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Abstract

Discerning the relationship between urban structure and function is crucial for sustainable city planning and requires exam-

ination of how components in urban systems are organized in three-dimensional space. The Structure of Urban Landscape

(STURLA) classification accounts for the compositional complexity of urban landcover structures including the built and nat-

ural environment. Building on previous research, we develop a STURLA classification for Philadelphia, PA and study the

relationship between urban 1 structure and land surface temperature. Finally, we evaluate the results in Philadelphia as com-

pared to previous case studies in Berlin, Germany and New York City, USA. In Philadelphia, STURLA classes hosted ST that

were unique and significantly different as compared to all other classes. We find a similar distribution of STURLA class com-

position across the three cities, though NYC and Berlin showed strong correlation with each other but not with Philadelphia.

Our research highlights the use of STURLA classification to capture a physical property of the urban landscape.
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Abstract

Discerning the relationship between urban structure and function is crucial for sustainable city planning
and requires examination of how components in urban systems are organized in three-dimensional space.
The Structure of Urban Landscape (STURLA) classification accounts for the compositional complexity of
urban landcover structures including the built and natural environment. Building on previous research, we
develop a STURLA classification for Philadelphia, PA and study the relationship between urban structure
and land surface temperature. We evaluate the results in Philadelphia as compared to previous case studies
in Berlin, Germany and New York City, USA. In Philadelphia, STURLA classes hosted ST that were unique
and significantly different as compared to all other classes. We find a similar distribution of STURLA class
composition across the three cities, though NYC and Berlin showed strong correlation with each other but not
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with Philadelphia. Our research highlights the use of STURLA classification to capture a physical property
of the urban landscape.

Key Words

Urban Landscape, Urban surface temperature, STURLA, Urban structure, city comparison

Introduction

Urban spatial structure is important to understanding social and ecological interactions between the build
and natural environment and provides a bridge to sustainable development (Zhou et al., 2017). Characteristics
including vegetation and other landcover classes influence, and can be used to estimate ecological functions
(Bastian et al., 2014; van Oudenhoven et al., 2012) and forecast changes(Dietze, 2019; Dietze et al., 2018)
that are crucial under global change scenarios. Identifying patterns and processes of the structure-function
relationship in the urban landscape in the context of environmental and ecological processes is challenging
due to variable density and patchy spatial patterns (Pickett & Cadenasso, 2008).

While it is well established that urban areas host ecological communities subject to unique stressors (Jones
& Harrison, 2004; Joyner et al., 2019; Reese et al., 2016) absent in natural systems (e.g pollution, high
population density), the influence of landscape heterogeneity on the environment is poorly described. Func-
tional classification of urban structure is necessary for understanding the nature of social and ecological
relationships in urban areas (Cadenasso et al., 2007; McPhearson et al., 2016; Zhou et al., 2014). Over
the last decade, fine-scale landcover classification for urban areas have been developed (MacFaden et al.,
2012; Pickard et al., 2015) that allows more nuanced analyses of urban landcover. While some functional
classification approaches have been suggested (see for example Cadenasso et al., 2007), major challenges
remain in integration of spatial structure and configuration that allows scalable and reproducible analysis of
relationships between urban form and process.

A major barrier for understanding the relationship between urban structure and environmental function is
the lack of independent measurement of the fine-scale spatial variability of the distribution of environmental
and ecological variables. Particularly important is the vertical dimension (e.g. building height) and variation
of the three-dimensional landscape that is rarely addressed (Alavipanah et al., 2017) in ecological studies.
Where independent measurements exist, such as data from Environmental Protection Agency (EPA) air
pollution monitoring stations or United States Geographical Survey (USGS) water monitoring sites, the
spatial distribution is not sufficient to allow intra-urban analysis. Surface temperature is one example of a
physical property of the urban environment that has been used in research addressing landcover (Zhou et
al., 2011), urban heat islands (Rosenzweig et al., 2009; Zhao et al., 2011), and ecosystem services (Schwarz
et al., 2011). Likewise, ST structures patterns of taxonomic and functional biodiversity (Scherrer & Körner,
2011; Zogg et al., 1997), hydrology (Reyes et al., 2018), air quality (Li et al., 2018; Sillman & Samson, 1995),
and social variables relevant for studies of environmental injustice (Huang & Cadenasso, 2016; Zhang et al.,
2017). We employ ST as a proxy for a wide range of potential variables of interest across biotic and abiotic
dimensions.

To account for the heterogenous vertical dimension of the built enviroment in urban lanscscape, we employ
The STructure of URban Landscapes (STURLA) classification (Hamstead et al., 2016). STURLA is a new
classification procedure developed by co-PI Kremer that incorporates the complexity of urban land cover
structures, including the vertical dimensions of the built environment. The novelty in the STURLA approach
is that it offers a composite functional classification of urban structure, including the vertical dimension, that
is automated, and thus can be applied to wide geographic regions systematically. STURLA has has been
used to identified patterns of microbial biogeography in the atmosphere of Philadelphia (J. Stewart et al.,
2020), and ST in NYC (Hamstead et al., 2016) and Berlin (Kremer et al., 2018).

The objectives of this short study are to identify if STURLA could explain the variation of urban structure
in a new model city (Philadelphia), and quantify this variation using a physical property of the environment
(ST). Results suggest STURLA identifies common urban structure units that encompass the majority of
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the variation in the urban landscape strucutre. Moreover, when correlated to surface temperature, these
common urban structure classifications exhibit distinct temperature signatures for different urban structure
units with temperature trends dramatically similar between Berlin and NYC. Here, we contribute to the
developing literature on the urban structure-function relationship using STURLA in Philadelphia.

Materials and methods

Study area

Philadelphia PA, USA is the sixth largest city in the United States with a city population of 1.6 million
inhabitants (U.S. Census Bureau, 2016) and hosts an average population density of 30,297 inhabitants per
square kilometer. It is located at the confluence of the Delaware and Schuylkill rivers on the eastern border
of Pennsylvania with the Appalachian Mountains to the west and the Atlantic Ocean to the east. The city
has a total area of about 370 km2 of which 350 km2 are land and the rest, water. Phildelphia is one of the
poorest cities in the US, with 26 percent of its population living in poverty (PEW, 2017). Philadelphia is
also one of the most segregated cities in the US, with African American and Asian populations concentrated
in neighborhoods in West and North Philadelphia respectively (The Brookings Institution, 2003). The city’s
population peaked in 1950 with over 2 million people, and was declining until 2010 when is started growing
again. Recently, Philadelphia is experiencing strong, yet uneven economic resurgence reflected in job growth
and rising housing prices (PEW, 2017).

Philadelphia’s urban structure emerged through the evolution of its original plan, laid out by William Penn
in 1643. It has a gridded layout with mostly low and mid-rise residential buildings. A long time “gentleman’s
agreement” kept Penn’s statue on top of city hall as the highest building in the city, preventing high-rise
development for decades until the 1980s. The most common residential structures in the city are rowhouses.
Rowhouses commonly occupy a narrow street frontage and are attached to other homes on both sides (Sim-
mons Schade et al., 2008). Aside from the build environment, green space in the city includes 19% tree cover
and 24% grass-shrub cover that are distributed unevenly across the city with some neighborhoods densely
vegetated and others with little to no green space (O’Neil-Dunne, 2011). Part of the city’s sustainability
plan, Greenworks Philadelphia, includes a goal of tree canopy cover of 30% in all city neighborhoods by 2025
(City of Philadelphia, 2015a). However, until recently, the only publicly available data for a comprehensive
analysis of the city’s green space has been the National Landuse-Landcover (NLCD) datasets that do not
have the spatial resolution and functional categories required to identify small and fragmented patches of
landscape elements within the city. In 2011, a fine scale dataset of Philadelphia landcover was released (City
of Philadelphia, 2011) that is used here as the basis for the STURLA classification system. Empirical evi-
dence from two cities, Berlin and New York City (NYC), were compared (Larondelle et al., 2014) and more
detailed analysis of within class and neighborhood effects were performed in a Berlin case study (Kremer et
al., 2018).

Pre-processing urban landscape structure data

To construct the urban structure dataset, we used a 2008 1.0-meter resolution land cover dataset (City of
Philadelphia, 2011), the Property Assessment dataset from the Philadelphia Office of Property Assessment
(City of Philadelphia, 2015b) indicating number of floors in buildings for each tax lot in the city in tabular
format, and the Philadelphia Department of Water parcels dataset. We joined the property assessment
tabular data to the parcels dataset using unique parcel IDs and created a 1.0-meter resolution raster dataset
from the “Number of Floors” field in the Property Assessment dataset. Number of floors was classified into
three categories: lowrise (1–3 stories), midrise (4–9 stories) and highrise (>9 stories) (Larondelle et al., 2014;
I. D. Stewart & Oke, 2012). We then combined it with the land cover raster dataset, by replacing all building
land cover pixels with a value representing building height category to create our basic urban structure
dataset.

Constructing the STURLA classification

We constructed a 120.0 m2 cellular grid aligned to the Landsat surface temperature dataset and derived
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STURLA classes as the presence of all land cover and building height types that fell within each grid cell.
Following Hamstead et al. (2016) a zonal statistics tabulate area operation to compute the area of each
land cover or building height category within each cell was conducted. Finally, we generated and assigned a
STURLA class variable for each grid cell (e.g, “tgpl”, trees, grass, pavement, lowrise building).

Comparison of STURLA classification results from current and previous studies

Permutational t-tests with Bonferroni correction were used to test for differences between cities in STURLA
classes. The permutational t-test selected because we test data representing the population rather than a
sample. The null hypothesis of the permutational t-test is that STURLA class composition does not dif-
fer between the cities. Permutational Pearson correlations were conducted to determine if the cities distri-
bution of STURLA classes were similar between cities. These tests were conducted in R using the package
“RVAideMemoire” (Hervé, 2020).

Surface Temperature Processing

Surface temperature was obtained from Landsat 7 thermal band 6(1). We obtained monthly composite data
for the month of July 2010 from the Global Web-enables Landsat Data (WELD) website. Each monthly
composite image is normally a composite of two Landsat scenes because LANDSAT returns to any single
location every 16 days. Using a composite scene helps address the Landsat 7 scan line corrector error.
WELD data is terrain-corrected and radiometrically calibrated Landsat data (Roy et al., 2010). Top-of the
-Atmosphere reflectance was converted to surface temperature followed the methodology detailed in Kremer
et al. (2018) in processing surface temperature.

Analysis of class surface temperature

We computed the mean, min, max and standard deviation of surface temperature pixels that fell within
each cell of the STURLA grid using zonal statistics (Table 1) and joined these results with the STURLA
class variable. Averaging was necessary because Landsat 7 thermal bands are resampled to 30 meters for
distribution (Roy et al., 2010) while the STURLA grid is 120 m. Thus, we averaged sixteen 30 m pixels that
fell within each 120 m cell. Similar to Hamstead et al. (2016) and Larondelle et al. (2014) we focused the
class temperature analysis on the most frequently occurring classes, which cumulatively comprise 90% of
the city’s land area. As done with comparison of STURLA classes between cities, permutational t-tests with
Bonferroni correction were employed to test significance. Likewise, the null hypothesis of the permutational
t-test is that ST does not differ between the STURLA classes.

Results

The most prevalent composite class in Philadelphia contains trees, grass, paved surfaces, and low rise buil-
dings (‘tgpl’) (Table 1). The ‘tgpl’ class accounts for about 57% of total city area and can be found in all
parts of the city and was largely homogenous in spatial distribution (Figure 1A). The second largest class,
‘tgplm’ at 8.5% of the area, which is similar to ‘tgpl’ except it includes midrise buildings, is concentrated
in the center of the city and along a few main corridors to the North and West. STURLA classes were able
to identify the role of urban structure influencing ST (Figure 1B). Classes generally hosted ST that were
unique (Figure 1B) and significantly different (Table 2) compared to all other classes with the exception of
‘tgbp’ with similar ST values to ‘tgwp’ and ‘tgwpl’.

The prevalence and distribution of the STURLA classes in Philadelphia differs from what we found in previous
studies of urban structure NYC and Berlin (Figure 2). In Berlin and NYC, ˜1/3 of the landscape can be
explained by one highly composite STURLA class. Another difference between the results in Philadelphia
and previous studies is the number of classes that cumulatively explain 90% of the area of the city. Ten
classes covered 90% of the area of Philadelphia while the same number of classes only covered 79% of the
area of New York City and 68% of the area in Berlin. Despite these differences, pairwise comparison of each
city revealed that STURLA class proportions were not significantly different between the cities (all p>0.05)
Still, Berlin and NYC were highly correlated (r2=0.952, p<0.05) while Philadelphia’s distribution of urban
structure remained uncorrelated to the other cities (p>0.05).
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Due to the compositional nature of a STURLA cell where the relative proportions of all elements sum to one
Figure 2 provides an example of compositional variability within the most common class in Philadelphia ‘tgpl’
using six grid cells taken from a larger city-wide random sample. The different grid cells and corresponding
satellite imagery show the different types of buildings and proportion of each element of the class, trees,
grass, paved surfaces, and lowrise buildings, can vary greatly from one another but still fall into the class.
Most grid cells from the ‘tgpl’ class show row houses or single-family detached houses since they fall within
the size parameters of lowrise buildings (1-3 stories).

Discussion:

STURLA captured urban structure and characterized the physical property of ST in Philadelphia as pre-
viously done in NYC (Hamstead et al., 2016) and Berlin (Kremer et al., 2018), despite variation in size,
demography, and historical planning. This suggests that urban areas may be subject to similar processes
that result in between city-redundant spatial organizations (Votsis & Haavisto, 2019). Likewise, STUR-
LA may be suited for understanding urban biogeography, environmental justice, and city planning for a
sustainable future. Global analyses of cities may also identify clusters of urban areas that would benefit
from similar management practices. Likewise, STURLA offers a computationally inexpensive alternative to
network analyses of urban structure (Zhong et al., 2014).

One of the main limitations of STURLA classification is the binary nature of class assignment. If the STURLA
grid were shifted it would change the relative proportions of the within class elements (e.g. trees decrease and
other elements increase). Despite this variation, STURLA classes are a discrete countable number and have
a Poisson distribution. Thus, the ranked order abundances of different STURLA classes should not vary in
the most frequent classes. For example, since ‘tgpl’ is common in Philadelphia, a reduction in a large number
of ‘tgpl’ classes in the city would be relatively less influential than additions/reductions of less common class.

Conclusion

In this paper we demonstrate the application of STURLA classification to quantify the relationship between
urban structure and surface temperature in Philadelphia. We show it can be applied to cities with different
historical patterns of growth in a reproducible manner. Furthermore, patterns in class abundance and com-
position can be used to determine the surface temperature signature of a composite landscape. Additional
research is needed to compare cities of vastly different urban structure and identify patterns in the relation-
ship between urban structure with social and ecological properties of the environment. Understanding general
urban structure-environmental function relationships will help build tools for effective urban planning and
management under global change scenarios.

Table 1: 10 most common STURLA classes in Philadelphia and their ST statistics. STURLA class codes:
t-trees; g-grass; b-bare soil; w-water; p-paved; l-low building; m-medium building

Class % of total % cumulative Mean ST C Min ST C Max ST C

tgpl 57.44 57.44 26.95 25.01 28.79
tgplm 8.55 65.99 27.95 25.89 29.93
tgp 7.39 73.37 23.86 22.10 25.75
tgwp 4.36 77.73 22.72 20.77 24.75
w 2.92 80.65 18.34 17.85 19.03
tgwpl 2.57 83.22 24.83 22.41 27.29
tgbpl 2.46 85.69 26.31 24.16 28.60
tg 1.94 87.63 20.42 19.37 21.62
tgw 1.42 89.05 20.37 19.16 21.69
tgbp 1.29 90.34 24.68 22.81 26.64

Table 2. P-values with Bonferroni correction from pairwise permutational t-tests (n=999) of ST values for
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the top ten STURLA classes. Bold values indicate statistical significance (p<0.05).

Class tgpl tgplm tgp tgwp w tgwpl tgbpl tg tgw tgbp

tgpl 0
tgplm 0.02 0
tgp 0.02 0.02 0
tgwp 0.02 0.02 0.02 0
w 0.02 0.02 0.02 0.02 0
tgwpl 0.02 0.02 0.02 0.02 0.02 0
tgbpl 0.02 0.02 0.02 0.02 0.02 0.02 0
tg 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0
tgw 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0
tgbp 0.02 0.02 0.02 3.74 0.02 4.02 0.02 0.02 0.02 0

Figure 1. A. Spatial distribution of STURLA classes B. Spatial distribution of ST in Philadelphia. C.
STURLA classes, mean % landcover of individual components, and mean ST for Philadelphia. STURLA

6
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class codes: t-trees; g-grass; b-bare soil; w-water; p-paved; l-low building; m-medium building

Figure 2: Example of the composition of STURLA grid cells of the most common STURLA class in Philadel-
phia ’tgpl’. STURLA ‘tpgl’ cells are shown next to corresponding areal imagery.
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Abstract

Discerning  the  relationship  between  urban  structure  and  function  is  crucial  for

sustainable city planning and requires examination of how components in urban systems are

organized  in  three-dimensional  space.  The  Structure  of  Urban  Landscape  (STURLA)

classification  accounts  for  the  compositional  complexity  of  urban  landcover  structures

including the built  and natural environment.  Building on previous research, we develop a

STURLA  classification  for  Philadelphia,  PA  and  study  the  relationship  between  urban

structure and land surface temperature. We evaluate the results in Philadelphia as compared

to  previous  case studies  in  Berlin,  Germany and New York City,  USA. In Philadelphia,

STURLA classes hosted ST that were unique and significantly different as compared to all

other classes. We find a similar distribution of STURLA class composition across the three

cities,  though  NYC and  Berlin  showed  strong  correlation  with  each  other  but  not  with
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Philadelphia. Our research highlights the use of STURLA classification to capture a physical

property of the urban landscape.

Key Words

Urban Landscape, Urban surface temperature, STURLA, Urban structure, city comparison 

Introduction

Urban spatial structure is important to understanding social and ecological interactions

between the build and natural environment and provides a bridge to sustainable development

(Zhou  et  al.,  2017).  Characteristics  including  vegetation  and  other  landcover  classes

influence,  and  can  be  used  to  estimate  ecological  functions  (Bastian  et  al.,  2014;  van

Oudenhoven et  al.,  2012) and forecast changes(Dietze,  2019; Dietze et al.,  2018) that are

crucial  under global change scenarios. Identifying patterns and processes of the structure-

function relationship in the urban landscape in the context of environmental and ecological

processes  is  challenging  due  to  variable  density  and  patchy  spatial  patterns  (Pickett  &

Cadenasso, 2008). 

While it is well established that urban areas host ecological communities subject to

unique stressors (Jones & Harrison, 2004; Joyner et al., 2019; Reese et al., 2016) absent in

natural  systems  (e.g  pollution,  high  population  density),  the  influence  of  landscape

heterogeneity  on  the  environment  is  poorly  described.  Functional  classification  of  urban

structure is necessary for understanding the nature of social and ecological relationships in

urban areas  (Cadenasso et al., 2007; McPhearson et al., 2016; Zhou et al., 2014). Over the

last  decade,  fine-scale  landcover  classification  for  urban  areas  have  been  developed

(MacFaden et al., 2012; Pickard et al., 2015) that allows more nuanced analyses of urban
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landcover.  While  some functional  classification  approaches  have been suggested  (see  for

example Cadenasso et al., 2007), major challenges remain in integration of spatial structure

and configuration  that  allows scalable  and reproducible  analysis  of relationships  between

urban form and process. 

A  major  barrier  for  understanding  the  relationship  between  urban  structure  and

environmental  function  is  the  lack  of  independent  measurement  of  the  fine-scale  spatial

variability  of  the  distribution  of  environmental  and  ecological  variables.  Particularly

important  is  the  vertical  dimension  (e.g.  building  height)  and  variation  of  the  three-

dimensional landscape that is rarely addressed (Alavipanah et al., 2017) in ecological studies.

Where independent measurements exist, such as data from Environmental Protection Agency

(EPA) air pollution monitoring stations or United States Geographical Survey (USGS) water

monitoring sites, the spatial distribution is not sufficient to allow intra-urban analysis. Surface

temperature is one example of a physical property of the urban environment that has been

used in research addressing landcover (Zhou et al., 2011), urban heat islands (Rosenzweig et

al., 2009; Zhao et al., 2011), and ecosystem services  (Schwarz et al., 2011). Likewise, ST

structures patterns of taxonomic and functional biodiversity (Scherrer & Körner, 2011; Zogg

et al., 1997), hydrology (Reyes et al., 2018), air quality (Li et al., 2018; Sillman & Samson,

1995),  and  social  variables  relevant  for  studies  of  environmental  injustice  (Huang  &

Cadenasso, 2016; Zhang et al., 2017). We employ ST as a proxy for a wide range of potential

variables of interest across biotic and abiotic dimensions.

 To account for the heterogenous vertical dimension of the built enviroment in urban

lanscscape,  we  employ  The  STructure  of  URban  Landscapes  (STURLA)  classification

(Hamstead  et  al.,  2016).  STURLA is  a  new classification  procedure  developed  by co-PI

Kremer that incorporates the complexity of urban land cover structures, including the vertical

dimensions of the built environment. The novelty in the STURLA approach is that it offers a
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composite functional classification of urban structure, including the vertical dimension, that

is automated, and thus can be applied to wide geographic regions systematically. STURLA

has has been used to identified  patterns  of  microbial  biogeography in the atmosphere  of

Philadelphia  (J. Stewart et al.,  2020), and ST in NYC  (Hamstead et al.,  2016) and Berlin

(Kremer et al., 2018). 

The  objectives  of  this  short  study  are  to  identify  if  STURLA  could  explain  the

variation of urban structure in a new model city (Philadelphia), and quantify this variation

using  a  physical  property  of  the  environment  (ST).  Results  suggest  STURLA  identifies

common urban structure  units  that  encompass  the  majority  of  the  variation  in  the  urban

landscape strucutre. Moreover, when correlated to surface temperature, these common urban

structure classifications exhibit distinct temperature signatures for different urban structure

units  with  temperature  trends  dramatically  similar  between  Berlin  and  NYC.  Here,  we

contribute  to  the  developing  literature  on  the  urban  structure-function  relationship  using

STURLA in Philadelphia.  

Materials and methods

Study area

Philadelphia  PA,  USA  is  the  sixth  largest  city  in  the  United  States  with  a  city

population  of  1.6  million  inhabitants  (U.S.  Census  Bureau,  2016) and  hosts  an  average

population density of 30,297 inhabitants per square kilometer. It is located at the confluence

of  the  Delaware  and  Schuylkill  rivers  on  the  eastern  border  of  Pennsylvania  with  the

Appalachian Mountains to the west and the Atlantic Ocean to the east. The city has a total

area of about 370 km2 of which 350 km2 are land and the rest, water. Phildelphia is one of the

poorest cities in the US, with 26 percent of its population living in poverty  (PEW, 2017).

Philadelphia is also one of the most segregated cities in the US, with African American and
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Asian  populations  concentrated  in  neighborhoods  in  West  and  North  Philadelphia

respectively  (The Brookings Institution, 2003). The city’s population peaked in 1950 with

over 2 million people, and was declining until 2010 when is started growing again. Recently,

Philadelphia is experiencing strong, yet uneven economic resurgence reflected in job growth

and rising housing prices (PEW, 2017). 

Philadelphia’s urban structure emerged through the evolution of its original plan, laid

out by William Penn in 1643. It has a gridded layout with mostly low and mid-rise residential

buildings. A long time “gentleman’s agreement” kept Penn’s statue on top of city hall as the

highest building in the city, preventing high-rise development for decades until the 1980s.

The most common residential  structures in the city are rowhouses. Rowhouses commonly

occupy a narrow street frontage and are attached to other homes on both sides  (Simmons

Schade et al., 2008). Aside from the build environment, green space in the city includes 19%

tree cover and 24% grass-shrub cover that are distributed unevenly across the city with some

neighborhoods densely vegetated and others with little  to no green space  (O’Neil-Dunne,

2011). Part of the city’s sustainability plan, Greenworks Philadelphia, includes a goal of tree

canopy  cover  of  30% in  all  city  neighborhoods  by  2025  (City  of  Philadelphia,  2015a).

However, until recently, the only publicly available data for a comprehensive analysis of the

city’s green space has been the National Landuse-Landcover (NLCD)  datasets that do not

have  the  spatial  resolution  and  functional  categories  required  to  identify  small  and

fragmented patches of landscape elements within the city.  In 2011, a fine scale dataset of

Philadelphia landcover was released (City of Philadelphia, 2011) that is used here as the basis

for the STURLA classification system. Empirical evidence from two cities, Berlin and New

York City (NYC), were compared  (Larondelle et al.,  2014) and more detailed analysis of

within class and neighborhood effects were performed in a Berlin case study (Kremer et al.,

2018).
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Pre-processing urban landscape structure data 

To construct the urban structure dataset, we used a 2008 1.0-meter resolution land

cover  dataset  (City  of  Philadelphia,  2011),  the  Property  Assessment  dataset  from  the

Philadelphia Office of Property Assessment (City of Philadelphia, 2015b) indicating number

of floors in  buildings  for each tax lot  in  the city  in tabular  format,  and the Philadelphia

Department of Water parcels dataset. We joined the property assessment tabular data to the

parcels dataset using unique parcel IDs and created a 1.0-meter resolution raster dataset from

the “Number of  Floors” field  in  the Property  Assessment  dataset.  Number of floors  was

classified into three categories: lowrise (1–3 stories), midrise (4–9 stories) and highrise (>9

stories) (Larondelle et al., 2014; I. D. Stewart & Oke, 2012). We then combined it with the

land cover raster dataset, by replacing all building land cover pixels with a value representing

building height category to create our basic urban structure dataset. 

Constructing the STURLA classification

We constructed a 120.0 m2 cellular grid aligned to the Landsat surface temperature

dataset and derived STURLA classes as the presence of all land cover and building height

types  that  fell  within  each grid  cell.  Following Hamstead et  al.  (2016) a  zonal  statistics

tabulate area operation to compute the area of each land cover or building height category

within each cell was conducted. Finally, we generated and assigned a STURLA class variable

for each grid cell (e.g, “tgpl”, trees, grass, pavement, lowrise building). 

Comparison of STURLA classification results from current and previous studies 

Permutational  t-tests  with  Bonferroni  correction  were  used  to  test  for  differences

between cities in STURLA classes. The permutational t-test selected because we test data

representing the population rather than a sample. The null hypothesis of the permutational t-

6

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150



test  is  that  STURLA  class  composition does  not differ between  the  cities.  Permutational

Pearson  correlations  were  conducted  to  determine  if  the  cities  distribution  of  STURLA

classes  were  similar  between  cities.  These  tests  were  conducted  in  R using  the  package

“RVAideMemoire” (Hervé, 2020). 

Surface Temperature Processing

Surface temperature was obtained from Landsat 7 thermal band 6(1). We obtained

monthly composite data for the month of July 2010 from the Global Web-enables Landsat

Data  (WELD)  website.  Each  monthly  composite  image  is  normally  a  composite  of  two

Landsat scenes because LANDSAT returns to any single location every 16 days. Using a

composite scene helps address the Landsat 7 scan line corrector error. WELD data is terrain-

corrected  and  radiometrically  calibrated  Landsat  data  (Roy  et  al.,  2010).  Top-of  the  -

Atmosphere  reflectance  was  converted  to  surface  temperature  followed  the  methodology

detailed in Kremer et al. (2018) in processing surface temperature. 

Analysis of class surface temperature

We computed  the  mean,  min,  max and standard  deviation  of  surface  temperature

pixels that fell  within each cell  of the STURLA grid using zonal statistics (Table 1) and

joined  these  results  with  the  STURLA class  variable.  Averaging  was  necessary  because

Landsat 7 thermal bands are resampled to 30 meters for distribution (Roy et al., 2010) while

the STURLA grid is 120 m. Thus, we averaged sixteen 30 m pixels that fell within each 120

m cell. Similar to Hamstead et al. (2016) and Larondelle et al. (2014) we focused the class

temperature analysis on the most frequently occurring classes, which cumulatively comprise

90% of the city’s land area. As done with comparison of STURLA classes between cities,

permutational  t-tests  with  Bonferroni  correction  were  employed  to  test  significance.
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Likewise, the null hypothesis of the permutational t-test is that ST does not differ between the

STURLA classes.

Results 

The  most  prevalent  composite  class  in  Philadelphia  contains  trees,  grass,  paved

surfaces, and low rise buildings (‘tgpl’) (Table 1). The ‘tgpl’ class accounts for about 57% of

total city area and can be found in all parts of the city and was largely homogenous in spatial

distribution  (Figure 1A).  The second largest  class,  ‘tgplm’ at  8.5% of the area,  which is

similar to ‘tgpl’ except it includes midrise buildings, is concentrated in the center of the city

and along a few main corridors to the North and West. STURLA classes were able to identify

the role of urban structure influencing ST (Figure 1B). Classes generally hosted ST that were

unique (Figure 1B) and significantly different (Table 2) compared to all other classes with the

exception of ‘tgbp’ with similar ST values to ‘tgwp’ and ‘tgwpl’. 

The prevalence and distribution of the STURLA classes in Philadelphia differs from

what we found in previous studies of urban structure NYC and Berlin (Figure 2). In Berlin

and NYC,  ~1/3 of the landscape can be explained by one highly composite STURLA class.

Another difference between the results in Philadelphia and previous studies is the number of

classes that cumulatively explain 90% of the area of the city. Ten classes covered 90% of the

area of Philadelphia while the same number of classes only covered 79% of the area of New

York City and 68% of the area in Berlin. Despite these differences, pairwise comparison of

each city revealed that STURLA class proportions were not significantly different between

the cities (all p>0.05) Still, Berlin and NYC were highly correlated (r2=0.952, p<0.05) while

Philadelphia’s  distribution  of  urban  structure  remained  uncorrelated  to  the  other  cities

(p>0.05). 
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Due to the compositional nature of a STURLA cell where the relative proportions of

all elements sum to one Figure 2 provides an example of compositional variability within the

most common class in Philadelphia ‘tgpl’ using six grid cells taken from a larger city-wide

random  sample.  The  different  grid  cells  and  corresponding  satellite  imagery  show  the

different types of buildings and proportion of each element of the class, trees, grass, paved

surfaces, and lowrise buildings, can vary greatly from one another but still fall into the class.

Most grid cells from the ‘tgpl’ class show row houses or single-family detached houses since

they fall within the size parameters of lowrise buildings (1-3 stories). 

Discussion:

STURLA captured urban structure and characterized the physical property of ST in

Philadelphia as previously done in NYC (Hamstead et al., 2016) and Berlin  (Kremer et al.,

2018),  despite  variation  in  size,  demography,  and  historical  planning.  This  suggests  that

urban areas may be subject to similar processes that result in between city-redundant spatial

organizations  (Votsis  &  Haavisto,  2019).  Likewise,  STURLA  may  be  suited  for

understanding urban biogeography, environmental justice, and city planning for a sustainable

future. Global analyses of cities may also identify clusters of urban areas that would benefit

from  similar  management  practices.  Likewise,  STURLA  offers  a  computationally

inexpensive alternative to network analyses of urban structure (Zhong et al., 2014). 

One of the main limitations of STURLA classification is the binary nature of class

assignment. If the STURLA grid were shifted it would change the relative proportions of the

within class elements (e.g. trees decrease and other elements increase). Despite this variation,

STURLA classes are a discrete countable number and have a Poisson distribution. Thus, the

ranked order abundances of different STURLA classes should not vary in the most frequent
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classes. For example,  since ‘tgpl’ is common in Philadelphia, a reduction in a large number

of ‘tgpl’ classes in the city would be relatively less influential than additions/reductions of

less common class. 

Conclusion

In this paper we demonstrate the application of STURLA classification to quantify the

relationship between urban structure and surface temperature in Philadelphia. We show it can

be applied to cities  with different historical  patterns  of growth in a reproducible  manner.

Furthermore,  patterns  in  class  abundance  and composition  can  be  used  to  determine  the

surface temperature signature of a composite  landscape.  Additional  research is  needed to

compare cities  of vastly different  urban structure and identify patterns  in the relationship

between  urban  structure  with  social  and  ecological  properties  of  the  environment.

Understanding general urban structure-environmental function relationships will help build

tools for effective urban planning and management under global change scenarios. 

Table 1: 10 most common STURLA classes in Philadelphia and their ST statistics. STURLA

class  codes:  t-trees;  g-grass;  b-bare  soil;  w-water;  p-paved;  l-low  building;  m-medium

building

Class %  of

total

%

cumulative

Mean ST C Min ST C Max ST C

tgpl 57.44 57.44 26.95 25.01 28.79

tgpl

m

8.55 65.99 27.95 25.89 29.93

tgp 7.39 73.37 23.86 22.10 25.75
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230

231
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233

234
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238
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240

241

242



tgwp 4.36 77.73 22.72 20.77 24.75

w 2.92 80.65 18.34 17.85 19.03

tgwp

l

2.57 83.22 24.83 22.41 27.29

tgbp

l

2.46 85.69 26.31 24.16 28.60

tg 1.94 87.63 20.42 19.37 21.62

tgw 1.42 89.05 20.37 19.16 21.69

tgbp 1.29 90.34 24.68 22.81 26.64

Table 2. P-values with Bonferroni correction from pairwise permutational t-tests (n=999) of

ST values  for  the  top  ten  STURLA classes.  Bold  values  indicate  statistical  significance

(p<0.05). 

Class tgpl tgpl

m

tgp tgw

p

w tgw

pl

tgbp

l

tg tgw tgb

p

tgpl 0

tgpl

m

0.02 0

tgp 0.02 0.02 0

tgwp 0.02 0.02 0.02 0

w 0.02 0.02 0.02 0.02 0
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tgwp

l

0.02 0.02 0.02 0.02 0.02 0

tgbp

l

0.02 0.02 0.02 0.02 0.02 0.02 0

tg 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0

tgw 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0

tgbp 0.02 0.02 0.02 3.74 0.02 4.02 0.02 0.02 0.02 0
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Figure  1.  A.  Spatial  distribution  of  STURLA  classes  B.  Spatial  distribution  of  ST  in

Philadelphia. C. STURLA classes, mean % landcover of individual components, and mean

ST for Philadelphia. STURLA class codes: t-trees; g-grass; b-bare soil; w-water; p-paved; l-

low building; m-medium building
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Figure 2: Example of the composition of STURLA grid cells of the most common STURLA

class  in  Philadelphia  'tgpl'.  STURLA ‘tpgl’  cells  are  shown next  to  corresponding  areal

imagery.  
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