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Abstract

Climate change, inadequate maintenance, and aging beyond the design life increase the probability of dam failure. Dam failures

can have significant social, financial, and environmental impacts. Financial losses can extend beyond infrastructure replacement

costs, with cascading effects in multiple sectors such as electricity, transportation, water supply, and environmental services.

The existing dam hazard classifications in the United States do not formally characterize “hazard hotspots” considering these

impacts. Given that there are over 90,000 dams with different states of disrepair, maintenance, and budgetary constraints, a

better way to rank their potential hazard and allocate resources for risk mitigation is needed. We present an approach that

is scalable over many regions for rapidly assessing the magnitude and exposure of a dam failure for a preliminary ranking

of the priority areas of concern. The estimation of the consequences of a dam failure including financial losses, affected

critical infrastructure, and population is addressed using publicly available dam break and consequence tools and national

infrastructure datasets. Dams can be ranked using seven criteria following the Analytical Hierarchical Process. The application

of the framework is demonstrated with dams in the Cumberland River Basin. The main barrier to applying this approach at

a national scale is the estimation of the inundation area upon dam failure, and we outline a strategy to implement it. The

importance of increasing the resilience of dams is becoming more critical given the increasing interest in hydropower as a

renewable energy source in the face of climate change.
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 Aging dams, inadequate maintenance, and climate change are increasing the risk of dam 9 

failure in the United States. 10 

 Existing dam hazard classifications do not identify “hazard hotspots” considering 11 

financial and social losses. 12 

 We present an approach for rapidly assessing the exposure of dam failure for a 13 

preliminary ranking of the priority hazard areas. 14 
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Abstract  16 

Climate change, inadequate maintenance, and aging beyond the design life increase the 17 

probability of dam failure. Dam failures can have significant social, financial, and environmental 18 

impacts. Financial losses can extend beyond infrastructure replacement costs, with cascading 19 

effects in multiple sectors such as electricity, transportation, water supply, and environmental 20 

services. The existing dam hazard classifications in the United States do not formally 21 

characterize “hazard hotspots” considering these impacts. Given that there are over 90,000 dams 22 

with different states of disrepair, maintenance, and budgetary constraints, a better way to rank 23 

their potential hazard and allocate resources for risk mitigation is needed. We present an 24 

approach that is scalable over many regions for rapidly assessing the magnitude and exposure of 25 

a dam failure for a preliminary ranking of the priority areas of concern.   The estimation of the 26 

consequences of a dam failure including financial losses, affected critical infrastructure, and 27 

population is addressed using publicly available dam break and consequence tools and national 28 

infrastructure datasets.  Dams can be ranked using seven criteria following the Analytical 29 

Hierarchical Process. The application of the framework is demonstrated with dams in the 30 

Cumberland River Basin. The main barrier to applying this approach at a national scale is the 31 

estimation of the inundation area upon dam failure, and we outline a strategy to implement it. 32 

The importance of increasing the resilience of dams is becoming more critical given the 33 

increasing interest in hydropower as a renewable energy source in the face of climate change. 34 

Plain Language Summary 35 

Failing dams can cause extraordinary flooding. Water and wastewater treatment plants, 36 

electricity generation facilities, bridges, highways, population centers and other dams often lie 37 

below a dam. A catastrophic failure of services and loss of life could occur from the subsequent 38 

flood. The large number of poorly maintained,  aging dams may spell disaster for many 39 

communities and regions if overtopped in an extreme rainfall event. Such events are now more 40 

frequent. How should we prioritize dams that need immediate attention and fix or remove them? 41 

This paper presents an approach and its example application to achieve this given limited 42 

budgets, before a major catastrophe occurs. 43 

1 Introduction 44 

A changing climate presents us with the potential for more frequent and more intense 45 

precipitation extremes and hence an increasing risk for floods and droughts. Dams and levees 46 

have been used as one of the measures for flood control, buffering drought risks, and also 47 

providing a renewable source of energy.  However, age, poor maintenance, and  climate change 48 

compromise their safety.  49 

A dam fails by overtopping when inflows exceed its storage and discharge capacity. 50 

Therefore, the risk of overtopping increases as extreme precipitation events increase in 51 

magnitude and frequency  (Hossain et al., 2012; Mallakpour et al., 2019). Aging is also a risk 52 

factor. As a dam ages and fills up with sediment, its storage capacity is reduced, decreasing its 53 

performance (Halperin, 2019) and making it more prone to overtopping. Lack of maintenance 54 

and changes in structural fragility that occur with age and extreme environmental conditions can 55 

compound the risk of dam failure.  56 

In the United States there are over 90,000 dams with an average age of 57 years in the 57 

National Inventory of Dams (NID) (USACE, 2019). Figure 1 shows dams categorized as high 58 

hazard across the country, classified  by age above or below 60 years, with on overlay of county 59 
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population. The risks and challenges posed by aging dams in the country are widely 60 

acknowledged (ASCE, 2017; Ho et al., 2017; Imbrogno, 2014).  On average, there have been 10 61 

dam failures per year in the U.S. from 1848 to 2017, but since 1984 the average failure rate has 62 

increased to 24 per year, mostly for dams less than 15 meters tall (McCann, 2018). The 63 

Associated Press released a report in 2019, which identified  more than 1,680 dams in the U.S. as 64 

being in poor or in unsatisfactory condition (Lieb et al., 2019) . One of the dams deemed 65 

unsatisfactory, the Edenville Dam in Michigan, overtopped in May 2020 causing the cascading 66 

failure of a downstream dam and the dislocation of thousands of people. There are currently no 67 

publicly available analyses of the estimated financial and other risks that would be posed by the 68 

failure of these dams in light of their susceptibility to failure accounting for how the climate has 69 

changed relative to the data available when these dams were designed 50 to a 100 years ago. 70 

Perhaps as a consequence, the number of dam overtopping incidents far exceed structural failure 71 

in the United States (ASDO, 2019; Imbrogno, 2014). About 1/3 of dam failures occur by 72 

overtopping (Costa, 1985), often due to inadequate spillway capacity. Large dams intended for 73 

flood control were designed to withstand very large precipitation events but with changes in 74 

flood return periods and storage loss due to sediment, their design may not guarantee safety 75 

anymore (Chen & Hossain, 2019). It was estimated that even without considering  reduced 76 

storage capacity due to sedimentation, the probability of hydrologic failure will increase  for 77 

most dams in California by 2100 (Mallakpour et al., 2019).  The historical 1 in 100-year flood 78 

event is projected to shift towards smaller return periods in many regions of the U.S. (Maurer et 79 

al., 2018; Vogel et al., 2011; Wobus et al., 2017), increasing the risk of overtopping. Currently 80 

there is no comprehensive research on understanding this risk, or of its financial implications for 81 

industry, communities or government across the United States. The potential probability of 82 

failure of dams is not established. Neither is the potential impact of the failure in terms of the 83 

value of the loss of services provided by the dam, or the downstream impacts on asset, 84 

population and reconstruction needs, or the cascading impact across the national and regional 85 

economy. This is due in part to the complexity of the chain of events triggered by the failure of a 86 

major dam or levee (Egan, 2007), the lack of data (Meyer et al., 2013), and the difficulty of 87 

estimating the probability associated with a failure (Hariri-ardebili, 2018; Hariri-Ardebili, 2017; 88 

Stedinger et al., 1996).  89 
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 90 
Figure 1. High Hazard dams in the United States by age. Data obtained from the National 91 

Inventory of Dams (USACE, 2019). The dataset from Texas is incomplete. High hazard refers to 92 

potential loss of life. Significant hazard (economic loss) dams are not shown as their inclusion 93 

overwhelms the figure. There are over 25,000 dams classified as high or significant hazard.  94 

The Federal Emergency Management Agency (FEMA) oversees the National Dam Safety 95 

Program and the Federal Guidelines for Dam Safety, which encourage dam owners and 96 

regulators to employ strict safety standards. However, each state has responsibility over the 97 

regulations, inspection, permitting, and enforcement of the non-federally owned dams located 98 

within its boundarie. There is highly variable staffing, assessment, and overall quality of the dam 99 

safety programs across states (Ho et al., 2017). Federal agencies operate only 5% of the 100 

reservoirs found in the NID, and more than half of the dams in the country belong to private 101 

entities. In 2019 the Association of State Dam Safety Officials estimated that it would cost 102 

US$65.89 billion to rehabilitate all non-federal dams, and $4.78 billion for federally owned dams 103 

(ASDO, 2019). However, the U.S. Army Corps of Engineers in 2017 estimated that $25 billion 104 

are needed just to address deficiencies in the 716 dams they operate 
 
(ASCE, 2017; USACE & 105 

BR, 2019). The concerns over dam safety are real. Lakes are being drained in Texas to repair old 106 

dams (Ksat12news, 2019), and in Oregon aging dams and dam failure concerns have led to 107 

community activism to raise funds for repairs because federal and state funding are scarce.  In 108 

2019 FEMA’s National Dam Rehabilitation Program had a grant pool of $10 million for all  109 

dams classified as high hazard potential in the  U.S. (FEMA, 2019). The Water Infrastructure 110 

Improvements for the Nation Act (WIIN) provides funds for dam rehabilitation for non 111 

federally-owned, high-hazard dams. In 2020 the WIIN funds were 40 million (Baron, 2020). 112 

There are other sources of small dam rehabilitiation grants (Baron, 2020). This is in stark 113 

contrast to estimate of $80 million for the repair of one of Oregon’s dams alone (McClain, 2019). 114 
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The post-failure costs to repair the spillways of the Oroville dam, which failed in February 2017, 115 

have exceeded $1.2 billion (Fimrite, 2020). Nearly 200,000 people had to be evacuated. The 116 

flow over the spillway was only 5% of the design flow, and while this came after an unusual wet 117 

period, spillway maintenance and not climate change was the critical factor associated with the 118 

failure during overtopping. At 770 feet high, this is the tallest dam in the USA, and the City of 119 

Oroville has sued the owner, the State of California for negligence in maintaining the dam. 120 

Issues with the spillway were documented as early as 2005.  121 

Given budgetary and personnel constraints, a method to prioritize allocation of funds for 122 

risk mitigation by dam removal or repair, that accounts for the likelihood and consequence of 123 

dam failures is required to ensure improvements in dam safety where it is most needed. The 124 

likelihood of dam failures is not mapped but dam hazard classifications based on possible loss of 125 

life or property damage. Variations among federal agencies and states have led to the lack of a 126 

consistent national assessment of dam hazards (ASDSO, 2020; FEMA, 2012, 2013a), even 127 

though Federal funds are invariably required to address the associated disaster. Despite initial 128 

refusals, President Trump covered the cost of Oroville spillway repairs, and a Presidential 129 

Disaster Declaration followed the Edenville and Sanford dam failures in Michigan.  The NID 130 

includes hazard classifications for dams, but state and federal agencies report on the 131 

classifications according to their own metrics.  Even for states that conduct dam-breach 132 

scenarios, there is no consistency regarding which flood events should be modeled in the 133 

Emergency Action Plans (EAPs) (FEMA, 2013a). Additionally, flood risk mapping and dam 134 

hazard assessments are dynamic endeavors and require continuous updating. This is 135 

demonstrated in the growing number of potential high hazard dams in the U.S. propelled by 136 

changes in land use and development downstream of the dams.  Currently there are 15,627 dams 137 

in this category as per the NID (USACE, 2019). However, it is unclear to us what the criteria are 138 

to change a dam hazard classification, that is, whether the assessments to change a dam hazard 139 

classification comprehensively examine the current state of the dams (siltation, concrete, 140 

foundations, and unique environmental conditions), or of downstream ecosystems, population 141 

and critical infrastructure exposed, and if updates related to the increasing intensity and 142 

persistence of precipitation under climate change are included. 143 

The financial impacts of dam failure can be quite significant.  These are amplified by the 144 

potential cascading failure of other critical infrastructure, and the associated direct and indirect 145 

economic impacts. In October 2015, South Carolina experienced an estimated 1 in 500 year 146 

storm event (Musser et al., 2016), and 36 small dams failed as a result of the storm (Murphy, 147 

2016). The subsequent flooding due to the storm and dam failures resulted in 19 deaths, the 148 

closure of all highways in Columbia, SC, and the closure of 120 km of the critical north-south 149 

Interstate 95 highway that connects the east coast of the US. Nearly 30,000 people were without 150 

power and damage losses were estimated at US$1.5 billion (Murphy, 2016).  151 

Insurance mechanisms exist to cover flood losses. In the US, flood insurance rate maps 152 

(FIRMs) determine the cost of flood insurance through the National Flood Insurance Program 153 

(NFIP) managed by FEMA. NFIP considers the 1 in 100 year flood return period as base  to 154 

delineate flood areas (Farrow & Scott, 2013). FEMA’s guidance for flood risk analysis and 155 

mapping recommends the inclusion of dam flood risk information in flood risk maps as best 156 

practice (FEMA, 2016), but this is voluntary. The damages of dam failure could be much greater 157 

than the 1 in 100-year flood area in the NFIP (National Research Council, 2012) but FIRMS, 158 

although available throughout the U.S., do not consider dam failure. Communities therefore 159 

cannot make informed decisions to prevent or mitigate the consequences of dam failures, nor can 160 
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insurers and financial institutions, if there is no visibility to potential catastrophic flood risks or 161 

their aggregate effects (National Research Council, 2012). FEMA’s periodic updates to flood 162 

risk maps typically cost over $2 million per county, so comprehensive analyses of dam break 163 

induced flooding and impacts that cover the 90,000 dams in 3000 counties across the country 164 

would be quite expensive (~$6 billion) and would most likely highlight the need for significantly 165 

higher additional investments for risk mitigation to cover just the most critical locations. If 166 

nothing is done, and a large dam was to fail, in addition to the loss of life, large damages may 167 

occur to downstream critical infrastructure (e.g., other dams, electric power plants and 168 

transmission infrastructure, highways, bridges, water and wastewater treatment plants), whose 169 

repair and replacement costs would also emerge as an issue. The lack of a comprehensive 170 

analysis of this risk, and its mitigation, is a considerable concern as the confluence of the 171 

increasing fragility of the dams, and the increasing risk of high precipitation events, manifests as 172 

a higher probability of failure and downstream impact.  173 

Different approaches have been proposed to improve dam hazard classifications, most 174 

notably multi-criteria decision analysis (MCDA) techniques, since they can include variables 175 

expressed in different units (monetary, impacted population, damaged infrastructure, etc.) (Sun 176 

et al., 2014; Yang et al., 2011; and many others reviewed in Zamarrón-Mieza et al., 2017).  177 

MCDA models rank decision options based on a set of evaluation criteria and the importance of 178 

each criterion is represented by weights usually elicited from experts or stakeholders (Hajkowicz 179 

& Higgins, 2008), and summarized in a decision matrix. Due to the subjectivity associated to the 180 

choice of criteria weights, a sensitivity analysis is required. The weighted sum method (WSM) is 181 

a simple and often used MCDA technique in many fields (Drake et al., 2017; Stoycheva et al., 182 

2018), where a score is calculated multiplying the performance criteria value by the criteria 183 

weight and all the weighted scores are added.  Yang et al., (2011) used WSM to assess 184 

interventions to aging dams in China considering the direct economic losses (infrastructure 185 

damage using depth-damage functions), economic risk of public infrastructure (railways, 186 

telephones and electricity using a binary score for infrastructure within or outside from the 187 

inundated area without accounting for depth), population, social hotspots, and erosion as an 188 

environmental criterion.  Sun et al., (2014) (and their follow up test case paper in Zhou et al., 189 

2014) also propose a framework for dam risk ranking using MCDA techniques. The criteria 190 

considered are the potential loss of life, the direct economic loss and indirect economic loss 191 

(approximated as 63% of the direct costs), and indexes accounting for other social and 192 

environmental impacts, including variables such as heritage impact, river channel morphology, 193 

biological habitat and others. They assign “accident levels” in four categories based on defined 194 

intervals of the criteria. The analytic hierarchy process (AHP; Saaty, 1987) is the most popular  195 

MCDA technique in the academic literature for dam risk ranking (Zamarrón-Mieza et al., 2017), 196 

integrating mixed method techniques (i.e. quantitative and qualitative measures),  and personal 197 

preferences in performing  decision analyses. This technique is similar to WSM, but AHP uses 198 

the relative importance of the alternatives in terms of each criterion to hierarchically structure 199 

single or multi-dimension decision making problems (Sun et al., 2014). This was the ranking 200 

technique chosen in the framework presented here, and is described in detail in the methods 201 

section. 202 

We offer a framework to create a national dam hazard map to complement FIRMS to 203 

help identify “hot spots” beyond the current dam hazard classifications using AHP as a ranking 204 

method. We propose seven decision criteria encompassing the direct economic losses including 205 

dam replacement costs, potential damages to critical infrastructure such as power plants, electric 206 
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substations, wastewater treatment plants, roads, railroads, navigation routes, toxic and hazardous 207 

material storage facilities, and the population affected. The framework uses publicly available 208 

dam break and consequence tools developed by the US Army Corps of Engineers (USACE) and 209 

FEMA, and national infrastructure datasets. We use the Decision Support System for 210 

Infrastructure Security Lite (DSS-WISE™Lite) to estimate the inundated area because of its 211 

computational efficiency and simple input data. U.S. Infrastructure valuation databases and 212 

damage-depth curves available in FEMA’s Hazard-US (HAZUS) software were used to estimate 213 

the direct financial losses.  The proposed framework is not a substitute for detailed dam break 214 

analysis and hazard at local scales but rather a preliminary ranking of the priority areas of 215 

concern beyond the current dam classification. The goal is to provide a preliminary comparative 216 

analysis and ranking of the financial consequences of dam failures, highlighting critical 217 

infrastructure to prioritize the allocation of resources in state dam programs and insurance 218 

premiums. We use a detailed regional analysis to shed light on the kinds of financial impacts that 219 

may emerge as a concern, and for which public data is available, such that the approach could be 220 

generalized. The test case is in the Cumberland River Basin. This basin has multiple 221 

interconnected dams that serve different purposes including electricity generation, recreation, 222 

water supply, and flood control.  223 

The Cumberland River Basin (CRB) extends in parts of Kentucky and Tennessee. There 224 

are 352 dams within the basin and 107 of them are classified as high hazard. 55 dams are within 225 

the 1 in 500-year flood area included in DFIRM maps, and 20 of them are classified as high 226 

hazard. The ten largest dams in the CRB are operated by the USACE as an integrated system, 227 

and their main purposes are flood control, electricity generation, and recreation. Elevations along 228 

the location of these dams range from 4,150 feet in the eastern headwaters to 302 feet at the Ohio 229 

River confluence (USACE/Nashville, 1990). Figure 2 shows the order of the dams. The biggest 230 

urban center in the basin is the city of Nashville, downstream of J. Percy Priest Dam.  231 

The criteria were estimated for five of the ten USACE operated dams: Center Hill, 232 

Cordell Hull, Old Hickory, Dale Hollow, and Percy Priest (shown in  the yellow rectangle in 233 

Figure 2). All of these dams are classified as High hazard in the NID. 234 

 235 
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 236 

Figure 2. High hazard dams operated by USACE in the Cumberland River Basin. Dams in the 237 

test case are highlighted in the yellow rectangle.  238 

 239 

2 Materials and Methods 240 

 241 

Different approaches have been developed to estimate the exposure and expected losses 242 

of dam failures (R. Albano et al., 2014; Bowles et al., 1998; DHS, 2011; FEMA, 2016; Fread, 243 

1989; Golder Associates, 2017; Zhang & Tan, 2014) and floods (Scawthorn et al., 2006; Schröter 244 

et al., 2014). Three primary tasks in the analysis of expected losses from a dam failure are 1) the 245 

prediction of the reservoir outflow hydrograph (C., 2008; Fread, 1989; Froehlich, 2016; Peter et 246 

al., 2018; Pierce et al., 2010),  2) routing the hydrograph downstream to determine the inundated 247 

area, flood depth, and flow velocity (Altinakar et al., 2017; Dewals et al., 2011; Reed & Halgren, 248 

2011), and 3) estimating the expected losses in the inundated area using depth-loss curves, 249 

building inventories, GIS methods, and other data (R. Albano et al., 2014, 2018; Raffaele Albano 250 

et al., 2017; Charles et al., 2006; FEMA, 2013b; Meyer et al., 2013; Quinn et al., 2019; Wing et 251 

al., 2018). Figure 3 shows our proposed approach for dam hazard classification. The prediction 252 

of the outflow hydrograph and inundation area are carried out with a dam break inundation 253 

program called DSS-WISE™Lite.  The estimation of expected losses is divided into seven 254 

criteria that are used to rank dam hazard using AHP. In this section, we provide a description and 255 

justification of the selected data and methods used in the framework. 256 

 257 
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 258 
Figure 3. Framework for dam hazard classification 259 

2.1 Estimation of the inundation area 260 

 261 

There are many software products available to facilitate the estimation of the outflow 262 

hydrograph and the inundated area of a dam failure (R. Albano et al., 2018; FEMA, 2013a). In 263 

the U.S., the Hydrologic Engineering Center River Analysis System (HEC-RAS) and the more 264 

recent DSS-WISE™Lite are popular publicly available tools to do such analyses. HEC-RAS 265 

requires detailed inputs and expertise but it is more flexible and accurate than DSS-WISE™Lite, 266 

but is more challenging to implement (Salt, 2019). Here, DSS-WISE™Lite is used to estimate 267 

the dam inundation areas and losses because it allows the analysis of multiple dams where 268 

limited information is available. DSS-WISE™Lite supports simplified dam-break flood 269 

simulations combining 2D numerical flood modeling with GIS-based tools 270 

(https://dsswiseweb.ncche.olemiss.edu, accessed March 2019). It was developed by the National 271 

Center for Computational Hydroscience and Engineering at the University of Mississippi on 272 

behalf of USACE (Altinakar & McGrath, 2012). DSS-WISE™Lite takes into account the levees 273 

in the USACE National Levee Database (NLD) and bridges in the flood analysis, and uses the 274 

United States Geological Survey (USGS) 1/3 arc-second National Elevation Dataset.  275 

We consider the scenario of dam failure by overtopping, which is the most common 276 

mode of failure. Such an event could occur during flood conditions, and can dramatically affect 277 

how the inundation area is defined.  The starting pool elevation is the top of flood pool level (i.e., 278 

the dam is at capacity). Consistent with the overtopping scenario, we would like to simulate a 279 

starting condition of flood stage downstream of the dam but this is not currently possible in DSS-280 

WISE™Lite, as it only simulates sunny day failures. The tool does not simulate backwater 281 

either. Therefore, the resulting inundation area is a conservative estimate in situations when a 282 

region is at flood stage prior to the failure.  Two types of failure were modeled: sudden and 283 

complete failure labeled as S1, and partial failure using parameters for breach formation from 284 

empirical equations (Froehlich, 2008) labeled as S2. Failure scenario 1 (sudden and complete 285 
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failure; S1) was simulated for all the test dams, while scenario two (partial breach; S2) only for 286 

Percy Priest and Old Hickory Dam to compare inundation areas. The results presented are based 287 

on the S1 scneario.  The simulation conditions are consistent with the regulations to model 288 

inundation maps in California, considering sunny day failures at the maximum possible storage 289 

elevation (Barclays official California Code of Regulations, § 335.6. Modeling Requirements. 23 290 

CA ADC). All the modeling parameters and resulting inundation areas are available as 291 

supplementary information in a repository (Concha Larrauri, 2020). 292 

Modeling the failure of dams in tandem or in series and breaching in cascade is desirable 293 

to capture the full risk of breaching, since many dam systems are in fact organized sequentially, 294 

but this capability is not yet available in the web version of DSS-WISE™Lite.  Dewals et al., 295 

(2011) proposed a modeling approach of cascading dam failure using two-dimensional fully 296 

dynamic models and a simplified lumped model but it requires detailed inputs that may not be 297 

available from public datasets. DSS-WISE™  has been used to model individual breaches and 298 

cascading failures (Altinakar et al., 2017), but this is not available in the public online version 299 

DSS-WISE™Lite. Therefore, cascading failures were not modeled in our framework but an 300 

approximation of potential overtopping of downstream dams was included in the hazard 301 

characterization by counting the Significant and High hazard dams that are located within the 302 

inundation area of a failed upstream dam. For sequential dam failure FEMA’s guidance 303 

recommends that the hazard potential classification of the upstream dam must be as high as or 304 

higher than any downstream dams that could fail as a result of the upstream dam’s failure. 305 

However, there are cases where both upstream and downstream dams are classified as High 306 

hazard just based on the potential population affected, so the risk of the cascading failure is not 307 

visible.  308 

2.2 Estimating the losses of a dam failure  309 

Costs associated with dam failures are not simple to measure given the varied 310 

consequences that different segments of society may experience.  Some costs appear 311 

immediately and locally while others are felt months or years later in places far away from a 312 

dam, impacting not only fixed assets but also other income streams (Ellingwood et al., 1993). In 313 

general, costs are considered as direct, indirect, and intangible (e.g. cultural heritage loss, 314 

societal effects). The issue with comprehensively estimating the costs of dam failures in a 315 

regional or country scale is often the lack of data. Here, we use databases available nationally 316 

and consider direct costs, potential interruption of services provided by critical infrastructure 317 

such as wastewater treatment plants and power plants (without assigning a dollar value), 318 

potential transportation interruptions, health hazards associated to releases of toxic materials, and 319 

population directly exposed. This is the first step to improve the current dam hazard 320 

classification and many dam failure- related costs are not yet quantified in the framework. We 321 

plan to develop the necessary national databases and improve the loss quantification as a follow 322 

up of this work. 323 

Considering the data available, we classified the consequences of a dam failure into seven 324 

criteria for the AHP analysis:  325 

 326 

C1-Direct economic losses - Includes the depreciated replacement costs of residential, industrial, 327 

commercial, government, religious, and agricultural infrastructure, and the dam replacement 328 

cost.  329 
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C2 –Critical infrastructure – This includes the number of utilities with damages greater than 40% 330 

including wastewater treatment plants (WWTP), power plants (PP), Airports (Air), and electric 331 

substations (ES). Replacement costs for these infrastructures were not available nationwide, but 332 

the number of buildings with high percent damage can inform the prioritization of insurance 333 

providers, property owners, and government officials. Drinking water plants and water 334 

distribution stations were excluded from the analysis because a national database of their 335 

locations and capacity does not exist publicly (these are primarily available at the state level), 336 

however the framework can easily be adapted to include this information. 337 

C3-Route miles of major roads and railways.  338 

C4-Tons/day of commodities in affected navigation routes – obtained from national datasets. 339 

C5- Number of Significant and High hazard dams, and sites with potential hazardous waste 340 

defined under the Resource Conservation and Recovery Act (RCRA) referred as RCRA sites. 341 

This criterion reflects other types of hazards to the population (i.e. cascading dam failures, or 342 

release of toxic materials). 343 

C6 -Affected power generation in megawatts. 344 

C7-Total affected population in the inundation area.   345 

 346 

The U.S. Department of Homeland Security (DHS) recommends HAZUS to estimate 347 

flood damages (DHS, 2011). HAZUS is a publicly available model developed by FEMA to 348 

estimate the financial consequences of floods at the census block level. It cannot model dam 349 

breaks but the depth-area grids of dam break simulations obtained in other programs such as 350 

DSS-WISE™Lite and HEC-RAS can be inputs. HAZUS has an inventory of buildings (referred 351 

as general building stock or GBS) and critical infrastructure in each region.. The exact locations 352 

of the buildings in HAZUS’ GBS are unknown and the software assumes that they are uniformly 353 

distributed to estimate damages at the census block level. HAZUS provides the option of using 354 

detailed local data for the analyses if available but this is not applicable in the proposed 355 

framework since the purpose is to use data that is available across the U.S. HAZUS estimates 356 

direct losses for infrastructure replacement (dollar exposure), which can be depreciated, using the 357 

GBS and depth-damage curves.  The damage functions in HAZUS include buildings, essential 358 

facilities (hospitals emergency centers and schools), transportation systems (highways, railways, 359 

buses, ports, ferries, and airports), utility systems (potable water, wastewater, oil and gas, electric 360 

power, and communications), agricultural products, and vehicles. Depth-damage curves in 361 

HAZUS come from a variety of sources including FEMA, the Federal Insurance and Mitigation 362 

Administration, and the USACE Institute for Water Resources (IWR). There are numerous 363 

categories for each building occupancy class (i.e. there can be 10 or more depth-damage curves 364 

for a residential building). We simplified the damage functions to have a single depth-damage 365 

curve per building occupancy type (i.e. one depth-damage curve for residential buildings, one for 366 

power plants, one for commercial buildings, and so on), taking the mean of the percent damage 367 

by depth in each class. We appreciate that HAZUS estimates of property damage are a 368 

generalized tool and are not expected to accurately represent actual damages, nor is their 369 

uncertainty quantified. Here, we use them as a benchmark, recognizing that they may include at 370 

least some spatial discrimination of asset valuation, and are hence useful for ranking potential 371 

loss across a portfolio of dams.  372 

While HAZUS is useful for assessments at the asset level, it is computationally intensive 373 

and difficult to implement when several dams within a region are to be evaluated or when rapid 374 

assessments are needed (Gall, 2017), and an ArcGIS license is needed to use it.  Therefore, for 375 
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our example, the loss estimation analyses were executed in the open-source software R, 376 

extracting the GBS datasets from HAZUS and using the depth-damage functions from the R 377 

package called Hazus (Goteti, 2015). The other infrastructure and utilities datasets used in the 378 

estimation of criteria C2 to C7 were obtained from different sources as shapefiles (refer to the 379 

Appendix for details on the data sources).   380 

The infrastructure datasets were overlaid with inundation depths and extents obtained in 381 

DSS-WISE™Lite to estimate the financial losses of the failure of selected dams. For the 382 

calculation of C1, the GBS database containing the depreciated exposure (in million USD) and 383 

the average maximum flood depths were overlaid as both are available at the census block from 384 

HAZUS and from DSS-WISE™Lite respectively. This is similar to the approach of Wobus et al., 385 

(2019) for estimating flood damages. The losses in C1 are the multiplication of the percent 386 

damage and the building value included in the depreciated GBS dataset. The results are point 387 

estimates in million dollars aggregated by occupation type: residential, commercial, industrial, 388 

education, government, and religious.  389 

Dam replacement costs included in C1 were approximated with the median cost of 390 

hydroelectric dams as a function of storage described in Petheram & McMahon, (2019). The cost 391 

of $1,565 Australian dollars per ML (10
3
 m

3
) was converted to USD$ 1,294 per acre-ft and 392 

multiplied by the maximum storage of the dams included in the NID (2019 dollars). We 393 

acknowledge that the cost approximation per storage volume is highly uncertain, but this gives 394 

indication of the relative order of magnitude of the costs for replacing the dams to allow 395 

comparisons. 396 

For C2, the infrastructure percent damage estimations consider the lower bound of 397 

inundation depth from DSS-WISE. The number of utilities with damages greater than 40 % 398 

characterize infrastructure with high potential financial losses.  Criteria C3 to C6 do not take into 399 

account inundation depths and the reported numbers only consider the number of locations, 400 

electricity generation capacity, and commodities transported that could be affected because they 401 

are within the inundation zone. There are no depth-damage curves suitable for these criteria, for 402 

example, the damage functions in Hazus for roads and railways are in the form of return flood-403 

damage and in the case of dam failure, this approach would not apply. For C3 and C4, the losses 404 

related to interruptions in commodity trading can be roughly estimated with data from the 405 

commodity flow survey (CFS) collected periodically by the US Census Bureau in cooperation 406 

with the Bureau of Transportation Statistics, US Department of Transportation  (Ham et al., 407 

2005).  This analysis cannot differentiate exactly by the name of the damaged road or railway 408 

nor includes damage related to inundation depth, but it serves as a coarse estimate of what is at 409 

stake for transportation in a region. C7 is obtained from the human consequence module 410 

included in DSS-WISE™Lite. For simplicity, this reflects the total estimated population within 411 

the inundation area, but the analysis in DSS-WISE™Lite includes day time and night time 412 

population, age, and others, in case more granularity is desired. 413 

2.3 Classification 414 

 415 

The USACE Dam Hazard Potential Classification System for Civil Works Projects has 416 

four criteria and three classifications shown in Table 1 (FEMA, 2013a). Each criterion has equal 417 

weight and there is no quantitative measure of the hazard. For example, the hazard classification 418 

of all the test case dams is High in the NID, but this classification does not have the granularity 419 

to differentiate and inform what is at risk, which complicates prioritizing across multiple dams.  420 



manuscript submitted to Water Resources Research  

 

  421 

Table 1. USACE Dam Hazard Potential Classification. Taken verbatim from FEMA, (2013a) 422 

Criteria 
Hazard potential classification 

Low Significant High 

Direct loss of life 
1
 

None expected (due to 

rural location with no 

permanent structures 

for human habitation) 

Uncertain (rural 

location with few 

residences and only 

transient or industrial 

development) 

Certain (one or more 

extensive residential, 

commercial or 

industrial development) 

Lifeline losses 
2 

No disruption of 

services – repairs are 

cosmetic or rapidly 

repairable damage 

Disruption of essential 

facilities and access 

Disruption of critical 

facilities and access 

Property losses 
3 

Private agricultural 

lands, equipment and 

isolated buildings 

Major public and 

private facilities 

Extensive public and 

private facilities 

Environmental 

Losses 
4 

Minimal incremental 

damage 

Major mitigation 

required 

Extensive mitigation 

cost 

or impossible to 

mitigate 
1
 Based on inundation mapping of the area downstream. Analyses of loss of life potential should 423 

take into account the extent of development and associated population at risk, time of flood wave 424 

travel, and warning time.  425 
2
 Indirect threats to life caused by the interruption of lifeline services due to project failure, or 426 

operation, i.e., direct loss of (or access to) critical medical facilities or loss of water or power 427 

supply, communications, power supply, etc.
  

428 
3
 Direct economic effect on the value of property damage to project facilities and downstream 429 

property. Also includes the indirect economic effect due to loss of project services, i.e., impact 430 

on navigation industry of the loss of a dam and navigation pool, or impact upon a community of 431 

the loss of water or power supply. 432 
4
 Environmental impact downstream caused by the incremental flood wave produced by the 433 

project failure, beyond which would normally be expected for the magnitude flood event under a 434 

without project conditions. 435 

 436 

The States of California, Montana, and Washington developed methodologies to do risk-437 

based dam design considering downstream impacts. These followed the principles of the 438 

weighted sum method WSM (a total class weight or TCW in California, and consequence rating 439 

points for Washington), assigning criteria and weights. Some of the criteria included are dam 440 

height and capacity, the capital value of the dam, potential loss of life, and the potential for 441 

property damage (including residencies, transportation infrastructure, toxic sites, lifeline 442 

facilities, and commercial property).  But even within these three states there were 443 

inconsistencies on the criteria, weights, and risk tolerances (FEMA, 2012). For example for 444 

Washington, loss of life accounts for 50% of the design weight while for California it is 33% of 445 

the total weight (FEMA, 2012), and 100 % for Montana. However, these methods are used to 446 

design the dam capacity but not for hazard rankings. 447 
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Our framework uses the MCDA method AHP for dam hazard ranking as proposed in 448 

other studies (Zamarrón-Mieza et al., 2017) with the seven afore mentioned criteria. All MCDA 449 

techniques require information of the relative or absolute importance of each criterion, and a 450 

challenge is how to process data that may be expressed in different units (Triantaphyllou & Baig, 451 

2005). AHP requires normalized performance values so the data is transformed into 452 

dimensionless values, and summarized into a decision matrix. The performance values are 453 

normalized vertically so the elements of each column in the decision matrix add to one.  454 

The decision matrix is organized in j columns (criteria) and i rows (dams). The normalized 455 

matrix (n.m) was obtained as follows: 456 

 457 

n.m =
min(𝑥𝑗)−𝑥𝑖𝑗

min(xj)−max(xj)
                                                                                                                Eq.1                                                                                                      458 

where j is a criterion and i is a dam. This way the dams that score higher in the criteria 459 

have a higher normalized score. For the weighted matrix, the weights across the criteria need to 460 

add to one. 461 

There are some known issues with AHP and all MCDA methods, related to the 462 

uncertainty in the weights assigned, the independence of the criteria, and rank reversal issues 463 

(Hyde et al., 2004; Maleki & Zahir, 2013). MCDA requires sensitivity analyses of the weights, 464 

but they generally involve systematically varying one parameter over their entire range while 465 

keeping the others constant; therefore the combined effects of different parameters cannot be 466 

determined (Hyde et al., 2004). In our case, we do not consider expert input as to what the 467 

weights should be, but rather we estimated the distribution of ranks for each dam using 468 

permutations of the weights across the seven criteria, which acts as a sensitivity analysis and 469 

shows how rank reversals may occur depending on the weights. We did this by sampling with 470 

replacement, seven numbers from a sequence of 0 to 1 in 0.05 intervals and keeping the ones 471 

adding to one (166, 131 weight vectors). Each weight vector was multiplied by the normalized 472 

matrix (n.m), and the summation of the matrix columns gave the final score to each dam. The 473 

scores were transformed to ranks and the process was repeated with all the weight permutations 474 

to obtain the rank distributions of the dams. 475 

3 Data 476 

Due to the extensive list of data sources, they are included in the Appendix. 477 

4 Results 478 

4.1 Hazard rankings 479 

Taking the median ranks of each dam’s scores obtained with the permutations (i.e. the 480 

sensitivity analysis), the hazard order from highest to lowest is: 1) J Percy Priest; 2) Center Hill; 481 

3) Cordell Hull; 4) Old Hickory; 5) Dale Hollow. This is the same result as when giving equal 482 

weights to the criteria. It is important to note that in the NID all of these dams are classified as 483 

High hazard but the ranking obtained gives more visibility to the different consequences of the 484 

failure of each dam. Old Hickory Dam is the least sensitive to variations in criteria weights, 485 

whereas J Percy Priest and Dale Hollow show a larger spread of rankings dependent on the 486 

weights assigned, mainly reflecting changes in the weight of C1 in some of the permutations 487 

(refer to Figure 4). This highlights that rankings are always subjective and depend on how the 488 
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criteria are weighted. Ultimately, the final weighting scheme needs to consider the importance 489 

that the decision maker or experts give to the criteria. For example, government officials, 490 

insurance companies or investors can decide on giving different weights in their ranking 491 

assessments based on their different motivations. Here, the purpose is direct public sector 492 

investment so that there is an efficient use of funds to mitigate the hazard. 493 

The largest direct financial losses for infrastructure replacement (C1) occur with the 494 

failure of Percy Priest dam because of its proximity to the city of Nashville; large commercial 495 

and residential losses would ensue. Compared with the failure of Percy Priest Dam, these losses 496 

are just a fraction in other dams such as Dale Hollow. However, Dale Hollow’s replacement 497 

costs are estimated as more than double of those of Percy Priest Dam. We show both 498 

components of the C1 criterion separately to demonstrate that the type of direct losses are 499 

different for each dam. The replacement costs of the dams could exceed by far those calculated 500 

with the GBS in some dams like Center Hill and Dale Hollow. It is important to note that losses 501 

can accumulate in the time needed to repair the dam due to the interruption of its services and 502 

these are not included. So while this financial loss estimation allows ranking the infrastructure 503 

losses of the sectors included in the GBS, it leaves out other important risk elements. Some of 504 

these are included in the estimation of C2 to C6, but not as financial losses due to the lack of 505 

nationwide costs data.  506 

For C2, WWTPs, which can be small plants within industrial facilities, would be the most 507 

affected, particularly with the failure of Percy Priest. PP in C2 include the hydroelectric plants of 508 

the failed dams; the failure of Percy Priest and Old Hickory dam could also impact additional 509 

PPs downstream. Moreover, the failure of both Percy Priest and Old Hickory dam could happen 510 

simultaneously given their spatial proximity and their similar exposure to extreme climate 511 

events. 512 

Potential interruptions to supply chains given damages in transportation routes are 513 

considered in C3 and C4.  In C3, the failure of Center Hill and Dale Hollow would have greater 514 

impacts in highways and major roads, while Percy Priest’s failure would affect more railway 515 

miles. Connectivity of roadways can in many ways be as much of a significant factor as roadway 516 

or rail mileage. That is, intersections affected can produce a greater impact on travel but this was 517 

not considered in the analysis. According to the CFS data for the Nashville-Davidson—518 

Murfreesboro area, the total commodity value transported by truck or rail in 2012 was $73,150 519 

million, which is approximately $200 million/day (the 2017 survey will be released in 2020). 520 

Therefore, railroad and highway damages in the area could produce large losses in commodity 521 

trade that may or may not be currently insured for such an event. 522 

Impacts to navigation routes in C4 show that coal transport could be significantly affected, 523 

perhaps translating into further losses caused by power outages. The tonnage of commodities per 524 

year (data from 2017) was converted into tons per day to estimate the total loss considering 525 

certain duration of repair of the dam. Given the connectivity of the CRB dams, the navigation 526 

routes impaired are shared among them, but the failure of the southern dams (J. Percy Priest and 527 

Old Hickory), which are closer to Nashville could cause further interruption of navigation routes 528 

downstream. Ultimately, the Cumberland River joins the Ohio River, which is an important 529 

navigation route joining the Mississippi River.  530 

With regard to additional dams within the inundated areas of the failed dams of the test 531 

case, all of them are classified as Low hazard, except for one in the inundation area of Center 532 

Hill that has a Significant hazard classification and corresponds to a tailings dam. The breach of 533 

a tailings dam and the ensuing water contamination could result in environmental and health 534 
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impacts and significant financial losses for the dam owner. Also, the number of the potentially 535 

affected RCRA sites in Nashville pose an extra risk of water contamination affecting the water 536 

supply, and given that this is a highly populated area, the health risks are higher.  537 

All dams in the test case are used for electricity generation so their failure immediately translates 538 

into shocks to the electric supply estimated for C6, which also accounts for damages to other 539 

power plants within the inundation area. This is more significant at Center Hill Dam and Percy 540 

Priest.  541 

In C7, the total population in the affected Census blocks shows that the failure of Percy 542 

Priest and Old Hickory dams would affect more people, especially in Nashville. These are people 543 

directly affected by inundation, excluding other effects product of the failure such as power 544 

losses. The population in the vicinity of Center Hill is relatively small, yet, its failure as seen 545 

previously, could cause other dams to fail, lead to closure of many roads, and cause power 546 

interruptions.  547 

 548 
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 549 
Figure 4. Criteria results across dams 550 
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4.2 Analysis of losses using flood insurance rate maps (FIRMS) and the failure of Percy 551 

Priest in Nashville 552 

It is useful to explore the differences in damages and insurance needs included in the 553 

FIRMs and those resulting from a dam failure. We constrained the analysis to the boundaries of 554 

Nashville’s Urban Service Districts for comparison purposes, given that it is the largest urban 555 

area in the test case region. The infrastructure within the FIRMs (1% and 0.2% return floods) in 556 

Nashville was compared with the inundation area of Percy Priest’s Dam failure plus the FIRMs 557 

areas.  This analysis only considers the C2-C6 consequences because the flood insurance rate 558 

maps obtained for Kentucky did not include flood depth for most of the areas. Therefore, in this 559 

crude comparison we only take into account the number of facilities within the inundation zone 560 

without estimating damages as a function of inundation depth (refer to Figure 5).  It is evident 561 

from the results in Tables 2 and 3 that the potential damage in electricity supply, WWTPs and 562 

losses associated to commodity trading in impaired navigation routes could be much greater than 563 

the FIRM maps alone. The exposure of RCRA sites, electric substations, and damaged miles of 564 

major roads and railroads is also greater. The commodity most impacted would be coal (Table 565 

3), which in turn could affect other sectors. This shows that damages incurred by the failure of 566 

Percy Priest dam would be greater than those considered in the FIRM zones, which could likely 567 

be uninsured. The damage of this critical infrastructure has cascading effects to other sectors, e.g. 568 

industrial, commercial, etc. and can result in high impact to the local economy. The 569 

quantification of these losses was out of the scope of this paper, requiring the development of 570 

models to assess how damages in one sector will propagate through production and trade to other 571 

sectors. 572 

 573 
Figure 5 Inundation in Nashville due to the failure of Percy Priest Dam compared to FIRM maps 574 

 575 

Table 2. Infrastructure affected in Nashville in different inundation scenarios. MWs= 576 

Megawatts, WWTPs= wastewater treatment plants, ES=electric substations 577 

Percy Priest Dam inundation 
1 in 100 year FIRM
1 in 200 year FIRM

RCRA sites
Power plants

Wastewater treatment plants

Percy Priest Dam Percy Priest Dam
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Inundation 

Extent MWs WWTPs 

Roads 

(mi) 

Major 

roads 

(mi) ES 

Railroad 

(mi) 

RCRA 

sites 

Tons/day in 

Navigation 

route 

FIRM 1% 0 16 5.9 2.3 6 6 1 0 

FIRM 2% 0 28 10.1 4.3 12 14 4 0 

FIRM 1% and 

Percy Priest 

Dam 33.8 52 17.0 7.8 14 20 6 

               

53,987  

FIRM 2% and 

Percy Priest 

Dam 33.8 54 18.4 8.4 16 21 6 

               

53,987  

 578 

Table 3. Commodities (in ton/day) transported in the affected navigation routes in Nashville in 579 

case of failure of Percy Priest. Chem=chemical materials, CrMat=construction materials, 580 

Farm=agricultural products, Man=manufactured goods 581 

Coal Petrol Chem CrMat Man Farm Mach 

                          

37,674.6  

     

724.5  

    

1,020.1  

     

9,864.4  

     

2,466.0  

     

2,236.8  

             

0.4  
 582 

5 Summary and Discussion 583 

This paper represents a first step to understand the current state of dam hazard 584 

classifications in the United States, using an integration of readily available methods, tools, and 585 

data available, specifically for financial loss estimation. The regional test case showing the 586 

application of the consequence estimation framework helps uncover risks not considered in 587 

existing dam hazard classifications or flood risk maps such as those reflected in the criteria used. 588 

Even though all dams in the test case are currently classified as High, with this framework the 589 

differences in the dam failure consequences became visible. Additionally, with the example of 590 

FIRMs in Nashville, we showed that the inundation product of a dam failure can be much larger 591 

and destructive than the current flood risk maps. Still, expanding this methodology to the whole 592 

country to facilitate hot spot identification and portfolio analysis for different stakeholders 593 

requires the estimation of inundation areas. This may be quite time consuming considering that 594 

there are approximately 90,000 dams in the U.S.  595 

A suggested approach for a national hazard mapping is to start by identifying basins with 596 

a high concentration of High and Significant hazard dams as per the NID classification, and 597 

prioritize dams past their design age that are owned by the state or privately (these usually 598 

represent lower financial and technical resources). In some states where dam inundation areas 599 

have already been estimated, the application of the framework may be straight forward. For 600 

example, California required dam owners to submit dam break inundation analyses in 2017, so 601 

with that information the hazard ranking can be obtained within the state boundaries. However, 602 

to have a national hazard map that is comparable across states the dam break parameters for the 603 

inundation simulation have to be standardized, for instance, replicating the ones used in this 604 

paper.   605 

From a portfolio perspective, particularly for correlated risks that result from extreme 606 

weather events or prolonged wet spells within a region, risk scoring methods such as AHP may 607 

not be appropriate (Cox, 2009).  Funding allocations in this case need to have a portfolio 608 
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approach instead of looking at dams separately. The same applies when setting insurance 609 

premiums or analyzing investments. Cox, (2009) argues that optimizing the selection of risk- 610 

reduction opportunities as a subset or portfolio (be it as funding for dam maintenance or in 611 

investments) is more effective for risk reduction per resources spent than scoring when 612 

correlated consequences are involved. The optimization has to consider the interdependencies of 613 

risk reduction activities. The framework does not yet include the risks of a portfolio of dams, 614 

since we believe that the configuration of the dams (i.e. in parallel or in series) and the joint and 615 

conditional probabilities of failure need to be included to have visibility to the risk. The objective 616 

here was just to address the hazard variable of the risk equation but the assessment of the 617 

probability of dam failure is an important separate step that we are pursuing as a compound risk 618 

characterization framework. 619 

An approach to indirect economic impacts, through for instance the loss of transportation 620 

or energy or water infrastructure, or the closure of areas due to the spread of toxic waste from 621 

repositories in the flood plain to downstream communities and ecosystems, is still needed. An 622 

important barrier to estimate this type of loss at larger scales is the lack of regional/national 623 

datasets containing the necessary information. For example, it is desirable to calculate the direct 624 

losses associated to the interruption of services provided by the failed dam (i.e. irrigation, 625 

municipal and industrial water supply, power generation, flood damage reduction, etc.).  The 626 

water provided to each service needs to be known to perform that assessment, but the NID does 627 

not include water allocations of a particular dam to the different users except for the installed 628 

electricity generation capacity in hydroelectric dams. Developing such databases would help 629 

improve the understanding of dam hazards across the nation. With the data, the indirect 630 

economic impacts can be, in theory, assessed through regional economic models subject to 631 

shocks. The development of such models for climate change impact analysis has been pursued to 632 

an extent (Botzen et al., 2019; Martinich & Crimmins, 2019; Nordhaus, 2019; Stern, 2013). 633 

However, specific risk factors related to hazards are typically resolved at a rather macro level, 634 

and may be grossly underestimated. In a sense, our work to date provides an approach for the 635 

bottom up generation of information as to hazards that could be used in such integrated 636 

assessment models.  637 

Significant uncertainties are associated with the dynamics of climate, the presentation of 638 

climate hazards, and the manner in which they are manifest. Consequently, a bottom up 639 

consideration of such hazards in economic analyses is rare. However, it is also clear that the 640 

short and long term financial effects of hazards and their climate dependence need to be properly 641 

considered to quantify the dual effects of aging infrastructure on changing regional populations 642 

and economies. As climate adaptation efforts advance, having a prioritized approach to regional 643 

investment and renewal, and to appropriate financial risk mitigation strategies will emerge as a 644 

priority. 645 

A national cost-benefit analysis of the dams across the U.S. needs to be done, 646 

acknowledging that many dams across the county are no longer providing the services that they 647 

were built for (Hansen et al., 2020). This would give visibility to the dams that most urgently 648 

need to be repaired or removed. This cost benefit analysis would consider the current conditions 649 

of a dam (e.g. with the data produced by the Associated Press in 2019;Lieb et al., 2019), the 650 

likelihood of failure, the quantification of losses in case of failure considering cascading effects, 651 

and an analysis of the current benefits/services the dam provides. A conceptual framework of 652 

how this would be implemented is presented in Figure 6. For this purpose, beyond the 653 

presentation here, we are working on improving indirect loss quantification considering 654 
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cascading effects, and on developing a method to rapidly estimate the likelihood of failure 655 

conditional on climate, sedimentation, and structural fragility to perform risk assessments (a 656 

diagram of the estimation of the likelihood of failure is presented in Figure 7). With this, we aim 657 

to inform a national strategy of dam management that minimizes social and economic risks.  658 

 659 

 660 
Figure 6. Conceptual framework for the estimation of dam risks and costs in the United States. 661 

 662 

 663 
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 664 

Figure 7. Conceptual framework for the likelihood of dam failure  665 

Appendix 666 

Datasets used in the analysis 667 

- Dams data for Tennessee and Kentucky were obtained from the latest version in the NID 668 

(USACE, 2019).  669 

- General building inventories and depreciated value by general occupation and single 670 

occupation were retrieved from HAZUS, selecting the counties along the Cumberland 671 

River (more information on how these databases were constructed can be found in 672 

HAZUS’ manuals (https://www.fema.gov/Hazus-mh-user-technical-manuals).  673 

- DFIRM Flood areas were obtained for Kentucky and Tennessee from the National Flood 674 

Hazard Layer available at FEMA Flood Map Center 675 

(https://msc.fema.gov/portal/advanceSearch) 676 

- Tennessee shapefiles were downloaded from the University of Tennessee Knoxville  677 

https://libguides.utk.edu/tngis/health 678 

- WWTP and  RCRA Sites were retrieved from the USEPA Facility Registry Service 679 

Datasets: https://www.epa.gov/frs 680 

- The shapefile of US Railroads was retrieved from: 681 

https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/USA_Railroads_1/682 

FeatureServer 683 

- The shapefile with US Major highways was retrieved from 684 

https://www.arcgis.com/home/item.html?id=fc870766a3994111bce4a083413988e4 685 

- The electric power substations  shapefile was retrieved from  Homeland Infrastructure 686 

Foundation Level Data 2019, https://hifld-687 

geoplatform.opendata.arcgis.com/datasets/electric-substations 688 

- Data from 2017 on navigation routes and transported commodities was retrieved from the 689 

USACE, Waterway data: National Waterway Network 690 

https://usace.contentdm.oclc.org/digital/collection/p16021coll2/id/1472%20/ 691 

- Nashville Urban Services  shapefile was retrieved from 692 

https://data.nashville.gov/General-Government/Service-Districts-GIS-/xxxs-vvs4 693 

- Airport data retieved from the U.S. Department of Transportation, Federal Aviation 694 

Administration-Aeronautical Information Services. http://ais-695 

faa.opendata.arcgis.com/datasets/e747ab91a11045e8b3f8a3efd093d3b5_0?geometry=-696 

80.153%2C38.677%2C-73.44%2C40.163 697 

- Commodity Flow Survey for the U.S., Preliminary results 2017, U.S Census retrieved 698 

from:  https://www.census.gov/programs-surveys/cfs.html 699 
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