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Abstract

The 2B-CLDCLASS-LIDAR R05 (2BCL5) and the raDAR/liDAR (DARDAR) satellite retrievals of cloud occurrence are

compared as a function of altitude and latitude. The largest disparities are observed at low altitudes over high southern latitudes.

These datasets are cross referenced to ground–based measurements from the Atmospheric Radiation Measurement (ARM) West

Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station, Antarctica. Compared to AWARE observations,

both 2BCL5 and DARDAR underestimate cloud occurrence below 1.5 km, with 2BCL5 and DARDAR distinguishing roughly

one third of cloud occurrences observed by AWARE at 0.5 km. While DARDAR identifies greater cloud occurrences than 2BCL5

below 1.5 km, cloud occurrence values for the two datasets have similar differences relative to ground-based measurements.

Therefore, the DARDAR retrievals of greater cloud occurrence at low altitudes are likely due to a larger quantity of false positives

associated with radar ground clutter or attenuated lidar retrievals. DARDAR cloud occurrences match better with AWARE

than 2BCL5 above 5 km. However, the likely underestimation of ground-based measurements at higher altitudes suggests

DARDAR may underestimate high level cloud occurrence. Finally, both datasets indicate the presence of liquid containing

clouds at temperatures within the homogeneous freezing regime, despite the fact that the ECMWF-AUX dataset implemented

in their processing clearly indicates temperatures below -38 °C. Using AWARE radiosonde (ECMWF-AUX) temperature data,

we find that 2BCL5 detects 13.3% (13.8%) of mixed phase clouds below -38 °C, while DARDAR detects 5.7% (6.6%) of mixed

phase and 1.1% (1.3%) of liquid phase clouds below -38 °C.
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Key Points:9

• 2BCL5 and DARDAR cloud occurrences show large differences at low-levels glob-10
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Abstract16

The 2B-CLDCLASS-LIDAR R05 (2BCL5) and the raDAR/liDAR (DARDAR) satellite17

retrievals of cloud occurrence are compared as a function of altitude and latitude. The18

largest disparities are observed at low altitudes over high southern latitudes. These datasets19

are cross referenced to ground–based measurements from the Atmospheric Radiation Mea-20

surement (ARM) West Antarctic Radiation Experiment (AWARE) campaign at McMurdo21

Station, Antarctica. Compared to AWARE observations, both 2BCL5 and DARDAR22

underestimate cloud occurrence below 1.5 km, with 2BCL5 and DARDAR distinguish-23

ing roughly one third of cloud occurrences observed by AWARE at 0.5 km. While DAR-24

DAR identifies greater cloud occurrences than 2BCL5 below 1.5 km, cloud occurrence25

values for the two datasets have similar differences relative to ground-based measurements.26

Therefore, the DARDAR retrievals of greater cloud occurrence at low altitudes are likely27

due to a larger quantity of false positives associated with radar ground clutter or atten-28

uated lidar retrievals. DARDAR cloud occurrences match better with AWARE than 2BCL529

above 5 km. However, the likely underestimation of ground-based measurements at higher30

altitudes suggests DARDAR may underestimate high level cloud occurrence. Finally, both31

datasets indicate the presence of liquid containing clouds at temperatures within the ho-32

mogeneous freezing regime, despite the fact that the ECMWF-AUX dataset implemented33

in their processing clearly indicates temperatures below -38 ◦C. Using AWARE radiosonde34

(ECMWF-AUX) temperature data, we find that 2BCL5 detects 13.3% (13.8%) of mixed35

phase clouds below -38 ◦C, while DARDAR detects 5.7% (6.6%) of mixed phase and 1.1%36

(1.3%) of liquid phase clouds below -38 ◦C.37

1 Introduction38

Clouds play a critical role in the Earth’s energy balance. They can act to cool the39

surface by reflecting incoming solar radiation back into space or warm the surface by ab-40

sorbing outgoing infrared radiation and re-radiating it toward the surface (Marshall &41

Plumb, 2008). Although all clouds have an effect on the climate, clouds over the oceans42

are especially important due to the strong contrast in albedo between the sea surface and43

clouds. This means that the surface radiation budget over the ocean is more sensitive44

to cloud coverage than over land (Cess, 1990). These effects are greatest over the South-45

ern Ocean which has an annual mean cloud coverage of around 80% – 90% (e.g., Kay46

et al., 2012; McCoy et al., 2014; Matus & L’ecuyer, 2017).47

In this study, satellite measurements are used to evaluate cloud occurrence and cloud48

phase over Southern Hemisphere high latitudes. Due to the limitations of satellite–based49

datasets in this region, a ground–based dataset is needed for independent examination50

of low level cloud. Unfortunately, ground–based measurements which vertically resolve51

cloud and cloud phase over the Southern Ocean are very rare due to the complicated lo-52

gistics associated with collecting measurements from shipborne platforms. As such, ground–53

based measurements from the AWARE campaign over McMurdo Station in Antarctica54

are used as a representation of cloud at southern high latitudes. The AWARE dataset55

provides detailed cloud occurrence and phase measurements described in more detail in56

section 2.4, and is used for comparison with satellite–based measurements.57

Comparisons between observations and models indicate significant shortwave ra-58

diation biases over the Southern Ocean with magnitudes of up to 30 Wm-2 (Trenberth59

& Fasullo, 2010). This shortwave bias induces warm sea surface temperature biases in60

climate simulations (Hyder et al., 2018), which limit the accuracy of models. The short-61

wave bias observed in the Southern Ocean has been identified as a contributory factor62

in a number of issues in models, such as the double–Intertropical Convergence Zone (e.g.,63

Hwang & Frierson, 2013), errors in the meridional energy transport (e.g., Mason et al.,64

2015), biases in the position of the Southern Hemisphere storm track (e.g., Ceppi et al.,65

2012) and the intensity of the Southern Hemisphere jet (e.g., Kay et al., 2016). Reduc-66
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tion of the shortwave bias over the Southern Ocean is thus critical to improving the sim-67

ulation of climate at the Southern hemisphere mid- to high-latitudes.68

Identifying the sources of these biases in climate models is an active and ongoing69

area of research. Though, Hyder et al. (2018) identified that 70% of the sea surface tem-70

perature bias in the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate71

models relative to observations can be attributed to issues associated with the represen-72

tation of clouds. Other work has shown that problems with the models include simulat-73

ing too little cloud cover (e.g., Bodas-Salcedo et al., 2012; Schuddeboom et al., 2018; Kuma74

et al., 2020), excessive sunlight absorbed by the ocean surface (e.g., Trenberth & Fasullo,75

2010; Hyder et al., 2018), a lack of clouds in the cold sectors of cyclones (e.g., Bodas-76

Salcedo et al., 2014), and a lack of reflective supercooled water clouds (e.g., Bodas-Salcedo77

et al., 2016; Kuma et al., 2020). Work has also shown that the bias over the Southern78

Ocean is not a single issue since there are different biases at higher and lower latitudes79

(Schuddeboom et al., 2019; Kuma et al., 2020).80

Ice hydrometeors and water droplets have differing radiative properties and there-81

fore reflect and absorb different levels of incoming shortwave radiation (e.g., Haynes et82

al., 2011; Scott & Lubin, 2014; Vergara-Temprado et al., 2018). Previous work has iden-83

tified that supercooled clouds are very common over the Southern Ocean (e.g., Chubb84

et al., 2013; Jolly et al., 2018; Listowski et al., 2018; Morrison et al., 2011) and are po-85

tentially a major contributor to known model biases (e.g., Bodas-Salcedo et al., 2016;86

Kay et al., 2016; Kuma et al., 2020). In particular, Bodas-Salcedo et al. (2016) identi-87

fied that clouds with supercooled tops contribute between 27 and 38% to the total re-88

flected solar radiation over the Southern Ocean, and suggested that climate models poorly89

simulate these clouds. Models that overestimate the amount of ice cloud will produce90

a positive shortwave radiation bias, due to changes in the cloud albedo. As the intro-91

duction of ice into supercooled liquid clouds also causes the rapid growth of ice crystal92

at the expense of the liquid droplets (Vergara-Temprado et al., 2018), a minor error rep-93

resenting cloud phase can have large impacts.94

Boundary layer observations by satellite instruments are limited by the presence95

of an almost continuous cloud cover in the Southern Ocean which acts to obscure low-96

level clouds. Unfortunately, measurements from satellites using passive instruments such97

as the Moderate Resolution Imaging Spectroradiometer (MODIS; Salomonson et al., 2002)98

and the International Satellite Cloud Climatology Project (ISCCP; Rossow & Schiffer,99

1999) can only observe radiation scattered or emitted from the cloud top of optically thick100

clouds. Therefore, one can accurately identify the cloud properties at the top of the cloud101

with passive instruments, but cannot resolve the full vertical profile of clouds in most102

cases. Instead, active instruments such as those aboard the CloudSat and Cloud–Aerosol103

Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites need to be used104

to investigate cloud vertical structure.105

Due to the limitations of satellite observations in the lower troposphere, ground based106

measurements from sub–Antarctic and Antarctic sites can provide essential information107

about cloud vertical structure. Surface based lidar instruments can detect layers of liq-108

uid water in the boundary layer, but similar to space–borne lidars, their signal becomes109

attenuated by optically thick cloud. Ground based radars can penetrate through these110

optically thick clouds, but miss a portion of the optically and geometrically thin high-111

altitude ice clouds due to a lack of sensitivity (Protat et al., 2006, 2010).112

2 Datasets and Methods113

2.1 The CloudSat and CALIPSO satellites114

The satellite datasets used in this study are merged products created from Cloud-115

Sat and CALIPSO observations. Launched together in April 2006, these satellites fol-116
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low each other closely in orbit, initially as part of the A-Train constellation of satellites117

occupying a low Earth orbit (Stephens et al., 2002) and their measurements can be used118

to investigate the vertical distribution and properties of cloud. A partial equipment fail-119

ure in 2017 forced CloudSat into a lower orbit to preserve the longevity of the instru-120

ment. CALIPSO was also moved into this lower orbit so that the two could continue to121

be used in conjunction. CloudSat has operated in daylight-only mode since 2011 due to122

a battery anomaly, which has inhibited nighttime measurements and reduced the qual-123

ity of measurements collected during the sunlit portion of its orbit (Nayak, 2012).124

The Cloud Profiling Radar (CPR), a 94 GHz radar that uses 3.3 µs pulses, is the125

primary instrument onboard the CloudSat satellite (Stephens et al., 2002). The main126

instrument onboard CALIPSO is the Cloud-Aerosol Lidar with Orthogonal Polarization127

(CALIOP) (Winker et al., 2007). CALIOP transmits two laser pulses at wavelengths of128

1064 nm and 532 nm simultaneously and measures backscatter data at two polarisations.129

The backscattered signal is used to derive vertical profiles of aerosol and cloud proper-130

ties, and the ratio of backscatter at the two wavelengths is used to discriminate between131

clouds and aerosols as well as to determine the composition of cloud (Winker et al., 2009;132

Z. Liu, 2009). The lidar depolarisation ratio can also be used to estimate the phase of133

scattering hydrometeors as either ice or liquid water (Sassen, 1991; Hu et al., 2009). Cloud-134

Sat’s CPR, has a horizontal footprint of 1.4 km x 1.8 km, and vertical resolution of 485135

m up to a height of 25km (Stephens et al., 2008). CloudSat uses the strength of the sig-136

nal reflected off hydrometeors to determine cloud vertical structure. However, Cloud-137

Sat is affected by surface clutter below approximately 1.2 km (cf. Marchand et al., 2008;138

Tanelli et al., 2008) while the CALIPSO lidar signal is attenuated by passing through139

optically thick cloud.140

2.2 The 2BCL5 data product141

In this study we use the 2B-CLDCLASS-LIDAR R05 (2BCL5) dataset generated142

by combining measurements from CloudSat and CALIPSO to determine the vertical dis-143

tribution of clouds, cloud phase, and cloud type (Sassen et al., 2008; Wang, 2019). Be-144

cause of the different horizontal and vertical resolutions of the two instruments, data from145

several CALIOP footprints are matched to the larger CPR footprints. Unfortunately,146

the CALIOP linear depolarisation ratio measurement is limited by the attenuation of147

the lidar signal through thick clouds, so the 2BCL5 data product does not use this data148

to derive cloud phase. Instead, differences between the number concentration, vertical149

distribution and radiative properties of ice particles and water droplets are used to gen-150

erate a temperature dependent radar reflectivity (Ze) threshold (cf. Zhang et al., 2010).151

This Ze threshold is used alongside the integrated attenuated lidar backscattering co-152

efficient and cloud base and top temperatures to distinguish between ice, liquid, and mixed153

phases cloudy air volumes (see Wang, 2019). The 2BCL5 product uses ancillary data from154

the ECMWF-AUX (Partain, 2007) product to provide temperature data.155

Using 2BCL5 observations from 2016, cloud occurrence is derived as a function of156

altitude for different cloud phases. The vertical extent of the cloud is determined using157

the CloudLayerBase and CloudLayerTop fields. Cloud occurrence is assigned to each ver-158

tical bin between the cloud base and cloud top using the Cloud Fraction field. This pro-159

cess is repeated for each separate cloud layer in the 2BCL5 detection. Further partition-160

ing using information about the three phase classification options, produces separate cloud161

masks for each phase. Profiles are summed and then normalised by using the total num-162

ber of measurements.163

2.3 The DARDAR data product164

The second satellite dataset used in this study is the raDAR/liDAR (DARDAR)165

dataset. DARDAR is also a merged product derived from CloudSat and CALIPSO mea-166
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surements (Delanoë & Hogan, 2010), and uses ancillary temperature information from167

ECMWF-AUX. It therefore uses identical inputs to the 2BCL5 dataset. DARDAR v.2.11168

(Ceccaldi et al., 2013) was also obtained for 2016, chosen to coincide with ground based169

measurements also used in this study. DARDAR provides vertically resolved profiles of170

cloud phase, identifying ice, mixed and liquid phase clouds. The phase determination171

algorithm also requires thermodynamic variables taken from the ECMWF-AUX prod-172

uct. Similarly to 2BCL5, CALIPSO footprints are matched to CloudSat resolution for173

merging. DARDAR has resolutions of 60 m in the vertical and 1 km in the horizontal.174

DARDAR cloud phase classification processes are detailed in Delanoë and Hogan (2010),175

but were updated in Ceccaldi et al. (2013) upon the release of the DARDAR v2 prod-176

uct.177

DARDAR cloud measurements are grouped into a categorization mask that sep-178

arates cloud into different categories. While it includes cloud features such as the loca-179

tion of supercooled water and ice hydrometeors, it also contains features such as aerosols180

and ground clutter not relevant to this study. To produce vertical profiles of cloud oc-181

currence, the appropriate features (such as supercooled and water cloud) are selected to182

partition the data into clouds masks associated with the different phases. As for 2BCL5,183

these cloud masks are combined to generate cloud occurrences. Cloud occurrence pro-184

files for each phase are merged by summing the cloud occurrence across each vertical level185

and normalised using the total number of measurements.186

2.4 The AWARE dataset187

The ground–based observations obtained during the 2016 Atmospheric Radiation188

Measurement (ARM) West Antarctic Radiation Experiment (AWARE) field campaign189

in Antarctica are used in this study. The AWARE campaign took place between Novem-190

ber 2015 and January 2017 (Lubin et al., 2020), primarily at McMurdo Station (77.85◦S,191

166.72◦E), and provides an unprecedented cloud and radiation dataset in this region (Lubin192

et al., 2020). In this study, we focus on AWARE measurements of cloud occurrence, cloud193

phase, and temperature.194

The AWARE dataset used in this study includes hourly cloud masks generated from195

Ka-Band ARM Zenith Radar (KAZR; Widener et al., 2012) and the High Spectral Res-196

olution Lidar (HSRL; Eloranta, 2005) measurements from McMurdo Station. These mea-197

surements are then gridded onto a fixed 7.5 m and 10 s vertically- and temporally-spaced198

grid, as detailed in Silber et al. (2018). This dataset spans from 1 January to 31 Decem-199

ber 2016. KAZR was operated in two interleaved modes; a moderate sensitivity mode200

was used to detect upper–tropospheric clouds and a general mode used to detect lower–201

tropospheric clouds. We also use radiosonde soundings of temperature gathered twice202

daily and linearly gridded to the vertical grid of the hourly cloud masks (cf. Silber et203

al., 2018). AWARE observations include a significant quantity of cloud observations whose204

phase could not be identified, particularly at high altitudes, due to the attenuation of205

the lidar signal.206

Both the KAZR and HSRL datasets have a high uptime, with more than 97% to-207

tal data availability during 2016 (Silber et al., 2018). However, specific hours with low208

data availability might still cause a potential sampling bias in our analysis. Therefore,209

we set a hourly KAZR and HSRL data availability threshold of 75% (45 min) for cloud210

profiles to be considered in this analysis, this effectively rejects 2.3% of the AWARE dataset.211

2.5 Combined Satellite and Ground-based Processing212

To inter-compare the AWARE, 2BCL5 and DARDAR datasets, all of the obser-213

vational datasets need to be constrained both spatially and temporally. First the satel-214

lite data was masked so that only observations falling within a 5 degree by 5 degree lat-215
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itude/longitude box centered on McMurdo Station were used. The AWARE data was216

also masked so that only measurements within 3 hours before or after a CloudSat/CALIPSO217

overpass are considered. All measurements from CloudSat/CALIPSO and the AWARE218

datasets include both cloud and precipitation masks. Only the months of January, Oc-219

tober, November and December had significant quantities of coincident satellite and ground220

based observations. The passes used for comparison with the AWARE dataset were fur-221

ther filtered to only include passes where both 2BCL5 and DARDAR have concurrent222

observations, which gave a total of 180 passes.223

The observational region was identified so that it would be large enough to con-224

tain a considerable number of satellite passes, but small enough to exclude the Trans-225

Antarctic mountains. The temporal coincidence was chosen to ensure that the different226

instruments would observe the same synoptic weather patterns. Work by Coggins et al.227

(2014) used the k–means clustering technique to produce a synoptic climatology of the228

Ross Sea and Ross Ice Shelf regions and identified the characteristic time periods of each229

synoptic state in the region persisted for between 13 and 20 hours. A later study by Jolly230

et al. (2018) used this synoptic climatology to quantify the vertical distribution of cloud231

occurrence, phase, and type over the Ross Ice Shelf and southern Ross Sea, which en-232

compasses McMurdo Station. They found large differences between the synoptic regimes233

relative to seasonal variation for the cloud occurrence as a function of altitude (see also234

Silber et al., 2019). An additional study in which examined Eulerian cloud persistence235

using the AWARE data was also carried out by Silber et al. (2018). They investigated236

the persistence of all cloud layers, as well as those that necessarily contain liquid water,237

and reported a mean cloud persistence between 5 and 10 hours depending on the month.238

However, liquid-containing cloud layers have a much shorter mean persistence of 2.7 hours239

and 54% do not last for more than an hour. A temporal threshold of 1 hour from either240

side of the closest AWARE measurement during a satellite overpass (a 3 hour window241

in total) was selected based on these studies.242

3 Results243

3.1 Global distribution of satellite–based cloud occurrences244

Before using the ground–based AWARE observations, the 2BCL5 and DARDAR245

datasets are directly compared. Figure 1 shows the latitudinal cloud occurrence as a func-246

tion of altitude for the 2BCL5 dataset during 2016. While only 2016 is examined the mean247

values used in this analysis are representative of other years (analysis not shown). Fig-248

ure 1 displays cloud occurrence for the ice, mixed and liquid cloud phases, as well as the249

combined total alongside temperature isotherms generated using monthly averages of ECMWF-250

AUX temperature profiles (Partain, 2007). The 0 ◦C isotherm identifies the location where251

liquid hydrometeors will begin to freeze into ice phase cloud; at higher temperatures only252

liquid phase cloud should generally be present. The -38 ◦C isotherm was chosen to rep-253

resent the edge of the homogeneous freezing regime (Lamb & Verlinde, 2011). Below this254

temperature any supercooled water present in the cloud will freeze into ice crystals, such255

that only ice phase clouds will be present. Between the two thresholds there will be a256

combination of ice and supercooled water, so liquid, ice and mixed phase clouds can be257

present.258

A notable feature of Figure 1 is a sharp reduction in the amount of cloud detected259

by 2BCL5 below an altitude of 1 km, present across all latitudes and phases. This high-260

lights limitations in the 2BCL5 dataset at detecting cloud below this altitude. Figure261

1b shows that ice phase cloud is absent in the tropical and subtropical regions below 5262

km, where temperatures are higher, although there are some places below the 0 ◦C isotherm263

where ice phase clouds are present. Figure 1c shows that mixed phase clouds are gen-264

erally present at altitudes above the -38 ◦C isotherm and below the 0 ◦C isotherm. Fig-265

ure 1d shows liquid phase cloud at temperatures higher than 0 ◦C, which is plausible due266

–6–



manuscript submitted to JGR: Atmospheres

Figure 1. Latitudinal distribution of cloud occurrence as a function of altitude for the (a)

total amount of cloud occurrence, as well as the (b) ice , (c) mixed and (d) liquid phases de-

rived from the 2BCL5 observations from 2016. The dashed lines indicate isotherms of constant

temperature generated using ECMWF-AUX temperature information.

to the presence of supercooled water below 0 ◦C. However, as the 2BCL5 liquid classi-267

fication does not distinguish supercooled water further analysis assessing the quality of268

liquid phase partitioning cannot be done. The reduction of cloud observed by 2BCL5269

below 1 km has particular implications over the Southern Ocean (50 ◦S - 75 ◦S) where270

low level cloud occurrence peaks, but where it is also considered to be underestimated271

in models (Bodas-Salcedo et al., 2012; Schuddeboom et al., 2018; Kuma et al., 2020).272

Figure 2 shows the differences between DARDAR and 2BCL5 cloud occurrence rates273

as a function of latitude and altitude. As 2BCL5 and the DARDAR datasets are gen-274

erated from the same satellite data, any differences between these two datasets is a re-275

sult of the dataset processing. Figure 2a shows that overall 2BCL5 detects more cloud276

than DARDAR, except below 1 km where DARDAR identifies greater cloud occurrences.277

These differences are greatest near 65 ◦S, over the Southern Ocean and Antarctic region.278

When the total cloud occurrence is partitioned into the ice, mixed, and liquid cloud phases279

further differences between the datasets become apparent. Figure 2c shows that 2BCL5280

always detects a larger occurrence of mixed phase cloud than the DARDAR dataset, with281

an absolute difference up to 25% over the Southern Ocean maximum at approximately282

65S. DARDAR classifies these clouds as either ice or liquid depending on temperature,283

as can be seen in Figure 2b and Figure 2d. Figure 2b also shows a clear regional sepa-284

ration of the 2BCL5 and DARDAR data. The difference between these regions match285

well with the position of the -38 ◦C isotherm, with DARDAR detecting more ice phase286

cloud in between the 0 and -38 ◦C isotherms than the 2BCL5 dataset. Figure 2a shows287

only small differences in 2BCL5 and DARDAR cloud occurrence between these isotherms,288

indicating the differences must be a result of the phase identification algorithms. Fig-289

ure 2d shows DARDAR detects more liquid phase clouds below the 0 ◦C isotherm, with290

2BCL5 classifying the cloud in this region as mixed phase cloud (Figure 2c). Some por-291

tion of the observations classified as mixed phase cloud by the 2BCL5 algorithm also lie292

–7–



manuscript submitted to JGR: Atmospheres

Figure 2. Differences in cloud occurrence between DARDAR and 2BCL5 during 2016, broken

into (a) the total amount of cloud occurrence and (b) ice, (c) mixed and (d) liquid phase com-

ponents. A positive value indicates DARDAR has a greater cloud occurrence than the 2BCL5

product. The dashed lines indicate isotherms of constant temperature generated using ECMWF-

AUX temperature information.

outside the 0 ◦C and -38 ◦C isotherms, which disagrees with the physical limitations on293

cloud phase set by the temperature constraints defined by the ECMWF-AUX model out-294

put.295

3.2 Cloud occurrence as a function of altitude296

The greatest differences in cloud occurrence between 2BCL5 and DARDAR lie in297

their representation of low–level clouds over the Southern Ocean. This provides a strong298

motivation for a more detailed investigation of this region which includes the usage of299

ground based radar/lidar data. The cloud occurrence rate over McMurdo Station as a300

function of altitude for each of the AWARE, 2BCL5 and DARDAR datasets is shown301

in Figure 3. These profiles are shown individually for January, October, November and302

December. Cloud profiles for each satellite overpass are averaged over the month and303

split into their constituent phases. The filled curves in Figure 3 represent the DARDAR304

(a-d) and 2BCL5 (e-h) cloud occurrences and the dashed curves represent the AWARE305

observations.306

The AWARE cloud profiles show limited amounts of liquid phase clouds. These clouds307

are confined to the bottom 4 km of the atmosphere except during December (Figure 3d)308

where liquid phase clouds occur up to an altitude of 4.5 km. Liquid phase clouds have309

a maximum occurrence rate of 5%, with no obvious vertical structure across the months310

examined. The AWARE ice cloud phase extends much higher than the liquid phase cloud,311

but shows reduced frequency above an altitude of 4 km. This reduction is balanced by312

an increase in cloud occurrence in the ’unknown’ phase category. Ice phase cloud peaks313

at an altitude below 1 km during January and October (Figure 3a-b), but peaks at 2–314

2.5 km during November and December (Figure 3c-d). The unknown phase clouds in the315
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Figure 3. Mean vertical profiles of cloud occurrence for different cloud phases derived from

observations over McMurdo Station during 2016. The dashed lines represent the AWARE cloud

occurrence and the filled curves represent coincident DARDAR (a - d) and 2BCL5 (e - h) cloud

occurrences. The number of passes are annotated at the top of the figure. The purple lines repre-

sents the mean (solid) and maximum (dashed) altitudes of the -38 ◦C isotherm across all passes,

derived from twice-daily radiosonde observations.

AWARE dataset dominate the cloud occurrence above altitudes of 4 km in all months,316

due to the extinction of the lidar signal preventing classification of the cloud phase. The317

altitudes at which the clouds are most commonly classified as unknown phase are the318

same altitudes at which ice phase clouds dominate the satellite datasets. This highlights319

that the unknown phase class predominantly represents ice (volume-wise) as also noted320

by (cf. Silber et al., 2018). Previous work detailed in (Jolly et al., 2018) also supports321

this interpretation.322

Figure 3a-d shows that the DARDAR cloud occurrence vertical profiles have liquid-323

containing clouds that extend up to an altitude of 6 km and a maximum occurrence of324

just over 5%. Mixed phase clouds are detected in the same altitude range as liquid phase325

clouds, but have a lower occurrence. The majority of DARDAR-detected clouds are clas-326

sified as ice phase and extend to an altitude of 10 km. The cloud occurrence maxima for327

ice phase cloud generally occurs between 2 and 3 km, but is observed at a lower altitude328

during October (Figure 3b). Below this maxima, DARDAR cloud occurrence falls rapidly329

to values less than 10% below 1 km. No liquid or mixed phase cloud is identified in the330

DARDAR dataset above the monthly maximum level of the -38 ◦C isotherm, indicat-331

ing DARDAR is conforming to liquid and mixed phase temperature constraints correctly.332

Figure 3e-h identify vertical profiles of cloud occurrence for the 2BCL5 data prod-333

uct. These shows liquid phase cloud occurrences of up to 10% between the surface and334

5 km, with the maximum occurrence between 0.3 and 1 km. Liquid phase cloud occur-335
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rence tends to drop off rapidly at altitudes above the maxima, although this drop is not336

as rapid in the summer months (December and January). The maximum occurrence of337

mixed phase cloud is consistent over all the examined months, falling between 2 and 3338

km. October (Figure 3f) has the lowest quantity of mixed phase clouds compared to other339

months and shows no mixed phase cloud occurrence above 4 km. This is likely a reflec-340

tion of the low altitude of the -38 ◦C isotherm in this month. Interestingly, the other months341

show mixed phase clouds up to 6.5km, meaning that clouds are observed above the max-342

imum level of the -38 ◦C temperature isotherm derived from radiosondes. In particular,343

in January mixed phase clouds are present up 9 km which is much higher than the 7 km344

maximum of the -38 ◦C isotherm (Figure 3e). This shows clear limitations in how the345

2BCL5 mixed phase cloud occurrence is determined with respect to temperature. The346

representation of cloud phase in the DARDAR dataset is better confined by the -38 ◦C347

isotherm than 2BCL5.348

Comparison of the monthly mean cloud occurrence profiles from the two satellite349

datasets in the vicinity of McMurdo station shows that the 2BCL5 dataset has system-350

atically higher cloud occurrences than the DARDAR dataset, except below 1 km where351

DARDAR has a higher occurrence of cloud than the 2BCL5 dataset. This matches with352

the global result displayed in Figure 2. Although these datasets differ, the relationship353

between cloud occurrence and altitude is similar in both datasets in general.354

Comparison of the cloud occurrence profiles show that at a higher altitude the AWARE355

dataset likely underestimates cloud compared to the satellites datasets and at lower al-356

titudes there is an underestimation of 2BCL5 and DARDAR cloud occurrences compared357

to AWARE. The satellite–based datasets are unable to detect a high number of clouds358

below 1 km, and conversely, the ground–based measurements are unable to detect as many359

clouds as 2BCL5 above 4km. As AWARE observations are often attenuated at higher360

altitudes, the good match with DARDAR observed might suggest that DARDAR is ac-361

tually underestimating cloud occurrence. Therefore, we postulate that differences between362

2BCL5 and DARDAR above 1 km are a result of an underestimation in DARDAR cloud363

occurrence. The discrepancy between the satellite– and ground–based peak in cloud oc-364

currence as a function of altitude indicates that neither can obtain a complete picture365

of the vertical profile of cloud occurrence in this region.366

Examination of the liquid phase cloud profiles shows a number of differences be-367

tween the three datasets. Liquid phase cloud profiles for AWARE match well with the368

DARDAR profiles during November (Figure 3c) and December (Figure 3d), but match369

more poorly in January and October (Figure 3a and b). It is likely that November and370

December were dominated by optically-thin clouds that both datasets capture, while Jan-371

uary and October were dominated by frequent frontal systems, that resulted in the large372

discrepancies between the satellite and ground–based measurements. Overall, neither the373

2BCL5 or DARDAR datasets consistently agree with the liquid phase cloud reported by374

the AWARE dataset. Given the known weaknesses in the satellite datasets at detecting375

low–level cloud, this is expected. Ice-only phase cloud profiles are difficult to compare,376

due to both a lack of a reliable mixed phase cloud classification in the AWARE dataset377

and discrepancies in the definition of ice-only clouds in the satellite datasets.378

3.3 2BCL5 and DARDAR cloud detections compared to AWARE379

Figure 3 shows that both 2BCL5 and DARDAR underestimate cloud occurrence380

at low altitudes compared to AWARE observations, but is limited as it does not provide381

a direct comparison of individual profiles. To compare the individual profiles between382

the datasets, the frequency of cloud detections between 2BCL5, DARDAR, and AWARE383

for each pass over McMurdo Station during 2016 is examined. Cloud detections for the384

space–borne (S) and ground–based (G) observations are separated into three categories:385
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1. Where both the space–borne and ground–based observations identify cloud de-386

tections (The intersection of both the space–borne and ground–based observations387

is identified, S ∩ G).388

2. Where only the ground–based observations has a cloud detection (The intersec-389

tion of the ground–based observations with the complement of the space–borne390

observations is identified, Sc ∩ G).391

3. Where only the space–borne observations has a cloud detection (The intersection392

of the space–borne observations with the complement of the ground–based obser-393

vations is identified, S ∩ Gc).394

Figure 4 shows a comparison of the detection frequency between 2BCL5 and AWARE395

(a, d, g) and DARDAR and AWARE (b, e, h) for the three previously defined categories.396

This allows us to assess if one or both the space–borne and ground–based instruments397

detect cloud at a particular altitude. The detection frequency is defined as the propor-398

tion of the time across all passes where the underlying conditions between the two sets399

are satisfied. Differences in the detection frequency for each category are displayed in400

Figure 4 (c, f, i) to highlight the discrepancies between 2BCL5 and DARDAR.401

Figure 4 a shows that above 1 km AWARE observations detect clouds that are not402

identified by the 2BCL5 dataset approximately 10% of the time. Below 1 km the AWARE403

dataset detects a greater amount of clouds than observed by 2BCL5, with a maximum404

difference of 53%. As such, 2BCL5 is unable to accurately detect low altitude clouds rel-405

ative to ground-based observations. Conversely, Figure 4d shows that the 2BCL5 has ob-406

servations undetected by AWARE 10% - 20% from near the surface to roughly 6.5 km.407

While cloud detections observed only by 2BCL5 at higher altitudes might be expected,408

it is surprising that 2BCL5 detects clouds that are not observed by AWARE at lower al-409

titudes.410

These results suggest either limitations in the AWARE dataset, differences between411

the satellite footprint and ground observations, or a potential issue with 2BCL5 falsely412

identifying clutter in the radar and/or lidar signals as cloud detections. Figure 4g shows413

that below 9 km the frequency of AWARE and 2BCL5 both detecting cloud increases414

until it peaks at 42% near 2 km after which a sharp decrease is observed.415

Figure 4b compares the DARDAR and AWARE datasets and shows that above 1416

km AWARE detects clouds unobserved in the DARDAR dataset approximately 10% of417

the time. Below 0.8 km the frequency where only AWARE observes a cloud detection418

rises to a peak of 44%. This likely indicates that both of the satellite datasets are un-419

able to accurately observe clouds below 1 km. Figure 4e shows that between 1 and 7 km420

DARDAR detects clouds unobserved by AWARE roughly 10% - 20% of the time. Above421

7 km the frequency reduces to below 10% as detections become sparse. Interestingly, be-422

low 1 km the frequency increases to 25% of the DARDAR overpasses identifying a cloud423

unobserved by AWARE. This either suggest instrumental limitations in the AWARE dataset424

or issues with DARDAR where false positives in the radar/lidar signals are detected. The425

latter hypothesis is more likely given the known weaknesses in the satellite datasets. Fig-426

ure 4h shows that similar to 2BCL5, the frequency of both DARDAR and AWARE ob-427

serving cloud increases at lower altitudes, peaking at 42% at an altitude of 2 km, followed428

by a decrease at lower altitudes.429

While similar overall, both 2BCL5 and DARDAR display some differences in how430

their cloud detections match with AWARE. Above 1 km, DARDAR and 2BCL5 show431

good agreement, while below 1 km there is a large difference between the two datasets.432

Figure 4c shows that below 1 km cases where only AWARE detects a cloud is 10% - 15%433

greater for 2BCL5 than DARDAR. This is mirrored by Figure 4i where below 1km, DAR-434

DAR observes a greater amount of cloud detections than 2BCL5, which are also observed435
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Figure 4. Detection frequency as a function of altitude for (a, d, g) 2BCL5 and AWARE and

(b, e, h) DARDAR and AWARE showing where only the ground–based (a, b), space–borne (d,

e) or both (g, h) datasets have cloud detections. Differences in the detection frequency for each

categorisation are also displayed (c, f, i) to highlight the anomaly between 2BCL5 and DARDAR.

by AWARE. This result suggests that DARDAR agrees better with AWARE than 2BCL5436

below 1 km, while the two have comparable detectability elsewhere. However, this could437

be a result of DARDAR having greater cloud occurrences than 2BCL5 below 1 km, rather438

than an improved match with AWARE. Figure 4h shows that below 1 km, DARDAR439
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has a greater amount of cloud detections where AWARE does not observe any cloud rel-440

ative to 2BCL5. This probably indicates that DARDAR is classifying noise in the radar/lidar441

signals close to the ground as clouds, resulting in a 10% - 15% larger false positive rate442

than 2BCL5.443

3.4 Ratios between satellite and ground–based detected cloud occur-444

rences445

The 180 satellite overpasses in which 2BCL5, DARDAR, and AWARE all detected446

clouds were examined and spatially and temporally colocated atmospheric profile from447

the different datasets were compared. Figure 5a and b show the ratio of 2BCL5 and DAR-448

DAR cloud occurrence to the AWARE cloud occurrence for each co-location, respectively.449

Figure 5 a and b also show the median value at each altitude for both 2BCL5/AWARE450

(red) and DARDAR/AWARE (black). The ratio between 2BCL5 and DARDAR is dis-451

played in Figure 5c with the median curve illustrated in blue.452

Figure 5a shows that the median ratio of cloud occurrence between 2BCL5 and AWARE453

match well between 1.5 and 4.5 km, with relative differences less than 10%. However,454

there is a large spread of values at this altitude range, which indicates that while it is455

common for the two datasets to detect similar cloud profile structures, this is not always456

the case. Below 1.5 km the median ratio shows that 2BCL5 underestimates cloud oc-457

currence compared to the AWARE dataset. This ratio decreases to a local minimum of458

0.24 at 0.8 km, corresponding to an underestimation in 2BCL5, identifying that 2BCL5459

only observes 24% of the cloud occurrence relative to the AWARE observations. Below460

0.8km the detectability of 2BCL5 improves slightly, with 2BCL5 observing 37% of AWARE461

cloud occurrence at 0.5 km, before steadily decreasing below 0.25 km. Above 4.5 km the462

two datasets also disagree, but with AWARE likely underestimating compared to 2BCL5.463

As the altitude increases the median ratio fluctuates up to an altitude of around 7.5 km464

and then steadily increases until AWARE observes between 37%–61% of cloud observed465

by 2BCL5. Above this altitude there is little consistency as the AWARE instruments have466

difficulties in detecting clouds at this altitude.467

Figure 5b shows a limited agreement between DARDAR and AWARE. Between468

3 and 5 km there is good agreement (within 10%). Extending this range to between 1.5469

and 6 km there is poorer agreement with differences of up to 20%. Similar to the 2BCL5470

dataset, DARDAR starts to consistently underestimate cloud occurrence compared to471

AWARE below 1.5 km. The median drops to 0.37 at 0.5 km. This likely corresponds to472

limitations in DARDAR, which only observes 37% of cloud occurrence detected by AWARE473

at that altitude. As for the comparison with 2BCL5, the ratio between DARDAR and474

AWARE cloud occurrence decreases towards the surface. Above 6 km the two datasets475

also disagree, with AWARE underestimating cloud occurrence compared to the DAR-476

DAR dataset. The median ratio fluctuates between 6 - 8 km, ranging from near even to477

altitudes where AWARE has 37% of the DARDAR occurrences. At higher altitudes the478

ratio changes rapidly as only a few profiles are available for the statistical analysis.479

Figure 5c shows that DARDAR consistently underestimates cloud occurrence com-480

pared to 2BCL5 above 1 km with only shows a few instances above 1 km where DAR-481

DAR detects more cloud. This is possibly a result of the lower cloud occurrences in DAR-482

DAR above 1 km (see Figure 2). Below 1 km there is clearly a wider range of ratios and483

we might expect that DARDAR would show greater cloud occurrence below 1 km com-484

pared to 2BCL5 based on (Figure 4i). However, it is clear from these ratios that DAR-485

DAR may actually have a greater frequency of false cloud detections than 2BCL5.486
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Figure 5. The ratio between satellite and ground–based cloud occurrence at different alti-

tudes, for (a) 2BCL5/AWARE (b) DARDAR/AWARE and (c) 2BCL5/DARDAR. Both (a) and

(b) display the medians for 2BCL5/AWARE (red) and DARDAR/AWARE (black) while the

median for 2BCL5/DARDAR is shown on (c) in blue.

3.5 Statistical evaluation of the 2BCL5, DARDAR and AWARE distri-487

butions of cloud occurrence488

The ratios of cloud occurrence rates clearly show distinct behaviours over differ-489

ent altitude ranges. In order to quantify these differences, statistical tests are applied490
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to the distributions of cloud occurrence in 1 km altitude bins. Each of these regions are491

examined using a t-test and a Kolmogorov–Smirnov (K-S) test. The t-test is used to an-492

alyze the differences in the means of cloud occurrence distributions between the 2BCL5493

and AWARE and the DARDAR and AWARE datasets. The K-S test is used to com-494

pare whether the cloud occurrence distributions of 2BCL5 and AWARE or DARDAR495

and AWARE are statistically distinct from one another. The t-test produces a t-statistic496

(t), where a higher t-value indicates greater differences between the means of the dis-497

tributions. The K-S test produces a K-S statistic (D), which evaluates the distance be-498

tween the two cumulative distribution functions with a higher D-value corresponding to499

a greater distance. Both tests also produce a p-value, indicating the significance of the500

test statistics. If the p-value is less than a predefined significance level (α), then the cor-501

responding test statistics are considered statistically significant and the null hypothe-502

sis can be rejected. The significance level is chosen to be 5% and the results of the sta-503

tistical tests are displayed in Figure 6. Simply put if a p-value is above the significance504

level it implies the satellites datasets agree with AWARE, while if it is below they are505

distinct from AWARE.506

Figure 6. Results of the (a, b) t-test and (c, d) K-S test comparing the means and distribu-

tions of (a, c) DARDAR and AWARE and (b, d) 2BCL5 and AWARE. Red bars indicate where

the p-value is less than the significance level, α = 0.05.

Analysing the low level cloud between 0 and 1 km, the t-test and K-S test show507

that both the means and distributions of 2BCL5 and DARDAR compared to AWARE508

are statistically distinct. The largest t-values over this region are -7.0 between 2BCL5509

and AWARE and -5.2 between DARDAR and AWARE. This indicates that the means510

of these cloud occurrences are very different in both cases. The D-values in this region511

are also large. Between 1 - 2 km, the K-S test indicates that the distributions of 2BCL5512

and DARDAR are statistically distinct compared to AWARE, while the t-test shows that513

the means cannot be considered different from AWARE. Between 2 - 5 km, both 2BCL5514
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and DARDAR match well with AWARE, as both tests show that the means and distri-515

butions are statistically distinct. However, above 5 km the t-test shows drastically dif-516

ferent results for the 2BCL5 data. The results of the t-test show that the means of the517

distributions for the 2BCL5 and AWARE datasets cannot be considered to be drawn from518

the same distribution, while the DARDAR and AWARE values continue to show that519

the means are statistically distinct. The K-S test continues to show show results above520

the significance threshold for both 2BCL5 and DARDAR, although the 2BCL5 D-values521

are clearly larger over this region. Given the relatively lower sensitivity of the AWARE522

data over this region, these results should be interpreted cautiously.523

Over the entire altitude range the DARDAR cloud occurrence distributions match524

better to the AWARE data than the 2BCL5 based on both t and D values. The largest525

differences are seen above 5km where the t-tests consistently produce different results.526

This may seem to contradict the results that are shown in Figure 5, however this is due527

to differences in how these results should be interpreted. The statistics show that the528

underlying cloud occurrence distributions of DARDAR agree better with AWARE than529

2BCL5 does. However, the ratio analysis shows us that when specific cases are exam-530

ined the 2BCL5 data performs better. This implies that DARDAR might outperform531

2BCL5 relative to AWARE in the statistical aggregate, but when looking at specific times532

and locations 2BCL5 generally matches better.533

3.6 Cloud occurrence as a function of temperature534

To further compare the cloud phases in the 2BCL5, DARDAR, and AWARE datasets,535

cloud occurrence was derived as a function of temperature. Temperature information was536

taken from twice-daily measurements taken from radiosondes launched at McMurdo Sta-537

tion, as well as the ECMWF-AUX temperature data. Figure 7 shows the normalised oc-538

currence of cloud phase at each temperature for the three datasets examined, using both539

the ground–based and reanalysis temperature information.540

Figure 7a shows 2BCL5 cloud occurrence identified relative to radiosonde temper-541

ature data. At temperatures above -12 ◦C, supercooled water dominates, but its occur-542

rence quickly falls off as the proportions of mixed and ice phase cloud increases at lower543

temperatures. Ice phase clouds dominate occurrence at temperatures lower than -35 ◦C.544

However, mixed phase clouds are identified at temperatures down to -60 ◦C, which is clearly545

unphysical. This pattern matches well with Figure 7b, which uses the ECMWF-AUX546

measurements instead of the radiosondes. Thus, the unphysical classification can not be547

attributed to differences between the ECMWF-AUX data and the corresponding AWARE548

radiosonde measurements. Figures 7c and d display the DARDAR temperature based549

cloud occurrence. The DARDAR results identify that apart from a large presence of liq-550

uid phase clouds above -10 ◦C, ice phase clouds dominate. However, small amounts of551

mixed and liquid phase cloud are present down to temperatures of -43 ◦C, which again552

is unphysical. Once again, the ECMWF-AUX temperature output shows reasonable agree-553

ment with the ground–based temperature.554

Figure 7e shows the AWARE cloud occurrence for different phases using the AWARE555

radiosonde measurements as the temperature reference. Most of the AWARE cloud de-556

tections are associated with the ’unknown’ phase, highlighting a clear limitation of the557

AWARE data. Liquid phase clouds are detected in relatively small fractions down to a558

temperature of approximately -35 ◦C. Ice phase cloud occurrence (detected with the HSRL)559

is more common than liquid and unknown phases at the higher temperatures but falls560

off significantly at lower temperatures, because of increasingly large amounts of unknown561

phase cloud detections. A secondary peak of ice cloud at -60 ◦C which is partially as-562

sociated with polar stratospheric cloud detections in tropospheric cloud-free periods. This563

matches observations in Figure 3 where the ability to classify phase falls off as altitude564

increases (and conversely the temperature decreases), which is clearly due to the atten-565
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Figure 7. Normalised cloud occurrences from Figure 3 as a function of temperature for (a -

b) 2BCL5 (c - d) DARDAR and (e - f) AWARE. 2BCL5 and DARDAR cloud occurrences are

split into ice, mixed and liquid phases, and AWARE cloud occurrence into the ice, liquid and

’unknown’ phase classes (see text for details). White space indicates where cloud is undetected

and the dashed line indicates the edge of the homogeneous freezing regime at -38 ◦C.

uation of the HSRL signal by low-level cloud. Figure 7f again shows a good match be-566

tween the ECMWF-AUX and AWARE radiosonde temperature information, although567

the peak in the ice phase cloud at -60 ◦C is weaker.568

Cloud phase data from AWARE matches well with the boundary of the homoge-569

neous freezing regime at -38 ◦C. There is some uncertainty in this result due to the ma-570

jority of the clouds here being unclassified. The overall lack of liquid phase detections571

in AWARE does suggest that some of the unknown phase detections are associated with572

supercooled water. In both 2BCL5 and DARDAR, cloud measurements are found out-573

side the physical limits defined by the homogeneous freezing threshold. For clouds clas-574

sified as mixed phase by 2BCL5, 13.3% occur at temperatures below the -38 ◦C isotherm575

in the AWARE radiosonde measurements, and 13.8% for the ECMWF-AUX data prod-576

uct. For the DARDAR dataset 1.1% of cloud classified as liquid phase and 5.7% of clouds577

classified as mixed phase occur below the -38 ◦C isotherm for the AWARE radiosonde578

measurements. When using ECMWF-AUX data as a reference 1.3% of clouds classified579

as liquid phase and 6.6% of clouds classified as mixed phase occur below the -38 ◦C isotherm.580
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This coincident temperature analysis shows that DARDAR also incorrectly classifies mixed581

phase cloud within the homogeneous freezing regime, albeit to a smaller extent than 2BCL5.582

4 Discussion583

Figure 3 shows that cloud occurrence for all phases have maximum values between584

1.5 and 3 km for both 2BCL5 and DARDAR. Below this level cloud occurrence falls off585

rapidly with low cloud occurrence below 1 km for 2BCL5 and 0.5 km for DARDAR. AWARE586

ground-based observations display a maximum in cloud occurrence at a slightly lower587

altitude (between 1 and 2.5 km), but also show larger cloud occurrences at lower levels.588

Above the maxima, AWARE cloud occurrence tends to fall off faster than the 2BCL5/DARDAR589

data. As the lidar signal used within the AWARE dataset is often attenuated above 4590

km, detection of high level clouds is likely underestimated. While the KAZR can still591

detect many of these clouds, it struggles to detect high level cirrus with small optical depths592

(Sassen & Khvorostyanov, 1998). Therefore neither 2BCL5, DARDAR or AWARE ap-593

pears to be able to observe the complete vertical structure of clouds. Thus, to obtain the594

full picture, a combination of ground–based and space–borne measurements are needed.595

However, merging these datasets is not straight forward because of the large disparities596

at nearly all altitudes. Comparisons of cloud occurrences in Figure 3 can be compared597

with previous work investigating cloud phase using four years of 2BCL5 data over the598

Ross Sea and Ross Ice Shelf detailed in Jolly et al. (2018). The results of their study show599

reasonable agreement with the results of the 2016 2BCL5 data obtained in this study.600

This suggests that the 2016 2BCL5 data is representative of the long-term cloud pat-601

terns observed in this region.602

The comparisons between the vertical profiles of cloud occurrence at AWARE, 2BCL5,603

and DARDAR establish three distinct regions; a region where the satellite likely under-604

estimates cloud close to the ground, a region where the ground–based instruments likely605

underestimate at higher altitudes, and a region of approximate agreement in between.606

The statistical analysis in Figure 6 shows both 2BCL5 and DARDAR are substantially607

different from AWARE at low altitudes. It might be expected that DARDAR cloud oc-608

currence would match better with the AWARE dataset than the 2BCL5 because DAR-609

DAR observes higher cloud occurrences below 1 km. However, this is not the case, as610

the altitude at which the satellite datasets begin to deviate from AWARE is essentially611

the same (see Figure 5). Thus, we conclude that even though DARDAR observes more612

clouds below 1 km than 2BCL5, it does not appear to be detecting low–level clouds more613

reliably than the 2BCL5 dataset. Instead, DARDAR appears to be detecting false pos-614

itives in the lidar/radar signals by incorrectly interpreting noise close to the ground as615

clouds.616

These results are generally consistent with conclusions from previous studies (e.g.,617

Protat et al., 2014; Blanchard et al., 2014; Y. Liu et al., 2017; Alexander & Protat., 2018),618

which show underestimations of satellite–based cloud observations compared to ground–619

based observation. For example, Alexander and Protat. (2018) found underestimation620

of DARDAR cloud observations by a factor of three between 0.2 - 1 km compared with621

a ground–based lidar. However, their study only included low level optically-thin sin-622

gle cloud layers where both the ground based lidar and DARDAR masks could detect623

the cloud top and cloud base (lidar signal transmitted through cloud top). Y. Liu et al.624

(2017) also found that space–borne observations, such as the 2B-GEOPROF-lidar dataset625

(Mace et al., 2009), begin to drop off significantly below 1 km similar to this study. In626

particular, they note that below 0.5 km satellite–based observations detect 25–40% fewer627

clouds than observed by a ground–based lidar. One study by Mioche et al. (2015) found628

that over the Svalbard region in the Arctic satellite observations overestimates cloud oc-629

currence below 2 km compared to surface based micropulse lidar observations. However,630

the authors associated this overestimation with the short duration of their dataset. Pre-631

vious work (e.g., Bodas-Salcedo et al., 2012; Schuddeboom et al., 2018; Kuma et al., 2020)632
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has shown climate models underestimate low–level cloud compared to satellite datasets.633

Given that the satellite measurements in this paper are shown to underestimate low–level634

cloud occurrence compared to AWARE observations, the magnitude of these model er-635

rors could be larger than previously identified.636

For the mid-altitude region, the median ratio shows that 2BCL5 and AWARE are637

in good agreement between 1.5 and 4.5 km and for the most part shows an equal amount638

of cloud (within 10%). DARDAR shows a good level of agreement with AWARE between639

1.5 and 6 km, extending further than 2BCL5, but the match is weaker (within 20%). This640

match between DARDAR and AWARE extending to a greater altitude is likely because641

both AWARE and DARDAR observe fewer clouds than 2BCL5 at these heights. The642

results of the statistical tests (Figure 6) show that both DARDAR and AWARE and 2BCL5643

and AWARE match well between 2 and 5 km, suggesting that the underlying cloud oc-644

currence distributions are well captured in this region.645

At altitudes greater than 6 km, the median ratio of cloud occurrence shows that646

both DARDAR and 2BCL5 detect more clouds than AWARE, but this is probably due647

to AWARE being unable to detect clouds rather than the satellite signals being dom-648

inated by false positives. The ratio between the satellite and ground–based measurements649

(Figure 5a/b) is variable at high altitudes and close to the ground because not all passes650

can be compared at all heights. Figure 4c and Figure 4f show that above 7 km the com-651

parisons between the two satellite datasets can only be made 10% of the time as the de-652

tection frequency decreases. This suggests that the underestimation of AWARE at high653

altitudes relative to 2BCL5 (Figure 5a) and DARDAR (Figure 5b) is potentially worse654

than stated. Below 1 km a similar pattern is observed where the amount of detected cloud-655

containing profiles that can be compared drops as the satellites are unable to observe656

clouds detected by AWARE. The t-tests in Figure 6 show divergent results for 2BCL5657

and DARDAR over this region, however due to the limitations with the AWARE dataset658

these should be interpreted with caution.659

Figure 7 shows that DARDAR and 2BCL5 observe mixed and liquid phase cloud660

regions outside theoretical temperature thresholds using both the AWARE radiosonde661

or ECMWF-AUX temperature data. However, the 2BCL5 data product classifies cloud662

phase incorrectly more often than the DARDAR product despite the fact that both 2BCL5663

and DARDAR use the same ECMWF-AUX temperature data. Differences in how 2BCL5/DARDAR664

assign phase to their cloud detections must therefore explain why their phase determi-665

nations are different. For 2BCL5, each cloud layer with a distinct top and bottom is as-666

signed a single phase. DARDAR classifies each pixel in a cloud layer separately, so a cloud667

layer identified by 2BCL5 might have multiple classifications given by DARDAR. This668

could allow 2BCL5 to identify mixed phase above the -38 ◦C isotherm altitude. In ad-669

dition, mixed phase clouds are defined by the 2BCL5 product as a combination of ice670

and supercooled water existing in the cloud layer, resulting in the whole cloud being clas-671

sified as a mixed phase cloud. If a mixed phase cloud exists at the cloud base where tem-672

peratures are between 0 ◦C and -38 ◦C, 2BCL5 would also assign a mixed phase to the673

cloud top where temperatures are above -38 ◦C and mixed phase cloud will not be present.674

Due to a large proportion of the AWARE dataset clouds being classified as an “un-675

known” phase, it becomes difficult to draw comparisons between cloud phases for the676

satellite– and the ground–based datasets and to evaluate the reliability of liquid or mixed-677

phase detections by the satellite retrievals within the heterogeneous freezing regime. 2BCL5678

uses a process primarily driven by the temperature of the cloud top and cloud base, but679

also uses a temperature dependent radar reflectivity (Ze) threshold and an integrated680

attenuated backscattering coefficient (see Zhang et al., 2010). This splits the cloud into681

liquid, ice and mixed phase cloud containing a combination of ice and liquid. Contrast-682

ingly, DARDAR uses the strength of the lidar backscatter signal to locate any attenu-683

ating high backscatter layers. DARDAR then attempts to classify these layers based on684

temperature, horizontal extent of layer, thickness, reflectivity, and altitude. The algo-685
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rithms used on the AWARE dataset use particulate backscatter cross-section and lin-686

ear depolarisation ratio to split the lidar observations of cloud into liquid and ice cloud.687

Due to attenuation of their lidar instrument, much of their cloud observations can not688

be reliably classified and are instead classified as unknown. In order to draw better com-689

parisons between the phases, consistent processing algorithms with high fidelity, which690

could simultaneously consider satellite and ground-based measurement limitations, would691

be needed to be applied to the raw radar/lidar measurements rather than trying to match692

separately processed products together. Another possibility is to use instrument simu-693

lators to help to interpret the different data relative to model data (Kuma et al., 2020b).694

5 Conclusions695

In this study vertical profiles of cloud occurrence and cloud phase for the 2BCL5696

and DARDAR satellite data products are compared to ground–based AWARE observa-697

tions taken during 2016. An assessment of the global distributions of 2BCL5 and DAR-698

DAR cloud occurrence found key differences between the two datasets quantification of699

low-level clouds and cloud phase. These differences are greatest for low–level clouds over700

high southern latitudes, providing a strong motivation for a detailed investigation of ver-701

tical cloud occurrence using ground–based measurements from the AWARE campaign702

over McMurdo Station in Antarctica.703

Satellite observations for both 2BCL5 and AWARE show an underestimation of cloud704

occurrence below 1.5 km compared to ground–based AWARE observations, with both705

2BCL5 and DARDAR observing 37% of clouds detected at AWARE at an altitude of706

0.5 km. Conversely, at altitudes greater than 6 km the AWARE dataset shows an un-707

derestimation of cloud occurrence compared to the 2BCL5 and DARDAR datasets, likely708

attributed to the attenuation of the HSRL signal by low-level clouds and lower KAZR709

detectability at long ranges, where the radar volumes are significantly larger. In between710

these altitude ranges, there was a good agreement between AWARE and the satellite–711

based datasets.712

Below 1 km DARDAR observes a greater cloud occurrence than 2BCL5, and rel-713

atively lower occurrence at higher altitudes. Even though DARDAR observes more cloud714

below 1 km than 2BCL5, when compared to coincident and contemporaneous AWARE715

detections, it is not more reliable than the 2BCL5 dataset; DARDAR detects clouds that716

are not detected in the AWARE dataset between 20–25% of the time below 1 km com-717

pared to 10–15% for 2BCL5. This indicates that the higher DARDAR cloud occurrence718

below 1 km is likely associated with false detections where DARDAR is likely incorrectly719

classifying ground clutter or from the radar signal, or attenuated lidar retrievals, as cloud.720

2BCL5 and DARDAR estimates of cloud phase were also found to deviate from phys-721

ical constraints set by the temperatures at which a combination of ice and supercooled722

water should exist. 2BCL5 shows 13.3% (13.8%) of mixed phase clouds occurring at tem-723

peratures within the homogeneous freezing regime below -38 ◦C, with mixed-phase ob-724

servations down to a temperature of -60 ◦C (-58 ◦C) in the case where radiosonde (ECMWF-725

AUX) temperature data are used. DARDAR shows 5.7% (6.6%) of mixed phase and 1.1%726

(1.3%) of liquid phase clouds within the homogeneous freezing regime down to a tem-727

perature of -43 ◦C for radiosonde (ECMWF-AUX) data.728

Overall, the results presented here emphasize the need for a combination of ground–729

based and space–borne measurements to fully characterise cloud structure. This may be730

particularly important over the Southern Ocean and Antarctica given the large dispar-731

ities observed in low-level cloud in this region.732
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Protat, A., Delanoë, J., O’Connor, E., & L’Ecuyer, T. (2010). The evaluation879

of cloudsat and calipso ice microphysical products using ground-based cloud880

radar and lidar observations. Journal of Atmospheric and Oceanic Technology ,881

27 (5), 793-810. doi: 10.1175/2009jtecha1397.1882

Protat, A., Young, S. A., Mcfarlane, S. A., L’Ecuyer, T., Mace, G. G., Comstock,883
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