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Abstract

Pore network models are efficient tools for upscaling flow and transport properties in porous media. This work introduces a

new formal mathematical derivation of the discrete equations governing solute transport in a pore network model. A double

Laplace transform technique is applied by enforcing mass flux continuity along with the interfaces between pores and throats.

A non-local semi-analytical formulation results. Solutions are given as a sum of convolution products with time-dependent

and exponentially decaying local Péclet-dependent infinite series. Continuous concentration profiles along throats are calculated

analytically, a posteriori, from time-dependent numerically simulated concentrations in pores. The upwind and central-difference

schemes of the widely used mixed-cell method are found to be equivalent to the asymptotic form of this new formulation for

the advective and diffusive dominant regimes, respectively. Therefore, the validity range of these static methods is established.

The model was compared to the delay differential equations approach, a newly derived analytical solution, and mixed-cell

methods on idealized one-dimensional networks eliminating topological disorder. Concentrations in pores are best reproduced

when transport in the throats is not neglected unlike for the mixed-cell method leading to early breakthrough and first-order

moment. An efficient numerical scheme truncating the encoded memory effects in the convolution kernels is introduced. This

paves the way for the model application to realistic networks extracted from digital rock images. We caution against using static

formulations as the error can be very large locally before attending a steady-state.
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Abstract15

Pore network models are efficient tools for upscaling flow and transport properties in16

porous media. This work introduces a new formal mathematical derivation of the dis-17

crete equations governing solute transport in a pore network model. A double Laplace18

transform technique is applied by enforcing mass flux continuity along with the in-19

terfaces between pores and throats. A non-local semi-analytical formulation results.20

Solutions are given as a sum of convolution products with time-dependent and ex-21

ponentially decaying local Péclet-dependent infinite series. Continuous concentration22

profiles along throats are calculated analytically, a posteriori, from time-dependent23

numerically simulated concentrations in pores. The upwind and central-difference24

schemes of the widely used mixed-cell method are found to be equivalent to the asymp-25

totic form of this new formulation for the advective and diffusive dominant regimes,26

respectively. Therefore, the validity range of these static methods is established. The27

model was compared to the delay differential equations approach, a newly derived28

analytical solution, and mixed-cell methods on idealized one-dimensional networks29

eliminating topological disorder. Concentrations in pores are best reproduced when30

transport in the throats is not neglected unlike for the mixed-cell method leading to31

early breakthrough and first-order moment. An efficient numerical scheme truncating32

the encoded memory effects in the convolution kernels is introduced. This paves the33

way for the model application to realistic networks extracted from digital rock images.34

We caution against using static formulations as the error can be very large locally35

before attending a steady-state.36

1 Introduction37

Accurately predicting solute transport migration at multiple scales in subsurface38

aquifers is identified among urgent societal and scientific challenges in water resources39

engineering, environmental pollution, and underground energy storage (Miller et al.,40

2013). Indeed, at the pore-scale, a porous medium lends itself to a random distribu-41

tion of interconnected void space of non-uniform shape (Scheidegger, 1974; Dullien,42

1992). At the representative elementary volume (REV) scale (Bear, 1972), however,43

this detailed pore-scale description is lumped into fundamental macroscopic flow and44

transport properties commonly used in current state-of-the-practice. These are, for45

instance, components of the intrinsic permeability and the hydrodynamic dispersion46

tensors governing the macroscopic behavior of solute transport. There is an over-47

whelming experimental and field evidence of solute dispersion dependence on the scale48

of observation as consistently documented in the literature (Anderson & Cherry, 1979;49

Pickens & Grisak, 1981; Sudicky et al., 1985; Silliman & Simpson, 1987; Silliman et50

al., 1987; Neuman, 1990; Schulze-Makuch, 2005). Gelhar et al. (1992) have reviewed51

observations from 59 field sites and concluded a high dependence of the longitudinal52

dispersivity on the observation scale. They indicated a variability range over six orders53

of magnitude (between 10−2 m and 104 m) for scales ranging between 10−1 m and 105
54

m, respectively. This field data-driven approach carries out several limitations because55

it does not translate the mechanistic impacts of pore-scale variability on the emergence56

of macroscopic transport mechanisms. In other words, it ignores the multiscale nature57

of solute transport processes. In order to make reliable predictions of subsurface flow58

and transport at the scales of interest, accurate and efficient numerical models need59

to be introduced. In particular, pore-scale models are essential tools to bridge the gap60

between the mechanistic processes occurring at the microscopic scale and their observ-61

able macroscopic manifestation at the REV scale. This is essential to understand how62

the pore-structure details control the transport processes for engineering applications.63

Various numerical techniques such as the Lattice-Boltzmann (LB) method (Chen64

& Doolen, 1998; Yoon et al., 2015), the smoothed particle hydrodynamics (SPH)65

(Monaghan, 1992; Tartakovsky & Meakin, 2006; Tartakovsky et al., 2008), finite el-66
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ement (FE) (Zaretskiy et al., 2010; Bastian et al., 2011), and finite volume (FV)67

based computational fluid dynamics (CFD) methods (Molins et al., 2012; Icardi et68

al., 2014; Trebotich et al., 2014; Molins, 2015) have been used for the simulation of69

flow and solute transport in porous media at the pore-scale. All these simulation70

techniques are classified as direct approaches as they process directly the void space71

of the microstructure (Zaretskiy et al., 2010; Molins et al., 2012; Mostaghimi et al.,72

2012; Raeini et al., 2014, 2015). For instance FV and FE methods are Eulerian, the73

SPH technique is Lagrangian based, while LB is a kinetically based method (Chen74

& Doolen, 1998). As concluded from a recent inter-comparison study of pore-scale75

solute transport methods on two-dimensional micro-model experiments (Oostrom et76

al., 2016) and three-dimensional sphere packs (Yang et al., 2016), direct simulation77

methods require higher computational resources despite their high fidelity and accu-78

racy. Limitations associated to the length scale that could be processed using direct79

approaches have made network modeling a very popular efficient alternative. Addi-80

tionally, within pore network modeling it is more straightforward to incrementally81

support additional mass transport processes for applications of practical interest such82

as denitrification (Laudone et al., 2011), non-aqueous phase liquid dissolution (Dillard83

& Blunt, 2000), electrokinetic remediation (S. Li et al., 2014), geochemical wellbore ce-84

ment carbonation (Raoof et al., 2012), biological clogging (Thullner & Baveye, 2008),85

carbonate matrix acidizing (Fredd & Fogler, 1998; Budek & Szymczak, 2012; Tansey86

& Balhoff, 2016), and the mechanisms of particle fines transport, release, and capture87

(Sharma & Yortsos, 1987).88

Network modeling in interconnected capillary ducts was pioneered by Fatt (1956a,89

1956b, 1956c) to upscale relative permeability of immiscible two-phase flow using vol-90

umeless pores and throats with distributed sizes. It seems, however, that the first91

reported use of three-dimensional pore networks goes back to Owen (1952) who inves-92

tigated the relationship between a porous medium resistivity and pore space geometry.93

Those earlier models represent a dramatic shift from the simplest depiction of porous94

media as a bundle of capillary tubes of arbitrarily varying diameters failing to repro-95

duce experimental observations. For more than five decades later, it is recognized that96

current state-of-the-art multiphase flow network models are predictive (Blunt, 2001;97

Blunt et al., 2013) if the network topological and geometrical properties are preserved98

during network extraction from pore space images (Blunt et al., 2013). Compared to99

recent advances in multiphase fluid flow, there is much less progress targeting net-100

work modeling of solute transport. Nowadays, there is a strong regain of interest in101

network modeling as a direct consequence of sustained rapid progress of non-invasive102

three-dimensional synchrotron X-ray micro-tomographic imaging (micro-CT) (Blunt103

et al., 2013; Wildenschild & Sheppard, 2013) and nuclear magnetic resonance spec-104

troscopy (Song et al., 2008) instrumentations. The obtained images drive topological105

and morphological information on the porous media and so transport properties can106

be deduced using numerical tools. As these technologies are becoming almost a rou-107

tine, opportunities to successful quantitative prediction of observations by pore-scale108

modeling are turning out from hope to foreseeable confidence.109

Existing mass transport network models broadly belong to two main categories.110

First, in Lagrangian based models solute dispersion behavior in the rock is determined111

from a Markovian random walk process related to a brownian motion of a large num-112

ber of massless particles. During their individual displacement, particles stochastically113

jump between streamlines in the transverse flow direction only (Sahimi et al., 1983,114

1986) or in transverse and longitudinal directions (Sorbie & Clifford, 1991; Bijeljic et115

al., 2004). Second, Eulerian network models solve instead directly a discrete set of116

mass balance equations at the network elements. Popular formulations in this cate-117

gory rely on a set of mass balance equations given at all pores but not in the throats.118

These are the so-called mixed-cell methods (MCM) (Acharya et al., 2005, 2007; L. Li119

et al., 2006, 2008; Kim et al., 2011; Mehmani et al., 2012). This approach is so popular120
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because it is simple to implement and efficient. There exist many numerical variants121

of this approach. The most frequent in the literature are based on a first-order up-122

wind finite difference like scheme (Acharya et al., 2005; Raoof et al., 2012; S. Li et al.,123

2014; Mehmani et al., 2014; Qin et al., 2016; Tansey & Balhoff, 2016; Sadeghi et al.,124

2020). The second-order central difference scheme was also adopted in several works125

(Mehmani et al., 2012; Xiong et al., 2015, 2016). The latter is known to be stable only126

for moderate Péclet numbers. Sadeghi et al. (2020) have introduced three alternative127

formulations inspired from the CFD literature including a hybrid scheme, a power-law128

scheme, and an exponential scheme. Their work acknowledges the inaccuracy of the129

upwind MCM scheme whereas the exponential scheme was the most accurate when130

confronted to direct numerical simulations. A common drawback of all these network131

modeling approaches is that they are basically static and not time-dependent. It is ac-132

tually unclear whether these methods are reliable tools for modeling dispersion in pore133

networks. Furthermore, these methods lack a defensible mathematical background as134

the underlying numerical schemes are questionably borrowed from those developed135

for solute transport at the continuum scale (Zheng & Bennett, 2002; Bear & Cheng,136

2010).137

Because MCM formulations overlook solute mass balance in throats alternative138

approaches have been sought. For instance, Raoof et al. (2013) have considered a139

modified mass balance equation on each pore. The concentration in each throat was140

linearly related to concentrations in its pore neighbors. Next, this relationship was141

substituted into the pores mass balance equations. Milligen and Bons (2014) have142

proposed an analytical expression of the mass flux in each throat assuming plug flow.143

Another method allowing to take into account the non-uniformity of the concentration144

in the network elements, including the pores and the throats, was given by Algive et145

al. (2010); Varloteaux et al. (2013). In their work, the moments theory was used to146

upscale the effective transport parameters assuming an asymptotic regime. Another147

previously developed approach adds additional degrees of freedom positions along each148

throat to accurately capture the concentration gradient. This method was proposed to149

simulate bioclogging in channels of a two-dimensional regular network by resorting to150

a finite difference scheme (Suchomel et al., 1998). This approach becomes cumbersome151

and intractable for realistic three-dimensional networks. Indeed, increased resolution152

in the throats is strategic for many applications involving a change in its geometric153

properties such as clogging, salt/mineral precipitation/dissolution reactions (L. Li et154

al., 2006, 2008; Raoof et al., 2012; Xiong et al., 2016), just to name a few. Notably,155

while all these alternative formulations acknowledge solute transport in the throats156

they are all static, which contradicts the endeavor of pore-scale modeling. Because157

these solute transport dynamics are fundamentally ignored or artificially repaired in158

the throats by the standard MCM formulation and its derivatives, a general dynamic159

formulation is lacking.160

Until now, only two previously published works have considered the non-local161

effects when modeling solute transport by Eulerian network models. Martins et al.162

(2009) have indicated that non-local effects in porous media are manifested by the163

dependence of the pore concentration on the concentration history in other pores. They164

have formulated the problem as a delay differential equations system where the delay165

explicitly depends on the local characteristics of each throat. This model is limited,166

however, to a purely advective regime. Mehmani and Balhoff (2015a) performed space-167

time convolutions with semi-empirical elementary throat response functions calibrated168

with CFD simulations. Their method was shown to incorporate shear dispersion effects169

in throats by reproducing experimental data of longitudinal dispersion. It is, however,170

unclear how all these methods relate to each other. Thus, the objective of this paper171

is to challenge this issue by providing a generalized approach establishing a formal link172

between all MCM models and their derivatives.173
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The paper outline is as follows: section 2 recalls how local fluid velocities and flow174

rates are computed in a pore network. In section 3, the discrete form of mass balance175

equations in pores and throats will be presented. Using a double Laplace transform176

for the two sets of mass balance equations general expressions are derived in Laplace177

space. Using an analytical inverse Laplace transform technique, novel relationships178

expressing concentration behavior in network elements are derived. This will enable179

understanding the link between the different methods from the literature. Next, an180

accelerated numerical scheme is introduced to efficiently solve the underlying linear181

systems. The model is compared with the upwind MCM and the delay differential182

equations approaches establishing its performance. In particular, a demonstrative183

application on a realistic network extracted from a reconstructed three-dimensional184

pore space image highlights the inherent shortcomings of the asymptotic approaches.185

Finally, concluding remarks close the paper.186

2 Fluid Flow Simulation in a Pore Network187

Let us consider the pore network model (PNM) as a collection of a total number
of np interconnected pores with nt throats of distributed sizes ( Figure 1). A PNM is a
simplified representation of the porous media geometry enabling an analytic description
of local flow and transport processes. We further assume, without loss of generality,
that each throat has a constant cross-section. A saturated steady-state flow field
in this network is established along the x-direction by imposing a pressure gradient
∆p = p1 − p2 across the two x-orthogonal faces of the sample as illustrated in Figure
1. For an incompressible fluid, volume conservation implies that the algebraic sum of
discharge rates at all throats meeting at pore i is zero, such that

zi∑
j=1

Qij = 0 (1)

where Qij is the local flow rate between pores i and j, zi is the coordination number188

of pore i. Equation 1 is the hydraulic analog to Kirchhoff’s nodal rule in electrical189

engineering where the algebraic sum of currents in a network of resistors meeting at a190

point is null.191

For a creeping flow regime at low Reynolds numbers (Re � 1) inertial forces
are negligible compared to viscous forces and the flow rate is related to average pore
pressure by the pore-scale constitutive relationship

Qij =
gij
lij

(pi − pj) (2)

where gij and lij are the saturated hydraulic conductance and the total length of
the throat ij, respectively (Figure 2). pi is the pore pressure at node number i.
The hydraulic conductance is approximated as the harmonic mean of each individual
conductance weighted by their length as illustrated in Figure 2, such that

lij
gij

=
li
gi

+
lj
gj

+
lt
gt

(3)

where li is the half-length of pore i and lt is the strict length of the throat.192

Pore network geometries are characterized by their shape factor G (Mason &
Morrow, 1991) as the ratio of the sectional area S to the square of perimeter length.
There is no hypothesis on the shape of the network throats cross-sections as they may
have circular, triangular, or square shapes. When considering laminar flow through a
cylindrical pipe of constant cross-section, its hydraulic conductance is given according
to the Hagen-Poiseuille equation

gt = Gf
S2G

µ
(4)

–5–
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Lx

P2P1

Figure 1. Example of a pore network model (PNM) of a sandstone porous medium with

distributed elements sizes. Pore volume is proportional to sphere size. Prescribed pressures at

inflowing/outflowing boundaries for modeling single-phase fluid flow are equally shown.

where µ is the dynamic viscosity of the fluid. The shape factor multiplier, Gf , value
equals 0.5, 0.6, and 0.5623 for circular, equilateral triangles and squares, respectively
(Patzek & Silin, 2001). Inserting equation 2 into equation 1 yields

zi∑
j=1

gij
lij

(pi − pj) = 0 (5)

Once the pressure field in all internal pores is calculated, fluid velocities U =
Qij/S in all network connections are simply post-processed by direct application of
equation 2. By assuming also that the network size is sufficient for a REV description
of a porous medium (Bear, 1972) we can calculate the macroscopic water velocity, vx,
along the x-direction in the network as

vx =
Lx
VT

Qout =
Lx
VT

∑
Γout

Qij (6)

where Lx is the network length parallel to x-direction, VT is the total volume of the
network including all pores and throats, Qout is the outflow rate at the exit bound-
ary Γout. By simple application of Darcy’s law it is straightforward to calculate the
equivalent saturated permeability of the network in x-direction, kx, from the following
relationships

kx =
µL2

x

VT∆p
Qout (7)

–6–
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Pore i

Pore j

Throat ij
x

s

x1

x2

lt

lij

l i

l j

Figure 2. Schematic view of pore half-lengths li, lj , the strict throat length lt, and the total

throat length for a pore-throat-pore assembly.

Finally, by sweeping the same applied pressure gradient across the faces orthogonal193

to y and z directions we can quantitatively estimate the diagonal upscaled permeabil-194

ity tensor k = diag(kx, ky, kz) as a function of network geometrical and topological195

properties.196

3 Semi-Analytical Solute Transport Solutions in a Pore Network197

The rationale of approximating the pore space with a segmented pore network198

is to reduce the complexity and higher computational demands associated with direct199

methods. The principal ingredient of this approach is the coexistence of two intercon-200

nected basic entities corresponding to the so-called pores and throats corresponding201

to large and narrow portions of the void space, respectively. Most previous Eulerian202

pore network models considered a single mass balance in the pores to calculate the203

concentration evolution inside the network. In this section taking into account the204

geometrical simplification induced by the PNM approach, we integrate analytically205

the model and derive a new mathematical formulation to address this limitation.206

3.1 Governing Solute Transport Equations207

Assuming an incompressible stationary flow regime of a newtonian non-reactive
viscous fluid in a porous medium, the equation governing mass transport in all elements
of the network is given by

∂c(−→r , t)
∂t

= −u(−→r , t) · ∇c(−→r , t) +D∆c(−→r , t) (8)

where c(−→r , t) is the local solute concentration, u is the pore-scale fluid velocity, and208

D is the solute diffusivity. D is nothing more than the molecular diffusion coefficient209

Dm in pores.210

3.1.1 Solute transport equations in pores211

Integrating equation 8 on the ith pore whose mean concentration at time t is
Ci(t) gives

Vi
∂Ci
∂t

(t) = −
∫

Γi

(uc(−→r , t)−D∇c(−→r , t)) · n dΓi (9)

–7–
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where Vi is the volume of pore i, Γi is the union of solid-fluid Γs and fluid-fluid Γl
interfaces at pore i. Notably, chemical surface reactions are not taken into account
(i.e. uc−D∇c = 0 on Γs). Hence, equation 9 is simply rewritten as

Vi
∂Ci
∂t

=
∑
l+

∫
Γl

(uC −D∇C) · n dΓl

−
∑
l−

∫
Γl

(uC −D∇C) · n dΓl

(10)

where Γl is the union of all fluid-fluid interfaces between a pore and its adjacent throats.
l+ and l− denote filling and draining throats, respectively. By respectively introducing
upstream and downstream total mass fluxes at fluid interfaces Γl denoted by J+

l and
J−l , equation 10 becomes

Vi
∂Ci
∂t

=
∑
l+

J+
l Γ+

l −
∑
l−

J−l Γ−l (11)

The left-hand side term quantifies solute accumulation inside the pore, while the right-212

hand side terms represent upstream (positive) and downstream (negative) total mass213

fluxes from adjacent throats, respectively.214

3.1.2 Solute transport equations in throats215

Consider a throat of length l, its cross-section is implicitly defined by the function
S as schematically depicted in Figure 2. Because the fluid velocity in the throat is
independent on its curvilinear position, mass transport in the throat is governed by
the following one-dimensional convection-diffusion equation

∂C

∂t
(ξ, t) = −U ∂C

∂ξ
(ξ, t) +D

∂2C

∂ξ2
(ξ, t) (12)

where U and C are the average velocity and concentration on a cross-section of a
throat. Inside the throats D may be approximated according to the Taylor (1953) and
Aris and Taylor (1956) theory for cylinders with moderate to high Péclet regimes. We
further approximate upstream and downstream total mass fluxes at positions ξ1 = 0
and ξ2 = l, respectively, by the following relationships

J−ξ1(t) ∼= J(0, t) = UC(0, t)−D∂C
∂ξ

(0, t) (13)

J+
ξ2

(t) ∼= J(l, t) = UC(l, t)−D∂C
∂ξ

(l, t) (14)

To be in line with notation conventions introduced previously, the total mass fluxes216

J−ξ1(t) and J+
ξ2

(t) are considered to be downstream (negative) and upstream (positive)217

fluxes with respect to each pore neighbor. Note that J−ξ1(t) and J+
ξ2

(t) are only ap-218

proximations to exact values of J(0, t) and J(l, t), respectively, because equation 12 is219

only an approximation to equation 8 in the throats.220

3.2 Solute Transport Solutions in the Laplace Domain221

To solve equations 11 and 12 subject to initial and boundary conditions, we use
the Laplace transform method to derive a new semi-analytical formulation. Therefore,
in this subsection we start first by deriving Laplace transforms, L , of these two gov-
erning solute transport equations. Based on the definition of the Laplace transform
for a real-time domain function f(t)

f̄(s) = L (f(t)) = lim
τ→+∞

∫ τ

0

e−stf(t) dt (15)

–8–
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Equations 11 and 12 will be rewritten in Laplace space resulting literally into linear222

algebraic equations and linear differential equations, respectively. Additionally, we223

derive analytical expressions, in the Laplace domain, of the total mass flux at the end224

positions of any throat.225

3.2.1 Solute concentration in throats226

Assuming zero initial concentration in the whole network, equation 12 is rewritten
in Laplace domain as

sC(ξ, s) + U
∂C

∂ξ
(ξ, s)−D∂

2C

∂ξ2
(ξ, s) = 0 (16)

where C is the throat concentration in Laplace space and s is the Laplace variable.
The latter equation is subject to the following boundary conditions

C(0, s) = Cξ1(s) (17)

C(l, s) = Cξ2(s) (18)

Equation 16 is a second-order linear partial differential equation whose characteristic
polynomial is

s+ Ur(s)−Dr2(s) = 0 (19)

and whose roots are interpreted as inverse local characteristic lengths

r1(s) =
U +

√
U2 + 4Ds

2D
=

U

2D
+ δ(s) (20a)

r2(s) =
U −

√
U2 + 4Ds

2D
=

U

2D
− δ(s) (20b)

δ(s) =

√
U2 + 4Ds

2D
(20c)

Hence, general solutions to this homogeneous equation are given as

C(ξ, s) = A(s)er1ξ +B(s)er2ξ (21)

where the coefficients A(s), B(s) are determined from equations 17 and 18. By rear-
ranging we obtain

A(s) =
Cξ1(s)er2l − Cξ2(s)

er2l − er1l
(22a)

B(s) =
Cξ2(s)− Cξ1(s)er1l

er2l − er1l
(22b)

By inserting equations 22a and 22b into equation 21 and rearranging, we can obtain
the final expression of the throat concentration in Laplace domain as

C(ξ, s) = e
Uξ
2D

sinh (δ(l − ξ))
sinh (δl)

Cξ1(s) + e
−U(l−ξ)

2D
sinh (δξ)

sinh (δl)
Cξ2(s) (23)

Notice that equations 21, 22a, and 22b are similar to those introduced by de Arcangelis227

et al. (1986) and Alvarado et al. (1997) to upscale the longitudinal dispersion in porous228

media with pore network modeling. Despite the elegant formulation of the Laplace229

transform technique and its usefulness to perform moment analysis, time-dependent230

predictions by this method are unlikely limiting its application in practice. Indeed, this231

technique was classified as distinct from Eulerian mass balance models. In the following232

subsection we alleviate this limitation by further analytical inversion of equation 23233

back into the time domain.234

–9–
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3.2.2 Total solute mass flux in throats235

From equation 23 it is straightforward to express the total mass flux of solute
concentration J = UC −D ∂C

∂ξ , in Laplace space, at any abscissa, ξ, along the throat

J(ξ, s) =
e
Uξ
2D

sinh(δ(s)l)

(
U

2
sinh(δ(s)(l − ξ)) +Dδ(s) cosh(δ(s)(l − ξ))

)
Cξ1(s)

+
e−

U(l−ξ)
2D

sinh(δ(s)l)

(
U

2
sinh(δ(s)ξ)−Dδ(s) cosh(δ(s)ξ)

)
Cξ2(s)

(24)

Then it becomes easier to analytically calculate upstream and downstream total mass
fluxes in any throat. These two analytical expressions are given by the following
expressions

J(0, s) =

(
U

2
+Dδ(s) coth(δ(s)l)

)
Cξ1(s)−De− Ul

2D
δ(s)

sinh(δ(s)l)
Cξ2(s) (25)

J(l, s) = De
Ul
2D

δ(s)

sinh(δ(s)l)
Cξ1(s) +

(
U

2
−Dδ(s) coth(δ(s)l)

)
Cξ2(s) (26)

3.2.3 Solute concentration in pores236

Laplace transform of the mass balance equation 11 at pore i is given as follows

VisCi(s) =
∑
l+

J+
l (σ, s)Γ+

l −
∑
l−

J−l (σ, s)Γ−l (27)

which is equivalent to

VisCi(s) =
∑
l+

J+
l (l, s)Sl(l)−

∑
l−

J−l (l, s)Sl(0) (28)

where Sl(ξ) is the cross-section area at ξ. Additionally, due to the fluid incompress-
ibility the following expression holds at any pore∑

l+

UlSl(l) =
∑
l−

UlSl(0) (29)

Substitution of equations 25, 26, and 29 into equation 28 gives the final expression of
the mass balance equations in the pores with respect to Laplace domain

VisCi(s) =
∑
j+

Dije
Peij

2 aij(s)Sij(lij)Cj(s) +
∑
j−

Dije
−
Peij

2 aij(s)Sij(0)Cj(s)

−
∑
j

Dijaij(s) cosh(δij(s)lij)SijCi(s)
(30)

where Peij =
Uij lij
Dij

is the Péclet number of throat ij, aij(s) =
δij(s)

sinh(δij(s)lij)
and237

δij(s) =

√
U2
ij+4Dijs

2Dij
.238

Equation 30 is only valid for internal pores of the network. For other pores,239

close to upstream or downstream fixed pressure boundaries, a fixed advective mass240

flux or Neumann second-type boundary condition are typically prescribed. Therefore,241

equation 30 is slightly modified to account for such boundary conditions.242

3.3 Solute Transport Solutions in the Time Domain243

The Laplace transformed equations 23, and 30 are analytically inverted back244

into the time domain. By using complex inversion analysis based on the methods of245
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the contour integration theory, we obtain time-dependent expressions of solute con-246

centrations in pores and throats of the network. In this work, we have avoided to247

use numerical inverse Laplace transform techniques which are well-known to behave248

as ill-conditioned problems. Indeed, there is no universal method which is known to249

work satisfactorily well for all the range of Péclet numbers (Wang & Zhan, 2015).250

Therefore, in a network where the local Péclet numbers distribution is expected to251

closely follow the heterogeneity of the local velocity distribution, numerical inversion252

techniques are not suitable nor stable. More specifically, it was reported (Alvarado253

et al., 1997) that the numerical Laplace inversion, by the Stehfest method (Stehfest,254

1970), was prohibitive for networks larger than 20 x 20 pores and inaccurate for Péclet255

numbers larger than 10.256

By considering s as a complex variable, the Laplace inversion formula is given as
follows

f(t) = L −1(f̄(s)) = lim
y→+∞

1

2πi

∫ x+iy

x−iy

estf̄(s) ds (31)

where i =
√
−1, x = <(s) is an arbitrary real value greater than the real parts of all257

singularities of f̄(s), and y = =(s). The Bromwich integral in equation 31 is evaluated258

by genuine application of Cauchy’s residues Theorem. The resulting functions are not259

among those lying out in standard tabulated formulas of the inverse Laplace transform.260

Thus, we use Laurent’s series expansion technique for analytical calculation of the261

residues as fully detailed in Appendices A and B.262

3.3.1 Solute concentration in pores263

Inverse Laplace transform of equation 30 leads to the following expression (see
proof details in Appendix A) for all internal pores

ViCi(t) =
∑
j+

e
Peij

2 Sij(l)
(
KI
ij ∗ Cj

)
(t) +

∑
j−

e−
Peij

2 Sij(0)
(
KI
ij ∗ Cj

)
(t)

−
(
K̃II
i ∗ Ci

)
(t)

(32)

where ∗ denotes the convolution product. The throat kernel functions KI
ij and KII

ij are264

given by equations A-24a and A-24b, respectively. The first terms in their expressions265

are time-independent while the infinite series terms correspond to decaying transient266

frequencies. The surface-area weighted kernel function K̃II
i depends only on KII

ij as267

shown in equation A-25. These functions encode Péclet-dependent network modes268

describing solute transport dynamics of fluid migration in the heterogeneous pore269

space. Notably, this newly derived formulation is in sharp contrast to the earlier static270

Eulerian mass balance network approaches such as the mixed-cell methods. Mass271

balance network modeling by equation 32 explicitly reflects that solute transport at272

the pore-scale is inherently a nonlocal phenomena whereby the concentration of a pore273

at present time depends on the concentration history at all pore neighbors. This is274

equivalent to the semi-empirical approach introduced by Mehmani and Balhoff (2015a).275

However, the model in equation 32 is more explicit.276

3.3.2 Solute concentration in throats277

Inverse Laplace transform of equation 23 leads to the following expression for the
concentration profile inside a throat (See proof details in Appendix B)

C(ξ, t) = KI
l (ξ, t) ∗ Cξ1(t) +KII

l (ξ, t) ∗ Cξ2(t) (33)

Where the space- and time-dependent kernel functions KI
l and KII

l are given by278

equations B-12a and B-12b, respectively. Equation 33 shows that the concentration279

profile in a throat depends only on the concentration history of the two pores to280
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which it is attached. The kernel functions provide the time-dependent weights for281

each concentration value. These kernel functions are expressed as infinite series with282

decaying time-dependent terms. Equation 33 is optionally applied in a post-processing283

step after solving for the poral concentrations according to equation 32 to retrieve284

solute concentration profiles along any desired throat.285

Figure 3. Shape of the asymptotic basis function KI
l (ξ/l) for different Péclet numbers. Linear

weighting of neighbor pore concentrations is only valid when Pe → 0. For high Péclet numbers

the contribution from the upstream pore concentration dominates over a large portion of the

channel.

The asymptotic concentration in a throat is obtained from equation D-5 in which286

K̂I
l is interpreted as a time-independent weighting basis function. It depends only on287

the local Péclet number expressing the respective contributions from upstream and288

downstream pores. Figure 3 plots K̂I
l (ξ/l) for Péclet numbers 0.1, 2, 5, and 25. A289

linear behavior results for the smallest Péclet numbers leading to conclude that, in290

this case, a throat acts as a perfect solute mixer. However, as the Péclet number291

increases the basis function becomes more concave leading to stronger contribution292

from the upstream pore concentration and less solute mixing inside the pore channel.293

Therefore, assuming a simple linear concentration profile in a throat is only accurate294

under two conditions. The first being the occurrence of an asymptotic regime and295

secondly only at relatively small Péclet numbers. The results in Figure 3 have been296

equally obtained by Sadeghi et al. (2020) when developing the exponential scheme297

considering an exact solution of the steady-state one-dimensional advection-diffusion298

equation inside a cylindrical throat.299
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3.4 Comparison to Standard Network Modeling Approaches300

This section objective is to investigate the validity range of the various MCM301

approaches and to identify their formal link with the introduced theory denoted there-302

after by the Generalized Mixed-Cell Method (GMCM) and given in equation 32.303

The MCM formulations traditionally used to solve for concentration evolution in
a pore network are described by the following equation

Vi
dCi
dt

=
∑
j+

UijS(l)Cj +
∑
j−

UijS(0)Cx +
∑
j

DijSij
Cj − Ci
lij

(34)

Equation 34 is a discrete ordinary differential form of equation 10 governing solute304

transport on nodal pore network positions. The standard MCM scheme results when305

Cx = Ci. This is similar to a first-order upwind finite difference scheme applied to the306

advective term in continuum scale solute transport modeling (Zheng & Bennett, 2002).307

The second-order central difference MCM (CD-MCM) scheme results when Cx = Cj .308

This is equivalent to adding the advective term as a correction to the diffusive flux309

(Sadeghi et al., 2020). The CD-MCM scheme is only stable when Pe < 2 whereas the310

MCM scheme is unconditionally stable.311

At a first glance, we will compare the two MCM formulations with the asymptotic
form of equation 32 given by the following equation (See Appendix C for a complete
derivation) and denoted by GMCM∞ thereafter. The GMCM∞ is obtained while the
diffusion time tdiff is going to zero keeping the Péclet number Pe constant.

Vi
dCi
dt

=
∑
j+

US(l)
e
Pe
2

2 sinh
(
Pe
2

)Cj +
∑
j−

US(0)
e
−Pe

2

2 sinh
(
Pe
2

)Cj
−
∑
j

1

2
US coth

(
Pe

2

)
Ci

(35)

Equation 35 is still markedly different from equation 34. The GMCM∞ formulation312

has an explicit (and inherited) dependence on local Péclet numbers indicating that313

MCM formulations might be valid for a limited range of Péclet regimes. The later314

intuition leads to investigate the asymptotic behavior of the GMCM∞ formulation for315

advective and diffusive dominant regimes, respectively. Proofs given in Appendix C316

are instrumental to show that the CD-MCM and standard MCM schemes are par-317

ticular cases of the GMCM∞ formulation for the lowest and highest Péclet regimes,318

respectively.319

These theoretical findings shed light on the limitations of the MCM formulations320

as general-purpose modeling techniques for transport in pore networks. Their validity321

range is limited to strongly dominant advective and diffusive regimes. This is in322

agreement with the numerical experiments by Sadeghi et al. (2020) showing that MCM323

is not an accurate method even at steady-state. Indeed, the local distribution of Péclet324

numbers inside a 3D disordered network may span several orders of magnitude as shown325

in Figure 4. Hence, the MCM validity range will be exceeded for an important number326

of sites.327

3.5 Numerical Solution Scheme328

The resulting sparse linear system of equations 5 has a symmetric and positive-329

definite global conductance sparse matrix. It is solved with standard sparse direct or330

iterative solvers such as multifrontal techniques (Davis, 2004) or the preconditioned331

conjugate gradient methods (Saad, 2003), respectively. Direct methods outperform332

iterative methods for network size less than np ≈ 104 pores. For very large networks,333

iterative methods are accelerated with algebraic multigrid preconditioning techniques.334
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Figure 4. Distribution of the local Péclet numbers versus throat radii’s inside the Berea

sandstone pore network model from Øren and Bakke (2003).

In this subsection, we give the final expressions of the linear equations systems resulting335

from space-time discretization of the solute transport equations 32 in a pore network.336

Next, we show how to use the particular features of the convolution kernels to gain in337

computational efficiency through development of an accelerated numerical scheme.338

We discretize the poral system of equations 32 in the time domain by the Crank-
Nicolson algorithm. The final form of the linear equations system at time step m is
given as follows

[A]m{C}m =

m−1∑
k=1

[A]k{C}k + {F}m (36)

where [A]k(0 < k < m) matrices are contributions from the tracer concentration339

history in the network. These matrices entries are analytically computed from the340

formulas of the convolution kernels. The last term in equation 36 corresponds to the341

vector {F}m holding the contribution from boundary conditions.342

Notice that entries of the kth adjacency matrix [A]k are computed analytically343

and may be interpreted as weights to previously computed concentration distributions344

in the network at time step k. This numerical formulation retains therefore several345

levels of implicitness into the numerical scheme owing to the dynamic behavior of the346

generalized mass balance formulation. By keeping all these memorised dynamics we347

expect to compute a more accurate concentration field. However, this is accomplished348

with lower computational efficiency and an increase of computer memory storage. To349

remedy to this situation, we make use of observations from porous media physics.350

The latter dictates that an optimal threshold, mτ , for the number of terms, m, to351

keep in equations 36 depends on the distribution of local Péclet numbers and the352

network shapes distributions. For instance, within a pore network with uniform shape353

properties we expect mτ to increase as Pe decreases. The objective of this section is354

to develop a theoretical criterion which estimates mτ to keep a good balance between355

required numerical solution accuracy and the computational effort.356

–14–



manuscript submitted to Water Resources Research

Figure 5. Comparison between the generalized mixed-cell method (GMCM), the mixed-cell

method (MCM), and the delay differential equations (DDE) approaches for modeling purely ad-

vective solute transport evolution in a one-dimensional pore network model with uniform geomet-

rical properties. Computed concentrations by the MCM breakthrough earlier owing to neglecting

solute transport in throats. The GMCM and DDE simulation results are in excellent agreement

demonstrating the equivalence of these two formulations for a purely advective transport regime.

We use the special properties of the convolution kernels, KI
ij and KII

ij , involved
in the discrete transport model to accelerate the computational work. By denoting the
relative error between the first term and the sum of the time-dependent terms in these
series as ε, we can define for each convolution kernel function a characteristic time,
τl, at which it can be considered as constant and all time-dependent terms becomes
negligible. This characteristic time is approximated by the following formula

τl = max

− l2

D(π2 + Pe2

4 )
ln

εPe
(
π2 + Pe2

4

)
4π2

coth

(
Pe

2

) , 0

 (37)

τl is simply interpreted as the time at which the solute transport asymptotic regime
is reached at throat l. Hence, for times higher than τ = max

l
(τl) the solute transport

in the whole network reaches an asymptotic regime. τ depends solely on local char-
acteristic diffusion times, tdiff = l2

D , and local Péclet numbers. Equation 37 shows
that, τ is the global maxima of the function φ(tdiff , tadv) = tdifff

ε (Pe) where tadv is
a characteristic advection time. The function fε(Pe) is expressed as

fε(Pe) = max

− 1(
π2 + Pe2

4

) ln
εPe

(
π2 + Pe2

4

)
4π2

coth

(
Pe

2

) , 0

 (38)
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We note first that tdiff determines the magnitude of τ according to a linearly
increasing relationship. Then, for a fixed tdiff , τ decreases as Pe increases. The
above analysis leads to a simplified calculation of [A]k(0 < k < m) matrices involved
in the numerical solution of pore concentrations at time tm, which are calculated from
convolution kernels over time intervals [tm − tk+1, tm − tk] and [tm − tk, tm − tk−1].
Indeed from the relaxation time τ , we are able to set the integer kmτ = max{k ∈ [1,m] |
tm − tk ≥ τ} that determines the time at which the asymptotic regime is reached in
the network. It follows that the matrices [A]k(0 < k < kmτ ) are equal to a constant
[A]∞ adjacency matrix corresponding to the asymptotic regime. These findings allow
us to define the integer mτ = m − kmτ and the vector {Q}m =

∑m−mτ−1
k=1 [A]∞{C}k

for m > mτ such that the numerical scheme given in the equations system 36 becomes

[A]m{C}m =

m−mτ−1∑
k=1

[A]k{C}k + {F}m for m ≤ mτ (39a){
[A]m{C}m =

∑m−1
k=m−mτ [A]k{C}k + {Q}m + {F}m

{Q}m = {Q}m−1 + [A]∞{C}m−mτ
for m > mτ (39b)

Note that mτ is bounded between | τ
dtmin

| and | τ
dtmax

| where dtmin and dtmax are the357

minimum and maximum allowed time steps, respectively. Therefore, the resulting358

numerical scheme satisfies that the maximum number of [A]k matrices calculations359

is determined a priori by mτ which is a bounded integer. Therefore, this scheme360

is expected to effectively reduce the computational burden needed to solve solute361

transport equations in a pore network. This will be addressed in the following.362

4 Results and Discussions363

4.1 One-Dimensional Pore Network Verification Problem364

Consider a one-dimensional network where all its np pores are serially linked365

with np − 1 throats. We assume that all pores and throats have a uniform volume V ,366

length l and cross-section area S, respectively. We further assume a purely advective367

mode of solute transport with a uniform centerline velocity u along the throats. For368

this problem, the pores behave as reservoirs whose solute filling and drainage depends369

solely on the geometrical properties of the network. According to the delay differential370

equations (DDE) approach applied to a pore network (Martins et al., 2009), this371

problem is governed by the following system372

dC1

dt
= C0 − q−1 C1(t) (40a)

dCn
dt

= q+
nCn−1(t− τ)− q−n Cn(t) for 1 < n ≤ np (40b)

where Cn is the concentration at the nth pore, C0 is an inlet pulse concentration en-373

tering the first pore at t = 0, τ = l/u is the time lag induced by solute transport in374

the upstream channel, while q+
n and q−n are the upstream/downstream specific pore375

filling/drainage frequency, respectively. Because channels cross-sections and pore vol-376

umes are uniform, q = q+
n = q−n = uS

V ∀ n for this particular situation. Equations377

40a-40b are identical to the MCM formulation given in equation 34, except that the378

diffusive term is neglected and the upstream advective term is delayed with a con-379

stant. In general, the delay magnitude τ would be different at each pore when the380

throats length distribution is non-uniform. Hence, τ figuring in equation 40b would381

be replaced by τn−1.382

Equations 40a-40b admit the following analytical solution

Cn(t) = H(tn,τ )
(qtn,τ )ne−qtn,τ

n!
C0 (41)
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Figure 6. Evolution of the relaxation time, τ , with the local Péclet number inside a throat for

a given characteristic diffusion time, tdiff = l2

D
. Symbols show the numerically calculated values

while solid lines represent the analytical calculations by equation 37.

where H is the Heaviside function and tn,τ = t − (n − 1)τ . Equation 41 is useful383

for basic verification of solute transport modeling with pore network models which is384

reported herein for the first time to our best knowledge. This will ensure that model385

equations were correctly implemented. Equation 41 could be alternatively obtained386

by simplifying equation 32 for this particular problem. A demonstration was given387

by Kamtchueng (2016) and will not be repeated herein. The introduced model ac-388

curacy was favorably checked with the analytical solution provided in equation 41389

(Kamtchueng, 2016) demonstrating that the model was correctly implemented. Fur-390

thermore, here we perform a three way comparison involving the newly introduced391

formulation, the legacy mixed-cell method and a numerical solution of the so-called392

delay differential equations approach. For the latter, the MATLAB function dde23 was393

used for numerical integration. This is a specialized solver for DDEs with constant394

delays featuring an explicit Runge-Kutta triple scheme (Dormand & Prince, 1986;395

Shampine & Thompson, 2001). Figure 5 shows the results of this inter-comparison396

study for a network with np = 10 at positions strategically selected at the entry, mid-397

dle and the outlet of the one-dimensional network. Additional model parameters are398

V = 10−14 m3, l = 10−4 m, S = 10−11 m2 and u = 10−5 m2s−1. Thus, q = 10−2
399

s−1 and τ = 10 s. Except for the first pore where the concentration decays rapidly,400

asymmetric bell shaped curves characterize the concentration history in other pores.401

As expected, solute dispersion increases and the maximal concentration decreases as402

the distance separating the pore from the source increases. Concentrations computed403

by the DDE and GMCM approaches are in excellent agreement. This provides an404

additional model validation of the GMCM approach. Furthermore, it provides an evi-405

dence that solute transport breakthrough earlier when relying on the MCM approach406

because solute transport in throats is neglected. This is concluded from figure 5 when407

comparing the MCM concentration histories to those computed with other approaches.408

Mass conservation was checked by calculating the mass under the concentration his-409

tory curves (i.e. M0 =
∫∞

0
Cn(t)dt) for all pores. The largest GMCM deviation from410
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the analytical value does not exceed 1.3 10−3 at the last pore. Moreover, theoreti-411

cal analysis (Kamtchueng, 2016) have shown that the maximal concentrations, Cmaxn ,412

scale with t−1/2. The first-order analytical moment giving the time at which Cmaxn is413

attained is tmaxn = n
q + (n − 1)τ . The second-order moment can also be analytically414

determined as Mn,2 = (n−1)2q2τ2+2(n−1)nqτ+n(n+1)
q2 .415

Assessment of the aforementioned acceleration process efficiency is evaluated ac-416

cording to a priori determination of the system characteristic relaxation time, the417

central processing unit (CPU) time, and the numerical solution accuracy. The relax-418

ation time of the porous medium is the maximal value of all local relawation times.419

Hence, a simple evaluation of equation 37 would be sufficient. Here, we compare this420

analytical calculation of the relaxation time with its numerical counterpart deduced421

from the characteristics of the convolution kernels. Figure 6 shows the evolution of422

analytical and numerical relaxation times versus the local Péclet number for different423

diffusion times, tdiff . There is an excellent match between the two solutions meaning424

that equation 37 can accurately predict the relaxation time.425

Figure 7. Time-dependent numerical error of simulated concentrations in some pores of the

one-dimensional network. This is the net difference between simulated values by the full and

optimized numerical schemes given by equations 36 and 39a-39b, respectively.

Many solute transport simulations spanning a total time of 1, 000 s were pro-426

cessed for different values of, mτ , in equations 39a and 39b. A uniform time step427

size equal to 0.1 s was used. Table 1 indicates that for decreasing values of mτ the428

CPU time drops dramatically. Indeed, the speedup exceeds 1, 500 when mτ = 1. The429

accuracy of the accelerated numerical scheme is shown on Figure 7 which depicts, for430

some selected pores, the time dependent absolute error between the full and optimal431

numerical schemes given in equations 36 and 39a-39b, respectively. Chosen problem432

parameters imply that the relaxation time of the system equals τ = 3.57 10−2 s, hence433

mτ = 2. Figure 7 indicates that the numerical error of the accelerated scheme is in434

the range of floating point arithmetic round-off error.435
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Table 1. CPU time (s) and speedup factor of solute transport simulations with the pore net-

work model for the one-dimensional test problem as mτ decreases.

mτ CPU time (s) Speedup factor

104 48,615 1
102 1,052 46
50 512 95
10 123 395
1 31 1,568

Observed efficiency and accuracy of the optimal numerical scheme are expected436

to scale for complex disordered three-dimensional pore networks provided that mτ is437

properly chosen.438

4.2 Application to a 3D Pore Network Model439

The sandstone at Berea, in Ohio, is an oil and gas bearing formation composed440

from major amounts of silicates (more than 90 % of Quartz) and minor proportions441

of feldspars and carbonates. Therefore, we assume minor reactivity of the injected442

aqueous solution with the host rock effectively reducing the problem into a single com-443

ponent tracer. This sandstone is widely used for core analysis and flooding experiments444

due to its fine grained texture, and well-sorted characteristics (Dullien, 1992). We use445

herein the pore network of Berea sandstone from Øren and Bakke (2002, 2003) shown446

in Figure 8, and which has been extensively used in the literature to predict single and447

multiphase transport properties (Valvatne et al., 2002; Piri & Blunt, 2005b, 2005a).448

This classic pore network is extracted from a process based image reconstruction using449

Voronöı tessellation techniques. Øren and Bakke (2002, 2003) were able to reconstruct450

3D sandstone images from available information in two-dimensional thin cross-section451

images. Geological processes such as deposition, diagenesis, were emulated to gen-452

erate an equivalent digital rock which was successfully compared with experimental453

Berea microstructure. Main features such as coordination number, pore and throat454

size distributions were captured by this technique. This reconstructed digital rock was455

transformed into a topologically equivalent network that was proposed as a benchmark456

test case for pore-scale network modeling. The reconstructed three-dimensional image457

is a cube with 3 mm edge length along each space direction, leading to a total rock458

volume of 27 mm3. It has a net porosity of 18.3 % and a calculated permeability of459

2668 mD. The extracted network has a total of 38, 495 elements divided into 12, 349460

pores and 26, 146 throats as illustrated in Figure 8. This Figure shows also the shape461

factor distributions for the network elements. The average inscribed radius is 19.17462

µm for pores and 10.87 µm for throats. Figure 8 shows the distributions of network463

elements radii’s. The average coordination number is 4.19 while its maxima equals 19.464

We simulate the injection of a unit concentration pulse aqueous solution at the465

inlet boundary of the network. The concentration field is monitored inside the ex-466

tracted pore network model when using the GMCM formulation (Equations 39a-39b)467

and its asymptotic form (Equation 35). Computed Log10 scale concentration fields at468

selected times are shown in Figure 9. At early times, we clearly notice the solute local469

dispersion and the gradual attenuation of the solute maximal concentration. At later470

times, we notice the tendency of the concentration field to stabilise as steady-state is471

approached. In the GMCM∞ simulation the same input parameters were used. The472

computation simply excluded all transient terms inside the infinite series in the convo-473

lution kernels. As MCM are special cases of GMCM∞ this last model will give a more474
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Figure 8. Pore network model of the Berea sandstone from Øren and Bakke (2003). Sphere

size is proportional to pore volume and does not represent this element shape. Solid lines repre-

sent the throats.

accurate answer of all static models. Results of the comparison between the dynamic475

and the asymptotic transport models are presented as distributions of percent relative476

concentration error given as follows477

Erri = 100

(
1− CGMCM∞

i

CGMCM
i

)
(42)

where CGMCM∞
i and CGMCM

i are the corresponding pore concentrations, respectively.478

Figure 10-a shows the relative concentration error distribution at 60 s. This error479

exceeds the thresholds of 10 % and 20 % at 66.5 % and 31.9 % of the porous media480

space, respectively. Figure 10-b shows similar results at 120 s, but with an error distri-481

bution more concentrated on the left. Hence, the error in 91.5 % of the pores exceeds482

10 %. This error attenuates only to the limit of a steady-state concentration regime.483

Hence, the asymptotic GMCM∞ (and consequently the MCM) approaches are inaccu-484

rate for pore-scale mass transport network modeling. The introduced GMCM model is485

a more accurate alternative which can be used for general-purpose applications. The486

magnitude of the relative error distribution is expected to grow significantly in the487

occurrence of nonlinear mass transport processes. For instance, owing to the logarith-488

mic nature of the mass action law for thermodynamically controlled reactive aqueous489

species, the error will grow with several orders of magnitude for the secondary aque-490

ous species. This can potentially drive mineral dissolution and precipitation reactions491

along a different, or even a reversed, pathway. This is expected to occur for moderate492

to slow kinetically controlled reactions as the time required to reach an equilibrium493

state would be very long. Therefore, earlier reactive transport models based on static494

network approaches, such as the MCM, are far from being predictive as already men-495
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Figure 9. Results of the solute transport simulation in Berea network model with the gener-

alized mixed-cell mass balance formulation. A unit pulse is injected at the inlet flow boundary.

Computed concentrations fields in Log10 scale units are visualized at (a) 30, (b) 60, (c) 120, and

(d) 300 seconds.

tioned by several authors (Acharya et al., 2005; L. Li et al., 2006, 2008; Kim et al.,496

2011; Raoof et al., 2012; Mehmani et al., 2012; Raoof et al., 2013; Tansey & Balhoff,497

2016). Additional research efforts towards this challenging endeavor can benefit from498

the method developed in this paper by deploying the operator splitting techniques499

(Steefel & MacQuarrie, 1996).500

In this work, we markedly make a shift from static network transport models501

to dynamic models where transitions across the whole range of Péclet regimes are502

consistent according to sound theoretical foundations. This is an important evolution503

of pore network modeling of solute transport processes. The developed general-purpose504

formulation could be easily extended to support local linear solute transport such as505

equilibrium sorption. Additionally, the assumption of zero initial concentration could506

be easily relaxed. The developments in this paper adopted this assumption to simplify507

the presentation. The closed-form analytical solutions give additional insights into the508

physics of pore-scale solute transport by explicitly showing its dependence on the local509
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Figure 10. Results of the quantitative comparison between the generalized mixed-cell mass

balance and its asymptotic variant. Relative concentration error distributions at (a) 60 and (b)

120 seconds illustrating the unsuitability of the asymptotic mass balance scheme for modeling

pore-scale solute transport processes.

Péclet number distribution through time and space dependent convolution kernels.510

Similar to MCM approaches, the model assumes perfect mixing within pores. Recent511

works indicate that this has negligible impact on dispersion modeling in disordered pore512

networks (Mehmani & Balhoff, 2015b; Yang et al., 2016). One-dimensional averaging513

of the solute transport equation in throats preclude this model to predict the power-law514

dispersion regime owing to neglecting the shear dispersion effects (Mehmani & Balhoff,515

2015a). Future work can focus on borrowing few ideas from the so-called superposing516

transport method. However, we believe that explicitly including the shear dispersion517

effects in all network throats to improve the presented formulation in this paper will518

lead to a highly complex model.519

5 Conclusions520

Sustained rapid progress of non-invasive three-dimensional porous media instru-521

mentations opens new frontiers to pore-scale modeling. However, compared to recent522

advances in multiphase fluid flow, there is much less progress targeting network model-523

ing of solute transport processes. The merit of this paper is to bring a rigorous math-524

ematical derivation leading to a general-purpose non-local Eulerian network model.525

Key findings are summarized as follows:526

1. A novel general-purpose mixed-cell formulation is introduced for transport net-527

work modeling. The pore solute concentration depends on the concentration528

history in neighbor pores. Time-dependent and exponentially decaying convo-529

lution kernels provide the weights of current and past time contributions from530

these pores.531

2. This formulation can recover, a posteriori, the solute transport profile in any532

throat by simple post-processing of the numerical solution at its pore-throat-533

pore assembly.534

3. Popular mixed-cell methods are found to be equivalent to the end members of535

the generalized asymptotic formulation for the advective and diffusive dominant536

regimes. Hence, the roots of these techniques are identified showing that they537

form two-level approximates.538
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4. The numerical scheme is highly optimized making profit from the properties of539

the convolution kernels preserving the efficiency of the mixed-cell methods for540

network modeling.541

5. The model was favourably compared to a simple analytical solution and the542

delay differential equations approach. The expected concentrations are repro-543

duced unlike for the mixed cell method characterized by early breakthrough and544

first-order moment.545

6. Testing on the Berea network extracted from a reconstructed three-dimensional546

digital image confirms the higher accuracy of the generalized approach and the547

unsuitability of the asymptotic schemes, including our GMCM∞ scheme, for548

modeling dispersion on pore networks.549

The proposed approach could find many applications in all fields of porous media550

beyond geosciences related disciplines. This is more likely when interactions at the551

fluid-solid interfaces lead to retarded migration of solute and heat between all phases552

in the system.553
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Appendix A Inverse Laplace transform of concentrations in pores559

A.1 Regularisation of solute transport equation in Laplace space560

Prior analysis (not shown herein) of different terms in the right-hand side of
equation 30 allowed us to conclude that some of them diverge as s → +∞. As such,
Jordan’s Lemma is not applicable to these functions which precludes direct application
of the residues Theorem. To avoid this problem, equation 30 is regularised by dividing
it by s3, such that

Vi
Ci(s)

s2
=
∑
j+

De
Pe
2
a(s)

s3
S(l)Cj(s) +

∑
j−

De−
Pe
2
a(s)

s3
S(0)Cj(s)

−

∑
j+

D
a(s)

s3
cosh(δl)S(l) +

∑
j−

D
a(s)

s3
cosh(δl)S(0)

Ci(s) (A-1)

Notice that throughout this Appendix the ij notation for throat related variables is
dropped for simplicity. Let’s additionally introduce the following equation

ViCi(s) =
∑
j+

De
Pe
2

a(s)

(s− ε)
S(l)Cj(s)

+
∑
j−

De−
Pe
2

a(s)

(s− ε)
S(0)Cj(s)

−
∑
j+

D
a(s)

(s− ε)
cosh(δl)S(l)Ci(s)

+
∑
j−

D
a(s)

(s− ε)
cosh(δl)S(0)Ci(s)

(A-2)

Because the inverse Laplace transforms of terms in equation A-1 are equivalent to limits561

of corresponding second primitive terms in equation A-2 when ε→ 0, we directly work562
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on inversion of equation A-1 into the time domain. Furthermore, owing to the linearity563

of the inverse Laplace transform operator, L −1, the inversion could be performed564

independently for each term of this linear algebraic equation.565

A.2 Residues calculations566

We will use the series method (Schiff, 1999) to determine the poles and residues at567

the singularities of identified functions. This involves finding Laurent series expansions568

from which the residue is equivalent to a−1 coefficient of the Laurent series. Only two569

types of functions will be involved in the Laplace inversion process, so we start by570

calculating the residues at their poles as discussed below.571

A.2.1 Residues of I(s) term572

Let’s consider the terms in equation A-2 taking the following general form

I(s) = D
a(s)

s− ε
(A-3)

by using the definition of a(s) = δ(s)
sinh(δ(s)l) in combination with Euler’s formula for the

hyperbolic sine function, we obtain

a(s) =
iδ(s)

sin(iδ(s)l)
(A-4)

we will further use the partial fraction expansion technique to express the complex
sine function as infinite series

π

sin(iδ(s)l)
=

π

iδ(s)l
− 2

iδ(s)l

π

+∞∑
n=1

(−1)n

n2 + (δ(s)l)2

π2

(A-5)

Insertion of equations A-4 and A-5 into equation A-3 leads to

I(s) =
D

(s− ε)l

(
1 + 2

+∞∑
n=1

(−1)
n

(δ(s)l)2

(nπ)2 + (δ(s)l)2

)
(A-6)

and by noting that

l2

D
(s− zn) = (nπ)2 + (δ(s)l)2 (A-7)

where

zn = −
(
Dn2π2

l2
+
U2

4D

)
= −D

l2

(
n2π2 +

Pe2

4

)
(A-8)

the residue of I(s)est at its nth pole, zn, is equal to the coefficient of (s− zn)−1 in the
series expansion of I(s)est around zn (Schiff, 1999), and because (δ(zn)l)2 = −(nπ)2

results from direct application of equation A-7 we get

Res
(
I(s)est, zn

)
= − D2

(zn − ε)l3
(
2(−1)n(nπ)2

)
eznt (A-9)

while the residue of I(s)est at ε is simply deduced from its definition

Res
(
I(s)est, ε

)
= D

δ(ε)

sinh(δ(ε)l)
eεt (A-10)

where δ(ε) =
√
U2+4Dε

2D comes from direct application of equation 20c.573
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A.2.2 Residues of II(s) term574

Similarly, let’s denote terms of type II appearing in equation A-2 by

II(s) = I(s) cosh(δ(s)l) (A-11)

by combining equations A-11 and A-6 we obtain the Laurent series expansion of II(s)
as

II(s) = D
cosh(δ(s)l)

(s− ε)l

(
1 + 2

+∞∑
n=1

(−1)n(δ(s)l)2

(nπ)2 + (δ(s)l)2

)
(A-12)

by analogy to preceding developments and by noting that δ(zn)l = inπ, we can get
the residue of II(s)est at pole zn as

Res
(
II(s)est, zn

)
= −D

2 cosh(inπ)

(zn − ε)l3
(
2(−1)n(nπ)2

)
eznt (A-13)

which simplifies into

Res
(
II(s)est, zn

)
= − 2D2

(zn − ε)l3
(nπ)2eznt (A-14)

finally, the residue of II(s)est at ε is simply

Res
(
II(s)est, ε

)
= Dδ(ε) coth(δ(ε)l)eεt (A-15)

A.3 Inverse Laplace expressions of I(s) and II(s)575

In the following we use Cauchy’s residue theorem (Schiff, 1999) in conjunction
with Jordan’s Lemma leading to the following so-called complex inversion formula for
a function f̄(s) having infinitely many poles at {zn}∞n=1 where zn →∞ as n→∞

L −1(f̄(s)) =

+∞∑
n=1

Res
(
f̄(s)est, zn

)
(A-16)

where f̄(s) is one of the two functions I(s) or II(s) analysed previously. Hence,

L −1 (I) (t) = lim
ε→0

D
δ(ε)

sinh(δ(ε)l)
eεt

− 2D2

l3

+∞∑
n=1

(−1)n(nπ)2

zn
H(t)eznt

(A-17)

The first term in the right hand side of equation A-17 could be easily calculated from
respective definitions of δ(s) and Pe as

lim
ε→0

D
δ(ε)

sinh(δ(ε)l)
eεt =

U

2 sinh
(
Pe
2

) (A-18)

Similarly,

L −1 (II) (t) = lim
ε→0

Dδ(ε) coth(δ(ε)l)eεt

− 2D2

l3

+∞∑
n=1

(nπ)2

zn
H(t)eznt

(A-19)

The first term in the right hand side of equation A-19 could be easily calculated from
respective definitions of δ(s) and Pe as

lim
ε→0

Dδ(ε) coth(δ(ε)l)eεt =
U

2
coth

(
Pe

2

)
(A-20)
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A.4 Pore concentration in the time domain576

Piecewise application of Laplace inversion into equation A-2 leads to

ViL
−1
(
Ci(s)

)
=
∑
j+

e
Pe
2 S(l)L −1

(
I(s)Cj(s)

)
+
∑
j−

e−
Pe
2 S(0)L −1

(
I(s)Cj(s)

)
−
∑
j+

S(l)L −1
(
II(s)Ci(s)

)
−
∑
j−

S(0)L −1
(
II(s)Ci(s)

)
(A-21)

One of the very significant properties possessed by the Laplace transform in connection
with the convolution is that the Laplace transform of the convolution of two functions
is the product of their Laplace transforms (Schiff, 1999). Hence, by applying the
convolution Theorem the other way around one gets the following relationships

L −1
(
I(s)Cj(s)

)
(t) =

[
L −1 (I(s)) ∗ Cj

]
(t) (A-22a)

L −1
(
II(s)Ci(s)

)
(t) =

[
L −1 (II(s)) ∗ Ci

]
(t) (A-22b)

Insertion of equations A-22a and A-22b into equation A-21 results into the following
expression

ViCi(t) =
∑
j+

e
Pe
2 S(l)

(
KI ∗ Cj

)
(t)

+
∑
j−

e−
Pe
2 S(0)

(
KI ∗ Cj

)
(t)

−

∑
j+

S(l)KII +
∑
j−

S(0)KII

 ∗ Ci
 (t)

(A-23)

where the convolution kernels, KI and KII , are nothing than inverse Laplace trans-
forms of I(s) and II(s) whose final expressions result from insertion of equations A-18
and A-20 into equations A-17 and A-19, respectively. Thus

KI(t) =
U

2 sinh
(
Pe
2

) − 2D2

l3

+∞∑
n=1

(−1)n(nπ)2

zn
eznt (A-24a)

KII(t) =
U

2
coth

(
Pe

2

)
− 2D2

l3

+∞∑
n=1

(nπ)2

zn
eznt (A-24b)

Notice that these two convolution kernel functions contain a time-independent term577

which is expected to play a major role for the asymptotic concentration Ĉi at network578

node i. The remaining time-dependent terms are given in the form of exponentially579

decreasing and convergent series. These convolution kernels are throat related because580

they’re convoluted with upstream (i.e. Cj+) and downstream (i.e. Cj−) in throats581

connected to pore i. These functions depend solely on the local characteristics of pore582

channels, namely their length, diffusivity, and fluid velocity.583

We further define a surface-area weighted kernel function

K̃II(t) =
∑
j+

S(l)KII(t) +
∑
j−

S(0)KII(t) (A-25)

Notice that K̃II appearing in equation A-25 is a pore related function because it is
convoluted with average time-dependent concentrations at a node i of the network as
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shown in equation A-23. Finally, substitution of equations A-24a, A-24b, and A-25
into A-23 leads to an equation describing concentration evolution in each pore as a
linear convolution with average concentrations in neighbour pores as

ViCi(t) =
∑
j+

e
Pe
2 S(l)

(
KI ∗ Cj

)
(t)

+
∑
j−

e−
Pe
2 S(0)

(
KI ∗ Cj

)
(t)

−
(
K̃II ∗ Ci

)
(t)

(A-26)

The convolution kernels given by equations A-24a and A-24b are Péclet- and584

time- dependent functions of interconnected throats.585

Equation A-26 is only valid for internal pores which are not directly connected
to inflow or outflow boundaries. In such cases, other formulas are derived by simple
adjustment of the previous expression following the same procedure. For inflowing
pores the following expression is rather obtained

ViCi(t) =
∑
j+

J inj S(l)t

+
∑
j−

e−
Pe
2 S(0)

(
KI ∗ Cj

)
(t)

−
∑
j−

(
S(0)KII ∗ Ci

)
(t)

(A-27)

where J inj is a fixed external mass flux associated to inflowing throat j located upstream586

to pore i.587

Similarly, mass conservation on pores at the outflow boundary implies the fol-
lowing relationship

ViCi(t) =
∑
j−

Qoutj Ci(t)t

+
∑
j+

e
Pe
2 S(l)

(
KI ∗ Cj

)
(t)

−
∑
j+

(
S(l)KII ∗ Ci

)
(t)

(A-28)

Appendix B Inverse Laplace transform of concentrations in throats588

To invert equation 23 back into the time domain we follow the same methodology
exposed in Appendix A. First, the equation is regularized in Laplace space through a
division by s such that

C(ξ, s)

s
= e

Uξ
2D

sinh (δ(l − ξ))
s sinh (δl)

Cξ1(s) + e
−U(l−ξ)

2D
sinh (δξ)

s sinh (δl)
Cξ2(s) (B-1)

We identify two terms in the last equation which necessitate separate Laplace inversion,589

namely III(s) = sinh(δ(l−ξ))
s sinh(δl) and IV(s) = sinh(δξ)

s sinh(δl) .590

B.1 Inverse Laplace expression of the term III(s)591

Here again the conjunctive use of Euler’s formula for the hyperbolic sine function
and the partial fraction expansion technique for the complex sine function as used
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earlier to derive equation A-6 leads to the following equality

III(s) =
sinh (δ(l − ξ))

s

(
1 + 2

+∞∑
n=1

(−1)n(δl)2

(nπ)2 + (δl)2

)
(B-2)

by analogy to preceding developments in Appendix A and by noting that δ(zn)l = inπ,
we can get the residue at pole zn as

Res
(
III(s)est, zn

)
=

2D

l2
1

zn

[
(−1)n(niπ) sinh

(
niπ

l
(l − ξ)

)]
eznt (B-3)

which could to be simplified to

Res
(
III(s)est, zn

)
=

2D

l2
1

zn
nπ sin

(
nπ

ξ

l

)
eznt (B-4)

the residue at the limit ε→ 0 is equally calculated as

lim
ε→0

Res
(
III(s)est, ε

)
=

sinh
(
U(l−ξ)

2D

)
sinh

(
Ul
2D

) (B-5)

B.2 Inverse Laplace expression of the term IV(s)592

by analogy to the previous expression the residue at pole zn is given by

Res
(
IV(s)est, zn

)
=

2D

l2
1

zn

[
(−1)n(niπ) sinh

(
niπ

ξ

l

)]
eznt (B-6)

which is readily simplified to

Res
(
IV(s)est, zn

)
=

2D

l2
1

zn
(−1)n+1nπ sin

(
nπ

ξ

l

)
eznt (B-7)

the residue at the limit ε→ 0 is

lim
ε→0

Res
(
VI(s)est, ε

)
=

sinh
(
Uξ
2D

)
sinh

(
Ul
2D

) (B-8)

B.3 Inverse Laplace transform expressions of III(s) and IV(s)593

Application of the residue Theorem to the two functions III(s) and IV(s) terms
allow to calculate their inverse Laplace transforms as

L −1 (III(s)) (t) =
sinh

(
U(l−ξ)

2D

)
sinh

(
Ul
2D

)
+

2D

l2

+∞∑
n=1

sin

(
nπ

ξ

l

)
nπ

zn
eznt

(B-9)

and

L −1 (IV (s)) (t) =
sinh

(
Uξ
2D

)
sinh

(
Ul
2D

)
− 2D

l2

∞∑
n=1

(−1)n sin

(
nπ

ξ

l

)
nπ

zn
eznt

(B-10)
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B.4 Throat concentration in the time domain594

Because L −1
(
f̄(s)
s

)
=
∫ t

0
f(τ) dτ , the expected convolution kernels involved in

the time-dependent concentration along a throat are obtained from first-order deriva-
tives of equations B-9 and B-10, respectively. The final relationship is given as

C(ξ, t) = KI
l (ξ, t) ∗ Cξ1(t) +KII

l (ξ, t) ∗ Cξ2(t) (B-11)

where the space and time dependent kernel functions are

KI
l (ξ, t) = −2D

l2
e
Uξ
2D

+∞∑
n=1

(−1)n sin

(
nπ

ξ

l

)
nπeznt (B-12a)

KII
l (ξ, t) = −2D

l2
e−

U(l−ξ)
2D

+∞∑
n=1

(−1)n sin

(
nπ

l − ξ
l

)
nπeznt (B-12b)

Appendix C Asymptotic pore concentration595

To derive the asymptotic form of equation A-26, we let the characteristic diffusion
time tdiff going to zero while keeping Pe constant. In this limit, the convolution
kernels given by equations A-24a and A-24b reduce to their first constant terms. This
leads to

ViĈi(t) =
∑
j+

e
Pe
2 S(l)

U

2 sinh
(
Pe
2

) ∫ t

0

Ĉj(τ)dτ

+
∑
j−

e
−Pe

2 S(0)
U

2 sinh
(
Pe
2

) ∫ t

0

Ĉj(τ)dτ

−
∑
j

1

2
S coth

(
Pe

2

)∫ t

0

Ĉi(τ)dτ

(C-1)

Differentiating equation C-1 gives the asymptotic ODE form of the mass balance equa-
tion

Vi
dĈi
dt

=
∑
j+

US(l)
e
Pe
2

2 sinh
(
Pe
2

) Ĉj +
∑
j−

US(0)
e
−Pe

2

2 sinh
(
Pe
2

) Ĉj
−
∑
j

1

2
US coth

(
Pe

2

)
Ĉi

(C-2)

C.1 Asymptotic behavior as Pe→ +∞596

To study the behavior of the asymptotic mass balance scheme given by equation
C-2 when Pe→ +∞ we note that

lim
Pe→+∞

e
Pe
2

2 sinh
(
Pe
2

) = 1 (C-3a)

lim
Pe→+∞

e
−Pe

2

2 sinh
(
Pe
2

) = 0 (C-3b)

lim
Pe→+∞

coth

(
Pe

2

)
= 1 (C-3c)

Substituting equations C-3a-C-3c into equation C-2 leads to

Vi
dĈi
dt

=
∑
j+

US(l)Ĉj −
1

2

∑
j+

US(l) +
∑
j−

US(0)

 Ĉi (C-4)
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Because the fluid is incompressible (i.e.
∑
j+ US(l) =

∑
j− US(0)), the last term in597

the previous equation equals to
∑
j− US(0)Ĉi. Hence, the behavior of our asymptotic598

mass balance formulation for high Péclet numbers regime (i.e. advection dominant599

regime) is identical to the MCM mass balance formulation given by equation 34 with600

Cx = Ci.601

C.2 Asymptotic behavior as Pe→ 0602

Similarly, to study behavior of the asymptotic mass balance scheme given by
equation C-2 when Pe→ 0, we rewrite the two first terms in its right-hand side as

e
Pe
2

U

2 sinh
(
Pe
2

) =
Pe

2 sinh
(
Pe
2

)D
l
e
Pe
2 (C-5a)

e
−Pe

2
U

2 sinh
(
Pe
2

) =
Pe

2 sinh
(
Pe
2

)D
l
e
−Pe

2 (C-5b)

and because

lim
Pe→0

Pe

2 sinh
(
Pe
2

) = 1 (C-6a)

lim
Pe→0

e
Pe
2 ≈ 1 +

Pe

2
(C-6b)

lim
Pe→0

e
−Pe

2 ≈ 1− Pe

2
(C-6c)

lim
Pe→0

1

2
coth

(
Pe

2

)
≈ 1

Pe
(C-6d)

Insertion of equations C-5a-C-5b into equation C-2, and direct application of the re-
lationships given by equations C-6a-C-6d, leads to

Vi
dĈi
dt

=
∑
j+

1

2
US(l)Ĉj −

∑
j−

1

2
US(0)Ĉj

+
∑
j+

D

l
S(l)(Ĉj − Ĉi) +

∑
j−

D

l
S(0)(Ĉj − Ĉi)

(C-7)

Because U � D
l we can subsequently conclude that

∑
j+

1
2US(l)Ĉj−

∑
j−

1
2US(0)Ĉj �603 ∑

j
D
l S(Ĉj− Ĉi). Hence, the behavior of our asymptotic mass balance formulation for604

low Péclet numbers (i.e. diffusion dominant regime) is the so-called CD-MCM mass605

balance formulation given by equation 34 with Cx = Cj and Uij = U
2 . Notably, the606

MCM scheme given in equation 34 do not take into account the mass in the throats607

explaining this difference.608

Appendix D Asymptotic throat concentration609

The asymptotic concentration regime in a throat is obtained from equation B-11
when tdiff goes to zero while Pe is kept constant, such that

Ĉ(ξ) = K̂I
l (ξ)Ĉξ1 + K̂II

l (ξ)Ĉξ2 (D-1)

where

K̂I
l (ξ) = e

Peξ
2l

sinh
(
Pe(l−ξ)

2l

)
sinh

(
Pe
2

) (D-2a)

K̂II
l (ξ) = e−

Pe(l−ξ)
2l

sinh
(
Peξ
2l

)
sinh

(
Pe
2

) (D-2b)
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Using the equality

−2

∞∑
n=1

(−1)n sin(nπξ)

n2π2 + Pe2/4
=

sinh(Pe2 ξ)

sinh(Pe2 )
(D-3)

It’s quite easy to verify that the sum of asymptotic kernel functions K̂I
l and K̂II

l is
unity anywhere along ξ-axis

K̂I
l (ξ) + K̂II

l (ξ) = 1 (D-4)

Finally, by inserting equation D-4 into equation D-1, the asymptotic concentration
profile along the throat is uniquely dependent on concentrations in neighbor pores and
Péclet number(through K̂I

l given by equation D-2a). It is given as follows

Ĉ(ξ) = Ĉξ2 − K̂I
l (ξ)

(
Ĉξ2 − Ĉξ1

)
(D-5)

A direct consequence of equation D-5 is that the long-term concentration profiles inside
network throats satisfy the maximum discrete principle, that is

min
(
Ĉξ1 , Ĉξ2

)
≤ Ĉ(ξ) ≤ max

(
Ĉξ1 , Ĉξ2

)
(D-6)

Data Availability Statement610

Data is available through Øren and Bakke (2002) and Øren and Bakke (2003).611
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Kim, D., Peters, C. A., & Lindquist, W. B. (2011). Upscaling geochemical reaction685

rates accompanying acidic CO2-saturated brine flow in sandstone aquifers.686

Water Resources Research, 47 (1). doi: 10.1029/2010WR009472687

Laudone, G., Matthews, G., Bird, N., Whalley, W., Cardenas, L., & Gregory,688

A. (2011). A model to predict the effects of soil structure on denitrifi-689

cation and N2O emission. Journal of Hydrology , 409 (1), 283 - 290. doi:690

https://doi.org/10.1016/j.jhydrol.2011.08.026691

Li, L., Peters, C. A., & Celia, M. A. (2006). Upscaling geochemical reaction rates us-692

ing pore-scale network modeling. Advances in Water Resources, 29 (9), 1351 -693

1370. doi: https://doi.org/10.1016/j.advwatres.2005.10.011694

Li, L., Steefel, C. I., & Yang, L. (2008). Scale dependence of mineral dissolution695

rates within single pores and fractures. Geochimica et Cosmochimica Acta,696

72 (2), 360 - 377. doi: https://doi.org/10.1016/j.gca.2007.10.027697

Li, S., Raoof, A., & Schotting, R. (2014). Solute dispersion under electric and pres-698

–32–



manuscript submitted to Water Resources Research

sure driven flows; pore scale processes. Journal of Hydrology , 517 , 1107 - 1113.699

doi: https://doi.org/10.1016/j.jhydrol.2014.06.049700

Martins, A. A., Laranjeira, P. E., Braga, C. H., & Mata, T. M. (2009). Modeling701

of transport phenomena in porous media using network models. In Progress in702

porous media research (p. 156-261). New York: Nova Science Publishers.703

Mason, G., & Morrow, N. R. (1991). Capillary behavior of a perfectly wetting liquid704

in irregular triangular tubes. Journal of Colloid and Interface Science, 141 (1),705

262 - 274. doi: https://doi.org/10.1016/0021-9797(91)90321-X706

Mehmani, Y., & Balhoff, M. T. (2015a). Eulerian network modeling of longitudi-707

nal dispersion. Water Resources Research, 51 (10), 8586-8606. doi: 10.1002/708

2015WR017543709

Mehmani, Y., & Balhoff, M. T. (2015b). Mesoscale and Hybrid Models of Fluid710

Flow and Solute Transport. Reviews in Mineralogy and Geochemistry , 80 (1),711

433-459. doi: 10.2138/rmg.2015.80.13712

Mehmani, Y., Oostrom, M., & Balhoff, M. T. (2014). A streamline splitting pore-713

network approach for computationally inexpensive and accurate simulation of714

transport in porous media. Water Resources Research, 50 (3), 2488-2517. doi:715

10.1002/2013WR014984716

Mehmani, Y., Sun, T., Balhoff, M. T., Eichhubl, P., & Bryant, S. (2012). Multi-717

block pore-scale modeling and upscaling of reactive transport: Application718

to carbon sequestration. Transport in Porous Media, 95 (2), 305-326. doi:719

10.1007/s11242-012-0044-7720

Miller, C. T., Dawson, C. N., Farthing, M. W., Hou, T. Y., Huang, J., Kees, C. E.,721

. . . Langtangen, H. P. (2013). Numerical simulation of water resources prob-722

lems: Models, methods, and trends. Advances in Water Resources, 51 , 405 -723

437. doi: https://doi.org/10.1016/j.advwatres.2012.05.008724

Milligen, B. P. V., & Bons, P. (2014). Simplified numerical model for clarify-725

ing scaling behavior in the intermediate dispersion regime in homogeneous726

porous media. Computer Physics Communications, 185 (12), 3291 - 3301. doi:727

https://doi.org/10.1016/j.cpc.2014.09.006728

Molins, S. (2015). Reactive interfaces in direct numerical simulation of pore-scale729

processes. Reviews in Mineralogy and Geochemistry , 80 (1), 461-481. doi: 10730

.2138/rmg.2015.80.14731

Molins, S., Trebotich, D., Steefel, C. I., & Shen, C. (2012). An investigation732

of the effect of pore scale flow on average geochemical reaction rates us-733

ing direct numerical simulation. Water Resources Research, 48 (3). doi:734

10.1029/2011WR011404735

Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual Review of As-736

tronomy and Astrophysics, 30 (1), 543-574. doi: 10.1146/annurev.aa.30.090192737

.002551738

Mostaghimi, P., Bijeljic, B., & Blunt, M. J. (2012). Pore-scale simulation of fluid739

flow and solute dispersion in three-dimensional porous media. SPE Journal ,740

17 (4). doi: 10.2118/135261-MS741

Neuman, S. P. (1990). Universal scaling of hydraulic conductivities and dispersivities742

in geologic media. Water Resources Research, 26 (8), 1749-1758. doi: 10.1029/743

WR026i008p01749744

Oostrom, M., Mehmani, Y., Romero-Gomez, P., Tang, Y., Liu, H., Yoon, H., . . .745

Zhang, C. (2016). Pore-scale and continuum simulations of solute transport746

micromodel benchmark experiments. Computational Geosciences, 20 (4), 857 -747

879. doi: 10.1007/s10596-014-9424-0748

Owen, J. E. (1952). The resistivity of a fluid-filled porous body. Journal of749

Petroleum Technology , 4 (7), 169-174.750

Patzek, T., & Silin, D. (2001). Shape factor and hydraulic conductance in noncircu-751

lar capillaries: I. one-phase creeping flow. Journal of Colloid and Interface Sci-752

ence, 236 (2), 295 - 304. doi: https://doi.org/10.1006/jcis.2000.7413753

–33–



manuscript submitted to Water Resources Research

Pickens, J. F., & Grisak, G. E. (1981). Scale-dependent dispersion in a stratified754

granular aquifer. Water Resources Research, 17 (4), 1191-1211. doi: 10.1029/755

WR017i004p01191756

Piri, M., & Blunt, M. J. (2005a). Three-dimensional mixed-wet random pore-scale757

network modeling of two- and three-phase flow in porous media. II. Results.758

Physical Review E , 71 (2), 026302. doi: 10.1103/PhysRevE.71.026302759

Piri, M., & Blunt, M. J. (2005b). Three-dimensional mixed-wet random pore-760

scale network modeling of two- and three-phase flow in porous media. I.761

Model description. Physical Review E , 71 (2), 026301. doi: 10.1103/762

PhysRevE.71.026301763

Qin, C.-Z., Hassanizadeh, S. M., & Ebigbo, A. (2016). Pore-scale network modeling764

of microbially induced calcium carbonate precipitation: Insight into scale de-765

pendence of biogeochemical reaction rates. Water Resources Research, 52 (11),766

8794-8810. doi: 10.1002/2016WR019128767

Raeini, A. Q., Bijeljic, B., & Blunt, M. J. (2015). Modelling capillary trapping768

using finite-volume simulation of two-phase flow directly on micro-CT images.769

Advances in Water Resources, 83 , 102 - 110. doi: https://doi.org/10.1016/770

j.advwatres.2015.05.008771

Raeini, A. Q., Blunt, M. J., & Bijeljic, B. (2014). Direct simulations of two-phase772

flow on micro-CT images of porous media and upscaling of pore-scale forces.773

Advances in Water Resources, 74 , 116 - 126. doi: https://doi.org/10.1016/774

j.advwatres.2014.08.012775

Raoof, A., Nick, H., Hassanizadeh, S., & Spiers, C. (2013). Poreflow: A com-776

plex pore-network model for simulation of reactive transport in variably777

saturated porous media. Computers & Geosciences, 61 , 160 - 174. doi:778

https://doi.org/10.1016/j.cageo.2013.08.005779

Raoof, A., Nick, H., Wolterbeek, T., & Spiers, C. (2012). Pore-scale modeling of780

reactive transport in wellbore cement under CO2 storage conditions. Interna-781

tional Journal of Greenhouse Gas Control , 11 , S67 - S77. doi: https://doi.org/782

10.1016/j.ijggc.2012.09.012783

Øren, P.-E., & Bakke, S. (2002). Process based reconstruction of sandstones and784

prediction of transport properties. Transport in Porous Media, 46 (2), 311-343.785

doi: 10.1023/A:1015031122338786

Øren, P.-E., & Bakke, S. (2003). Reconstruction of Berea sandstone and pore-scale787

modelling of wettability effects. Journal of Petroleum Science and Engineering ,788

39 (3), 177 - 199. doi: https://doi.org/10.1016/S0920-4105(03)00062-7789

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems (2nd edition).790

Philadelphia, Pasadena: SIAM.791

Sadeghi, M. A., Agnaou, M., Barralet, J., & Gostick, J. (2020). Dispersion mod-792

eling in pore networks: A comparison of common pore-scale models and al-793

ternative approaches. Journal of Contaminant Hydrology , 228 , 103578. doi:794

https://doi.org/10.1016/j.jconhyd.2019.103578795

Sahimi, M., Davis, H. T., & Scriven, L. E. (1983). Dispersion in disordered porous796

media. Chemical Engineering Communications, 23 (4-6), 329-341. doi: 10797

.1080/00986448308940483798

Sahimi, M., Hughes, B. D., Scriven, L., & Davis, H. T. (1986). Dispersion in flow799

through porous media—i. one-phase flow. Chemical Engineering Science,800

41 (8), 2103 - 2122. doi: https://doi.org/10.1016/0009-2509(86)87128-7801

Scheidegger, A. E. (1974). The Physics of Flow Through Porous Media (3rd Edi-802

tion). University of Toronto Press.803

Schiff, J. L. (1999). The Laplace Transform: Theory and Applications. New York:804

Springer-Verlag.805

Schulze-Makuch, D. (2005). Longitudinal dispersivity data and implications for scal-806

ing behavior. Groundwater , 43 (3), 443-456. doi: 10.1111/j.1745-6584.2005.0051807

.x808

–34–



manuscript submitted to Water Resources Research

Shampine, L., & Thompson, S. (2001). Solving ddes in matlab. Applied Numerical809

Mathematics, 37 (4), 441 - 458. doi: 10.1016/S0168-9274(00)00055-6810

Sharma, M. M., & Yortsos, Y. C. (1987). A network model for deep bed filtration811

processes. AIChE Journal , 33 (10), 1644-1653. doi: 10.1002/aic.690331008812

Silliman, S. E., Konikow, L. F., & Voss, C. I. (1987). Laboratory investigation of813

longitudinal dispersion in anisotropic porous media. Water Resources Re-814

search, 23 (11), 2145-2151. doi: 10.1029/WR023i011p02145815

Silliman, S. E., & Simpson, E. S. (1987). Laboratory evidence of the scale effect in816

dispersion of solutes in porous media. Water Resources Research, 23 (8), 1667-817

1673. doi: 10.1029/WR023i008p01667818

Song, Y.-Q., Cho, H., Hopper, T., Pomerantz, A. E., & Sun, P. Z. (2008). Magnetic819

resonance in porous media: Recent progress. The Journal of Chemical Physics,820

128 (5), 052212. doi: 10.1063/1.2833581821

Sorbie, K., & Clifford, P. (1991). The inclusion of molecular diffusion effects in822

the network modelling of hydrodynamic dispersion in porous media. Chemical823

Engineering Science, 46 (10), 2525 - 2542. doi: https://doi.org/10.1016/0009824

-2509(91)80046-2825

Steefel, C. I., & MacQuarrie, K. T. B. (1996). Approaches to modeling of reac-826

tive transport in porous media. In P. C. Lichtner, C. I. Steefel, & E. H. Oelk-827

ers (Eds.), Reactive Transport in Porous Media (Vol. 34, p. 83-129). Washing-828

ton, DC: Mineralogical Society of America.829

Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace transforms [D5].830

ACM Communications, 13 (1), 47–49. doi: 10.1145/361953.361969831

Suchomel, B. J., Chen, B. M., & Allen, M. B. (1998). Network model of flow trans-832

port and biofilm effects in porous media. Transport in Porous Media, 30 (1), 1-833

23. doi: 10.1023/A:1006560705680834

Sudicky, E. A., Gillham, R. W., & Frind, E. O. (1985). Experimental investigation835

of solute transport in stratified porous media: 1. the nonreactive case. Water836

Resources Research, 21 (7), 1035-1041. doi: 10.1029/WR021i007p01035837

Tansey, J., & Balhoff, M. T. (2016). Pore network modeling of reactive transport838

and dissolution in porous media. Transport in Porous Media, 113 (2), 303-327.839

doi: 10.1007/s11242-016-0695-x840

Tartakovsky, A. M., & Meakin, P. (2006). Pore scale modeling of immiscible and841

miscible fluid flows using smoothed particle hydrodynamics. Advances in Wa-842

ter Resources, 29 (10), 1464 - 1478. doi: https://doi.org/10.1016/j.advwatres843

.2005.11.014844

Tartakovsky, A. M., Tartakovsky, D. M., Scheibe, T. D., & Meakin, P. (2008). Hy-845

brid simulations of reaction-diffusion systems in porous media. SIAM Journal846

on Scientific Computing , 30 (6), 2799-2816. doi: 10.1137/070691097847

Taylor, G. I. (1953). Dispersion of soluble matter in solvent flowing slowly through a848

tube. Proceedings of the Royal Society of London. Series A. Mathematical and849

Physical Sciences, 219 (1137), 186-203. doi: 10.1098/rspa.1953.0139850

Thullner, M., & Baveye, P. (2008). Computational pore network modeling of the in-851

fluence of biofilm permeability on bioclogging in porous media. Biotechnology852

and bioengineering , 99 (6), 1337-1351. doi: 10.1002/bit.21708853

Trebotich, D., Adams, M. F., Molins, S., Steefel, C. I., & Shen, C. (2014). High-854

resolution simulation of pore-scale reactive transport processes associated with855

carbon sequestration. Computing in Science and Engineering , 16 (6), 22-31.856

doi: 10.1109/MCSE.2014.77857

Valvatne, P. H., Piri, M., Lopez, X., & Blunt, M. J. (2002). Predictive pore-scale858

modeling of single and multiphase flow. Transport in Porous Media, 58 (1), 23-859

41. doi: 10.1007/s11242-004-5468-2860
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