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Abstract

Direction and depths of hyporheic exchange fluxes at the groundwater - surface water interface are drivers of biogeochemical

processes influencing nutrient cycling and water quality. Model concepts on the dynamic relationship between hyporheic

exchange fluxes and exchange depth are typically based on the assumption of a linear relationship between both measures.

Here, we quantify seasonal and episodic variations of hyporheic exchange fluxes and hyporheic exchange depths with methods

of heat tracing. Numerically (FLUX-BOT) and analytically (VFLUX; method based on temperature amplitude dampening

developed by Hatch et al., 2006) working program scripts were used to solve the one-dimensional conduction-advection-dispersion

equation and compute hyporheic flux rates from three vertical sediment water temperature profiles recorded continuously in

a small low mountain creek between 2011 and 2017. By comparing the behavior of two differing water temperature-based

modelling approaches, dissimilarities in the sensitivity to sediment thermal properties were identified. These differences in

parameter responsivity explain deviating behavior of the models regarding exchange flux and depth calculations. We show that

the vertical extension of hyporheic exchange depth has a distinctive seasonal pattern over seven years, which differs between

the chosen models. Surface water levels, groundwater levels and stream discharges show significant correlations with both flux

direction and hyporheic zone extension. In contrast to the numerical modelling approach, analytically derived flux data allowed

for establishing a significant relationship between the hydraulic gradient observed at a nearby groundwater well and simulated

hyporheic exchange depths.
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Abstract 16 

Direction and depths of hyporheic exchange fluxes at the groundwater - surface water interface 17 

are drivers of biogeochemical processes influencing nutrient cycling and water quality. Model 18 

concepts on the dynamic relationship between hyporheic exchange fluxes and exchange depth are 19 

typically based on the assumption of a linear relationship between both measures. Here, we 20 

quantify seasonal and episodic variations of hyporheic exchange fluxes and hyporheic exchange 21 

depths with methods of heat tracing. Numerically (FLUX-BOT) and analytically (VFLUX; 22 

method based on temperature amplitude dampening developed by Hatch et al., 2006) working 23 

program scripts were used to solve the one-dimensional conduction-advection-dispersion equation 24 

and compute hyporheic flux rates from three vertical sediment water temperature profiles recorded 25 

continuously in a small low mountain creek between 2011 and 2017. By comparing the behavior 26 

of two differing water temperature-based modelling approaches, dissimilarities in the sensitivity 27 

to sediment thermal properties were identified. These differences in parameter responsivity explain 28 

deviating behavior of the models regarding exchange flux and depth calculations. We show that 29 

the vertical extension of hyporheic exchange depth has a distinctive seasonal pattern over seven 30 

years, which differs between the chosen models. Surface water levels, groundwater levels and 31 

stream discharges show significant correlations with both flux direction and hyporheic zone 32 

extension. In contrast to the numerical modelling approach, analytically derived flux data allowed 33 

for establishing a significant relationship between the hydraulic gradient observed at a nearby 34 

groundwater well and simulated hyporheic exchange depths. 35 

1 Introduction 36 

The hyporheic zone as the interface between groundwater and surface waters (Orghidan, 1959) has a strong impact 37 

on the overall water quality (Winter et al., 1999). This active ecotone harbors many different biogeochemical processes 38 

from sediment to catchment scale (Boulton et al., 1998) such as carbon, energy and nutrient cycling as well as 39 

contaminant transport and removal by the vast community of organisms residing there (Buss et al., 2009). The mixing 40 

between waters of different origin and with different chemical composition in the hyporheic zone enhances chemical 41 

reactions and microbial diversity and activity and thus contributes largely to the self-purification of river systems 42 

(Boulton et al., 2008; Fanelli & Lautz, 2008). This importance is limited by its vertical extension, which can vary 43 

seasonally (Boano et al., 2014; Wondzell & Swanson, 1996), and depends on the intensity and direction of hyporheic 44 

exchange fluxes (Boulton et al., 2010). Although, the impact is reduced in bigger streams with higher discharge 45 

(Wondzell, 2011), studies show that smaller first- and second-order streams constitute up to 80 % of the length of 46 

river networks and are of great importance to the whole stream network (Wohl, 2017; Downing et al. 2012). Hyporheic 47 

exchange flux is defined as the ensemble of flows entering and exiting the hyporheic zone. Boano et al. (2014) name 48 

two main drivers for these fluxes: hydrostatically influenced flow and hydrodynamically driven flow. According to 49 

Boano et al. (2014), the first is caused by pressure head gradients between surface water and groundwater and has its 50 

largest influence on the spatial scale of riffle-pool-sequences, steps, cascades or meandering banks, whereas the latter 51 

is controlled by momentum transfer dependent on the roughness of the river bed and has therefore greater effect on 52 

finer scales smaller than stream depth. Hyporheic zone depths are highly variable over time and space (Wondzell & 53 

Swanson, 1996; Wondzell & Swanson, 1999) and values in the literature range from only a few centimeters (Harvey 54 

& Fuller, 1998; Hill & Lymburner, 1998; Singh et al., 2019) over variable depths between 10 cm and 30 cm (Boano 55 

et al., 2008) up to half a meter (Palmer et al., 1992; Gariglio et al., 2013) or even deeper. Furthermore, there is not 56 

only a relationship between the river’s width and the hyporheic zone extension (Boano et al., 2008, Kim et al., 2014), 57 

but river bed topography, stream curvature and the ambient groundwater gradient affect the dimension as well 58 

(Cardenas et al., 2004). The thickness of the hyporheic zone is positively correlated with the ambient hydraulic head 59 

(Fox et al., 2014; Marzadri et al., 2016). The vertical extension of the hyporheic zone in combination with sediment 60 

particle size distributions and the velocity of occurring exchange fluxes strongly influences ongoing matter turnover 61 

and retention processes (Boulton et al., 1998). A match between hyporheic retention time and the appropriate reaction 62 

time for various biogeochemical processes can optimize contaminant attenuation (Herzog et al., 2018; Grant et al. 63 

2014; Zarnetske et al., 2011). 64 
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Seasonal shifting (Allander. 2003) as well as episodic transition (McCallum & Shanafield, 2016; Trauth & 65 

Fleckenstein, 2017) between gaining and loosing conditions is often observable. However, many studies focus on 66 

short time periods spanning from several days (Wang et al., 2017; Lu et al., 2017; Bhaskar et al., 2012) over months 67 

(Briggs et al., 2012) to one full year (Gariglio et al., 2013; Birkel et al., 2016), where it is possible to detect episodic 68 

(flood pulse driven) events, but periodic (evapotranspiration driven) behavior, especially inter-annual variations of 69 

seasonal fluctuations stay rather invisible if short time periods of days or weeks are used. Hence, the impact of either 70 

episodic events or periodic behavior over a longer time series on direction and intensity of hyporheic exchange fluxes, 71 

as well as on the depth extent of the hyporheic zone, needs further research. 72 

There are several methods to quantify groundwater – surface water interactions, e.g. direct measurement methods 73 

using seepage meters, methods based on Darcy’s Law, mass balance approaches and temperature/heat tracing methods 74 

(an overview on available methods is given in the review paper of Kalbus et al., 2006). In contrast to methods using 75 

Darcy’s Law to estimate water flow through porous media, heat-tracing methods must take conductive and convective 76 

transport into account (Stallman, 1965; Rau et al., 2014). The range of occurring variations in thermal conductivities 77 

is narrower than the one of hydraulic conductivity and it is not dependent on grain size distribution but on material 78 

characteristics alone (Stonestrom & Constantz, 2003). This gives heat tracing methods a great advantage over 79 

hydrometric methods (Rau et al., 2014). Heat-tracing methods are based on the interdependency of sediment water 80 

temperature-depths profiles and water infiltration rates (Suzuki, 1960). The conductive and convective transport of 81 

heat in water-sedimentsystems is described in the one-dimensional conduction-advection-dispersion equation, which 82 

can be used to quantify percolation rates in the surficial zone near the sediment water interface (Stallman, 1965).  83 

There are numerous different numerical (Lapham, 1989; Munz & Schmidt, 2017; Rau et al., 2015; Silliman et al., 84 

1993; Voytek et al., 2014) and analytical solutions (Hatch et al., 2006; Keery et al., 2007; Kurylyk & Irvine, 2016; 85 

Luce et al., 2013; McCallum et al., 2012) solving the conduction-advection-dispersion equation. While the analytical 86 

solutions need a sinusoidal temperature boundary signal, some numerical solutions can also incorporate arbitrary 87 

temperature boundaries (Munz & Schmidt, 2017; Silliman et al., 1993). However, numerical and analytical models 88 

both need, in addition to a time series of water temperature- depth profiles, information on thermal and physical 89 

sediment properties. Although, there are also analytical solutions using point in time temperature-depth profiles 90 

instead of a time series (Irvine et al., 2019), but these are not considered further in this work. The physical properties 91 

of the sediment-water-system are either quantified, e.g. in laboratory experiments (e.g. Wang et al., 2017) or they are 92 

estimated (coupled with uncertainty analysis) in other studies (e.g. Gariglio et al. 2013; Briggs et al., 2012; Lu et al., 93 

2017). The uncertainty and the spatial heterogeneity of sediment thermal parameters remain as challenges (Rau et al. 94 

2014) in many attempts to model processes in the hyporheic zone itself using temperature-based methods. Due to the 95 

heterogeneity of streambed sediment, information on the system properties is not always directly inferable. The 96 

estimation of streambed properties with the use of literature values might lead to wrong choices and thus a biased 97 

simulation of hyporheic exchange fluxes (Hatch et al., 2006; Munz & Schmidt, 2017; Rau et al., 2010). 98 

Here, we follow the recommendation by Boulton et al. (2010) to study the long-term variability of hydrological 99 

conditions occurring during several years, to identify the effect of seasonal variation and episodic hydrological 100 

extremes on hyporheic exchange depth under varying hydro-meteorological conditions. By applying parameter 101 

sensitivity analysis with the results of a recently released numerical model (Munz & Schmidt, 2017) in comparison to 102 

those of a well-known analytical model approach (Hatch et al., 2006) we  103 

I. identify the effect of estimated thermal properties on the resulting exchange fluxes, 104 

II. identify seasonal and short-term dynamics of hyporheic flow direction and intensity, 105 

III. determine hyporheic exchange depths variations in relation to hydraulic boundary conditions.  106 

2 Materials and Methods 107 

2.1 Study site and data 108 

The Olewiger Bach is a tributary of the river Mosel and is located south of the city of Trier (Rhineland-Palatinate; 109 

Germany) with a catchment area of about 35 km² and a total length of 14 km (Krein & Schorer, 2000). The altitude 110 

difference between headwater and mouth is about 300 m. The study site is located at the lower reach at a height of 111 

approximately 170 m above sea level. The river has a pluvial regime with a mean discharge of 245 l s-1 between 2011 112 

- 2017. The study site includes a riffle-pool-sequence at a 50 m long straight part of the river with a mean width of 113 

3 m. The sediment layer at the study site is made of coarse-grained material stemming from the underlying aquifers, 114 

which consist of low metamorphic slate and quartzite deposits. Banzhaf and Scheytt (2009) reported a hydraulic 115 

conductivity (Kf) of 8*10-4 m s-1 for the underlying aquifer using the grain curve method. To consider method-based 116 
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bias a correction factor of 2 was applied (German National Association for Water Management, Waste Water and 117 

Waste Management (DWA) set of rules A 138, 2005) and the resulting Kf of 1.6*10-4 m s-1used further on.  118 

Continuous measurements of sediment water temperature- depth profiles were carried out using three temperature 119 

lances (Umwelt- und Ingenieurtechnik (UIT) GmbH Dresden), with a resolution of 0.032 °C and an accuracy of 120 

0.1 °C. The temperature lances were positioned in succession in a riffle-pool sequence with 7 m distance between the 121 

first and second lance and 5 m distance between the second and third (Figure 1). Sensors were installed at depths of 122 

2 cm, 5 cm, 10 cm, 15 cm, 25 cm, 45 cm and 65 cm on the 67 cm long temperature lance. The use of a temperature 123 

lance prevented sensors from varying their spatial location relative to each other, as this can result in large errors 124 

(Munz & Schmidt, 2017; Sebok et al., 2017). The temporal resolution of temperature measurements varied during the 125 

seven years between 1 min and 10 min. To receive an evenly spaced water temperature time series with 10 min 126 

intervals the original time series has been resampled using linear interpolation. Groundwater levels were measured 50 127 

m downstream using an Eijkelkamp CTD + BaroDiver (standard temporal resolution: 10 min) in a groundwater 128 

observation well (filter depth of 2 m). Groundwater level data showed a slight declining trend which was attributed to 129 

several subsidence events at the measurement location (which were caused by freezing and thawing) and was corrected 130 

by using linear regression. Surface water levels and river discharges were continuously measured at a radar gauging 131 

station 1 km downstream using a SEBAPLUS radar measurement system mounted on a bridge (standard temporal 132 

resolution: 15 min (2011-2014) or 5 min (2015-2017)). Between the continuously measured water levels at the 133 

gauging station and the surface water levels observed regularly (weekly to monthly) right next to the groundwater 134 

observation well, an empirical linear relationship (R²: 0.58, n: 150, p-value < 0.001) was established, to receive a 135 

continuous time series at the measurement site. Daily mean air temperature and daily precipitation sum were obtained 136 

from the nearby (~2 km) Petrisberg weather monitoring station (operated by: German Weather Service (DWD), 137 

published under DWDs Climate Data Center). 138 

 139 
Figure 1: Left panel: Photograph showing the location of the three lances (red dots) in the riffle-pool-sequence. Right panel: 140 
Simplified profile of the riffle-pool- sequence with the positions of the three lances. Black arrow denotes the flow direction. 141 

2.2 Modelling tools 142 

The temperature-based modelling tools as well as the Darcy flux calculation all result in an estimation of vertical 143 

hyporheic flux (q) in m s-1, which is distinct from the vertical fluid velocity (vf) in m s-1. While the first is a measure 144 

of volume per area per time, the second incorporates the porosity (n) and is a measure of distance per time (Gordon et 145 

al. 2012). Upward flux is denoted with a negative sign. 146 

2.2.1 Temperature-based hyporheic exchange flux modelling 147 

Two different modelling approaches were used to simulate vertical hyporheic exchange fluxes based on water 148 

temperature time series observed in seven depths. Both modelling approaches are based on the one-dimensional 149 

conduction-advection-dispersion equation (modified after Stallman, 1968): 150 

𝜕𝑇

𝜕𝑡
= 𝐾𝑒

𝜕2𝑇

𝜕𝑧2
− 𝑞

𝐶𝑤

𝐶
∗

𝜕𝑇

𝜕𝑧
 151 
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(1) 152 

where t is time in s, T is water temperature in °C, z is depth in m, and Cw is volumetric heat capacity of water in 153 

J m-3 °C-1. In addition to that, C is the volumetric heat capacity of the sediment water system in J m-3 °C-1, which can 154 

be described by: 155 

𝐶 = 𝑛 ∗ 𝐶𝑤 + (1 − 𝑛) ∗ 𝐶𝑠 156 
(2) 157 

where Cs is the volumetric heat capacity of the sediment in J m-3 °C-1.  158 

 Ke is the effective thermal diffusivity in m² s—1: 159 

𝐾𝑒 =
𝐾

𝐶
 160 

(3) 161 

where K is the thermal conductivity of the saturated sediment in J s-1 m-1 °C-1 162 

2.2.1.1 Numerical model 163 

A numerical solution to Stallman’s equation is implemented in the inverse numerical computer program FLUX-BOT 164 

published by Munz and Schmidt (2017), where Equation 1 is solved numerically using a finite difference method 165 

developed by Crank and Nicolson (1996) followed by the derivative-free Nelder-Mead simplex optimization method 166 

described by Lagarias et al. (1998) to minimize the error between calculated water temperature and measured water 167 

temperature (Schmidt et al., 2006, Munz & Schmidt, 2017). As input, a water temperature time series with depth 168 

information is needed as well as the thermal parameters: K, C and Cw. A time window of 1 day was chosen to exclude 169 

the diurnal temperature variation and artificial effects coming along with it (Munz & Schmidt, 2017). With this setting 170 

the model computes mean daily hyporheic exchange fluxes. Vertical flux is calculated between the uppermost and 171 

lowest temperature sensor depth given, using all the sensors in between for the numerical optimization process. At 172 

least three temperature measuring depths are needed for the model to run (Munz & Schmidt, 2017). In theory it should 173 

be possible to calculate 15 different vertical hyporheic flux time series using all available sensor combinations as 174 

boundaries and a varying number of sensors. However, due to a limitation in the numerical code, which is not able to 175 

run if the distance between the uppermost and lowermost sensor is smaller than the mean depth between those sensors, 176 

only 14 combinations were realized. Due to numerical instability some runs produced unreasonable flux calculations 177 

for some timesteps. We eliminated fluxes with an intensity higher 5*10-5 m/s in both directions and calculated for 178 

each iteration the percentage of days where a reasonable flux calculation was possible (Table 1). 179 

2.2.1.2 Analytical model 180 

Six different approaches to solve Stallman’s conduction-advection-dispersion equation analytically using phase shift 181 

and amplitude dampening are incorporated in the MATLAB® toolbox VFLUX (Gordon et al., 2012; Irvine et al., 182 

2015). An extension described by Irvine (2017b) makes it even possible to estimate Ke from a reliable time period 183 

where a combined approach (phase shift and amplitude dampening) is used and fluxes are recalculated with the 184 

additional information. However, a method based on amplitude dampening alone was chosen, to exclude the 185 

uncertainty introduced by a shifting phase lag (Irvine et al., 2015) or the necessity to identify a reliable time period 186 

for Ke estimation (Irvine et al., 2017b). The method by Hatch et al. (2006) was chosen, since it offers the opportunity 187 

to perform sensitivity analysis (SA) on thermal dispersivity (β). Hatch et al (2006) used the following equation to 188 

compute vertical hyporheic flux: 189 

𝑞 =
𝐶

𝐶𝑤
∗ (

2𝐾𝑒

∆𝑧
ln 𝐴𝑟 + √

𝑎 + 𝑣2

2
) 190 

(4) 191 

where Ar is the amplitude ratio of corresponding water temperature measurements at different depths, v is thermal 192 

front velocity in m s-1 and a is defined as: 193 

𝑎 = √𝑣4 + (
8𝜋𝐾𝑒

𝑃
)

2

 194 

(5) 195 
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where P is the period of the sine temperature wave in s. 196 

The original input variables for the amplitude method described by Hatch et al. (2006) in VFLUX are the thermal 197 

parameters: n, K, β, Cs and Cw; as well as a water temperature time series with corresponding depths (Gordon et al., 198 

2012). 199 

Considering, that there was no depth integrative information on n or Cs available and that Cw was assumed as a 200 

constant, C was used as a direct input parameter solving Equation 4 instead of calculating it using Equation 2, as it is 201 

normally implemented in VFLUX. This procedure allows for both models parameter estimation with a reduced 202 

number of free parameters and results in a higher comparability between the numerical and the analytical modelling 203 

approach, as they now have identical parameter inputs. The periodicity of the temperature signal was always set to 1 204 

day to filter the diurnal signal. To improve filtering and prevent oversampling a sample size of 12 samples per day 205 

was applied, following the recommendations of Gordon et al. (2012). The dynamic harmonic regression function 206 

implemented in the Captain toolbox (Taylor et al., 2007) has been used to isolate the diurnal signal and extract the 207 

amplitude information to calculate Ar. For the calculation of one flux time series, two water temperature time series 208 

from different depths are needed as upper and lower boundaries. Vertical water flux was calculated between a sensor 209 

pair defined by a sensor spacing window. With seven measurement depths, it is potentially possible to compute 21 210 

different hyporheic exchange flux time series with the analytical model for a single temperature lance. Within this 211 

analysis, we considered only those depth combinations, which could be realized using the numerical model. Therefore, 212 

the combinations where a sensor and its directly neighboring sensor are used are excluded, as the numerical model 213 

always needs a sensor in between. With the chosen sample size, vertical fluxes were calculated in 2-hour intervals and 214 

were resampled using linear interpolation to daily values fitting the numerically derived flux time series.  215 

2.2.2 Darcy flux calculation 216 

Applying Darcy’s equation (1856):  217 

𝑞 = 𝐾𝑓 ∗ 𝑖 218 
(6) 219 

with the hydraulic gradient i, which describes in this case the gradient between the surface water level and the 220 

groundwater level in the observation well, q was calculated using a 2 m depth integrating hydrometric method as 221 

reference to the temperature-based methods. The vertical Darcy flux time series was then resampled to a period of 1 222 

day using linear interpolation to match the time steps of the analytically and the numerically simulated hyporheic 223 

exchange fluxes. Even if there is a high probability of deviations between the signals of vertical hydraulic heads and 224 

temperature-based water flux calculations (e. g. Krause et al., 2012), the results of the Darcy flux model are considered 225 

as an external reference, which is used in addition to the inter-model comparison evaluating the overall temporal 226 

distribution of up-welling and down-welling water fluxes at the study site. 227 

2.3 Model evaluation and sensitivity analysis 228 

To bypass errors in hyporheic flux calculation originating in uncertain thermal parameter assignment, one-at-a-time 229 

(OAT) and all-at-a-time (AAT) SA as Monte Carlo Analysis (MCA, after Pianosi et al. (2016)) were applied. In OAT 230 

SA only one parameter is varied, while all other parameters are kept at a base value. A global OAT SA was performed 231 

using the change in mean flux and standard deviation to assess the effect of the varied parameters individually. To 232 

quantify directly the influence of variation in C and K on hyporheic flux intensity under different conditions, distinct 233 

values for K (set between the boundaries used for MCA) were applied to calculate vertical hyporheic fluxes for a 234 

given day with upward flux behavior and a given day with downward flux behavior, while all other inputs were kept 235 

constant. The same procedure was used for distinct values for C, with all other parameters kept constant. The 236 

calculated vertical hyporheic exchange fluxes with differing values for either K or C were compared to the Darcy 237 

fluxes of these days as a reference. 238 

In the following the Kling-Gupta-Efficiency (KGE) is used as a quality criterion. As described in detail by Gupta et 239 

al. (2009), the KGE is an improved version of the Nash-Sutcliff-Efficiency (NSE), which incorporates values for 240 

correlation, bias and variability to describe how well a modelled data set describes a measured data set. The bias is 241 

the ratio between the mean of the modelled data set and the mean of the measured data set, whereas the variability is 242 

described by the ratio of the standard deviations of the modelled data set and the measured data set. A KGE of 1 would 243 

be a perfect fit of the data. In this study, model performance is defined by the KGE between the analytically modelled 244 

hyporheic exchange flux and the numerically modelled hyporheic exchange flux, meaning a high KGE value 245 

represents a good fit between the models, whereas a low or negative KGE is attributed with a poor model fit.  246 
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MCA with 1000 model realizations (as recommended by Pianosi et al., 2016) was performed for each of the 14 depth 247 

combinations for all three lances using randomly distributed parameter values for K (0.837 J s-1 m-1 °C-1 – 248 

3.349 J s-1 m-1 °C-1) and C (1.506*106 J m-3 °C-1 – 3.682*106 J m-3 °C-1). The parameter space was defined broader 249 

than the parameter ranges suggested by Lapham (1989) or Gordon et al (2012), to include all possible parameter 250 

specifications and test both models under the extreme condition that there is no information on thermal parameters 251 

available. Since Cw is quasi a constant and the effect of β is neglectable (see results of OAT SA), both were kept 252 

constant for the further analysis. The fluxes with the highest similarity between both models were identified for all 253 

possible depth combinations per model calculating the KGE.   254 

To assess the influence of K and C under specific boundary conditions, KGE values were calculated for the days with 255 

downward flux and the days with upward flux in addition to the performance evaluation over the whole time series.. 256 

Regional Sensitivity analysis (RSA) performed with the SAFE-toolbox by Pianosi et al. (2015), was used to identify 257 

the sensitivity of the output metric (KGE) to the parameters K and C. Therefore, the output metrics were split into a 258 

behavioral (KGE above 0) and a non-behavioral group (Saltelli et al. 2007). To assess the robustness bootstrapping 259 

with 1000 resamples and a significance level of 0.05 was performed. Afterwards the sensitivity was assessed by 260 

comparing the difference in cumulative distribution functions (CDFs) between the behavioral and non-behavioral data 261 

sets, using Kolmogorov-Smirnov statistics with their 95 % confidence interval. Reported, as a measure of sensitivity 262 

is the mean d-stat of this test, where a high value is associated with a higher sensitivity to this parameter. 263 

2.4 Process analysis 264 

2.4.1 Identification of hyporheic exchange depths 265 

The extent of the hyporheic zone can be described by the zero-flux plane as a boundary between upward and downward 266 

fluxes (Khalil et al. 2003), where vertical fluxes are closest to zero. Based on the works by Kim et al. (2013) and 267 

González-Pinzón et al. (2015) we define the approximated depth of the hyporheic zone, where the downwelling fluxes 268 

calculated between a given sensor combination turn into upwelling fluxes at the neighboring sensor combination as 269 

the extent of the hyporheic zone. This so-called zero-flux method was applied to estimate hyporheic exchange depths 270 

by comparing the numerically and analytically generated results of hyporheic exchange flux calculations using 14 271 

depth combinations at each of the three lances. For each depth the individual best fit between both models was chosen.  272 

2.4.2 Temporal variation of hyporheic exchange fluxes and depths 273 

Statistical location parameters (mean, median) and variation parameters (standard deviation, percent standard 274 

deviation, variance, range) were calculated to describe the time series of fluxes and depths. Daily means (dm) and 275 

daily standard deviations (dstd) over the 7 years were calculated. The seasonal amplitude of these averaged years was 276 

used as an indicator for seasonal variation, whereas the range of the daily standard deviation served as indicators for 277 

episodic variation. We define the episodic variation index as: 278 

 279 

𝑒𝑝𝑖𝑠𝑜𝑑𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = 1 −
max(𝑑𝑚) − min (𝑑𝑚)

2 ∗ 𝑚𝑒𝑎𝑛 (𝑑𝑠𝑡𝑑)
 280 

(7) 281 

Following equation 7 episodic variation is higher than seasonal variation if the episodic variation parameter is positive.  282 

In addition, the datasets were split into summer (April until September) and winter (October until March) periods to 283 

compare hyporheic exchange depths in different seasons. As calculated hyporheic exchange depth and flux data is not 284 

in its entirety normally distributed (confirmed by a one sample Kolmogorov-Smirnov test (significance level alpha of 285 

0.001)), non-parametric statistical tests were used to assess significant differences between the seasons and models. 286 

For comparison of two samples (e.g. summer and winter season) the two sample Kolmogorov-Smirnov test and 287 

Wilcoxon-Mann-Whitney test were used, whereas the Kruskal-Wallis test combined with Dunn’s posthoc test was 288 

used to compare more than two samples (e.g. different lances). 289 

Monthly mean values were calculated for all time-series enabling additional time series analysis: Additive time series 290 

decomposition in trend, seasonal (frequency of 12 month) and random component using local regression (loess) as 291 

described by Cleveland et al. (1990) was performed on the down-sampled time series. The r function stl_plus (Hafen, 292 

2016) was used for this. The strength of the seasonal component was calculated according to Wang et al. 2006 using 293 

the R package tsfeatures (Hyndman et al., 2019). Seasonal strength is given as a value between 0 (no seasonal 294 

component) and 1 (very strong seasonal component). The strength of the seasonal component was estimated for 295 
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calculated fluxes and resulting depths using the parameter optimum range (Figure 3) for each model, to assess the 296 

effect of slightly uncertain parameters on the modelling results. In addition, the same was done using the whole 297 

parameter range used in MCA to assess the influence of high parameter uncertainties. 298 

To investigate the effects of water levels, discharge, precipitation and daily mean air temperature on hyporheic zone 299 

extension we categorized the hyporheic exchange depths into three expressions (< 0.15 m, 0.15 m to 0.3 m, > 0.3 m) 300 

and used them in a multinomial logistic regression (MNR) model for ordinal responses (Long & Freese, 2001; Dobson, 301 

2002) with the named boundary conditions as predictors. The effects of those boundary conditions on flux direction 302 

were identified using mnr with flux direction as ordinal response.  303 

3 Results 304 

3.1 Model evaluation and sensitivity analysis 305 

The highest similarity between both models with a KGE of 0.46 is computed for a mean flux depth of 0.135 m at lance 306 

2, using values for K (thermal conductivity) of 3.29 J s-1 m-1 °C-1 and for C (volumetric heat capacity) of 307 

1.70*106 J m-3 °C-1. The best fit between the models at lance 1 (KGE of 0.31) was found using the sensor pairs 0.05 m 308 

and 0.45 m. However, here only 46 % of the time series were realized in the numerical model, so that the second best 309 

fit (KGE of 0.15) at 0.135 m was chosen for lance 1 with a K of 2.9 J s-1 m-1 °C-1 and a C of 1.55*106 J m-3 °C-1. At 310 

lance 3 the fit between the models was not as good (KGE of 0.07) at a mean depth of 0.085 m with a K of 311 

1.326 J s-1 m-1 °C-1 and a C of 3.48*106 J m-3 °C-1. In general, the inter-model comparison shows that using the same 312 

parameter combinations in both models results in substantial differences in most depths (Table 1).  313 

To evaluate the models individually, the effect that a  varied parameter has on the mean flux and its standard deviation 314 

was assessed. In the models C has a positive effect on mean flux, which is especially pronounced in the analytical 315 

model. A negative relationship appears when K is increased. This effect on the mean is especially strong for the 316 

numerical model. Cw has almost no effect. A slight increase in β (only applicable in the analytical model) also has no 317 

effect; only with very high β values the flux is drastically reduced. Therefore, in the AAT SA Cw and β were kept at 318 

base value. The standard deviations of hyporheic exchange flux increase with an increase in C for both models and 319 

this effect is again more pronounced when using the analytical model. Standard deviations also increase with an 320 

increase in K. However, the increase in the numerical model is more dominant here. 321 

Considering the numerically and analytically modelled fluxes in parallel for specific days under upwelling or 322 

downwelling conditions, respectively, the influence of parameter variation on flux intensity becomes clear (Figure 323 

2Error! Reference source not found.). A change in only one thermal parameter has the same effect direction on the 324 

resulting flux in both models. However, there is a difference in flux intensity between both models at the same 325 

parameter value. In general, an increase in C leads to higher flux values under downwelling conditions for both models, 326 

although the effect is much stronger for the analytical model. An increase in K results in higher flux intensities for 327 

both models under down- and upwelling conditions. C has a slightly decreasing effect on the flux intensity calculated 328 

with the analytical model. As a consequence of the mentioned offset, Darcy flux is matched by both temperature-329 

derived fluxes with different thermal parameter values. This is confirmed by comparing the fluxes calculated with 330 

different models using the same parameter values, resulting in mostly negative KGE (Table 1 and Figure 4). 331 

Comparing the models with each other (Figure 3), the calculated optima for both thermal parameters appear to be 332 

outside the realistic boundaries (Lapham, 1989) for lance 2. The optima for C at lance 1 and 3 have a quite similar 333 

range, whereas the optima for K at these lances differ again significantly. No clear trend between an increase in mean 334 

flux depth (chosen sensors) and location and dispersion parameters describing the optima for K and C are visible. 335 

Comparing the multiplicative relation between the model parameters (Figure 4), it can be seen that the combined 336 

optimum of the two parameters is distributed differently among the three lances. Especially between lance 1 and 3 337 

optimum parameter combinations appear to be in opposing areas of the parameter range. Lance 2 is covering both 338 

areas but a higher model similarity is achieved using parameter combinations with a high value for K and a low value 339 

for C. The difference between times with differing flux direction is also pronounced. However, the number of runs 340 

which result in a positive KGE decreases when only downward fluxes are considered at lance 2 and increases when 341 

only upward fluxes are considered at lance 1. In general RSA confirms the visual results. Considering the whole time 342 

series C and K appear to have a fairly equal effect, with a higher effect of C at lance 1 and 2 and a higher effect of K 343 

at lance 3. Under upward conditions, K has a higher effect (d-stats of 0.63 and 0.6 for K and 0.17 and 0.2 for C) for 344 

lance 1 and 2. There are not enough behavioral results to calculate d-stats under specific conditions at lance3. C is 345 

more influential with downward flux behavior at lance 1 and 2. 346 

 347 
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 348 
Figure 2: Effect of one-at-a-time variation of thermal properties K and C on flux intensity under downward or upward 349 
conditions for both temperature-based models. Darcy flux marked in red, analytical model in blue and numerical model in 350 
green. 351 

 352 

Table 1: Kling-Gupta-Efficiencies (KGE) of time series analysis between the analytical model and the 353 

numerical model (AvN) including the percentage of the time series which could be realized using the 354 

numerical model (% real) for AvN as well as the maximum percentage which could be achieved using 1000 355 

parameter combinations (max poss. % real). The number of sensors used in the numerical model is given 356 

behind the respective depth. 357 

  
Lance 1 Lance 2 Lance 3 

  

Depth [m] 
AvN  

max 

poss. 
AvN 

max 

poss. 
AvN 

max 

poss. 

KGE % real % real KGE % real % real KGE % real % real 

0.06 (3) -0.27 92 92 -0.14 56 100 -0.07 96 100 

0.085 (4) -0.09 1 1 0.22 98 100 0.07 100 100 

0.1 (3) -0.49 2 4 -0.11 0 4 -0.89 5 5 

0.135 (5) 0.15 98 99 0.46 100 100 -3.56 76 99 

0.15 (4) 0.15 42 84 0.21 71 71 -0.63 46 93 

0.175 (3) -0.21 1 5 -0.11 2 6 -1.71 2 3 
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0.235 (6) -0.33 97 98 0.23 100 100 -3.11 100 100 

0.25 (5) 0.31 46 95 0.01 99 100 -0.73 32 100 

0.275 (4) -0.09 21 52 -0.31 64 68 -0.71 21 59 

0.3 (3) -0.04 0 9 -0.10 3 31 -0.66 6 24 

0.335 (7) -0.09 96 96 -0.12 99 100 -0.03 100 100 

0.35 (6) -0.33 46 98 -0.52 97 100 -0.52 53 100 

0.375 (5) -0.49 6 22 -0.44 3 85 -0.59 15 30 

0.4 (4) -0.22 2 12 -0.35 1 28 -0.49 7 23 

 358 

 359 
Figure 3: 5 percent best fit cumulative KGE proportion of volumetric heat capacity of the sediment-water system and 360 
thermal conductivity for both models with modelling boundaries (slight yellows) and literature values (reddish colors (light: 361 
fine-grained sediment, darker: coarse-grained sediment), blue bar: water) given by Lapham (1989) (dashed line: lance 1, 362 
line: lance 2, dotted line: lance 3). 363 
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 364 

 365 
Figure 4: Colored scatter plots of parameter influence on the similarity (as KGE) between both temperature-based models 366 
(a: whole time series, b: downward flux, c: upward flux) 367 

3.2 Process analysis 368 

3.2.1 Temporal variation of hyporheic exchange fluxes 369 

Temporal variation of hyporheic exchange fluxes was determined by using the best-fit fluxes between both model 370 

approaches (Figure 5). The mean values of the temperature-based modelled fluxes calculated at lance 3 are comparable 371 

to the mean Darcy fluxes with 3.33*10-6 m s-1. At lance 1 the temperature-based models propose smaller flux 372 

intensities, while at lance 2 the mean direction is changed (Table 2). The standard deviations of the temperature based 373 

modelled fluxes are up to 4 times higher than of the Darcy flux (130 %).  374 

Darcy flux has a smaller seasonal strength than the temperature-based hyporheic exchange fluxes (Table 2). The 375 

stronger seasonality is expressed with stronger downward fluxes in summer and a stronger tendency for upward fluxes 376 

in winter at lance 2 and 3 (Figure 5). This is contradicted at lance 1, where both models propose more intense 377 

downward flux in winter and upward fluxes in summer. Kolmogorov-Smirnov test and Wilcoxon-Mann-Whitney-U 378 

test both show a significant difference (alpha of 0.001) between summer and winter period for all fluxes regardless 379 

which model or lance was chosen. The variation in seasonal strength is small in both models when the thermal 380 

parameters are varied only around the optimum, but when they are varied over the entire range, there is a large variation 381 

in seasonality for the numerical model. The episodic variation index is with 0.12 positive for Darcy flux, but negative 382 

for all temperature based modelled fluxes. 383 

In comparison to the Darcy flux time series both temperature-based models result in longer times of dominating 384 

upward fluxes (Figure 5). Darcy flux calculations propose upward fluxes in 18 % of the cases, whereas the analytical 385 
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and numerical model estimate distinctively larger proportions (Table 2). All models propose a higher proportion of 386 

upward flux behavior in winter than in the summer period for lance 2 and 3, but not at lance 1. 387 

Regarding the effect of the boundary conditions on the flux direction tested using mnr, there are large differences 388 

between the lances. An increase in discharge increased the probability of upward flux at lance 2 significantly, while 389 

it reduced the probability at lance 1 significantly when the analytical model was used. At lance 3 the same tendency 390 

as at lance 2 can be observed but is not significant. A rise in surface water level has a significant positive effect on 391 

the chance for upward flux at lance 1, while it is significantly negative at lance 2 and 3 (significant here only for 392 

AM). Groundwater level promotes exactly the opposite effects. The reaction to precipitation is mostly indifferent. 393 

 394 

Figure 5: Left panel: seven year mean daily hyporheic exchange fluxes (line: 30 days moving average, dark shaded area: 5 395 
% best fit interval (5 % of fluxes from MCA with the highest similarity to the benchmark) as 30 days moving average, light 396 
shaded: seven year daily standard deviation) for lance 2. Seven year mean daily hyporheic exchange fluxes as 30 days 397 
moving average are added in black for lance 1 (dashed line) and lance 3 (dotted line) Middle panel: boxplots of hyporheic 398 
exchange fluxes for summer and winter periods (black line: median, black box: first and third quartile, upper and lower 399 
whisker: 99 % coverage, point: mean, grey dot: outlier). Right panel: flow duration curves with vertical lines marking the 400 
change between upwards and downwards flux for the whole time series (coloured full line), summer (coloured dotted line) 401 
and winter (coloured dashed line) for lance 2 and for the whole time series of lance 1 (black dashed line) and lance 3 (black 402 
dotted line). 403 

 404 
Table 2: Summary of seasonal and episodic variations of hyporheic exchange fluxes  405 

    Mean flux [m/s] Seasonal strength Episodic variation Percentage upward flux [%] 

Lance 1 
AM 1.78*10-6 0.45 -0.61 52 

NM 1.80*10-6 0.53 -0.81 40 
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Lance 2 
AM -2.82*10-6 0.36 -0.41 71 

NM -3.01*10-6 0.36 -0.37 66 

Lance 3 
AM 3.84*10-6 0.23 -0.31 29 

NM 3.97*10-6 0.27 -0.37 26 

Darcy 3.33*10-6 0.11 0.12 18 
 406 

3.2.2 Quantification and temporal variation of hyporheic exchange depths 407 

The zero-flux method was applied on analytically and numerically modelled fluxes with 14 depths combinations as 408 

input data sets.  Using the numerical model results in smaller extent of hyporheic exchange depths for lance 2 and 3 409 

in comparison to the depth derived from the analytical model (Table 3). Kolmogorow-Smirnow tests and Wilcoxon-410 

Mann-Whitney tests reveal significant (alpha of 0.001) differences in depths calculated using the different model 411 

approaches. Furthermore, Kruskal-Wallis combined with Dunn’s posthoc test (alpha of 0.001) confirms significant 412 

differences between lance 3 and the other two lances when the analytical model and between lance 1 and the other 413 

two lances when the numerical model is used. 414 

Seasonal strength is always higher for the analytical modelled time series (Table 3). The episodical variation indices 415 

are again all negative. The seasonal strength is strongly changed for both models if parameters are varied even slightly. 416 

However, this time the analytical model seems to be more influenced by parameter variation in contrast to the 417 

observations made for the effect on seasonality when considering hyporheic flux. 418 

The analytical model shows a deeper extent of the hyporheic zone in summer, whereas it is the opposite using the 419 

numerical model (Figure 6). Kolmogorow-Smirnow tests (alpha of 0.001) confirm significant differences between the 420 

seasons for all lances except for lance 3 if the numerical model is used. In addition, strong variations during the whole 421 

year are observable. 422 

MNR results in significant effects (alpha of 0.01) of surface water levels and river discharges on hyporheic exchange 423 

depth for nearly all cases (Figure 7). However, the effect is contrary in both models. Groundwater levels are significant 424 

predictors for the hyporheic exchange depth calculated by the numerical model at all lances, while they are only 425 

significant at lance 3 for the analytical model. Again, the effect is contrary between both temperature-based models. 426 

Air temperature is a significant predictor at lance 1 (for both models) and using the analytical model at lance 3. No 427 

statistical relationship has been detected between precipitation and hyporheic zone extension. 428 

Comparing the relationships between Darcy derived hyporheic exchange flux and exchange depths, for each of the 429 

lances we find a significant (alpha of 0.001) correlation with the analytical model results (Figure 8). Although the 430 

explanatory power of these correlations is limited a clear positive relationship between increasing exchange depth 431 

with increased downwards flux intensity is visible. The relationship between exchange flux and depth is indifferent 432 

with even lower explanatory power for the numerical model. 433 

 434 
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 435 
Figure 6: Left panel: seven year mean daily hyporheic exchange depth (line: 30 days moving average, light shaded: seven 436 
year daily standard deviation) for lance 2. Seven year mean daily hyporheic exchange fluxes as 30 days moving average 437 
are added in black for lance 1 (dashed line) and lance 3 (dotted line). Middle panel: boxplots of hyporheic zone extension 438 
for summer and winter periods (black line: median, black box: first and third quartile, upper and lower whisker: 99 % 439 
coverage, point: mean, grey dot: outlier). Right panel: exceedance probability curves of hyporheic zone extension for the 440 
whole time series (coloured full line), summer (coloured dotted line) and winter (coloured dashed line) for lance 2 and for 441 
the whole time series of lance 1 (black dashed line) and lance 3 (black dotted line).  442 

Table 3: Parameters describing seasonal and episodic variation of hyporheic exchange depth 443 

    Mean depth [m] Standard deviation [%] Seasonal strength Episodic variation 

Lance 1 
AM 0.24 40 0.63 -0.34 

NM 0.27 32 0.43 -0.28 

Lance 2 
AM 0.28 36 0.3 -0.01 

NM 0.25 33 0.23 -0.14 

Lance 3 
AM 0.29 36 0.55 -0.21 

NM 0.26 32 0.27 -0.03 
 444 
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 445 
Figure 7: Whisker-Box-Plots depicting the relationship between identified hyporheic exchange depth (shown on the y-axes 446 
as zero flux plane) and hydro-meteorological boundary conditions (groundwater (GW) level, surface water (SW) level, 447 
discharge, precipitation and mean air temperature). Depth values from 1 to 14 give increasing depth steps according to 448 
Table 1.; *** marks significant effects in MNR.) 449 
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 450 
Figure 8: Relationship between seven year daily mean hyporheic exchange flux and seven year daily mean hyporheic 451 
exchange depth (open circles: winter period, filled circles: summer period). 452 

4 Discussion 453 

4.1 Model evaluation and sensitivity analysis 454 

We have identified sensor combinations where the analytical and numerical models have a higher similarity. For both 455 

models there are different factors mentioned in the literature which increase model uncertainty. Gordon et al. (2012) 456 

show an increasing modelling uncertainty with increasing sensor spacing for the analytical model approach. However, 457 

minimizing sensor spacing is limited by the amplitude ratio reaching unity, which would result in improbable high 458 

flux estimations (Irvine et al., 2017). Munz and Schmidt (2017) stated that an increase in the number of sensors used 459 

in their numerical model led to a higher accuracy. This would naturally come along with a wider sensor spacing 460 

window between the two sensors used as boundaries. These contradicting implications for reducing uncertainty can 461 

explain some of the differences between the models. Regarding absolute sensor depth as a factor, it is important to 462 

consider effects of erosion and sediment remobilization. Although the uppermost sensor (0.02 m) at lance 2 was 463 

temporarily affected by this, the inclusion of it still led to the most similar results between the models. Our data gives 464 

the impression that the extinction depth, at which the diurnal signal is no longer detectable is of greater concern. A 465 

very deep sensor depth (here 0.65) partially did not show any diurnal signal. Far more shallow extinction depths have 466 

been documented as well, e.g. 0.2 m under upwelling flux conditions (Briggs et al., 2014).   467 

The impact of variations in Cw is neglectable considering the fact that most literature references agree about a value 468 

between 4.184*106 J m-3 °C-1 and 4.187*106 J m-3 °C-1 for Cw (e. g. Gordon et al., 2012; Munz & Schmidt, 2017) and 469 

that even a substantial variation in OAT SA did only show negligible influence. The influence of β is subject of great 470 
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discussion in the scientific community over the last years (Rau et al., 2012). As described in Rau et al. (2014) the 471 

influence of thermal dispersivity is much lower than that of solute dispersion. It could be shown that the analytical 472 

model was insensitive to β. The numerical model by Munz and Schmidt (2017) does not incorporate a β term.  473 

The identification of C and K as sensitive parameters for the numerical model and a slightly higher sensitivity of C, 474 

especially under downward flux conditions, confirms findings by Munz and Schmidt (2017). Yet, as expected, K has 475 

a stronger effect under exclusively upward flux conditions. Furthermore, it could also be validated that there is a 476 

correlated effect of both parameters (Munz & Schmidt, 2017). The high sensitivity of the analytical model to K is also 477 

demonstrated in other studies (i.e. Gordon et al., 2012). A second key parameter n is identified and its impact directly 478 

attributed to its influence on C (Gordon et al., 2012), which results in a high sensitivity of the parameter C. Shanafield 479 

et al. (2011) varied n, K and Cs in the analytical model of Hatch et al. (2006) using MCA and report an effect of Ke, 480 

for which they conclude that uncertainty in this parameter estimation is biased especially under gaining conditions. 481 

Considering the effect of the thermal parameters on absolute flux values, it appears worth mentioning that the 482 

parameter C has a very strong influence on the analytical model, especially under downward flux conditions (Figure 483 

2), but not on the numerical approach, leading to drastic deviations in calculated fluxes, although the same input is 484 

used. Under upward flux conditions, the response to a change in C does not result in such divergent behavior. In 485 

general, an increase in K increases flux intensity autonomously from flux direction. The numerical model seems to be 486 

stronger affected by a variation in K, which again intensifies under upward flux conditions. This can generally be 487 

explained by the divergent directions of upward advection along with the flow direction and downward propagation 488 

of the temperature signal through conductive transport. However, this is not a sufficient explanation why this effect 489 

seems to be stronger for the numerical model. 490 

We attribute the main differences between the fluxes calculated with different modeling approaches to a different 491 

sensitivity to variation in thermal parameters, which is probably due to the nature of the mathematical solutions used. 492 

The main difference between the two approaches is that the analytical method depends on the relationship between 493 

the temperature amplitudes caused by a daily temperature cycle and its propagation through the sediment, whereas the 494 

numerical model explicitly excludes these sinusoidal signals and is instead based on absolute temperature differences. 495 

It needs to be noted, that some of the calculated combined optimum ranges (lance 2) for the thermal parameters are 496 

outside the boundaries set by Lapham (1989) and seem questionable for real sediments, although there is some 497 

literature reporting comparable low values for C and high values for K (Goto & Matsubayashi, 2009). However, this 498 

is not influencing the main message that both temperature-based methods result in different flux results, even with the 499 

same input parameter values. 500 

Considering the results of the SA it can be stated that there was always a difference in calculated flux between the two 501 

models even under uniform conditions and with constant parameter settings as also reported by Swanson and Cardenas 502 

in 2011. Using two contrasting modelling approaches both incorporating the same temperature data can therefore 503 

result in different thermal parameter estimation or significantly different flux calculations even if thermal parameters 504 

are known. In conclusion, uncertain thermal properties combined with two different model approaches can cause 505 

differences of some magnitude (Figure 2Error! Reference source not found.).  506 

4.2 Process analysis 507 

4.2.1 Temporal variation of hyporheic exchange fluxes 508 

Gariglio et al. (2013) suggest to use different model approaches for winter, as the sinusoidal signal can be strongly 509 

attenuated in winter. In this study, the sinusoidal signal was always detectable even in winter. Hence, we could not 510 

find a clear difference in model performance between the seasons, which holds true for all lances. However, for lances 511 

1 and 2, similarities between both models in use where stronger in summer. As the analytical model directly depends 512 

on distinctive amplitude differences, which can be minimal in winter, we advise, to use the here presented temperature-513 

based methods, especially the analytical one depending on amplitude dampening carefully at study sites with 514 

pronounced cold winters.  515 

An increased upward flux behavior was simulated for the winter periods by the temperature-based models at lance 2 516 

and 3 in correspondence with increased discharges and groundwater levels as well as catchment saturation during the 517 

rainy season. An additional effect could be attributed to the significant change in hyporheic zone extension during the 518 

year, an effect also reported by Boano et al. (2014) or the diminished diurnal signal of water temperatures. 519 

Deviations between temperature-based flux and Darcy flux can be explained with the spatial distance between the 520 

GW well and the temperature lances (e. g. Krause et al., 2012) as well as with the depth integrative nature of the 521 

hydraulic method (2 m filter depth), while the temperature-based approaches quantify fluxes on smaller spatial scales. 522 

Furthermore our 1-D modelling approaches are not able to detect multidirectional flow patterns, which can also lead 523 
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to a deviation between the benchmark and the modelled fluxes (Briggs et al. 2012). However, it is still worthy to use 524 

Darcy flux as a comparison especially for the longterm seasonality, as it is a convenient and cost-efficient method to 525 

estimate groundwater surface water exchange.  526 

In several studies (e.g. McCallum & Shanafield, 2016; Trauth & Fleckenstein, 2017) a shift from upwelling to 527 

downwelling conditions is often observed during a hydrological event. We observed combined increase in downward 528 

flux intensities and stream flow only at lance 1, whereas at lance 2 and 3 increasing stream flow coincided with 529 

increasing upward flux intensities. This can be explained with the location along the riffle-pool-sequence, where a 530 

higher discharge would induce increased downward fluxes at elevated positions, where lance 1 is situated (Figure 1).  531 

Another reason could be the reaction of the near surface groundwater table, observable as a fast raise of the 532 

groundwater table during event flow, which in turn resulted in upward flux behavior. Probably, this phenomenon is 533 

also dependent on the connectivity and the shape of the whole hyporheic corridor (Stanford & Ward, 1993) and the 534 

overall antecedent moisture content of the whole catchment. 535 

In general, the temperature-based models propose a distinctively higher seasonal variation than the Darcy fluxes who 536 

were endemically dominated by episodic events. A reason might be the direct reaction of gradient-based Darcy fluxes 537 

to velocity and celerity of increased lateral water input occurring during flood-pulse-driven events (McDonnell & 538 

Beven, 2014), whereas the temperature-based models are estimated based on energy transport velocities alone.   539 

4.2.2 Identification of hyporheic exchange depths and its temporal variation 540 

The absolute values of hyporheic exchange depths calculated at our study site range from 0.06 m to 0.4 m and are in 541 

accordance with values reported elsewhere (e. g. Kim et al., 2014; Harvey & Fuller, 1998; Hill & Lymburner, 1998; 542 

Boano et al., 2008). The mean hyporheic exchange depth estimated with the zero-flux plane method based on the 543 

analytical and numerical approaches deviated with a maximum of 0.03 m only slightly between the models. However, 544 

the calculated depths differed significantly between the models on a daily basis. Depending on the model choice the 545 

differences between the three lances changed. The numerical model proposes on average a deeper extension at the 546 

head of the riffle, than on the crest or in the following pool, whereas the analytical model proposes a more extended 547 

zone on the crest and in the pool. The difference between the lances can of course be explained with the location and 548 

the typical flow patterns through a riffle pool sequence (e.g. Cranswick et al., 2014, Gariglio et al., 2013), but it is 549 

striking that both models propose a different ranking between the lances regarding the hyporheic zone extension.  550 

The hyporheic zone extension is subject to great variation during the whole year as reported in previous studies (e.g. 551 

Wondzell & Swanson, 1996; Wondzell & Swanson, 1999). There is a significant difference between the summer and 552 

winter period, confirmed by all modelling approaches. However, both models contradict each other: while the 553 

analytical model is proposing a smaller hyporheic zone extension in winter, the numerical model proposes a deeper 554 

extension in winter (especially visible at lance 1). Although significant differences in calculated hyporheic exchange 555 

depth were observed, we did not anticipate such a diverging behavior between the models regarding the seasonal 556 

behavior as observed at lance 1. Therefore, it is very important to consider small scale riverbed formations in 557 

positioning of measurement equipment and record changes as it seems that they can influence different temperature-558 

based model approaches in different ways. We identified a strong seasonal component in hyporheic zone extension. 559 

The strength of the seasonal component is always slightly higher when the analytical model is used to calculate 560 

exchange depth. Using the zero-flux method very high standard deviations were calculated throughout the year. Hence, 561 

there must be short timescale drivers influencing hyporheic exchange depth as well. Although seasonal variation is 562 

comparable high or higher (episodic variation index ≈< 0), MNR could identify short timescale drivers like discharge 563 

and water levels. Calculated episodic variation was comparable between the models.  564 

As expected, higher groundwater levels came along with a shallower hyporheic zone extension as also described by 565 

Boano et al. (2008). However, this effect was only observed using the analytical model, while the numerical model 566 

proposed the contrary. An increase of hyporheic zone extension under flood peaks as reported by other authors 567 

(Bhaskar et al., 2012; Singh et al., 2019; Wu et al., 2018), was on the other hand only observed using the numerical 568 

model. The positive effect of an increasing ambient hydraulic head on hyporheic zone extension as mentioned in other 569 

studies (Fox et al., 2014; Marzadri et al., 2016) could be reproduced by using the analytical model approach to identify 570 

hyporheic exchange depths. However, the still low to moderate explanatory power of all correlations suggests that 571 

other processes and boundary conditions might contribute to the observed combinations of hyporheic exchange flux 572 

intensities and exchange depths as well. E.g. a diverging behavior (smaller hyporheic zone extension under peak flow) 573 

can be explained with the fast reaction of the groundwater table coming along with flooding observed in the study 574 

area. Watson et al., (2018) show that even water temperature differences between flood peak and groundwater might 575 

lead to differences in temperature distributions and thus simulated hyporheic exchange depths. 576 
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Since the extent of the hyporheic zone and residence times are linked, a larger hyporheic zone increases reaction times 577 

for biogeochemical processes (Boano et al. 2014). Considering the impact of diel water temperature variations on 578 

hyporheic nutrient cycling (e.g. Zheng and Cardenas, 2018), the integration of observed seasonal and episodic 579 

variations of hyporheic exchange depths and exchange flux intensities into the continuous and long-term prediction 580 

of travel time related nutrient turnover in the hyporheic zone might improve the abilities of our modelling tools even 581 

further. 582 

5 Conclusions 583 

Simulated hyporheic exchange flux time series are characterized by an underlying seasonal behavior, tending to 584 

upwelling conditions in winter and downwelling conditions in summer, regardless of the positioning of each lance. 585 

Both temperature-based models tend to simulate an increased upward flux behavior and seasonal variation as well as 586 

lower flux intensities than depth integrated Darcy flux calculations. Parameter uncertainty has a small influence on 587 

the seasonality of hyporheic exchange fluxes using the analytical model, but a strong impact on the simulated exchange 588 

depths. The simulated seasonality of hyporheic exchange zone depths shows a characteristic behavior for each model 589 

type. While the analytical model revealed a larger extent of the hyporheic zone  in summer than in winter, the results 590 

of the numerical model were contradicting. Episodic event dynamics resulted in a strong variability of hyporheic zone 591 

extension during the whole year. These short-term effects could be attributed to combined effects of changes in 592 

groundwater and surface water levels and river discharges. However, the models again propose a different nature in 593 

correlations. 594 

Finally, we show that thermal methods must be applied carefully because different algorithms lead to divergent flux 595 

calculations, resulting in different estimates for the extent of the hyporheic zone, even when the same input data are 596 

used. The influence of thermal properties should in no case be neglected. Hence, these results might contribute in 597 

future to an improved understanding of the functioning of river self-purification processes in the hyporheic zone of 598 

anthropogenically impacted rivers.  599 
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Captions 828 

Error! Reference source not found. 829 

Table 1: Kling-Gupta-Efficiencies (KGE) of time series analysis between the analytical model and the 830 

numerical model (AvN)  831 

 832 

Table 2: Summary of seasonal and episodic variations of hyporheic exchange fluxes 833 

 834 

Table 3: Parameters describing seasonal and episodic variation of hyporheic exchange depth 835 

 836 

Figure 1: Left panel: Photograph showing the location of the three lances (red dots) in the riffle-pool-sequence. 837 

Right panel: Simplified profile of the riffle-pool- sequence with the positions of the three lances. Black arrow 838 

denotes the flow direction. 839 

 840 

Figure 2: Effect of one-at-a-time variation of thermal properties K and C on flux intensity under downward or 841 

upward conditions for both temperature-based models. Darcy flux marked in red, analytical model in blue and 842 

numerical model in green. 843 

 844 

Figure 3: 5 percent best fit cumulative KGE proportion of volumetric heat capacity of the sediment-water system 845 

and thermal conductivity for both models with modelling boundaries (slight yellows) and literature values (reddish 846 

colors (light: fine-grained sediment, darker: coarse-grained sediment), blue bar: water) given by Lapham (1989) 847 

 848 

Figure 4: Colored scatter plots of parameter influence on the similarity (as KGE) between both temperature-based 849 

models (a: whole time series, b: downward flux, c: upward flux 850 

Error! Reference source not found. 851 

Figure 5: Left panel: seven year mean daily hyporheic exchange fluxes (line: 30 days moving average, dark shaded 852 

area: 5 % best fit interval (5 % of fluxes from MCA with the highest similarity to the benchmark) as 30 days moving 853 

average, light shaded: seven year daily standard deviation) for lance 2. Seven year mean daily hyporheic exchange 854 

fluxes as 30 days moving average are added in black for lance 1 (dashed line) and lance 3 (dotted line) Middle 855 

panel: boxplots of hyporheic exchange fluxes for summer and winter periods (black line: median, black box: first 856 

and third quartile, upper and lower whisker: 99 % coverage, point: mean, grey dot: outlier). Right panel: flow 857 

duration curves with vertical lines marking the change between upwards and downwards flux for the whole time 858 

series (coloured full line), summer (coloured dotted line) and winter (coloured dashed line) for lance 2 and for the 859 

whole time series of lance 1 (black dashed line) and lance 3 (black dotted line). 860 

 861 

Error! Reference source not found.Figure 6: Left panel: seven year mean daily hyporheic exchange depth (line: 30 862 

days moving average, light shaded: seven year daily standard deviation) for lance 2. Seven year mean daily 863 

hyporheic exchange fluxes as 30 days moving average are added in black for lance 1 (dashed line) and lance 3 864 

(dotted line). Middle panel: boxplots of hyporheic zone extension for summer and winter periods (black line: 865 

median, black box: first and third quartile, upper and lower whisker: 99 % coverage, point: mean, grey dot: outlier). 866 

Right panel: exceedance probability curves of hyporheic zone extension for the whole time series (coloured full 867 

line), summer (coloured dotted line) and winter (coloured dashed line) for lance 2 and for the whole time series of 868 

lance 1 (black dashed line) and lance 3 (black dotted line). 869 

 870 

Figure 7: Whisker-Box-Plots depicting the relationship between identified hyporheic exchange depth (shown on the 871 

y-axes as zero flux plane) and hydro-meteorological boundary conditions (groundwater (GW) level, surface water 872 

(SW) level, discharge, precipitation and mean air temperature). Depth values from 1 to 14 give increasing depth 873 

steps according to Table 1.; *** marks significant effects in MNR.) 874 

 875 

Figure 8: Relationship between seven year daily mean hyporheic exchange flux and seven year daily mean 876 

hyporheic exchange depth (open circles: winter period, filled circles: summer period). 877 

Error! Reference source not found. 878 
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