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Abstract

Quantifying the magnitude and frequency of extreme precipitation events is key in translating climate observations to planning

and engineering design. Past efforts have mostly focused on the estimation of daily extremes using gauge observations. Recent

development of high-resolution global precipitation products, now allow estimation of global extremes. This research aims to

quantitatively characterize the spatiotemporal behavior of precipitation extremes, by calculating extreme precipitation return

levels for multiple durations on the global domain using the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset.

Both classical and novel extreme value distributions are used to provide an insight into the spatial patterns of precipitation

extremes. Our results show that the traditional Generalized Extreme Value (GEV) distribution and Peak-Over-Threshold

(POT) methods, which only use the largest events to estimate precipitation extremes, are not spatially coherent. The recently

developed Metastatistical Extreme Value (MEV) distribution, that includes all precipitation events, leads to smoother spatial

patterns of local extremes. While the GEV and POT methods predict a consistent shift from heavy to thin tails with increasing

duration, the heaviness of the tail obtained with MEV was relatively unaffected by the precipitation duration. The generated

extreme precipitation return levels and corresponding parameters are provided as the Global Precipitation EXtremes (GPEX)

dataset. These data can be useful for studying the underlying physical processes causing the spatiotemporal variations of the

heaviness of extreme precipitation distributions.
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Abstract

Quantifying the magnitude and frequency of extreme precipitation events

is key in translating climate observations to planning and engineering de-

sign. Past efforts have mostly focused on the estimation of daily extremes

using gauge observations. Recent development of high-resolution global pre-

cipitation products, now allow estimation of global extremes. This research

aims to quantitatively characterize the spatiotemporal behavior of precipita-

tion extremes, by calculating extreme precipitation return levels for multiple

durations on the global domain using the Multi-Source Weighted-Ensemble
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Precipitation (MSWEP) dataset. Both classical and novel extreme value

distributions are used to provide an insight into the spatial patterns of pre-

cipitation extremes. Our results show that the traditional Generalized Ex-

treme Value (GEV) distribution and Peak-Over-Threshold (POT) methods,

which only use the largest events to estimate precipitation extremes, are not

spatially coherent. The recently developed Metastatistical Extreme Value

(MEV) distribution, that includes all precipitation events, leads to smoother

spatial patterns of local extremes. While the GEV and POT methods pre-

dict a consistent shift from heavy to thin tails with increasing duration, the

heaviness of the tail obtained with MEV was relatively unaffected by the

precipitation duration. The generated extreme precipitation return levels

and corresponding parameters are provided as the Global Precipitation EX-

tremes (GPEX) dataset. These data can be useful for studying the underlying

physical processes causing the spatiotemporal variations of the heaviness of

extreme precipitation distributions.

Keywords: Precipitation extremes, MSWEP, Metastatistical extreme value

distribution, Generalized extreme value distribution, Peaks-over-threshold,

Global domain
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1. Introduction1

Extreme precipitation events are a major contributor to natural disasters2

(CRED, 2019). Accurate estimates of the severity of intense precipitation3

events are needed for an enhanced disaster risk understanding, such as that4
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of floods and landslides. The urgency of this is indicated as the first priority5

of the Sendai Framework for Disaster Risk Reduction (UNSIDR, 2015). The6

accurate quantification of extremes is also necessary for infrastructure plan-7

ning and design. Some countries already provide spatiotemporal estimates8

of extreme precipitation based on extreme value distributions (EVDs), for9

example, for Australia (Ball et al., 2019), the Netherlands (Beersma et al.,10

2018), and the US (e.g., Perica et al., 2015, 2018). However, many countries11

and regions do not have sufficient local data available (Gründemann et al.,12

2018; Kidd et al., 2017; van de Giesen et al., 2014), such that spatially-13

distributed extreme precipitation estimates are not possible.14

Several previous studies have developed global-scale datasets of extreme15

precipitation. Courty et al. (2019) calculated intensity-duration-frequency16

curves at the global domain and their scaling with different event durations17

using reanalysis data and the Generalized Extreme Value (GEV) distribu-18

tion with fixed tail behavior. Dunn et al. (2020) produced the HadEX319

dataset, which contains 29 generic precipitation and temperature indices,20

although these indices are not based on EVDs. Furthermore, this dataset21

has a coarse 1.25◦ latitudinal × 1.875◦ longitudinal resolution, with data-22

gaps due to insufficient available gauge data. Other global studies mostly23

focused on examining which type of distribution is most suitable to capture24

the tail behavior of extreme precipitation (Cavanaugh and Gershunov, 2015;25

Cavanaugh et al., 2015; Papalexiou et al., 2013). In addition, the spatial26

patterns of the parameter that controls the tail decay have been studied for27

the GEV distribution (Papalexiou and Koutsoyiannis, 2013; Ragulina and28

Reitan, 2017), and the Generalized Pareto (GP) distribution (Serinaldi and29
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Kilsby, 2014). However, several issues remain to be addressed in order to30

obtain global-domain extreme precipitation return levels: 1) the choice of31

the dataset with associated uncertainties, 2) the focus on daily durations,32

3) the choice of the time blocks over which block-maxima are determined,33

and 4) the exploration of possible alternatives to the classical EVDs and the34

associated uncertainty, especially with respect to the tail behavior.35

1. Several (quasi-)global gridded precipitation datasets have been devel-36

oped in recent years, each with strengths, weaknesses, and uncertain-37

ties. See Sun et al. (2018), Beck et al. (2019a) and Rajulapati et al.38

(2020) for recent overviews of available datasets and their associated39

uncertainties. Most of these datasets are based on gauge, reanaly-40

sis, or satellite sensor data. Notable examples of gauge-based datasets41

include GPCC-FDR (Becker et al., 2013; Schneider et al., 2011) and42

REGEN (Contractor et al., 2020). However, gauges are extremely un-43

evenly distributed across the globe (Kidd et al., 2017; Schneider et al.,44

2014), and the number of active gauges has been declining in recent45

decades (Mishra and Coulibaly, 2009). Satellite-based products such46

as CMORPH (Joyce et al., 2004), GSMaP (Ushio et al., 2009), IMERG47

(Huffman et al., 2015), and PERSIANN (Hong et al., 2004) have a rel-48

atively high spatio-temporal resolution. However, they do not cover49

regions outside of 60◦N/S, and are only available from 2000 onwards,50

which significantly hinders their use for extreme value analyses. Pre-51

cipitation products with a true global coverage and long records are52

reanalyses, such as ERA-5 (Hersbach et al., 2020), JRA-55 (Kobayashi53

et al., 2015), and MERRA-2 (Gelaro et al., 2017). However, reanaly-54
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sis products tend to exhibit strong systematic biases in the magnitude55

and frequency of precipitation (Decker et al., 2012; Liu et al., 2018;56

Ménégoz et al., 2013).57

2. Global-scale analyses of precipitation extremes are generally based on58

daily precipitation records (Cavanaugh et al., 2015; Koutsoyiannis,59

2004a,b; Papalexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013;60

Ragulina and Reitan, 2017; Serinaldi and Kilsby, 2014). In practice,61

however, multiple durations are needed for the design of infrastruc-62

ture (e.g., Nissen and Ulbrich, 2017) or urban drainage networks (e.g.,63

Mailhot and Duchesne, 2009). It is known that precipitation extremes64

of different durations scale differently with temperature (Wasko et al.,65

2015), but little is known about the variation of EVD properties (tail66

behavior) for different temporal resolutions. Studies that did derive67

extreme precipitation statistics for durations ranging from minutes to68

a few days have mostly focused on small regions (McGraw et al., 2019;69

Nissen and Ulbrich, 2017; Overeem et al., 2008).70

3. Studies estimating return levels of extreme precipitation by using an-71

nual maxima typically use calendar years to delineate the annual pe-72

riods from which maxima values are extracted (e.g., De Paola et al.,73

2018; Marani and Zanetti, 2015; Papalexiou and Koutsoyiannis, 2013;74

Ragulina and Reitan, 2017; Villarini et al., 2011). When the variable75

of interest is river discharge instead of precipitation, however, hydro-76

logical years are typically used instead of calendar years to determine77

the annual maxima (Ward et al., 2016). For discharge values this is78

important, since peak discharge and flooding could occur during 3179
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December to 1 January transition and one event would be included in80

two calendar years. Although not often considered, this could also hap-81

pen for precipitation. The annual maxima method could pick multiple82

values from a single rainy season that may, for example, be highly influ-83

enced by the El Niño-/Southern Oscillation, which is known to impact84

precipitation extremes (Allan and Soden, 2008; Rasmusson and Arkin,85

1993).86

4. The Generalized Extreme Value (GEV) distribution, the most widely87

used EVD, is typically fitted through one of two approaches: a) using88

annual maximum precipitation series and maximum likelihood (Coles,89

2001) or L-moment (Hosking, 1990) estimation approaches, or b) us-90

ing a Peak-Over-Threshold (POT) method to fit a Generalized Pareto91

Distribution to excesses above the threshold and a Poisson process to92

the sequence of threshold exceedances (Coles, 2001). In contrast to93

GEV and POT, the recently developed Metastatistical Extreme Value94

(MEV) distribution is fitted using all events with recorded precipita-95

tion instead of only the most severe. The inclusion of more events re-96

duces the uncertainty due to sampling effects, which is important when97

dealing with short time series (Hu et al., 2020; Marani and Ignaccolo,98

2015; Marra et al., 2018, 2019a; Miniussi and Marani, 2020; Zorzetto99

et al., 2016; Zorzetto and Marani, 2019). This is particularly advanta-100

geous when analyzing short remote sensing precipitation products, as101

the commonly applied GEV requires many years of data to accurately102

estimate the tail of the distribution (Papalexiou and Koutsoyiannis,103

2013). Additionally, GEV parameter estimation depends heavily on a104
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few large values, which makes it very sensitive to the possible presence105

of outliers, a relatively common occurrence in remote sensing estimates106

of precipitation amounts (Zorzetto and Marani, 2020). The GEV tail107

behavior is mostly controlled by its shape parameter, which is very108

sensitive to sampling effects and the choice of the method used for es-109

timation. To overcome these problems, some studies have suggested110

to use one universal value of the shape parameter that is applicable to111

the whole world Koutsoyiannis (2004a,b), or a shape parameter value112

within a narrow range between exponential and heavy-tail behavior113

(Papalexiou and Koutsoyiannis, 2013), or one shape parameter per re-114

gion, that is similar within climate types and elevation ranges (Ragulina115

and Reitan, 2017). The estimation of the shape parameter is partic-116

ularly difficult with short data series, though crucial for the accurate117

estimation of extremes.118

In this study we contribute to overcome these issues by 1) using a dataset119

that merges all three main sources of precipitation data, 2) estimating ex-120

tremes for several event durations, 3) using hydrological years in our analyses,121

and 4) comparing results from three different extreme value methods (GEV,122

POT and MEV). Specifically, we are interested in quantitatively character-123

izing the behavior of extreme precipitation and the spatiotemporal variation124

of extreme value distributional tails at the global domain.125
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2. Material and Methods126

2.1. Data127

The global precipitation product used in this study is the Multi-Source128

Weighted-Ensemble Precipitation (MSWEP-V2.2) dataset. MSWEP is par-129

ticularly suited for our purpose due to its global coverage, long temporal130

span, high spatial and temporal resolution. We used data from 1 January131

1979 to 31 October 2017 at a 0.1◦ latitude × 0.1◦ longitude resolution at132

3-hourly time steps. We selected all land-cells between 90◦N and 58◦S for133

our analysis. MSWEP precipitation estimates are derived by merging five134

different satellite- and reanalysis-based global precipitation datasets. The135

dataset is one of the few precipitation products with daily (as opposed to136

monthly) gauge corrections, applied using a scheme that accounts for gauge137

reporting times (Beck et al., 2019b). MSWEP has shown robust performance138

compared to other widely used precipitation datasets (e.g., Alijanian et al.,139

2017; Bai and Liu, 2018; Beck et al., 2017, 2019a; Casson et al., 2018; Hu140

et al., 2020; Sahlu et al., 2017; Satgé et al., 2019; Zhang et al., 2019), thus141

underlying its potential for improving the characterization of extreme pre-142

cipitation worldwide. We refer to Beck et al. (2019b) for a comprehensive143

description of the dataset.144

2.1.1. Quality Control145

The integration of erroneous gauge observations into MSWEP-V2.2 can146

occasionally result in implausible precipitation values. Therefore, we imple-147

mented a three-step quality control procedure of the 3-hourly data prior to148

the analysis. We first discarded negative values, which are physically impos-149
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sible. The second step was to discard outliers, which we defined as values150

deviating from the mean by more than 30 standard deviations. We also dis-151

carded data surrounding the outliers for the same time step using a 11× 11152

grid-cell window, as erroneous gauge observations may have influenced sur-153

rounding cells in the production of the MSWEP dataset. The third step was154

to remove years with > 30 discarded days or < 5 ‘wet’ 3-hourly periods,155

identified using a threshold of 0.2 mm 3h−1 following Wasko et al. (2015).156

Finally, we only included in the analysis data from grid cells with at least157

30 years of data remaining, as a minimum record length of 30 years is cus-158

tomary and recommended to obtain reliable results (Arguez and Vose, 2011;159

Kendon et al., 2018; Westra et al., 2013).160

2.1.2. Durations and Identification of Independent Events161

The durations we selected for our analysis are 3, 6, 12 and 24 hours, and162

2, 3, 5 and 10 days. In order to create statistically-independent precipitation163

events for multiple durations, we first separated 3-hourly events following the164

declustering method to limit the autocorrelation of the samples described in165

Marra et al. (2018, their Section 3.1). For longer durations, independent166

events are the maximum intensities within each independent event and non-167

overlapping period using moving windows (Marra et al., 2020).168

2.1.3. Hydrological Year169

A common challenge in global-scale assessments is the delineation of the170

hydrological year, given the regional variability in the climatological precip-171

itation seasonality. We therefore developed an uniform way to define the172

hydrological year. To avoid splitting one rainy season over two different173
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years, we computed the median of the monthly precipitation for each grid-174

cell, and defined the start of the hydrological year to be the first day of the175

driest month. Supplementary Material Figure S1a shows the starting month176

of the hydrological year as determined by this method. These data are also177

available in the GPEX dataset (Gründemann et al., 2021). As MSWEP-V2.2178

spans the interval from 1 January 1979 to 31 October 2017, we discarded the179

data prior to the start of the first hydrological year, thus keeping 38 complete180

years. Only where the hydrological year starts in December there are just 37181

complete years, which occurs in 5.8 % of the grid cells.182

We also investigated whether there is a significant difference between the183

use of calendar and hydrological years for the estimated daily extremes for184

GEV and MEV. The POT method is based on the values over a high thresh-185

old, irrespective of when they occurred. Therefore, there is by definition no186

difference in calculating the extremes using hydrological or calendar years187

for the POT method. To determine the difference for GEV and MEV, we188

first calculated the daily return levels for normal calendar years, using the189

MSWEP data from 1979 to 2016. Second, we calculated the return levels for190

the same distributions and the same years, by removing the months before191

the start of the hydrological year from the year 1979 and adding them to the192

year 2016. We did this in order to use the exact same data, so the differences193

in the return level estimates are solely due to a different starting month.194

2.2. Extreme Value Distributions195

Three extreme value distributions were fitted to the MSWEP data to196

calculate extreme precipitation return levels: the GEV, POT, and MEV197

distributions. Annual (hydrological year) maxima were used to estimate the198
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three parameters of the GEV using the L-moments approach, because of its199

robust performance for small samples (Hosking, 1990). The GEV cumulative200

distribution function (CDF) is given by:201

G(z) =

 exp
{
−
[
1 + ξ

(
z−µ
σ

)]− 1
ξ

}
, ξ 6= 0

exp
{
−exp

[
−
(
z−µ
σ

)]}
, ξ = 0

(1)

with location parameter µ ∈ (−∞,∞), scale parameter σ > 0, and shape202

parameter ξ ∈ (−∞,∞). The annual extremes estimated by GEV are trans-203

lated into those of the parent distribution, following Koutsoyiannis (2004a,204

equation 3).205

As a second EV model we use a Peaks Over Threshold approach, de-206

scribing precipitation accumulations exceeding a high threshold using a GP207

distribution, while modelling the frequency of threshold exceedances using a208

Poisson point process (Coles, 2001; Davison and Smith, 1990). This frame-209

work also yields GEV as the resulting extreme value distribution, which is210

then used to determine the quantile corresponding to a given return period.211

The GP CDF is given by:212

H(y) =

 1−
(

1 + ξy
β

)− 1
ξ
, ξ 6= 0

1− exp
(
− y
β

)
, ξ = 0

(2)

where y > 0 are precipitation excesses over the threshold, with β > 0 and213

ξ ∈ (−∞,∞) the GP scale and shape parameters respectively. A relevant214

aspect in applying the POT model is a suitable choice of the threshold used215

to define precipitation exceedances. Our global-scale application requires216

studying the distribution of precipitation extremes across markedly different217

climatic regions, thus excluding the adoption of a constant threshold value.218
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We studied the effect of the threshold choice using multiple threshold selec-219

tion methods on a global sample of grid cells (see Supplementary Material220

Section 2 and and Figure S3). Our results showed that this choice had a lim-221

ited effect on the estimated return levels (Figure S3a). We chose to perform222

our global analysis by selecting for each cell a threshold value such that it223

is exceeded on average 3 times each hydrological year. As a consequence of224

this choice, the sample size available for fitting the GP distribution remains225

constant across different precipitation durations. The method used to fit226

the GP distributions is the Probability Weighted Moments (PWM; e.g., see227

Hosking and Wallis, 1987).228

The third model applied here is the MEV distribution (Hosseini et al.,229

2020; Hu et al., 2020; Marani and Ignaccolo, 2015; Miniussi et al., 2020a,b;230

Zorzetto et al., 2016). In the MEV framework, all “ordinary” precipitation231

events, i.e. all events above a small threshold, are used to infer this EV232

distribution. The threshold we applied is 0.2 mm 3h−1, coinciding with233

the earlier defined ’wet event’. Weibull parameters were estimated for each234

hydrological year separately, based on all wet events using the PWM method235

(Greenwood et al., 1979) as done in Zorzetto et al. (2016). The MEV-Weibull236

CDF is given by:237

ζm(x) =
1

M

M∑
j=1

{
1− exp

[
−
(

x

Cj

)wj
]}nj

(3)

where j is the hydrological year (j = 1, 2, . . . ,M), Cj > 0 is the Weibull scale238

parameter, wj > 0 is the Weibull shape parameter, and nj is the number of239

wet events observed in hydrological year j (Marani and Ignaccolo, 2015).240

It should be noted that the methods we applied in this study do not241
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use any parameter bounds. Although Papalexiou and Koutsoyiannis (2013)242

argued that the GEV shape parameter of daily precipitation lies between ex-243

ponential and heavy-tail behavior, this is not used as additional information244

to constrain our fits. Doing so would cause artificial breaks in the obtained245

spatiotemporal patterns, the analysis of which is the main objective of this246

study. Moreover, the scientific debate on bounds is not settled, especially247

for durations longer than a day, and different bounds are used in different248

studies (e.g., Blanchet et al., 2016; Yilmaz et al., 2017). In order to avoid249

underestimation of extremes in practical settings, our dataset (Gründemann250

et al., 2021) also includes the Gumbel estimates which may be used as a251

lower bound (see Supplementary Material Section 6).252

2.2.1. Observed Return Period253

The MSWEP dataset analyzed here has 38 complete years of data. There-254

fore, the empirical return period associated with the maximum value on255

record computed according to the Weibull empirical frequency estimate is256

T observed = 39 years. However, only 91 % of all cells had 38 complete years257

of data, so the maximum observed return period is sometimes lower: for 7 %258

of the cells only 37 complete years were available, and for 2 % of the cells259

36 years or less were available. However, for simplicity we still refer to the260

corresponding maximum return level as T39 in the results.261

2.2.2. Tail Behavior262

Both the GEV and MEV distributions are flexible and can describe dif-263

ferent tail behaviors. They are, therefore, appropriate models to study the264

characteristics of local precipitation extremes. The tail behavior of the two265
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distributions differs, as illustrated in Figure S4 for different combinations of266

scale and shape parameters. The shape parameter ξ of the GEV distribution,267

obtained either through the annual maxima or POT approach, encodes the268

nature of the tail of the distribution. Based on the value of ξ, the GEV can269

take one of three forms: a positive GEV shape parameter (ξ > 0, “Fréchet”)270

corresponds to a power-law tail, i.e., to a slowly-decaying probability of large271

events. This heavy-tail behavior contrasts with the case of an exponential272

tail (ξ = 0, “Gumbel”), and with the case of a distribution with an upper end273

point, which corresponds to negative values of the shape parameter (ξ < 0,274

“inverse Weibull”).275

The MEV distribution assumes that precipitation events are Weibull-276

distributed. The tail decay of this distribution is controlled by its shape277

parameter: for w < 1 its tail behavior is ”sub-exponential”, i.e., heavier than278

that of an exponential (recovered for w = 1), albeit with a characteristic279

scale (Laherrere and Sornette, 1998; Wilson and Toumi, 2005). For w > 1280

the Weibull tail is super-exponential, with a fast decaying tail, while still281

retaining an infinite upper end point. Hence, the shape parameter of the282

Weibull distribution encodes the propensity of a site to be subjected to large283

extreme events (Wilson and Toumi, 2005; Zorzetto et al., 2016). However,284

the tail decay of the MEV distribution is not only dependent on that of285

ordinary values (through w) but is also affected by the yearly number of286

events (Marra et al., 2018) and by the inter-annual variations of Cj, wj and287

nj.288

In an effort to compare the heaviness between the distributions, we have289

come up with a measure of heaviness that is based on the return levels them-290
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Figure 1: Illustration of our method to measure the tail heaviness for any distribution

based on return levels only.

selves (Figure 1). The difference between the 1000-year return level and the291

10-year return level can be described as follows:292

T1000 = T10 + b+ b+ a (4)

Where b is the difference between the 100-year and 10-year return level,293

i.e.: b = T100−T10, and a is the additional increase caused by the heaviness294

of the tail (Figure 1). A positive a is indicative of heavy tails and a negative295
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a of thin tails. For pure exponential tails it holds that a = 0. The value for296

a is highly dependent on the local precipitation systems, so we defined the297

heaviness amplification factor hT10−T100−T1000 to be a normalization of a:298

hT10−T100−T1000 =
a

b
=

T1000− 2× T100 + T10

T100− T10
(5)

In words, the meaning of hT10−T100−T1000 is the fractional additional in-299

crease between T1000 and T100 that is more than the increase that could be300

expected from a pure exponentially tailed distribution. A distribution has a301

heavy tail for h > 0 and a thin tail for h < 0. Here, we chose a range for the302

heaviness metric over large return periods from 10 to 1000 years, since the303

1000-year return levels are known to be influenced by the distribution choice304

(e.g., Rajulapati et al., 2020) and that is precisely what we wanted to com-305

pare. Yet, it should be noted that this metric may easily be adjusted to other306

return periods and other factors between the return periods. For GEV and307

POT the heaviness metric is independent of the return period range as long308

as the return periods are a factor 10 apart. Although for MEV this heaviness309

metric is only valid for the return period range over which it is computed,310

using other ranges (T2-T20-T200 and T5-T50-T500) did not yield significant311

differences (Figure S6).312

3. Results and Discussion313

3.1. Hydrological Year314

Figure 2 shows the frequency distribution of 1000-year return levels esti-315

mated using calendar and hydrological years for GEV and MEV. The spatial316

distribution of the T1000 differences is presented in Supplementary Material317
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Figure S1b for GEV and Figure S1c for MEV. We found that in the case318

of GEV quantiles, the fraction of sites characterized by differences within319

±0.5 % is larger than that observed for MEV. When the hydrological year320

starts in the winter months, the hydrological year is only shifted by a few321

months. In such instances, the annual maxima mostly stay the same between322

the calendar and hydrological years, though the included events could differ.323

For GEV this means that for many cells there is almost no difference in the324

T1000 estimates, whereas for MEV the difference is small.325

On the other hand, when the offset with a calendar year is approximately326

6 months, around June, there are many different events included in the hy-327

drological years compared to the calendar years. This results in different328

annual maxima and large differences in the estimated extremes for GEV329

and MEV. The differences are most pronounced in the Southern hemisphere330

and in locations where the hydrological year starts around June, e.g., in331

the Mediterranean region, in the Middle-East, in Southern Africa, in Brazil,332

around Indonesia, and in the western US (Figure S1a). For MEV the overall333

sensitivity in T1000 estimates remains lower than that of GEV. In particular,334

the distribution of differences in Figure 2 exhibits thicker tails for GEV (e.g.,335

as measured by the wider 5th to 95th percentile interval). This suggests that336

regional sensitivity to the definition of block maxima can be quite significant337

for the GEV approach.338

Figure S2 in the supplementary material presents the frequency distribu-339

tions of all analyzed return levels. The lower return levels are less impacted340

by the start of the hydrological year than the higher ones.341
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3.2. Extreme Precipitation Estimates342

Figure 3 shows the 100-year precipitation return levels for a 24-hour dura-343

tion. Extreme value estimates for other durations and return periods are fea-344

tured in the Global Precipitation EXtremes (GPEX) dataset (Gründemann345

et al., 2021). The spatial patterns of the extremes estimated by GEV and346

MEV are similar to Zorzetto and Marani (2020, their Figure 9), while the347

spatial pattern of the underlying GEV parameters are consistent with Courty348

et al. (2019, their Figure 1). The global spatial pattern of return levels for the349

three EV methods is similar, although large regional differences can be ob-350

served. The GEV and POT results are similar in magnitude and show similar351

differences when compared to MEV. The estimated precipitation extremes352

are generally lower for both GEV and POT compared to MEV quantiles.353

MEV estimates exhibit smooth spatial patterns, whereas the spatial pat-354

terns using GEV and POT are more irregular, consistent with the results of355

Zorzetto and Marani (2020) for the conterminous US. The reduced spatial356

coherence in patterns of extremes for GEV and POT is particularly evident357

in the Great Plains of North America, and in Northern Russia, Southeast358

Asia, and Central Africa. Other extreme value approaches and distribu-359

tions may also yield more coherent spatial patterns of precipitation extremes360

(e.g., Rajulapati et al., 2020), but comparison of all possible extreme value361

approaches was not the scope of this study. Furthermore, our analysis (Fig-362

ure 3) reveals the presence of a large number of circular areas with heavier363

extremes, corresponding to the location of gauges used for correcting precip-364

itation estimates in the MSWEP algorithm (Beck et al., 2019b). The effect365

of these local corrections is much larger for traditional EV models (POT and366
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GEV), while MEV appears less sensitive to these local corrections.367

In order to study the ability of the three distributions to capture the368

spatial coherence of precipitation extremes, we selected several case study369

areas. They collectively cover a wide range of climates and domain sizes, the370

locations of which can be found in Figure 3a. Within a single case study371

area, we expect the precipitation estimates to be statistically homogeneous372

because of their precipitation generating mechanisms (Cavanaugh and Ger-373

shunov, 2015; Cavanaugh et al., 2015) or elevation (Ragulina and Reitan,374

2017). Figure 4a shows the coefficient of variation (CV) of T100 extreme375

precipitation estimates for these case studies. The CV is the ratio of the376

standard deviation to the mean and is used to compare the relative variation377

between the study areas. The higher the CV, the higher the relative spread378

of the precipitation estimates within a spatial domain. This figure shows379

quite similar behavior for GEV and POT, though POT has a slightly lower380

spread. The CV for MEV is lower, which points to more spatially coherent381

T100 precipitation estimates based on single point time series (with 38 years382

of training data).383

To further investigate the global differences in magnitude between the384

three methods, we examine the extremes for each distribution using a spa-385

tially weighted mean over the global land surface. This is displayed for386

multiple return periods and durations as depth-duration-frequency curves387

(Figure 5). We first compare the maximum precipitation observed in the388

dataset to the precipitation predicted from each distribution. As there are389

38 complete years of MSWEP data, the maximum empirically observed re-390

turn level is 39 years (T39 observed, the black dotted line in Figure 5). While391
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locally the empirical T39 estimate could be very different from the true re-392

turn level, we expect the global average of this value to be representative393

of the true T39. For GEV and POT, we expected the estimated T39 to be394

close to the observed value since only the largest values are used to fit these395

distributions. For MEV, we did not necessarily expect a good agreement for396

T39, but its performance should be better for return levels greater than the397

length of the observation time series (Marra et al., 2018, 2019b; Schellander398

et al., 2019; Zorzetto et al., 2016). The results in Figure 5 show that for399

the short duration events, the observed T39 is close to the T39 for all three400

distributions. For increasing durations, the deviation between empirically401

observed and EV modeled T39 quantiles increases, particularly for MEV.402

This could be because a smaller number of events per year is used for the403

fit of MEV-Weibull, whereas the number of events used for the fit of GEV404

and POT remains constant for all durations. Both GEV and POT show an405

underestimation and MEV an overestimation. This figure also shows again406

that the differences between GEV and POT are small. The global average407

estimated extremes for GEV and POT are notably lower than for MEV, as408

was already visible from Figure 3. This difference is more pronounced for409

larger return periods and longer durations.410

One reason the quantiles estimated using MEV are higher than using411

GEV and POT is related to the increase in estimation uncertainty of Weibull412

parameters when the number of events per hydrological year is low. This is413

especially relevant in arid regions and for long durations. For instance, for 5414

and 10-day durations the average annual number of events is 36 and 21 events415

respectively. It is therefore possible that this leads to an overestimation by416
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MEV. To overcome this, windows of two or more years could result in a417

better parameter estimation (Miniussi and Marani, 2020). A second factor418

which may be relevant relevant for MEV quantile estimates is the use of a419

fixed threshold for defining a precipitation event.420

3.3. Tail Behavior421

To better understand the differences between extremes estimated using422

the three extreme value methods, we analyze their tail behavior using the423

heaviness amplification factor hT10−T100−T1000 (Eq. 5). Figure 6 presents424

hT10−T100−T1000 for a 24-hour duration worldwide for each of the three dis-425

tributions. We refer to Figures S7-S13 in Section 4 in the supplementary426

material for maps of hT10−T100−T1000 for the other durations. Both GEV427

(Figure 6a) and POT (Figure 6b) exhibit a large spatial variability in ad-428

dition to a low spatial coherence. This makes it difficult to discern clear429

spatial patterns with the exception of a few notable regions. For instance,430

in the Amazon, hT10−T100−T1000 is mostly negative, suggesting a tail with an431

upper limit, while in Eastern and Southern Australia hT10−T100−T1000 it is432

strongly positive, denoting strong heavy tail behavior. This map roughly433

corresponds to the spatial patterns of the daily GEV shape parameter shown434

by Papalexiou and Koutsoyiannis (2013, their Figure 13) and Ragulina and435

Reitan (2017, their Figure 4). We also find that for the GEV and POT436

methods, grid cells associated with heavy tails can be adjacent to cells with437

thin tails. Furthermore, GEV and POT do not always show the same type438

of tail, heavy or thin, in the same grid cells. In 72 % of the cases the sign of439

the underlying shape parameter agrees, while in 28 % of the cases the signs440

are different for daily precipitation. This highlights the large uncertainty as-441
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sociated with estimating reliable tail parameters from short time series and442

the sensitivity of the GEV and POT methods to sampling effects.443

The heaviness of the MEV distribution (Figure 6c) shows a more coher-444

ent spatial pattern. At virtually all grid cells the heaviness amplification445

factor hT10−T100−T1000 (Eq. 5) indicates heavy tail behavior and there is a446

high consistency within geographic regions and for all durations (Figures S7-447

S13). Based on previous studies (Cavanaugh et al., 2015; Papalexiou and448

Koutsoyiannis, 2013; Papalexiou et al., 2013; Ragulina and Reitan, 2017),449

this predominantly heavy-tail behavior of daily precipitation was expected450

and is well captured by MEV. There are also topographical patterns visi-451

ble in the heaviness amplification factor (Figure 6c), though they are not as452

clearly distinguishable as for the shape parameter itself (Figure S5). The453

heaviness tends to be higher in arid areas, and lower in mountainous areas.454

Examples of arid areas with high heaviness include the Sahara, the Namib455

and Kalahari in Africa, the Gobi, Thar and Taklamakan in Asia, the Ata-456

cama Desert in South America, large areas of Southwestern Australia, and457

the Arabian desert and other areas in the Middle East. This same pattern is458

to a lesser extent also visible for the heaviness of GEV (Figure 6a) and POT459

(Figure 6b).460

At high elevations a small hT10−T100−T1000 is usually found for MEV (Fig-461

ure 6c). Examples include the Rocky Mountains and the Sierra Madres in462

North America, the northern Andes and large areas of the Brazilian High-463

lands in South America, the Ethiopian Highlands, the Scandinavian Moun-464

tains, and the Tibetan Plateau. These spatial patterns are in contrast with465

what Papalexiou et al. (2018, their Figure 6) found for hourly Weibull tails in466
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the USA, where the heaviest tails are in the mountainous areas, and the thin467

tails are in the south-east. However, our results correspond well to Ragulina468

and Reitan (2017, their Figure 4), who showed that heaviness decreases with469

elevation.470

A comparison of the heaviness for different distributions and durations471

is presented as a boxplot in Figure 7. For spatial maps of the heaviness472

for the different durations we refer to Figures S7-S13. For GEV and POT,473

predominantly heavy tails are observed for short durations and thinner tails474

for long durations. Furthermore, GEV and POT both show a decreasing475

variability in the heaviness for longer durations, indicated by both shorter476

whiskers and boxes. The decrease of the heaviness of the tails for increasing477

durations is in line with the findings of Cavanaugh and Gershunov (2015),478

who found that longer duration extremes exhibit thinner tails. For GEV479

and POT the longer durations largely indicate tails with a finite upper end480

point. This occurs for instance in half of the cases for a duration of 10481

days for GEV, and more than half for POT. One implication of this finding482

is that, when computing return levels for a single location (see Figures S3483

and S12), it is possible for the very large return periods that the shorter484

duration quantiles are more intense than the longer duration quantiles. This485

is physically impossible (see Figure S14a,b,f and g), and we should thus be486

extremely careful when interpreting such results.487

MEV, on the other hand, shows different heaviness patterns than GEV488

and POT (Figure 7 and Figures S7-S13). MEV shows almost entirely a489

heavy-tail behavior, which remains consistent across the range of durations490

examined. Furthermore, also the variability for MEV is constant across du-491
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rations, though with a slight increase for longer durations. The MEV distri-492

bution thus produces a spatially and temporally coherent heavy tail behavior493

based on a 38 years calibration sample and a single grid-cell analysis. This494

is a promising result, as MEV, in contrast to the traditional methods ana-495

lyzed, provides essential information on the spatial coherence of precipitation496

extremes without any prior hypothesis on its spatial structure, for example497

through a spatial clustering scheme (Demirdjian et al., 2018). In fact, the498

spatial structure of the tail heaviness obtained through the MEV analysis499

could be used as a measure of statistical homogeneity for regionalization500

studies.501

In this work, we studied the global distribution of rainfall extremes based502

on stationary statistical models. It has long been recognized that climatic503

change as well as the inherent variability of the climate system modulate the504

frequency and intensity of heavy rainfall, prompting the adoption of non-505

stationary models in water resources management (Milly et al., 2008; Yilmaz506

and Perera, 2014; Gu et al., 2017). However, in addition to the uncertainty507

originating from inference on finite length measurements, adopting a non-508

stationary description of extreme rainfall leads to more complex statistical509

models, leading in turn to a potentially increased uncertainty of predicted510

return levels (Lins and Cohn, 2011; Montanari and Koutsoyiannis, 2014;511

Serinaldi and Kilsby, 2015; Milly et al., 2015). This issue can be mitigated512

by linking shifts in the rainfall process to mechanistic physical processes. For513

instance, this can be achieved by linking rainfall statistics to climate features514

that are more easily predicted by global circulation models (e.g., Grimm and515

Tedeschi, 2009; Whan et al., 2020; Zorzetto and Li, 2021; Fowler et al., 2021).516
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Elucidating these links at the global scale and for the broad range of rainfall517

durations explored here remains a daunting task which we plan to explore in518

future work.519

4. Conclusions520

The aim of this research was to quantitatively characterize the spatiotem-521

poral variation of global precipitation extremes and their associated extreme522

value distribution tails. We have fitted three different extreme value methods523

(GEV, POT, and MEV) to a global precipitation dataset, MSWEP V2.2, to524

estimate extreme precipitation return levels for several durations. In order525

to compare the tails of the three distributions, we introduced a novel heav-526

iness amplification factor hT10−T100−T1000 (Eq. 5). Instead of using calendar527

years to delineate between different years, we used hydrological years, the528

start of which we defined as the driest month. To our knowledge, this is a529

novel approach for analyzing precipitation extremes on the global domain.530

We demonstrated that there is a substantial difference in the extremes de-531

pending on the definition of yearly blocks used in the extreme value analysis532

(Figure 2). These differences were most notable in the Southern hemisphere,533

and in locations where the driest month occurs around June (Figure S1). Al-534

though there is no systematic bias, we still recommend to apply the extreme535

value analyses for estimating extreme precipitation based on hydrological536

years in future studies. Our analysis indicates that this can be particularly537

relevant in the Southern hemisphere and in regions characterized by marked538

seasonal cycles.539

It is well known that the traditional GEV and POT methods require very540
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long data series for accurate estimation of the tail behavior, and our study541

confirms that there is a low spatial coherence for the tail properties of both542

distributions (Figure 6a and b) using just 38 years of training data. The tail543

properties of the MEV distribution are spatially more coherent (Figure 6c)544

and hence the estimated return levels are more spatially coherent as well545

(Figure 3c). This spatially coherent behavior, consistent with previous results546

obtained over the conterminous US (Zorzetto and Marani, 2020), shows that547

the MEV distribution is able to capture spatially consistent tail behavior548

from short time series and by a single grid-cell analysis, without any prior549

information on the spatial precipitation structures. The analysis of the MEV550

tail behavior reveals distinct spatial patterns, as the heaviness appears to be551

controlled by climate zones and orography. Heavier tails are observed in arid552

areas, and thinner tails in mountainous regions. More in-depth analyses are553

necessary to draw definite conclusions on what exactly controls the heaviness554

of extreme value distribution tails. The performance of MEV is promising555

for regions without long local precipitation records. Furthermore, our study556

shows that the tail behavior captured by MEV is coherent and heavy both557

spatially and temporally (Figures 6, 7 and S7-S13). For GEV and POT, on558

the other hand, the tail behavior decreases with increased event duration,559

resulting in a thin tail with a finite endpoint for about half of the cells for a560

duration of 10 days.561

We also conclude that both GEV and POT generally underestimate the562

observed extremes, whereas MEV overestimates them (Figure 5). This occurs563

particularly for long-duration extremes and large return periods. We do564

consider it likely, however, that the results could be improved, for instance565
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by changing the event threshold or by fitting the Weibull distribution over566

two or more years for dry areas (Miniussi and Marani, 2020), so as to reduce567

inter-annual variability of the parameters due to samples of limited length.568

Our results suggest that this issue is particularly relevant at the longest569

durations examined. For GEV and POT the results could also be improved570

by adopting spatial models (Davison et al., 2012; Huser and Wadsworth,571

2020).572

The data generated for this study are openly available as the GPEX573

dataset (Gründemann et al., 2021). These data include extreme precipitation574

return levels and extreme value distribution parameters for durations between575

3 hours and 10 days at a global gridded 0.1◦ resolution. They could be used576

by engineers as a reference of precipitation extremes for data-scarce regions577

in particular. For scientific purposes, all underlying parameters are also578

available and can be used to answer several outstanding questions, such as:579

what are the controls on the tail behavior of extremes, and what is driving580

the different changes in tail heaviness with duration for GEV, POT, and581

MEV?.582
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Figure 2: Weighted histogram showing the percentage difference in the values of T1000

quantiles calculated using calendar years and hydrological years. Included in the figure are

all cells where the start of the hydrological year is different than the calendar year (i.e.,

the hydrological year does not start in January, see Supplementary Material Figure 1a).

A negative difference indicates that the T1000 estimate is larger using hydrological years,

whereas a positive difference indicates that the T1000 estimate is larger using calendar

years.
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Figure 3: Precipitation return levels with a duration of 24-hours for a 100-year return

period for different extreme value distributions: (a) the Generalized Extreme Value (GEV)

distribution, (b) the Peak Over Threshold (POT) method, and (c) the Metastatistical

Extreme Value (MEV) distribution. The black rectangles in panel a are the case studies

corresponding to the areas in Figure 4.
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Figure 4: Coefficient of variation for the difference in estimated T100 quantiles for the

three extreme value methods for 24-hour precipitation at selected case study areas. The

coefficient of variation is the standard deviation of the precipitation divided by the mean

precipitation. The locations of the case study areas are displayed in Fig 3a.
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Figure 5: Area-weighted average depth-duration-frequency curves for the global land sur-

face. T39 Observed is the mean spatially weighted maximum precipitation observed in

the MSWEP-V2.2 dataset.
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Figure 6: The heaviness amplification factor hT10−T100−T1000 (Eq. 5) for daily precipita-

tion calculated for different extreme value methods: (a) GEV, (b) POT, (c) MEV. Red

indicates a thin tail, white an exponential tail, and blue a heavy tail. See section 2.2.2 for

more information on the heaviness metric, and Figures S7-S13 for maps of hT10−T100−T1000

for the other durations.
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Figure 7: Boxplots showing the distribution of the heaviness amplification factor

hT10−T100−T1000 (-) for different durations and extreme value methods: (a) GEV and

POT, and (b) MEV. The whiskers denote the 1st and 99th percentiles. The top and bot-

tom of the boxes represent the 75th and 25th percentiles, respectively. The dashed gray

horizontal lines indicate exponential tails. See section 2.2.2 for more information on the

heaviness metric.
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1 Calendar and Hydrological Year

First month of the hydrological year
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Figure S1: (a) The month indicating the start of the hydrological year. (b) The percentage difference of the daily 1000-year
return levels of calendar and hydrological years for GEV. (c) The percentage difference of the daily 1000-year return levels of
calendar and hydrological years for MEV. A negative difference indicates that the T1000 estimate is larger using hydrological
years, whereas a positive difference indicates that the T1000 estimate is larger using calendar years.
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Figure S2: Weighted histograms showing the percentage difference in the values of several return periods (T, see titles)
calculated using calendar years and hydrological years. Included in the figure are all cells where the start of the hydrological
year is different from the calendar year (i.e., the hydrological year does not start in January, see Figure S1a). A negative
difference indicates that the return period estimate is larger using hydrological years, whereas a positive difference indicates
that the return period estimate is larger using calendar years.

3



2 Threshold Analysis for POT
There are many different ways to select an appropriate threshold for the Peak Over Threshold (POT) analysis, such as a value
over a specific threshold, a percentage, or an average number of events per year. We refer to Caeiro and Gomes (2016);
Langousis, Mamalakis, Puliga, and Deidda (2016) for recent overviews of such threshold selection. Which method is the most
effective remains to be an unanswered question. For our global-scale application, we have analyzed to take on average 1 to 5
events per year. This fixed number of events, as opposed to the events over a predefined threshold, ensures that the number of
events per year remains constant for all durations, and allows for analyses on the global domain.

The 100-year return levels for all durations and thresholds are shown in Figure S3a. The boxplot shows minimal difference
in the T 100 estimates for the different thresholds for the short durations, and a minor difference for the longer durations,
namely that the estimated T 100 are slightly larger for inclusion of less events per year. Overall the figure shows only slight
differences, so more information has to be considered for accurate threshold selection.

A comparison of the three parameters for all durations and thresholds is shown in Figure S3b-d. The location and scale
parameters in S3b and c show very similar results for the different thresholds. The shape parameter in S3d, however, has more
variation for the different POT-thresholds. For all durations, the variability of the shape parameter decreases for the inclusion
of more events per year, so more events to fit the distribution to. For durations between 3 and 48 hours, the shape slightly
increases for the inclusion of more events per year. In other words, the shape is lower for on average 1 event per year, and
higher for on average 5 events per year for durations between 3 and 48 hours. For 72 hours, the median shape parameter of
the different thresholds is constant, though the variability decreases for the inclusion of more events. For the 5 and 10-day
durations (120 and 240 hours, respectively), the shape parameter slightly decreases for the inclusion of more (non-extreme)
events. The general pattern of the GP shape parameter is similar to that of the GEV, as they both show a decreasing shape
parameter for increasing durations.

Previous studies that have looked into the GP shape parameter on the global domain focused on daily durations. Papalexiou
and Koutsoyiannis (2013) estimated the mode of the shape for daily precipitation as 0.134, but displaying a large spread.
Serinaldi and Kilsby (2014) estimated the shape for four different seasons based on 1898 stations with more than 100 years
of data. They found the shape depends on the season and varies between 0.061 and 0.097, also displaying a large spread.
Furthermore, they found that if you lower the threshold and include more non-extreme events, the shape parameter is higher.
Our results are similar to that of Serinaldi and Kilsby (2014), as the median for daily precipitation for the different thresholds
varies between 0.711 and 0.918, and we also found that the inclusion of more non-extreme events leads to a higher shape
parameter for daily precipitation.

In short, the above analysis shows that the threshold selection is of minor influence on the estimation of the 100-year return
level. Of the three underlying parameters, the threshold selection has minimal influence on the location and scale parameter,
though a much greater influence on the shape parameter. The variability of the shape parameter is the highest for the threshold
of on average 1 event per year, and decreases when more non-extreme events are used to fit the distribution to. Furthermore,
the shape parameter increases for the inclusion of more events for the shorter durations (3-hours to 2-days), remains constant
for a 3-day duration, and decreases for the 5 and 10-day durations. Based on these analyses, we chose to show the threshold
of on average 3 events per year in the main manuscript, as that threshold has the right balance of a low variability and not as
much of an underestimation of the 100-year return levels for the longest durations.
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Figure S3: Weighted boxplot showing the distribution of (a) the 100-year precipitation return levels, and the (b) location,
(c) scale, and (d) shape parameters for several durations and thresholds for the Peak Over Threshold method. Thresholds
range from on average one to five events per year. The top and bottom of the boxes represent the 75th and 25th percentiles,
respectively. The whiskers denote the 1st and 99th percentiles. The dashed gray horizontal line in (d) indicates exponential
tails. A shape parameter smaller than zero indicates a thin tail with an upper limit, a shape parameter larger than zero indicates
a heavy power-law tail.
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3 Shape Parameter
The GEV and MEV distributions are both flexible and able to describe different tail behaviors. The tail behavior the two
distributions varies, see Section 2.2.2 in the main manuscript for an overview and Figure S4 for different combinations of
scale and shape parameters.

Maps of the shape parameter for the three distributions for daily duration are shown in Figure S5. The spatial patterns
of the shape parameters are largely similar to those of the heaviness hT10−T100−T1000, described in Section 3.3 and Figures 5
and 6 of the main manuscript. There are, however, some notable differences. For MEV, the mountainous areas are more
defined, indicated by higher shape values (less heavy tail behavior). Looking at the shape parameter, we find, however, that
the relationship of the Weibull shape parameter with elevation is more complicated. Lower shapes (heavier tails) are generally
observed on the leeward side of large mountain ranges, and higher shapes (though still indicative of heavy-tail behavior) on
the windward side that is dominated by orographically enhanced frontal precipitation. This is for example visible in the Rocky
Mountains, Indonesia, and Norway, and corresponds to findings of Cavanaugh and Gershunov (2015, their Figure 5), who
showed that exponential tails are observed in regions where extreme precipitation is predominantly generated by one type of
system.
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Figure S4: (a) Behavior of the shape (ξ ) and scale (σ ) parameters of the GEV distribution, with a constant location parameter
(µ), and (b) behavior of the shape (w) and scale (C) parameters of the MEV-Weibull distribution, with a constant number of
events (N). The results for MEV have been obtained with constant w, C and N parameters for each year. The values of the
shape and scale parameter pairs have been chosen such that they all have a precipitation depth of approximately 100 mm for
a 10-year return period.
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Figure S5: The shape parameter (−) for daily precipitation calculated for different extreme value methods: (a) GEV, equation 1
— ξ GEV, (b) POT, equation 2 — ξ GP and (c) MEV, equation 3 — w. For MEV, the mean shape parameter of all yearly Weibull
distributions is displayed. The colorbar min and max are based on the 1st and 99th percentile. For GEV and POT, red indicates
a thin shape with an upper limit, white an exponential shape, and blue a heavy power-law shape. For MEV all median shapes
are indicative of sub-exponential heavy shapes, though darker colors are heavier than lighter colors.
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4 Tail Behavior MEV for Different Return Level Combinations
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Figure S6: The heaviness amplification factor h (Eq. 5) for daily precipitation calculated for different combinations of return
levels for the MEV distribution: (a) hT2−T20−T200, (b) hT5−T50−T500, (c) hT10−T100−T1000. Red indicates a thin tail, white an
exponential tail, and blue a heavy tail. See section 2.2.2 for more information on the heaviness metric.
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5 Tail Behavior for Multiple Durations
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Figure S7: The heaviness amplification factor hT10−T100−T1000 (Eq. 5) for 3-hourly precipitation calculated for different ex-
treme value methods: (a) GEV, (b) POT, (c) MEV. Red indicates a thin tail, white an exponential tail, and blue a heavy tail.
See section 2.2.2 for more information on the heaviness metric.
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Figure S8: The heaviness amplification factor hT10−T100−T1000 (Eq. 5) for 6-hourly precipitation calculated for different ex-
treme value methods: (a) GEV, (b) POT, (c) MEV. Red indicates a thin tail, white an exponential tail, and blue a heavy tail.
See section 2.2.2 for more information on the heaviness metric.
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Figure S9: The heaviness amplification factor hT10−T100−T1000 (Eq. 5) for 12-hourly precipitation calculated for different
extreme value methods: (a) GEV, (b) POT, (c) MEV. Red indicates a thin tail, white an exponential tail, and blue a heavy tail.
See section 2.2.2 for more information on the heaviness metric.
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Figure S10: The heaviness amplification factor hT10−T100−T1000 (Eq. 5) for 2-day precipitation calculated for different extreme
value methods: (a) GEV, (b) POT, (c) MEV. Red indicates a thin tail, white an exponential tail, and blue a heavy tail. See
section 2.2.2 for more information on the heaviness metric.
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Figure S11: The heaviness amplification factor hT10−T100−T1000 (Eq. 5) for 3-day precipitation calculated for different extreme
value methods: (a) GEV, (b) POT, (c) MEV. Red indicates a thin tail, white an exponential tail, and blue a heavy tail. See
section 2.2.2 for more information on the heaviness metric.
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Figure S12: The heaviness amplification factor hT10−T100−T1000 (Eq. 5) for 5-day precipitation calculated for different extreme
value methods: (a) GEV, (b) POT, (c) MEV. Red indicates a thin tail, white an exponential tail, and blue a heavy tail. See
section 2.2.2 for more information on the heaviness metric.
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Figure S13: The heaviness amplification factor hT10−T100−T1000 (Eq. 5) for 10-day precipitation calculated for different ex-
treme value methods: (a) GEV, (b) POT, (c) MEV. Red indicates a thin tail, white an exponential tail, and blue a heavy tail.
See section 2.2.2 for more information on the heaviness metric.
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6 Dataset Usage Notes
The GPEX dataset created in this study is available at the 4TU repository (Gründemann et al., 2021). It provides openly
accessible and readily available hydrologically relevant return levels of extreme precipitation estimates worldwide. It contains
the precipitation estimates of the three extreme values distributions, the observed estimates, the parameters of the three distri-
butions, as well as a few other variables used in this study (Table S1). Furthermore, the extreme precipitation estimates and
parameters of the Gumbel distribution are included in the dataset. In this section we provide some possible uses of the dataset,
and instructions and disclaimers for proper use, both for large or regional-scale usage as well as for a single cell or point-scale.

Table S1: Variables included in the GPEX dataset.

Variable Description
GEV estimate Extreme precipitation return levels estimated using GEV (mm)
POT estimate Extreme precipitation return levels estimated using POT (mm)
MEV estimate Extreme precipitation return levels estimated using MEV (mm)
Gumbel estimate Extreme precipitation return levels estimated using Gumbel (mm)
Observed estimate Observed extreme precipitation return levels (mm)
GEV location parameter Location parameter of the GEV distribution
GEV scale parameter Scale parameter of the GEV distribution
GEV shape parameter Shape parameter of the GEV distribution
GEV heaviness Heaviness amplification factor (hT10−T100−T1000) of the GEV distribution
POT location parameter Location parameter for a GEV distribution estimated by fitting the GP distribution
POT scale parameter Scale parameter for a GEV distribution estimated by fitting the GP distribution
POT shape parameter Shape parameter for a GEV distribution estimated by fitting the GP distribution
POT heaviness Heaviness amplification factor (hT10−T100−T1000) of the POT distribution
MEV number of events n parameter of the MEV distribution, number of events per hydrological year
MEV scale parameter Scale parameter of the MEV distribution
MEV shape parameter Shape parameter of the MEV distribution
MEV mean number of events Mean of the n parameter of the MEV distribution, mean number of events per hydrological year
MEV mean scale parameter Mean of the scale parameter of the MEV distribution
MEV mean shape parameter Mean of the shape parameter of the MEV distribution
MEV heaviness Heaviness amplification factor (hT10−T100−T1000) of the MEV distribution
Gumbel scale parameter Scale parameter of the Gumbel distribution
Gumbel shape parameter Shape parameter of the Gumbel distribution
Annual maxima Annual maximum precipitation for each hydrological year (mm)
Start hydrological year Number indicating the month in which the hydrological year starts
Running parameter Running parameter (hours) of the declustering method by Marra et al. (2018)
Land mask Mask used for this study to indicate land cells and ocean cells

6.1 Large-Scale Applications
The GPEX dataset contains global scale extreme precipitation estimates and its parameters at a spatial resolution of 0.1◦,
covering 3-hourly to 10-day durations. The dataset contains information about precipitation extremes for the entire Earth’s
land surface except Antarctica. The estimates of three distributions described in the main manuscript, as well as the return
levels as observed, and estimated using the Gumbel distribution are included in the dataset. Among the three distributions, the
traditional GEV and POT provide comparable large-scale average extremes, although differences can be substantial at smaller
scales. When using the dataset at regional scales, we advise taking the average of the precipitation estimates, as neighboring
cells could differ. Note that since only 38 years of data were available, the fitted model parameters and associated return values
are subject to considerable uncertainty. Furthermore, we acknowledge that the use of just one dataset does not represent the
true uncertainty in the generation of the dataset created. We do not think this affects our results for observed global spatial
patterns significantly, but in a practical setting we recommend verifying the estimates with local observations if available, and
to reproduce the precipitation return level estimates with a full uncertainty range estimation.

The novel MEV distribution provides more spatially coherent patterns of the extremes. Its mean shape parameter for
daily events captures the (heavy-)tail behavior, and follows orographic patterns. The extremes estimated by MEV are higher
than those estimated by GEV and POT. However, for large return periods and long durations, MEV can overestimate the
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extremes, due to the small number of events available for the fitting. We, therefore, recommend analyzing the extremes of all
distributions in this dataset to obtain an indication of the uncertainty.

6.2 Small-Scale Applications
The dataset is also suitable for small-scale applications either in comparative studies or for direct use in data sparse regions,
but one should be aware of the different statistical characteristics of point-scale and grid-scale. Due to averaging effects in
gridded datasets, precipitation extremes of point-scale observations are higher (Cavanaugh & Gershunov, 2015; De Michele,
Kottegoda, & Rosso, 2001; Ensor & Robeson, 2008; Hu et al., 2020; Sivapalan & Blöschl, 1998; Zorzetto & Marani, 2019).
Illustrative examples of two locations, Vienna and San Francisco, are included in Figure S14. Analysis of the return level plots
shows the estimates of the three distributions discussed in the main manuscript, as well as the estimates using the Gumbel
distribution compared to the observed ones. We converted the annual maximum precipitation to ’observed’ return levels
(Figure S14e+j). It should be kept in mind though that these ’observed’ return levels are also different from the ’true’ return
levels. For (sub-)daily durations and low return periods, there is generally a good agreement between the observed return
levels and the estimates of the three EVDs. For longer durations and return periods, however, the estimated extremes deviate
from the observed extremes. This is seen in San Fransisco (Figure S14f-j) where MEV overestimates and GEV, POT and
Gumbel underestimate the extremes.
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Figure S14: Return level plots for specific locations and different distributions. a–e) Vienna, Austria (48.234◦N, 16.415◦E)
and f–j) San Francisco, California, USA (37.784◦N, 122.400◦W). Observed (e & j) are the annual maxima converted to return
periods.

Furthermore, increasing event durations result in lower shape parameters (less heavy tails), which was seen for all three
distributions discussed in the main manuscript. An implication of this is that for long-durations the shape parameter indicates
a finite endpoint (GEV and POT), or a very thin tail (MEV), while heavier tails are generally observed for short-durations.
When estimating very large return periods (e.g., T 500), it is therefore possible for shorter duration estimates to be more intense

17



than the corresponding quantiles computed for longer durations, which is physically impossible (see also Figure S14a,b,f and
g). Additionally, Papalexiou and Koutsoyiannis (2013) argued based on long time series that the true population GEV shape
parameter of daily precipitation lies between exponential and heavy-tail behavior, and thin-tails lead to an underestimation of
the extremes. For applications where underestimation is undesirable, we have included the extreme precipitation estimates us-
ing the Gumbel distribution as well. The Gumbel distribution is an exponential distribution, and equal to the GEV distribution
where the shape parameter equals zero. Therefore, if the shape parameter of GEV or POT is negative, the Gumbel estimates
could be used instead in order to avoid underestimation.

To get a better understanding of the range and uncertainty of a single cell location, we recommend to look at return level
plots of the four distributions at the cell of interest in combination with its neighboring cells. This is particularly important
for GEV and POT, due to the absence of coherent spatial patterns and the erratic manifestation of the tail behaviors. Previous
results (Zorzetto, Botter, & Marani, 2016) show that the benefits of MEV over GEV are greater for large return periods
relative to the sample size available for the fit. Hence, for the estimation of large quantiles, MEV may be presumed to be more
accurate. Depending on the practical application one could then choose to use the most extreme value, use the MEV value,
use the Gumbel value in case of a negative shape for GEV or POT, or use a spatial average of the GEV and POT estimates.
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