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Abstract

We propose an approach to upscale solute transport in spatially periodic porous media. Our methodology relies on pore scale

information to predict large scale transport features, including explicit reconstruction of the solute plume, breakthrough curves

at fixed distances, and spatial spreading transverse to the main flow direction. The proposed approach is grounded on the

recently proposed trajectory-based Spatial Markov model (tSMM), which upscales transport based on information collected

from advective-diffusive particle trajectories across one periodic element. In previous works, this model has been applied solely

to one-dimensional transport in a single periodic pore geometry. In this work we extend the tSMM to the prediction of multi-

dimensional solute plumes. This is obtained by analyzing the joint space-time probability distribution associated with discrete

particles, as yielded by the tSMM. By comparing numerical results from fully resolved simulations and predictions obtained with

the tSMM over a wide range of Péclet numbers, we demonstrate that the proposed approach is suitable for modeling transport

of conservative and linearly decaying solute species in a realistic pore space and showcase the applicability of the model to

predict steady state solute plumes. Additionally, we evaluate the model performance as a function of numerical parameters

employed in the tSMM parameterization.
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Abstract9

We propose an approach to upscale solute transport in spatially periodic

porous media. Our methodology relies on pore scale information to predict

large scale transport features, including explicit reconstruction of the solute

plume, breakthrough curves at fixed distances, and spatial spreading trans-

verse to the main flow direction. The proposed approach is grounded on the

recently proposed trajectory-based Spatial Markov model (tSMM), which up-

scales transport based on information collected from advective-diffusive par-

ticle trajectories across one periodic element. In previous works, this model

has been applied solely to one-dimensional transport in a single periodic

pore geometry. In this work we extend the tSMM to the prediction of multi-

dimensional solute plumes. This is obtained by analyzing the joint space-time

probability distribution associated with discrete particles, as yielded by the

tSMM. By comparing numerical results from fully resolved simulations and

predictions obtained with the tSMM over a wide range of Péclet numbers, we

demonstrate that the proposed approach is suitable for modeling transport
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of conservative and linearly decaying solute species in a realistic pore space

and showcase the applicability of the model to predict steady state solute

plumes. Additionally, we evaluate the model performance as a function of

numerical parameters employed in the tSMM parameterization.
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Transverse dispersion11

1. Introduction12

Solute transport in porous media is a fundamental problem across many13

disciplines, including subsurface geological systems and the performance op-14

timization of engineered materials such as filtration membranes. A key chal-15

lenge in this context is to obtain accurate predictions at spatial scales much16

larger than the ones associated with individual pores without having to re-17

solve the physical and chemical processes taking place within complex pore18

spaces. This is achieved by upscaled formulations that embed pore scale19

features into effective parameters and therefore can be employed to predict20

large scale behaviors. To this end, a classical approach is resorting to a21

continuum-scale advection-dispersion equation (ADE) [1, 2]. In such a for-22

mulation mechanical dispersion induced by pore scale velocity gradients is23

modelled through a Fickian-like dispersion term, parameterized via a fourth-24

rank dispersivity tensor. The definition of the dispersivity tensor purely25

based on pore scale properties presents significant challenges. From a theo-26

retical perspective, the solution of three closure problems is required to fully27

parameterize solute transport based on pore scale information through vol-28

ume averaging [3]. These separate closures are necessary to isolate and char-29
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acterize the separate effects of diffusion and advection on transport. However,30

even such a detailed approach may not yield reliable predictions due to a lack31

of separation of scales, violating the assumptions required by the volume32

averaging method. In such a case, non-Fickian transport features emerge,33

particularly at relatively short times and distances [4, 5]. Formally, these34

effects can still be represented with Eulerian nonlocal (integro-differential)35

models. In principle these models can be derived by applying upscaling ap-36

proaches, such as volume averaging, that can relate pore scale geometry and37

fluid velocities with the emerging transport dynamics through a set of clo-38

sure differential equations [6]. However, it is often found that resorting to39

such approaches leads to formidable mathematical and numerical complexity40

[7, 8], which is associated with i) the numerical resolution of various closure41

problems and ii) the approximation of integro-differential equations to obtain42

the desired large scale outputs.43

A specific problem in the context of solute transport upscaling is posed44

by the modeling of solute plumes, which correspond to the explicit spatial45

reconstruction of the solute spatial spread at a given time, or at steady state46

(i.e., under steady state boundary conditions, such as continuous injection).47

For instance, the analysis of transverse spreading and mixing of steady state48

solute plumes has great practical relevance in bioremediation and reactive49

transport scenarios at field and laboratory scales [9, 10, 11]. In these ap-50

plications the target process is the spreading and mixing of a solute in the51

direction transverse to a steady flow field characterized by a prevalent direc-52

tion. Following classical ADE-based descriptions, transport in the transverse53

direction is typically modeled by introducing a dispersivity parameter. This54
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standard definition typically considers dispersion to be uniquely proportional55

to advective velocity [1]. This formulation was successfully employed, for ex-56

ample to interpret transport and mixing in microfluidic systems characterized57

by relatively simple geometries [12]. However, studies performed in the last58

decade have demonstrated the impact of molecular diffusion on transverse59

dispersion through experiments and numerical simulations [10, 13, 14, 15].60

Such results can be qualitatively linked with analytical and numerical stud-61

ies showing that the dispersion tensor becomes asymmetric in advection-62

dominated scenarios [16, 17]. These studies show that full parameterization63

of the dispersion tensor can become a troublesome task, particularly in media64

characterized by a complex and multi-scale pore structure. Additional levels65

of complexity are introduced when reactive processes are also considered on66

top of pore scale advective-diffusive transport.67

Over the last decade it has been recognized that pore-to-continuum up-68

scaling of solute transport can often be conveniently obtained by considering69

solute velocities (or associated travel times) over fixed spatial increments by70

means of a Markov chain. This led to the formulation of various flavours71

of so-called Spatial Markov models [e.g. 18, 19, 20, 21]. The SMM is based72

on the calculation of the travel time across a fixed distance and a one step73

correlation existing between successive travel times. By including correla-74

tion the SMM is able to employ information available on a limited portion75

of the system to predict transport across much larger distances. Notably76

such an approach is effective in the presence of advection-dominated scenar-77

ios that become challenging to upscale with classical Eulerian approaches.78

The advantages of employing a spatial Markov approach to obtain the solute79
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breakthrough curve (or first passage time) at a given longitudinal distance has80

been demonstrated in a number of previous works, relying on both numerical81

and laboratory scale experimental datasets [e.g. 18, 21, 22, 23]. Several re-82

cent works have discussed methodologies that employ Lagrangian SMM-like83

approaches to predict solute particles’ space-time locations at various scales84

of observations [24, 25]. Yet, to the best of our knowledge, this approach has85

not been applied to the explicit space-time reconstruction of solute plumes86

starting from pore scale properties. In this work we present a methodology to87

upscale transport of solute plumes in the longitudinal and transverse direc-88

tion via a SMM. We consider periodic media, which are routinely considered89

as model porous media in theoretical approaches and are employed in engi-90

neering systems across a wide range of applications [26, 27, 28, 29]. Our work91

starts from a recently proposed trajectory-based SMM (here labelled tSMM)92

to upscale transport, mixing and surface reactions across porous media made93

up of periodic elements [30, 31]. To date, the tSMM has been constrained to94

a highly idealized setting, a periodic wavy channel, which while it displays95

some characteristics of real porous media cannot represent their full com-96

plexity, such as transverse flow or complex pore size distributions. Building97

on this, we analyze longitudinal and transverse transport within a realis-98

tic two-dimensional porous domain. Briefly, the specific objectives of this99

contribution are to i) extend the tSMM to the case of a multi-dimensional100

unsteady solute transport and ii) yield an efficient and accurate representa-101

tion of transient and steady state solute plumes in porous media based on the102

multi-dimensional tSMM. This second goal entails a specific methodological103

challenge, as steady state plumes are typically computationally expensive to104
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simulate with Lagrangian particle-based approaches. Our objective is the105

development of an upscaled, parsimonious and computationally affordable106

particle-based model for this specific configuration.107

2. Methodology108

2.1. Pore scale setting109

We consider transport of a passive solute in a periodic two-dimensional110

porous medium. The medium is composed of a collection of periodic unit111

cells, whose geometry is represented in Figure 1. The unit cell is artificially112

created using a stochastic generation procedure as detailed in [21, 32, 33].113

The cell properties are reported in Table 1. We assume here to deal with

Porosity Lx [m] Ly [m] ∆ [m] `S [m]
0.631 4.096×10−3 4.096×10−3 2×10−6 1×10−4

Table 1: Geometrical characteristics of the unit cell

114

a semi-infinite periodic porous domain, i.e. x ∈ [0,∞) and y ∈ (−∞,+∞).115

Because the medium is composed by an infinite number of identical cells, for116

convenience we define117

x̂ = x− Lxfloor

(
x

Lx

)
, ŷ = y +

Ly
2
− Lyfloor

(
y

Ly
+

1

2

)
(1)

as a coordinate system referenced to the unit cell, x̂ ∈ [0, Lx] and ŷ ∈ [0, Ly],118

where Lx and Ly define the dimensions of the unit cell in the x- and y-119

directions, respectively. The cell is discretized into square pixels of side120

∆ = 2 × 10−6 m, which for our example results in a unit cell composed of121

2048× 2048 pixels. The solid and fluid phases are identified by an indicator122
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Figure 1: Geometry (left) and normalized velocity magnitude |u|/|u| (right) in the unit
cell.

field I, with I = 1 associated with pore space and I = 0 with solid pixels. The123

correlation length of the indicator field I is taken as a representative length124

scale for the pore space and is denoted as `S. Transport is described by the125

standard advection-diffusion equation with no flux boundary conditions at126

the solid-fluid interface127

∂C(x, t)

∂t
+ ∇ ·

[
u(x)C(x, t)

]
= ∇ ·

[
D∇C(x, t)

]
∀ x ∈ Γfluid, t > t0

D
∂C(x, t)

∂n
= 0 ∀ x ∈ Σsurface, t > t0 (2)

C(x, t0) = C0

where u = [u, v] is the fluid velocity, C is solute concentration, D is the128

diffusion coefficient, C0 is the initial concentration distribution. The ve-129

locity u is obtained by numerically solving the Navier-Stokes equations with130
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OpenFOAM R©, release v1712 [34] and diffusion is assumed to be known and131

constant. The velocity is computed assuming periodic boundary conditions132

on the cell boundaries and the no slip condition on the fluid-solid interface.133

We impose a uniform pressure gradient along the x-direction, labeling x, y134

as longitudinal and transverse directions, respectively. The Péclet number135

associated with transport is calculated as Pe = U`S/D, where U is the av-136

erage fluid velocity. In our simulation we set D = 10−9 m2/s and we adjust137

Pe by setting U to the desired value. Note that this is acceptable as our138

simulations are in a Stokes regime, where inertial effects are negligible with139

respect to viscous ones. Transport is solved numerically using a Lagrangian140

particle based random walk method, where the solute plume is discretized141

into a finite number of N particles. Each particle displaces according to142

xn+1
i = xni + uidt+ ξi

√
2Ddt

yn+1
i = yni + vidt+ ηi

√
2Ddt

i = 1, ..., N , (3)

where dt is a time step that is constant, ξi, ηi are independent identically143

distributed random numbers drawn from normal distributions with zero mean144

and unit variance. We define a reference time step dt∗ according to the145

following criterion |dmax| ≤ 0.5∆ where146

|dmax| = max (|u|) dt+ 2
√

2Ddt∗ (4)

is an estimate of the maximum displacement. No flux boundary conditions147

at the fluid-solid boundary are imposed as elastic reflections.148
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2.2. Spatial Markov Model149

We upscale transport using the framework of the trajectory-based spatial150

Markov model proposed in [30]. The methodology is based upon pore scale151

transport trajectories and their associated travel times. In the following, we152

first describe the pore scale trajectories simulations and then how these are153

used to parameterize the tSMM.154

2.2.1. Pore scale trajectories155

Parameterization of the model is grounded on the pore scale simulation of156

a set S = {s1, . . . , sNs} of Ns advective-diffusive trajectories, for a specific Pe.157

These particle trajectories are simulated by solving Eq. (3) across a single158

cell in the longitudinal direction, i.e., between the inlet location x = 0 and159

the outlet location x = Lx. Figure 2 represents a sample of 100 trajectories160

across the considered unit cell selected from a flux weighted initial condition161

and setting initial location of particles distributed along the entire unit cell162

cross section.163

For each trajectory si we record the travel time τ needed to travel across a164

distance Lx in the longitudinal direction and the y positions (yin, yout) of the165

particle at the inlet and outlet as the particle enters and exits the domain.166

Particles are injected at locations x = 0, yin ∈ [−Ly/2, Ly/2]. Particles may167

cross into adjacent cells along the y direction, but due to the periodicity168

of the cell geometry each location yout can be mapped to a corresponding169

ŷout using Eq. (1). Therefore, the coordinate yout(si) can be determined as170

yout(si) = ŷout(si) + ∆C(si)Ly where ∆C(si) is an integer that indicates the171

net number of cell transitions in the transverse direction observed for a given172

si trajectory path. We can then compute ∆y(si) = yout(si) − yin(si). The173
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trajectories are subdivided into NB equiprobable bins that are assigned by174

considering the starting locations yin(si) in ascending order. This implicitly175

defines a discretization of the ŷ axis in terms of the binning of the trajectories.176

To exemplify this binning, the trajectories in Figure 2 are subdivided into 10177

bins, indicated by different colours. The trajectories si consider all simulated178

pathways between the locations x = 0, yin ∈ [−L/2, Ly/2] and x = Lx, yout ∈179

(−∞,+∞). We observe that some trajectories may even travel backwards180

along x close to the inlet section before traveling downstream, as indicated181

in the highlighted parts in Figure 2. These effects are due to the combined182

action of advection and diffusion and are present for both the considered Pe.183

The comparison between the two considered cases allows for identification184

of the effects of diffusion on the pore scale trajectory paths. In particular,185

for Pe = 100 particles explore a wider portion of the pore space than for186

Pe = 1000.187

2.2.2. The tSMM parameterization188

The information collected in the parameterization step is then used to189

build the following trajectory-based Spatial Markov model (tSMM)190

xk+1
i = (k + 1)Lx

yk+1
i = yki + ∆y

[
ski |ŷout(sk−1

i )
]

tk+1
i = tki + τ

[
ski |ŷout(sk−1

i )
]

(5)

where both yk+1
i and τ k+1

i are determined through a Markov chain, which is191

related to the transverse location assigned to the particle in the periodic cell192
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Figure 2: Sample of 100 trajectories employed for model parameterization for (a), (b)
Pe = 100 and (c), (d) Pe = 1000, dashed red lines indicate the unit cell boundaries,
the trajectories are binned in different colours as a function of the yin location. The two
middle panels represent a zoom on the region highlighted in red for the two cases.

during successive steps k, leveraging the information given by the trajectories193

in si. The innovative feature of the model in Eq. (5) with respect to previous194

implementations [30, 21] is that it allows for predictions of transverse spread-195

ing over successive Markov steps. This is achieved by considering y as a con-196

tinuous variable, i.e., the Markov chain has a longitudinal fixed spatial step197

Lx while transport along y is considered through the ∆y(si) obtained from198

the trajectories si recorded during the parameterization stage. In essence, at199

the beginning of the simulation (step k = 0) each particle i is assigned to an200

initial location y0i corresponding to a selected initial or boundary condition201

(e.g., flux weighted or uniform distribution on the inlet boundary). From202

this information we select a trajectory s1i , randomly sampling from those203

whose yin(si) lies in the same bin interval as y0i . By selecting the trajectory204
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we also obtain a given travel time τ(s1i ) and transverse displacement ∆y(s1i ),205

from which we evaluate ŷout(s
1
i ). The latter can be then used to select a new206

trajectory s2i for the next transition and the procedure can then be repeated207

for any arbitrary step number k > 0.208

2.3. Model outputs209

To analyze the outputs of our tSMM model, our analysis relies on the210

following dimensionless space-time coordinates211

x̃ =
xk

L
, ỹ =

yc
L
, t̃ =

tU

L
(6)

where L = Lx = Ly, x
k corresponds to the longitudinal spatial coordinate212

of kth Markov step (see Eq. (5)) and yc(x) = y(x) − y(x), i.e., is the trans-213

verse location centered with respect to the average transverse position y(x)214

observed at a given x. The value of y(x) is not constant with x because the215

average transverse velocity component is not exactly equal to zero. While216

this component is only approximately 1% of the longitudinal mean velocity217

U , it still induces plume migration along y after a number of cells.218

The key output of the tSMM is the joint probability distribution P (x̃, ỹ, t̃).219

In this distribution, the variable x̃ can only assume discrete values, while the220

ỹ, t̃ are continuous.221

Physically meaningful information related to the plume can then be ex-222

tracted from this joint probability by considering conditional and marginal223

distributions. In our analysis we will consider the conditional distributions224

P (t̃, ỹ|x̃) for a given dimensionless downstream distance x̃, or P (x̃, ỹ|t̃) for225

a given dimensionless time, t̃. Examples of these conditional distributions226
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P (t̃, ỹ|x̃) for x̃ = 5, 10, 25 and 50 and P (x̃, ỹ|t̃) for t̃ = 20, obtained from the227

tSMM are shown in Figure 3a and b for Pe = 100 and 1000, respectively.228

In addition, we consider the marginal probability distributions P (x̃, ỹ),229

and P (t̃|x̃), P (ỹ|x̃) conditional to a given dimensionless downstream distance.230

These distributions have a clear physical meaning: the marginal distribution231

P (x̃, ỹ) represents the steady state distribution of the particle plume, while232

P (t̃|x̃) corresponds to the breakthrough curve, i.e., the first passage time233

probability distribution at distance x̃. Finally, the probability distribution234

P (ỹ|x̃) provides the probability distribution associated with transverse po-235

sition at a control plane and is related solely to transport in the transverse236

direction.237

To produce benchmark data against which to test the tSMM we run238

a 50 cell high resolution random walk direct numerical simulation (DNS)239

using transport Eq. (3). The accuracy of the tSMM defined in section 2.2240

will be tested by comparing the above mentioned probability distributions241

with their analogs obtained from the DNS. For each of the above defined242

distributions we provide a quantitative evaluation of the mismatch between243

DNS and tSMM using the Hellinger distance [35]244

HD[F1, F2] =
1√
2

√√√√ N∑
i=1

(√
f1,i −

√
f2,i

)2
(7)

where F1 is any of the above-mentioned marginal or conditional distribu-245

tions predicted by DNS and F2 corresponds to its counterpart obtained with246

the tSMM. These distributions are approximated through N discrete bins247

and f1,i, f2,i are the values of the distributions in the ith bin.248
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Figure 3: Conditional joint distributions P (t̃, ỹ|x̃) for x̃ = 5, 10, 25, 50 and P (x̃, ỹ|t̃) for
t̃ = 20 predicted by the tSMM considering (a) Pe = 100 and (b) Pe = 1000

The HD metric quantifies the distance between two probability measures249

and it is a proper distance metric in the mathematical sense, by satisfying250

the properties of non-negativity, symmetry, and triangle inequality. HD is251

also bounded between 0 and 1, where 0 means that the two distributions are252

indiscernible and 1 that they are maximally distant.253

3. Results254

First we show results obtained considering parameterization of the tSMM255

with Ns = 106, NB = 100, dt∗ = 10−5 s and 10−6 s for Pe = 100 and256

Pe = 1000, respectively. The time step dt∗ indicates the values of dt eval-257

uated according to Eq. (4). Then, in section 3.3 we analyze the impact of258

parameters NB and dt on the accuracy of the tSMM. For all cases, including259

the DNS reference simulation and tSMM, we impose a flux weighted bound-260

ary conditions. Note that In the reference DNS simulation the dt parameter261

is kept constant and equal to dt∗.262
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3.1. Model performance as a function of Pe263

The tSMM is able to replicate the shape of the reference conditional dis-264

tribution P (t̃, ỹ|x̃) obtained from the DNS for both investigated Péclet num-265

bers. Figure 4a shows the joint distribution P (t̃, ỹ|x̃) for x̃ = 25 and Pe = 100266

from the high resolution direct numerical simulations and corresponding re-267

sults obtained with the tSMM (Figure 4b). The agreement between the two268

solutions is significant for all transverse coordinates, ỹ, and dimensionless269

travel times, t̃. Analogous results are obtained for Pe = 1000 (see Figure 4c270

and d) and for all other investigated Markov steps (not shown). For both Pe271

values the maximum value of the probability distributions is found at ỹ ≈ 0.272

Note that ỹ locations associated with zero probability across the whole time273

window correspond to the occurrence of solid along the considered transverse274

section.275

To quantify the accuracy of the tSMM outputs with respect to the ref-276

erence DNS, Figure 5 shows the metric HD[PDNS(ỹ, t̃|x̃);PtSMM(ỹ, t̃|x̃)] de-277

fined in Eq. (7) for both investigated Pe numbers and all Markov steps. We278

note that the distance between the DNS and the tSMM distributions slightly279

increases with x̃ and is generally larger for Pe = 100 than for Pe = 1000.280

This result is likely due to the fact that the effect of noise in low probability281

values increases with the strength of diffusion.282

Figure 6 depicts conditional joint distribution P (x̃, ỹ|t̃) for t̃ = 20, corre-283

sponding to the time dependent solute plume. DNS and tSMM predictions284

are shown for Pe = 100 (see Figure 6a, b) and for Pe = 1000 (see Figure285

6c, d). Again, the tSMM is able to capture all essential features displayed286

by the fully resolved simulations. Note that tSMM allows for predictions287
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Figure 4: Conditional joint distributions P (t̃, ỹ|x̃) for x̃ = 25 and Pe = 100 obtained with
(a) DNS, (b) tSMM and for Pe = 1000 predicted by (c) DNS and (d) tSMM.
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Figure 5: HD[PDNS(ỹ, t̃|x̃);PtSMM (ỹ, t̃|x̃)] as a function of the downstream location x̃ for
Pe = 100 (red) and 1000 (blue).

of the evolution of the plume in the longitudinal and transverse directions288

employing a significantly smaller computational effort than the DNS. As an289

example, the computational time for running the tSMM is approximately 1%290

of that one needed for the DNS results when considering 50 Markov steps.291

Note that this percentage decreases for simulation across higher numbers of292

unit cells (i.e., the computational gain increases with the dimension of the293

system of interest).294

The marginal distributions P (x̃, ỹ) are depicted in Figure 7a and b for295

Pe = 100 and 1000 respectively. As mentioned above, these distributions296

identify the steady-state plume for a nonreactive solute. These distributions297

are here obtained at no additional computational cost with respect to the298

transient case, which for a DNS would not be the case and significant addi-299

tional cost would be required.300

Figure 8 displays breakthrough curves P (t̃|x̃) considering travel distances301

x̃ = 5, 10, 25 and 50 from the injection location and provides a quantitative302

comparison between the reference DNS and the tSMM results. We note that303
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Figure 6: Conditional distributions P (x̃, ỹ|t̃) for t̃ = 20 and Pe = 100 obtained with (a)
DNS (b) tSMM and for Pe = 1000 predicted by (c) DNS and (d) tSMM
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Figure 7: Marginal distribution P (x̃, ỹ) for (a) Pe = 100 and (b) Pe = 1000.

the tSMM can reproduce the breakthrough curves across a wide range of304

distances and both Péclet numbers. This result shows that the trajectory-305

based upscaled model accurately predicts arrival times in a porous medium306

made of periodic unit cells displaying a disordered geometry and is in line307

with those obtained within simpler geometrical settings [30].308

The comparison between tSMM and DNS marginal distribution of trans-309

verse locations P (ỹ|x̃) is shown in Figure 9 for two selected distances from310

the injection (x̃ = 5 and x̃ = 25) and for both investigated Pe numbers.311

To compare the spreading of the particle plume over all Markov steps we312

consider the standard deviation of distribution P (ỹ|x̃) as a function of x̃ (see313

Figure 10).314

Results obtained through the tSMM are in close agreement with those315

yielded by the DNS. We observe that the change in Pe has marked effects on316

transverse spreading of the solute, as has been previously observed in labora-317

tory and numerical studies [10, 13]. In particular, the standard deviation σy318
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Figure 8: Breakthrough curves P (t̃|x̃) obtained at control planes located at distances
x̃ = 5, 10, 25, 50 unit cells for (a) Pe = 100 and (b) Pe = 1000. Symbols and lines
represent the DNS and tSMM results, respectively.

Figure 9: Comparison between the marginal distributions P (ỹ|x̃) as given by direct nu-
merical simulation (black lines) and tSMM (red dots) for x̃ = 5 and a) Pe = 100, b) Pe
= 1000, for x̃ = 25 and c) Pe = 100 and d) Pe = 1000.
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Figure 10: Comparison of the standard deviation, σy, of the distribution P (ỹ|x̃) for the
DNS and tSMM as a function of x̃.

continuously increases as a function of the longitudinal distance traveled for319

Pe = 100. On the contrary, σy is approximately constant up to x̃ = 20 for320

Pe = 1000 and then starts increasing. This result implies that for such an321

advection-dominated situation we only observe significant transverse spread-322

ing after particles have traveled a distance of 20 cells. This result is due to323

the converging-diverging nature of advective streamlines in two-dimensional324

fields, and this particular behavior might be different if investigated in three-325

dimensions. Yet, the tSMM is able to predict these different dynamics based326

on the simulation of transport across a single unit cell. Note also that the327

methodology can extended to three dimensions, upon relying on the same328

procedure described in Section 2.2.329

3.2. Steady state plumes with first order degradation330

As a showcase application of the capabilities of the tSMM, we also eval-331

uate the influence of a first order reaction on pinching off the steady-state332

plume. We assume in this application that the solute undergoes degrada-333
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tion following linear kinetics. This is accounted for in a straightforward334

manner in the tSMM framework. Starting from the conservative plume re-335

sults (see Figure 7), for each particle we define the probability of reaction as336

Ri(t, λ) = 1−e−λt, where λ is the kinetic degradation rate. Then we compare337

Ri with a random number, Ui, drawn from a standard uniform distribution.338

If Ui > Pi no reaction occurs while if Ui < Pi the particle is removed from339

the system. In our examples λ is chosen based on obtaining specific values340

of Damkhöler numbers, Da =
`2Sλ

D
.341

We compute marginal distributions P (x̃, ỹ) to represent the steady state342

plume for this reactive scenario. The results obtained for Da = 1 and 5343

(corresponding to λ = 0.1 and 0.5) and Pe = 100 are depicted in Figures 11a344

and b while Figures 11c and d show the case associated with Da = 5 and 10345

(corresponding to λ = 0.5 and 1) and Pe = 1000. These results portray the346

ability of our proposed tSMM to predict transport in longitudinal and trans-347

verse direction while also accounting for a reactive solute undergoing a first348

order reaction process. Note that the results are obtained at negligible addi-349

tional computational cost with respect to the unsteady state, conservative,350

transport simulations.351

3.3. Error analysis352

To provide a quantitative description of the influence of parameters NB

and dt on the accuracy of the proposed spatial Markov model we evaluate

HD[F1, F2], see Eq. 7, choosing as F1 and F2 the marginal distributions of

travel times, P (t̃|x̃), or transverse positions, P (ỹ|x̃), conditional to a given

downstream location x̃ from the injection point, evaluated with DNS and

tSMM respectively. Note that the time step is kept constant and equal to
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Figure 11: Marginal distribution P (x̃, ỹ) for a reactive contaminant undergoing a degra-
dation following a linear kinetics for Pe = 100 (a) Da = 1, (b) Da = 5, and Pe = 1000
(c) Da = 5, (d) Da = 10.
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dt∗ in the DNS, while we consider in following different values for the sim-

ulation of the trajectories employed to parameterize the tSMM, To simplify

the notation we introduce here the following indicators

HDt = HD[PDNS(t̃|x̃);PSMM(t̃|x̃)] (8)

HDy = HD[PDNS(ỹ|x̃);PSMM(ỹ|x̃)] (9)

to assess the model errors. The analysis is performed considering both353

Pe = 100 and Pe = 1000 and considering different values of NB and dt354

for the parameterization of the tSMM, while, as mentioned above, in the ref-355

erence DNS the dt is constant and equal to dt∗. In order to provide an overall356

assessment of the impact of parameters dt and NB we focus on the average357

of HDα (with α = t, y) across all 50 investigated Markov steps (the averag-358

ing operator is denoted by the symbol 〈·〉). Figures 12a and b show 〈HDt〉359

and 〈HDy〉 as a function of dt/dt∗ and NB, respectively. Continuous lines360

correspond to Pe = 100, while dashed lines depict results associated with361

Pe = 1000. Red and blue colors are related to arrival time and transverse362

location distributions, respectively. Note that for Pe = 100 both 〈HDt〉 and363

〈HDy〉 are not very sensitive to the choice of parameter dt (see Figure12a ).364

On the contrary for Pe = 1000 we observe a sharp increase of 〈HDt〉 and365

〈HDy〉 for dt > 2dt∗. This is probably due to the fact that advective particle366

displacements depend linearly on dt, as opposed to the diffusive ones which367

scale with dt0.5. The variation of 〈HDt〉 and 〈HDy〉 as a function of NB are368

displayed in Figure 12b for the two investigated Pe numbers. These results369

show that the quality of model predictions deteriorates for decreasing num-370
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Figure 12: 〈HDα〉 for Pe = 100 and Pe = 1000 as a function of the Markov step number
(cell number) for different dt and numbers of bins NB employed in the parameterization
step.

ber of bins associated with the tSMM parameterization. Note that NB = 1371

corresponds to considering the particle trajectories as totally uncorrelated372

across successive Markov steps, while setting NB > 1 in the tSMM param-373

eterization allows consideration of correlation between particle trajectories374

belonging to the same bin. We note that considering uncorrelated particle375

trajectories does not provide good agreement between DNS and tSMM dis-376

tributions, as indicated by high values of the HDα metrics. Also in this case377

correlation effects at a fixed downstream distance become stronger as Péclet378

number increases, in line with the results of previous studies [22, 31].379

4. Discussion and conclusions380

Our study proposes a methodology for upscaling solute plumes in peri-381

odic porous media through a trajectory based spatial Markov Model. We382

extend the work of [30] to the case of a multi-dimensional unsteady solute383

transport and exemplify our approach considering a two-dimensional porous384

medium with a disordered geometry. Our framework is based on the simula-385
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tion of advection-diffusion random walk particle trajectories across a single386

periodic flow cell with the aim of predicting transport over a much larger387

scale. In particular, our analysis explicitly includes the evaluation of the388

joint space-time probability distributions associated with solute plumes pro-389

viding an efficient and accurate representation of both transient and steady390

state transport in porous media for different Pe numbers. Our work leads to391

the following major conclusions:392

1. From a comparison with high resolution direct numerical simulations393

we show that the proposed tSMM accurately predicts spatial and tem-394

poral distributions of a conservative solute plume using information395

collected from a single cell simulation. The current framework is not396

restricted to a simplified geometry setting or a particular flow condition,397

but can be employed to accurately predict multi-dimensional transport398

in a realistic two-dimensional pore space once the flow field has been399

evaluated. Note that, in principle our methodology can be used with400

different type of initial injection condition, e.g. flux-weighted or uni-401

formly distributed, pulse or continuous injection, and can be extended402

to a three-dimensional setup.403

2. Our model is able to predict different transport dynamics, particularly404

regarding the influence of Pe on transverse plume spreading. Our re-405

sults are in line with previous laboratory and numerical studies [10, 13].406

In particular, the change in Pe, due to a change in the diffusion coef-407

ficient of the compound, had marked effects on transverse spreading of408

the solute and this is well captured by our upscaling approach.409

3. Particle trajectories and associated travel times, which were simulated410
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with the proposed tSMM to predict conservative transport, can be nat-411

urally extended to simulate reactive transport processes with negligible412

additional computational cost. As an example, in this work we analyse413

the influence of a first order kinetic reaction on a steady state plume.414

To do so our model has been coupled with a probabilistic representation415

of a linear degradation reaction and applied for several Da numbers.416

Note that the methodology is already fully compatible with the analy-417

sis of other types of reactions (e.g. sorption/desorption) as was shown418

by [31] for an idealized benchmark problem.419

4. The effect of tSMM parameterization (in particular the parameters420

dt and NB) was studied for the two analysed Pe. As expected, the421

difference between tSMM and DNS distribution both in space and time422

increases with increasing dt and decreasing NB respectively. A marked423

effect of parameterization was observed for Pe = 1000 with respect424

to Pe = 100 due to fact that (i) the contribution of the advective425

transport, which increases with Pe, is more affected by the choice of426

dt employed in the tSMM parameterizazion and (ii) the relevance of427

particle trajectory correlation increases with Pe.428

For all the above points the simulation time needed for the tSMM is neg-429

ligible if compared to the one required for high resolution direct numerical430

simulation. This is one of the great advantages of the proposed tSMM which431

allows predicts of multi-dimensional transport across large distances (for both432

conservative and reactive solutes) without the burden of excessive computa-433

tional resources. Note that, in its current form, the model can be applied434

to a spatially periodic domain. This restriction is similar to the fact that435
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solving a closure problem on a periodic unit cell is required for many well es-436

tablished upscaling procedures. At the same time, broadening the scenarios437

of interest, for example extending the methodology to upscaling transport of438

a conservative and/or reactive solute in a disordered non periodic porous do-439

main would constitute additional elements of interest which are compatible440

with the approach we rest upon. A first attempt in this direction has been441

provided by [21, 36] obtaining promising results which can be advanced in442

the context of future investigations.443
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