param-85

eters (accumulated window size and poles’ size), and reliably, i.e., statistically significant86

at a 99% significance level and consistent across quantile choices (either median, terciles,87

or quartiles). We also reveal a third robust IS window at approximately 45 days, which88

only emerges when using quartile-states. In summary, we develop the first IS forecast89

for the ASAD index based on an approach that can be also applied to find predictions90

of other stationary time-series.91

The paper is organized as follows: Sect. 2 describes the data and our methodol-92

ogy, Sect. 3 shows the main results and analysis, and Sect. 4 has the conclusions.93

2 Methods and Data94

2.1 Data Specifics and the construction of the SAD index95

We consider precipitation data from the Tropical Rainfall Measuring Mission (TRMM).96

These data consist of a multi-satellite observation net, created to study the rainfall field97

over the tropics and subtropics. Although the mission (launched in 1997) ended in 2015,98

the data production was continued through the TRMM Multi-satellite Precipitation Anal-99

ysis (TMPA) (Huffman et al., 2007). Here, we use daily precipitation from the TMPA100

3B42v7, which runs from 1998-01-01 to 2019-12-31 over a 0.25◦×0.25◦ spatial grid. We101

only consider the months that the SAMS is in its mature stage (C. Vera et al., 2006),102

namely, December-January-February-March (DJFM). Thus, we avoid dealing with the103

developing [vanishing] stages of the transition from dry to wet [wet to dry] months, which104

introduce biases in the analysis.105

In order to define the poles of the South American Dipole (SAD) from the precip-106

itation anomaly fields, we follow the locations found by C. S. Vera et al. (2018). We con-107

struct a time-series for each pole by averaging the anomalies within rectangular boxes108

placed at these 2 locations. Once both space-averaged time-series are defined, we sub-109

tract the daily climatology for each time stamp and standardize using the daily standard110

deviation, resulting in a standardized anomaly time-series for each pole. We then define111

the SAD index by subtracting the southern pole anomaly to the northern one. We use112

3 box-sizes (left panel in Fig. 1) to carry an analysis on the sensitivity of our results to113

the spatial size of the poles.114
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In order to filter variability of the SAD on short time-scales, whilst maintaining the115

intraseasonal (IS) time-scales, we construct an Accumulated SAD (ASAD) index. We116

do this by adding the SAD daily data within sliding windows of 5, 7, or 9 days (mak-117

ing 1 day sliding-translations of these windows), where we denote the resultant ASAD118

indexes as accum5, accum7, or accum9, respectively. This smoothing leaves the under-119

lying physics unchanged at the IS time-scale, as we show by testing our results’ sensi-120

tivity to these 3 time-scales.121

2.2 Definition of quantile states and their IS forecasting122

The ASAD indexes (accum5, accum7, or accum9) are still too complex and insuf-123

ficiently long (approximately 2500 data points in 21 years) to make reliable predictions124

with sufficient statistics. Hence, we transform the ASAD index into a quantized time-125

series, where each daily data corresponds to the ASAD’s quantile-state at the time. We126

define a 2-state time-series from the distribution’s median, 3 states from its terciles, and127

4 states from its quartiles. For example, Fig. 1 shows the mean precipitation anomaly128

fields for the region of interest corresponding to the quartile case. By doing this trans-129

formation, we can find statistically significant transition-probabilities between the quantile-130

states; namely, we can make reliable forecasts. Also, we consider an IS forecast to be ro-131

bust, only if it is insensitive to the choice of pole size (i.e., size of the boxes on the left132

panel of Fig. 1) and sliding-window size that defines the ASAD index.133
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Figure 1. South-American rainfall Dipole (SAD). Panel (1) shows the boxes used to construct

the SAD index. From left to right, each panel shows the mean precipitation anomaly field of the

accumulated SAD index (using 7 days accumulation windows) for the quartile-states defined over

the dotdashed-line box. States (1) and (4) [(2) and (3)] are extreme [neutral] SAD states.

The transition probability of going from state xi at time t to state xj at time t+134

τ (τ being the time-lag in days), with i, j = 1, . . . , NQ (NQ being the number of quan-135

tiles states, e.g., NQ = 4 for quartiles), is136

P (Xt+τ = xj |Xt = xi) = Pt,t+τ (j|i) ' Pτ (j|i) ' Nτ (j|i)∑NQ

j=1Nτ (j|i)
, (1)

where X is the states’ time-series for one ASAD index, namely, either accum5, accum7,137

or accum9. The first approximate equality (Pt,t+τ ' Pτ ) is the assumption of an sta-138

tionary X, implying that Pt,t+τ is invariant under time-translations and independent of139

the starting time, t, for all i, j. We achieve this by choosing DJFM months, when the140

dipole is fully developed. Moreover, our daily standardization removes possible IS cy-141

cles that can break time-translation invariance and our time-series length (21 years) is142

insufficient to include climate-change trends. The last approximate equality is the fre-143

quentist approach, where the transition probabilities are the frequency of appearance of144

–4–



manuscript submitted to Geophysical Research Letters

state xj at time t+ τ when at time t the state was xi, for all times t and fixed τ , i.e.,145

Nτ (j|i). We restrict Nτ (j|i) to consider only causal transitions, namely, transitions be-146

tween states from the same DJFM period. Overall, Pτ (j|i) is our forecast.147

In order to reliably select only the statistically significant forecasts, we construct148

a proportion test for Eq. (1). The null-hypothesis (NH) for it is that Xt = xi and Xt+τ =149

xj are statistically independent, which implies that Pτ (j|i) = P (j) (i.e., the conditional150

probability is independent of the starting state and equal to the marginal probability of151

the ending state, P (j)). This NH is a Bernoulli process with 2 states: either P (j) or 1−152

P (j). We discard the NH at the 99% significance level only when Pτ (j|i) falls outside153

the zij-score’s 99% central values. Specifically, the zij-score for each Pτ (j|i) = P (j) is154

zij =
P (Xt+τ = xj |Xt = xi)− P (X = xj)√

P (X = xj) [1− P (X = xj)] /T
, (2)

where P (X = xj) is the marginal probability for the state xj , with i, j = 1, . . . , NQ,155

and the denominator is the standard deviation for this Bernoulli process with T reali-156

sations. Given that zij distributions are asymptotically Gaussian, our 99% significance157

level is the Gaussian z ≈ 2.576, which is our boundary to consider Pτ (j|i) 6= P (j).158

3 Results and Analysis159

3.1 Instraseasonal predictability windows160

We begin by comparing the time-series, accum, that result from using different pole161

sizes (see the 3 boxes in Fig. 1), which we define to capture the South-American Dipole162

(SAD) variability at different spatial scales. We quantify their similarities by the Pear-163

son correlation coefficient (and the Spearman correlation; not shown), using a t-test at164

a 99% significance level. This analysis holds significant correlation values (i.e., p-values165

< 0.01) for all accum indexes, ranging from 0.95 to 0.99 – meaning that all pole sizes166

have similar time-series. Hence, the SAD’s behaviour is captured robustly with either167

box. In what follows, we focus on the results from the largest (pole) box.168

Without loss of generality, we show results for tercile and quartile states of the Ac-169

cumulated SAD (ASAD) indexes. In particular, tercile statistics are commonly used in170

operational seasonal forecasting – defining positive, neutral, and negative dipole states.171

Quartile statistic’s allow us to differentiate between extreme events – defining 2 extreme172

positive and negative states and 2 intermediate states – as well as to compare its results173

with the median case (see Supporting Information). Also, these quantile choices allows174

to have enough data for all transition probabilities, Pτ (j|i) [Eq. (1)].175

In Fig. 2 we show Pτ (j|i) for the quartile states (NQ = 4 in Eq. 1) of the ASAD176

indexes: accum5, accum7, and accum9. Marginal probabilities, P (j), are signalled in177

all panels (as reference) by an horizontal, black, dashed line (which happens when the178

starting state does not influence the ending state). Panels are arranged from top to bot-179

tom (rows) according to the starting quartile-state, xi, at time t, and from left to right180

(columns) according to the ending quartile-state, xj , at time t+τ . The significant [in-181

significant] Pτ (j|i) values are shown with solid [transparent] symbols. We can distinguish182

the IS windows where a reliable forecast is possible, as the times τ where all 3 indexes183

have significant Pτ (j|i) values. Within these windows, we can forecast SAD quartile-states184

transitions robustly and reliably; namely, the Pτ (j|i) values that are insensitive to pa-185

rameter variations and are consistent across spatial and temporal scales.186

Our main interest is to find intra-seasonal (IS) predictability-windows that are ro-187

bust and reliable, disregarding the particular quartile-state (or tercile-state) transition188

that could be happening. In other words, we want to know when we can forecast the SAD189

states for any accumulated window-size or quantile-state. We do these by using the lagged190

Mutual Information (MI), I(Xt;Xt+τ ), which measures the average shared information191
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between the states at time t and t+ τ , and is defined by (Cover & Thomas, 2012)192

I(Xt;Xt+τ ) =

NQ∑
i=1

NQ∑
j=1

P (Xt = xi, Xt+τ = xj) log2

[
P (Xt = xi, Xt+τ = xj)

P (Xt = xi) P (Xt+τ = xj)

]
, (3)

P (Xt = xi, Xt+τ = xj) = P (Xt = xi) P (Xt+τ = xj |Xt = xi) being the joint proba-193

bility of having state xi at time t and state xj at time t+τ . We note that I(Xt;Xt+τ ) =194

0 when P (Xt = xi, Xt+τ = xj) = P (Xt = xi) P (Xt+τ = xj) for all i, j, correspond-195

ing to independent starting and ending states.196
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Figure 2. Transition probabilities, P (j|i), between quartile-states of the Accumulated South-

American rainfall Dipole (ASAD) index. P (j|i) is shown as a function of the time difference,

τ , between the starting quartile state i and the ending quartile state j (i, j = 1, . . . , 4). Panels

are organised in rows and columns according to the initial and final quartile-state, respectively.

Window sizes of 5, 7, and 9 days used to construct the ASAD indexes, are shown by green tri-

angles, red squares, and blue circles, respectively. Statistical dependence of state j to state i (at

the 99% significance level) are signalled by solid symbols and statistical independence (i.e., null

hypothesis) by transparent symbols.

Figure 3 shows I(Xt;Xt+τ ) for all accum indexes, following the symbols and colours197

in Fig. 2. Left [right] panel shows the resultant MI for the quartile [tercile] states. Con-198

fidence Intervals (CIs) at the 99% significance level are shown as transparent shaded ar-199

eas for each accum index, which correspond to variables Xt and Xt+τ being statistically200

independent. These CIs are constructed by randomly resampling (with replacement) 103201

times the original time-series, where the objective is to construct a surrogate Xt and a202

Xt+τ time-series. Also, for each accum index, the MI starts at different time lags, τ , be-203

cause we discard the τ lags belonging to the accumulation window (namely, 5, 7, and 9204

days), which naturally share information by construction.205

From both panels in Fig. 3, we can highlight 2 robust intra-seasonal (IS) predictabil-206

ity windows where ASAD transitions can be predicted with 99% confidence (namely, val-207

ues outside the shaded areas in either panel). Specifically, these windows – sharing sig-208

nificant information between the present and future ASAD states – are found at τ ≈209
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Figure 3. Lagged Mutual Information (MI) between quantile states of the accumulated pre-

cipitation anomalies of South American Dipole. Left [Right] panel shows the MI for the quartile-

states [tercile-states] as a function of the time lag, τ , between starting and ending state. The

symbols and colours are the same as in Fig. 2. Shaded areas at the bottom correspond to the MI

values of statistically independent surrogates at a 99% significance level.

5 to 15 days and at τ ≈ 60 to 70 days. We note that these windows also appear in our210

median analysis (see Supporting Information), making them a reliable forecast and pos-211

sibly arising due to persistence and due to the impact of the MJO, respectively. We also212

note other predictability-windows on the left panel of Fig. 3, at IS scales of τ ≈ 25, ≈213

35, and ≈ 45 days. However, these windows are sensitive to the accumulated window-214

size – with the exception of the quartile-state MI at τ ≈ 45 days. In particular, MI val-215

ues for the accum5 index at τ ≈ 25 and ≈ 35 fall within the shaded areas, and all accum216

indexes fall within shaded areas for the terciles; as can be seen on the right panel of Fig. 3.217

Hence, we deem these other predictability-windows as unreliable indicators for IS fore-218

casting. In spite of this inconsistency in the forecasts, we obtain robust results for the219

quartile-states at τ ≈ 45 days (namely, all ASAD indexes show a significant MI value220

for this window), which could also be related to the MJO.221

3.2 Forecasting states of the South-American rainfall dipole222

Having identified robust and reliable intraseasonal (IS) predictability-windows from223

Fig. 3, we can now critically analyse the state-transitions in Fig. 2, which are the rea-224

son for having these predictability windows. This analysis is particularly relevant when225

the final quartile-state for which we can get information from the present is an extreme226

ASAD state. Physically, the smallest [largest] quartile corresponds to the southern [north-227

ern] pole having larger anomalies than the northern [southern] pole for about 5, 7 or 9228

days (depending on the accum index). More importantly, from a practical point-of-view,229

identifying the relevant predictability-windows allows to have concise forecasts for par-230

ticular ASAD states. For example, by fixing τ (horizontal coordinate) and the starting231

quartile-state (row panels) in Fig. 2, we can directly state the probability of transition-232

ing to any of the 4 possible quartiles in τ days.233

The first robust and reliable IS predictability window in Fig. 3 happens at τ ≈ 5234

to 15 days. As can be seen from the top- and bottom-corner panels in Fig. 2, this win-235

dow has significant MI values because of transitions happening between extreme quartile-236

states, i.e., states 1 and 4 (or tercile-states; see, for example, Fig. S1 in Supporting In-237

formation). Particularly, the top [bottom] left and bottom [top] right panels show P (1|1)238

[P (1|4)] and P (4|4) [P (4|1)] having significantly higher [lower] probabilities than the marginal239

case, i.e., P (1) = P (4) = 1/4, respectively. On the other hand, the remaining neutral240

states, i.e., quartiles 2 and 3, show unconditional transitions to and from them, with all241
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transition probabilities similar to the corresponding marginal probabilities (e.g., P (2|2) '242

P (2), P (2|3) ' P (3), or P (3|4) ' P (4)). Hence, this predictability-window has the243

following characteristics: likely persistence of extreme quartile-states (P (1|1) or P (4|4) >244

30%), unlikely transitioning between opposite extreme quartile-states (P (4|1) or P (1|4) <245

20%), and independent neutral quartile-states (P (i|j) ' P (j)).246

This persistent behaviour in the transitions to and from extreme ASAD quartile-247

state can be understood by considering them as the opposite phases for the SAD. This248

means that it would be expected to be persistent whilst the SAD is in a particular phase249

for this time-scale – to the best of our knowledge, our statistical analysis is the first to250

report on the events duration. Also, we highlight that the time-scale of this predictability-251

window is larger than the persistence time-scale that one would expect for synoptic phe-252

nomena, which is a significant improvement in the forecasting of SAD index’s future-states.253

The second robust and reliable IS predictability window in Fig. 3 happens at τ ≈254

60 to 70 days. As can be seen from the left column panels in Fig. 2, this window has sig-255

nificant MI values, mainly, because of transitions happening to the first quartile-state,256

P (1|j). Another contribution to this window’s predictability comes from a decrease in257

the probability of transitioning from the extreme state 1 to the extreme state 4, i.e., P (4|1) <258

20% (top right panel in Fig. 2). Secondary contributions appear inconsistently across259

other quartile states, such as P (1|3) and P (3|3), where transition probabilities are sig-260

nificant only for specific window-size accumulations. Overall, we believe that this IS time-261

window is a consequence of the Madden-Julian Oscillation (MJO), which has character-262

istic time-scales ranging from 30 to 80 days and influences the occurrence of SAD phases.263

As a working example, we can consider a forecast for τ = 10 days. When the present264

ASAD index has a value in quartile 1 [4], P (1|1) ' 0.33 and P (4|1) ' 0.18 [P (4|4) '265

0.33 and P (1|4) ' 0.18] after 10 days, where the remaining transitions in Fig. 2 from266

and to states 2 and 3 show inconclusive results. Similarly, we can make a forecast for τ =267

45 days. This particular forecast is only possible for quartile states, but it shows some268

insensitivity to the accumulation window and box size. For example, when the present269

ASAD index has a value in quartile 1 [4], P (4|1) ' 0.33 [P (1|4) ' 0.18] after 45 days.270

Overall, our methodology allows for the construction of transition probabilities, such as271

those in Fig. 2, which allow to develop intraseasonal forecasts for the SAD states.272

4 Conclusions273

We employed a methodology based on statistical and information theory analysis,274

with the objective of studying intraseasonal (IS) predictability over the South-American275

rainfall Dipole (SAD). By working with DJFM months, we are certain that the dipole276

system is in its mature stage and the time series have an stationary behaviour. We de-277

fined the ASAD index – for 1 day sliding windows of accumulated rainfall anomalies of278

5, 7 and 9 days – and introduced a finite set of states based on its quantiles (i.e., me-279

dian, terciles and quartiles). By doing this, we reduced the complexity of the ASAD in-280

dex and were able to study the possible transitions between initial and final states (lagged281

by a time τ) with sufficient statistics.282

By computing the lagged mutual information, we found that there are two IS time283

windows where the initial and final states share significant information (at a 99% sig-284

nificance level). Both of them were found robustly and reliably by taking into account285

the SAD index space-variability (i.e., poles’ sizes), the accumulation window for the ASAD-286

index construction, and the quantile-states considered.287

The first time window is found from τ ≈ 5 to 15 days. We interpret this window288

as a persistence-like behaviour, which extends beyond the synoptic time-scale. The pre-289

dictable states in this time window are the extreme ones (both for terciles and quartiles),290

which can be associated with the dipole phases. Hence, the persistence behaviour could291
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be interpreted as a mean-time duration of the dipole phases. The second time window292

goes from τ ≈ 60 to 70 days. This result is consistent with the impact of the Madden-293

Julian Oscillation (MJO) on the intraseasonal time-scales variability of the SAD.294

Finally, we remark that by critically analyzing the specific transitions involved in295

each time window, we can forecast future states of the SAD by operationally observing296

the present states of the system for about 5 to 9 days. This allows, for the first time, to297

develop a quantile-based operational forecast system at IS time-scales of the extreme phases298

of the main mode of rainfall variability in South America.299
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