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Abstract

Estimates of fluvial sediment discharge from in situ instruments are an important component of large-scale sediment budgets

that track long-term geomorphic change. Suspended sediment load can be reliably estimated using acoustic or physical sampling

techniques; however, bedload is difficult to measure directly and can consequently be one of the largest sources of uncertainty

in estimates of total load. We propose a physically-informed predictive empirical model for bedload sand flux as a function of

variables that are measured using existing acoustic or physical sampling techniques. This model depends on the assumption

that concentration and grain size in suspension are in equilibrium with reach-averaged boundary conditions. Bayesian inference

is used to fit model parameters to data from eight sand-bed rivers and to simulate bedload flux over the available gage record

at one site on the Colorado River in Grand Canyon National Park. We find that the cumulative bedload flux during the nine

year period from 2008 to 2016 was 5\% of the cumulative suspended sand load; however, instantaneous bedload flux ranged

from as little as 1\% of instantaneous suspended sand load to as much as 75\% of instantaneous suspended sand load due to

fluctuations in flow strength and sediment supply. Changes in bedload flux at a constant discharge are indicative of short-term

sediment supply enrichment and depletion. Long-term average bedload flux cannot be expected to remain constant in the future

as the river adjusts to changes in sediment runoff and the dam-regulated discharge regime.
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Abstract15

Estimates of fluvial sediment discharge from in situ instruments are an important component16

of large-scale sediment budgets that track long-term geomorphic change. Suspended sedi-17

ment load can be reliably estimated using acoustic or physical sampling techniques; however,18

bedload is difficult to measure directly and can consequently be one of the largest sources of19

uncertainty in estimates of total load. We propose a physically-informed predictive empiri-20

cal model for bedload sand flux as a function of variables that are measured using existing21

acoustic or physical sampling techniques. This model depends on the assumption that con-22

centration and grain size in suspension are in equilibrium with reach-averaged boundary23

conditions. Bayesian inference is used to fit model parameters to data from eight sand-bed24

rivers and to simulate bedload flux over the available gage record at one site on the Colorado25

River in Grand Canyon National Park. We find that the cumulative bedload flux during the26

nine year period from 2008 to 2016 was 5% of the cumulative suspended sand load; however,27

instantaneous bedload flux ranged from as little as 1% of instantaneous suspended sand load28

to as much as 75% of instantaneous suspended sand load due to fluctuations in flow strength29

and sediment supply. Changes in bedload flux at a constant discharge are indicative of short-30

term sediment supply enrichment and depletion. Long-term average bedload flux cannot be31

expected to remain constant in the future as the river adjusts to changes in sediment runoff32

and the dam-regulated discharge regime.33

1 Introduction34

Estimates of fluvial sediment load provide an important tool for quantifying large-scale35

geomorphic change. In a wide range of environments, suspended sediment load can be accu-36

rately constrained using acoustic surrogates for sediment concentration [Topping et al., 2004;37

Topping & Wright, 2016], enabling low-cost measurement of suspended load at high tem-38

poral resolutions over multi-year timescales [Dean et al., 2016; Grams et al., 2013, 2018].39

However, acoustic estimates of flux depend on assumptions about the vertical concentration40

distribution that are reasonable if not strictly valid in the interior of the flow [Gray & Gart-41

ner, 2010] but that become increasingly dubious in the near-bed region. Bedload may vary42

significantly with respect to suspended sediment load due to changes in Rouse conditions43

[van Rijn, 1984].44

Existing procedures for measuring bedload separately from suspended load in sand-45

bedded rivers [Gray et al., 2010; Holmes, 2019] are incompatible with the goals and limita-46

tions of long-term monitoring. Direct physical sampling is costly and can be inaccurate in47

large rivers due to undersampling [Pitlick, 1988], and existing predictive bedload transport48

models that might be used in lieu of direct measurements (e.g. Wong & Parker [2006]) gen-49

erally require, at minimum, an estimate of the skin friction component of bed shear stress,50

which in turn necessitates additional measurements or models each subject to their own lo-51

gistical limitations and uncertainty. Sediment budgets therefore rely on simplified treatments52

of bedload flux that can introduce large persistent biases to estimates of total bed material53

load. For example, bedload is typically estimated either as a constant fraction of suspended54

load [Grams et al., 2013], a power-law function of water discharge (i.e. a rating curve) [Elli-55

son et al., 2016], or ignored [Wright et al., 2010]. This is problematic because bedload flux56

can be a substantial fraction of total load in suspension-dominated rivers, particularly at low57

flow conditions [Turowski et al., 2010]; bedload flux can vary relative to suspended load due58

changes in suspension conditions, and it can vary with respect to a fixed water discharge due59

to changes in bed material composition and channel geometry [Topping et al., 2000a,b].60

The purpose of this paper is to provide a reliable means for estimating bedload flux61

in sand-bed rivers when suspended sediment information is available. The rationale behind62

our approach is that bedload and suspended load are mutually determined by the same causal63

boundary conditions at the reach-averaged scale. As a result, measured changes in concentra-64

tion and grain size in suspension can be used to deduce changes in these boundary conditions65
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and estimate bedload flux. This concept was first proposed by Rubin & Topping [2001] and66

underlies an empirical model that expresses bedload flux per unit channel width as a function67

of unit water discharge, suspended sand concentration, and suspended sand diameter.68

Our primary goal is to estimate bedload flux from gage data and propagate uncertainty69

through estimates of cumulative load. This is accomplished using Bayesian inference, which70

provides a convenient framework for quantifying uncertainty in sediment transport parame-71

ters using numerical Markov chain Monte-Carlo (MCMC) methods [Schmelter et al., 2011;72

Schmelter & Stevens, 2012; Schmelter et al., 2015]. Moreover, Bayesian techniques imple-73

mented in the MCMC framework enable rigorous propagation of uncertainty through indi-74

vidual estimates of sediment load and time-integrated mass balance calculations [Schmelter75

et al., 2012].76

Our model can be applied in any sand-bedded river and does not require site-specific77

calibration. However, our analysis reveals that predictions may be biased on a site-specific78

basis such that greater predictive accuracy is achieved when the model is fit using only data79

from one site. This is particularly important when computing sediment budgets because er-80

ror associated with model bias accumulates over time [Grams et al., 2013]. Unfortunately,81

site-specific data are not always available; in order to meet the varying needs of different82

applications, we present three modeling approaches that utilize historical data from seven83

rivers reported by Toffaleti [1968] to varying degrees. The first approach involves pooling84

all data to estimate model parameters and is acceptable for obtaining single estimates of bed-85

load flux at sites where no direct observations are available. The second approach utilizes86

only data from the site of interest, and is suitable when extensive site-specific data are avail-87

able. The third approach involves a hierarchical modeling framework [Gelman et al., 1995;88

Christensen et al., 2011] that optimizes use of limited site-specific data by using sites with89

many observations to inform prediction at sites with relatively few observations. Application90

of all three approaches is demonstrated at one sediment monitoring station on the Colorado91

river. The statistical procedure presented here ultimately provides a convenient method for92

tracking changes in bedload flux driven by flow strength and sediment supply limitation over93

timescales ranging from days to years.94

2 Colorado River sediment monitoring95

On the Colorado River in Grand Canyon National Park, flux-based sediment bud-96

gets inform flow regulation protocols aimed at minimizing the downstream impact of Glen97

Canyon Dam. The primary management objective is the reversal of long-term depletion98

of alluvial sand deposits, especially emergent deposits known as eddy sand bars, through99

the use of controlled floods [Topping et al., 2010; Wright & Kaplinski, 2011; Grams et al.,100

2015]. However, the range of available management solutions is limited; this objective must101

be accomplished without compromising other economic [Ingram et al., 1991] and ecological102

[Minckley, 1991] objectives. Designing such a protocol requires a detailed understanding of103

the dynamics of flow and sediment transport through the canyon.104

In the dam-regulated Colorado River, the upstream sediment supply is completely in-105

dependent from water discharge. Undammed tributaries comprise the only resupply of al-106

luvial material to the post-dam river, while the hydrograph is determined by clear water re-107

leases from Lake Powell [Andrews, 1991; Topping et al., 2000a; Rubin et al., 2002]. Sedi-108

ment supply and flow fluctuations cause complex morphodynamic interactions as the channel109

adjusts to accommodate pulses of sediment under the imposed discharge regime. Confine-110

ment by bedrock and bouldery debris fans also limits the extent to which flow can modify111

local slope and hydraulic geometry. As a result, antecedent sedimentary and morphological112

conditions are as important as water discharge in regulating instantaneous sediment transport113

[Rubin & Topping, 2001]. This condition, known as “supply limitation,” is common in nat-114

ural rivers, but is particularly pronounced on the Colorado River and other dammed rivers115

–3–



Confidential manuscript submitted to Water Resource Research

112°W

112°W

113°W

113°W

114°W

114°W

37°N

36°N 36°N

U TA H

N
E
V
A
D
A

A R I Z O N A

0

0

RM 225 (Diamond Creek) gage

RM 166 gage

RM 87

(Grand Canyon)

gage

RM 61 gage

RM 30 gage

RM 0 (Lee's Ferry) gage

Figure 1. Map of the Colorado River in Grand Canyon National Park, after Grams et al. [2013]). Data used
in this study come from the reach adjacent to the Diamond Creek gage located at river mile 225.

136

137

due to artificial flow regulation and sediment starvation [Dolan et al., 1974; Schmidt & Graf ,116

1990].117

Modeling the dynamics of alluvial deposits in supply-limited systems requires substan-118

tial physical simplifications and empiricism (e.g. Wright et al. [2010]). Changes in stored119

sediment mass estimated from spatial gradients in sediment flux are a useful metric for eval-120

uating the effects of past flow regimes and for testing predictive models that can be used to121

determine best-practice scenarios for the future. The canyon is divided into five sediment122

budget reaches, each bounded by monitoring stations on the main stem and major tributaries123

that estimate total sand load every fifteen minutes (Figure 1). At the time of writing, these124

records comprise over a decade of almost uninterrupted suspended sediment data that can be125

used to quantify morphodynamic trends over a range of timescales: multi-year trends indi-126

cate regime-scale adjustment while short-term variability reflects the transient response to127

individual or seasonal perturbations in flow strength and sediment supply. Data are available128

online at https://www.gcmrc.gov/discharge_qw_sediment/.129

Bedload flux is perhaps the largest source of uncertainty in estimates of total sediment130

load. At the time of writing, bedload is estimated at all monitoring sites on the Colorado131

River as a constant 5% of suspended load based on a single set of concurrent measurements132

of bedload and suspended load [Rubin et al., 2001]. Presently, we aim test this assumption133

at one site (Figure 2), and reduce bias in estimates of total load by developing and applying a134

robust statistical methodology for estimating bedload flux from gage data.135

3 Methods and data140

3.1 Modeling approach141

The goal of this paper is to predict total mass bedload flux, Qb [MT−1], from mea-142

surements of water discharge, suspended sand concentration, and suspended sand diame-143

ter. To this end, we adopt an empirical power-law equation for bedload flux per unit width144
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Figure 2. Aerial view of the Diamond Creek study site. One survey of water depth is plotted, illustrating
the extent of the sonar mapping area.

138

139

qb [MT−1L−1] given by:145

qb = Aeβ0 qβ1
w Cβ2

s Dβ3
s . (1)

Here, qw [L2/T] is the average volumetric water discharge per unit width equal to Qw/W ,146

where Qw [L3/T] is the total volumetric water discharge and W [L] is the surface width of147

the channel. Cs [L/L] is the discharge-averaged suspended sand concentration, Ds [L] is148

median diameter of suspended sand and A is a dimensional coefficient expressed in terms of149

fixed reference values for each variable (denoted by the subscript 0) as A = qb0/qβ1
w0Cβ2

s0 Dβ3
s0 .150

Finally, β0 is an intercept term that is equal to 0 if reference values are chosen so that qb =151

qb0 when qw = qw0, Cs = Cs0, and Ds = Ds0.152

Equation (1) is purely empirical; however, we consider the form of this expression in153

the context of existing theory to (1) facilitate qualitative interpretation of our results and (2)154

support the notion that in-sample fit will extend to out-of-sample predictive accuracy. For-155

ward models for equilibrium sediment transport [Einstein, 1950; McLean, 1992; Molinas156

& Wu, 2002; Wright & Parker, 2004] encompass the physical interactions that are relevant157

to this objective, and generally involve several computational steps that incorporate various158

physical and empirical expressions. As an example Wright & Parker [2004] proposed a com-159

putational procedure for estimating Cs , Ds , and the Shields’ stress due to skin friction τ∗s160

(among other variables) from specified reach-average boundary conditions, which are qw ,161

slope S [L/L], and bed material grain size Db [L]. Bedload flux can be computed from τ∗s162

using an empirical bedload transport formula [e.g. Wong & Parker, 2006]. Additional rele-163

vant physical parameters that must be specified are often assumed to be constants. These are164

gravitational acceleration g [L/T2], the kinematic viscosity of water ν [L2/T], and the den-165

sities of sediment ρs [M/L3] and water ρw [M/L3]. In summary, this model approximates166
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three unknown physical equations of the following functional form:167

qb = f (qw, S,Db, ρs, ρw, g, ν) (2)
Cs = f (qw, S,Db, ρs, ρw, g, ν) (3)

Ds = f (qw, S,Db, ρs, ρw, g, ν). (4)

Each forward equation has eight variables (seven predictor variables and one response168

variable) and three physical dimensions, and can therefore be reduced to five dimensionless169

variables (four predictor variables and one response variable) according to the Buckingham170

Pi theorem [Gibbings, 2011]. However, four of the eight physical variables are usually as-171

sumed to be constant so one of these dimensionless variables will always be a constant or172

a linear combination of other variables. Assuming power-law forward equations between173

dimensionless variables, we assert that any choice of dimensionless variables can be rear-174

ranged to obtain the following dimensional equations:175

qb = γ1 qα11
w Sα12 Dα13

b
(5)

Cs = γ2 qα21
w Sα22 Dα23

b
(6)

Ds = γ3 qα31
w Sα32 Dα33

b
(7)

where γ1, γ2, and γ3 are fixed dimensional coefficients that can be expressed in terms of g, ν,176

ρs , and ρw . This system of equations can then be solved to obtain equation (1), noting that βi177

exponents are simply algebraic combinations of αi j exponents.178

Based on these arguments, we offer the following interpretation of equation (1), leav-179

ing further discussion to Section 5.2. We assume changes in fluvial sediment transport con-180

ditions are driven by changes in qw , S, and Db . By measuring one of these variables (qw)181

and two variables that directly respond to changes in these variables (Cs and Ds), it is pos-182

sible to constrain the state of the transport system and predict unknown variables including183

bedload flux. In this manner, Cs and Ds are viewed as proxies for S and Db .184

As an aside, equation (1) can also be derived by combining simplified relations pre-185

sented in the canonical sediment transport literature [e.g. Wong & Parker, 2006; Engelund186

& Hansen, 1967; Brownlie, 1983; Garcia & Parker, 1991]; however, many of these relations187

have empirical origins and thus contain large, unquantifiable uncertainty. Rather than com-188

bining a series of existing empirical expressions, we fit βi parameters and quantify predictive189

uncertainty directly; this approach minimizes predictive bias assuming that available data190

sufficiently capture the underlying physical processes.191

The majority of this paper focuses on the development and application of a statisti-192

cal methodology used to estimate empirical scaling parameters in equation (1) and predict193

bedload flux. We present an example application at our field site on the Colorado River in194

Grand Canyon National Park, where estimates of bedload flux obtained from repeat bathy-195

metric surveys of dune migration paired with concurrent gage measurements form the ob-196

servational basis for statistical analyses. Parameter estimation and prediction is conducted197

using Bayesian inference which facilitates consistent propagation of uncertainty from multi-198

ple sources of information and prediction of distributions for quantities of interest [Schmelter199

et al., 2011; Schmelter & Stevens, 2012; Schmelter et al., 2015]. This approach is particularly200

useful for propagating uncertainty arising from both measurement uncertainty and parameter201

estimation uncertainty in calculations of cumulative sediment load [Schmelter et al., 2012].202

In addition to the data from our site, we also consider data from six other rivers re-203

ported by Toffaleti [1968] in order to test generality and improve the predictive power of our204

model. These data cover a much wider range of discharge, slope, and bed grain size condi-205

tions than those that are found at the site on the Colorado River. In order to incorporate these206

data into the predictive model for bedload flux at our site, we consider three statistical mod-207

els that are distinguished in principle by their assumptions regarding the universality of scal-208

ing exponents and in practice by their treatment of groups in the data. These approaches have209
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advantages and disadvantages to each other relative to the specific modeling conditions and210

objectives, as well as the quantity and quality of data that are available at a site of interest.211

3.2 Statistical methods212

3.2.1 Bayesian linear regression213

The generalized linear model given by equation (1) has four unknown parameters that214

must be estimated from a large number of observations of model variables. This system is215

overdetermined and no single solution can fit all of the data simultaneously. As a result, it is216

necessary to employ regression analysis to handle uncertainty and error. Log-transformed217

variables enable linear regression, which assumes that the ith observation of the response218

variable log(qb)i can be expressed as a linear function of the predictor variables log(Q)i ,219

log(Cs)i and log(Ds)i , plus an error term εi220

log(qb)i = log(A)i + β0 + β1log(qw)i + β2log(Cs)i + β3log(Ds)i + εi (8)

Perhaps the most common variant of linear regression is Ordinary Least-Squares (OLS),221

which finds the combination of model parameters β0, β1, β2, and β3 that minimizes the sum222

of the sum of the squared error terms. OLS regression leads to an unbiased predictor of the223

response variable assuming εi is normally distributed and independent across all samples.224

However, for the purposes of the present research, this approach has several limitations. OLS225

regression cannot handle hierarchical organizations of data that potentially violate the as-226

sumed independence of εi , such as when individual observations are grouped by river or site.227

Additionally, analytical quantification of predictive uncertainty in the OLS framework does228

not readily allow for propagation of errors through mass-balance calculations.229

Bayesian inference provides a convenient framework for overcoming these issues.230

For a general discussion of Bayesian methods, see Gelman et al. [1995]; Christensen et al.231

[2011]. The standard Bayesian approach to linear regression starts with the same assump-232

tions as OLS that are encapsulated by (8). However, we introduce an additional parameter σ233

that quantifies the standard deviation of the error term, i.e.:234

εi ∼ N(0, σ) (9)

where the tilde means “distributed as” and N(0, σ) is an independent normal distribution235

with zero mean and standard deviation σ. Consequently, we aim to draw inference on five236

parameters: β0, β1, β2, β3, and σ.237

At this point we note for clarity that the term “variables” refers to measurable physical238

quantities, while the term “parameters” refers to unknown quantities that appear in the data239

model and are the object of statistical inference. Henceforth, we use θ to refer to the 5 × 1240

vector of model parameters, i.e. θ = [β0, β1, β2, β3, σ]. Additionally, we use X to refer to the241

4 × N matrix of N observations of model variables qw , Cs , Ds , and qb .242

While OLS regression seeks estimates of model parameters that minimize the global243

sum of the squared residuals, Bayesian model fitting embraces uncertainty associated with244

the fact that small differences in model parameters may fit the data nearly as well as the op-245

timal result. These small differences are quantified by the likelihood function, which exists246

on the domain of model parameters assuming fixed observational data X , and is denoted by247

L(θ |X). Here, the vertical line denotes conditional dependence, i.e. the likelihood of θ given248

X . The likelihood can be computed for any combination of parameters, where higher like-249

lihoods represent more likely combinations of parameters. Introducing the prior probability250

distribution P(θ), we obtain an expression for the posterior probability distribution of model251

parameters conditional on observational data P(θ |X) through Bayes theorem:252

P(θ |X) = L(θ |X)P(θ)∫
L(θ |X)P(θ)dθ

(10)
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Once the posterior probability distribution of model parameters is known, unobserved values253

of qb can be estimated from measured values of predictor variables using Bayesian posterior254

predictive distributions, which efficiently propagate uncertainty through individual estimates255

of qb as well as time-integrated mass-balance calculations.256

3.2.2 Grouped, ungrouped, and hierarchical model variations257

The basis for equation (1) suggests that it is sufficient to predict bedload flux in any258

sand bed river using a single universal set of scaling parameters. However, some degree of259

predictive uncertainty is inevitable owing to both measurement error and model bias aris-260

ing from simplification of physical processes. While measurement error can be considered261

uncorrelated, systematic biases are caused by a failure of the data model to capture specific262

physical processes, and are thus likely to be correlated when conditions are similar. As a re-263

sult, we anticipate persistent site-specific biases using a general model based on data from264

many rivers. For example, details of channel geometry not explained by width and slope may265

cause bedload flux to be more or less sensitive to changes in water discharge at one site com-266

pared with the central tendency of all sand bed rivers. In this case, better predictive accuracy267

would be achieved at that site by adjusting the value of β1 to reflect this difference. In gen-268

eral, we anticipate better predictive performance if model parameters are constrained on a269

site-specific basis.270

This theoretical consideration is at odds with practical limitations: regression analysis271

requires numerous independent estimates of bedload flux that are expensive and difficult to272

obtain. Thus, it would be advantageous if existing data from many rivers could be used to273

help inform bedload prediction at a new site. Optimal model parameters may differ slightly274

from site to site; however, sand-bed rivers are all governed by the same general physical pro-275

cesses such that it is reasonable to expect that scaling parameters should be similar between276

rivers. In order to balance theoretical and practical concerns, we consider three distinct gen-277

erative data models, each of which reflects a different trade-off between observational data278

requirements and assumptions regarding the generality of scaling parameters.279

The first model (the grouped model, Appendix B.1) assumes a single universal set of280

model parameters θ = [β0, β1, β2, β3, σ]. The standard deviation of the error term σ is the281

same for all data. All observations are therefore treated as independent observations from282

the same exchangeable group of observations. The advantage of this model is that it can be283

applied at a new site without collecting any additional data. However, it ignores the possibil-284

ity of correlated errors by river or site, and is therefore subject to unquantifiable systematic285

biases when applied at a specific site without local data.286

The second model (the ungrouped model, Appendix B.2) assigns different independent287

scaling parameters θ j = [βj0, βj1, βj2, βj3, σj], for j = 1, ...,m and m = 8 is the number288

of data groups (i.e. independent sites). This is equivalent to performing grouped regression289

independently on a site-specific basis: each site is treated as an independent statistical entity290

comprising its own exchangeable group of observations. This model is perhaps the most the-291

oretically conservative in that it assumes nothing with regard to physical similarity between292

sites. However, it is also the least practical in that it requires extensive uncorrelated observa-293

tions of bedload flux from each monitoring site in order to ensure reliable results, and cannot294

be applied at a site where bedload has never been measured directly.295

The third model (the hierarchical model, Appendix B.3) assigns different regression296

coefficients to each site, but assumes some degree of physical similarity between sites. Ob-297

servations are treated as exchangeable on a site-specific basis, and each site comes from an298

exchangeable group of sites, that is, all sand bed rivers. We aim to draw inference, not only299

on the behavior of individual sites, but also on the distribution of behaviors that can be ob-300

served at different sites. Site-specific coefficients are thus determined partly by data collected301

at that site, but are also informed by the behavior of other rivers which can reduce issues re-302

lated to low sample size at one site if sufficient data exists at other sites. Hierarchical organ-303
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ization is implemented through priors for the regression coefficients which are assumed to304

be normally distributed with a mean and variance that reflects the central tendency and vari-305

ability of sand-bed rivers. This model lies somewhere between the grouped and ungrouped306

models in terms of both theoretical assumptions and data requirements. Some data are use-307

ful in order to constrain bedload flux at a new site, but limited observations are utilized to308

greater effect than in the ungrouped model.309

3.2.3 Priors310

Diffuse (i.e. wide, minimally informative) priors are commonly used to minimize in-311

fluence on model results, and are employed here for all three model variations. Diffuse priors312

are effectively constant over the relevant parameter domain, which means that the posterior313

distribution is essentially reflects a renormalization of the likelihood function, preserving314

the relative log-likelihoods while ensuring the posterior integrates to 1. Due to the relatively315

large sample size, our results are not sensitive to the specific choice of diffuse prior.316

Grouped and ungrouped regression models were fit using an approximation for Jef-317

frey’s prior, which is an attractive choice due its unique theoretical properties [Gelman et318

al., 1995; Christensen et al., 2011]]. Jeffrey’s prior is a uniform distribution on the domain319

(β0, β1, β2, β3, log(σ)), which is an improper prior because it does not integrate to 1. Thus,320

normal distributions centered on zero with large standard deviations are used to approximate321

Jeffrey’s prior because a normal distribution approaches a uniform distribution as the stan-322

dard deviation goes to infinity. Jeffrey’s prior is also uniform log(σ) meaning the prior prob-323

ability that the parameter is between 0.01 and 0.1 is the same as the probability the parameter324

is between 0.1 and 1. The inverse gamma distribution approaches a uniform distribution on325

log(σ) as its parameters go to zero.326

The hierarchical model structure is implemented through informative, dynamic pri-327

ors, where the parameters for these priors are referred to as “hyperparameters”. Inference328

is drawn on parameters and hyperparameters simultaneously such that the hyperparameters329

have their own prior and posterior probability distributions. Priors for hyperparameters, or330

“hyperpriors” must be specified. Again, we utilized diffuse, minimally-informative hyperpri-331

ors, the specific choice of which does not influence model results. For additional details on332

priors and hyperpriors, see Appendices B.1, B.2, and B.3.333

3.2.4 Model fitting334

All three models were fit using Markov Chain Monte-Carlo (MCMC) sampling meth-335

ods. This technique is commonly used to sample the posterior distribution and conduct pre-336

dictive simulation when analytical alternatives are cumbersome or impossible. For additional337

details on MCMC sampling, see Appendix B.4 and example workflows [Ashley, 2019b].338

3.2.5 Model selection339

Quantitative comparison of predictive power is accomplished using the Deviance Infor-340

mation Criterion (DIC, Spiegelhalter et al. [2002]; Gelman et al. [2014]), Appendix B.6), a341

generalization of the Akaike Information Criterion that is suitable for comparing the hierar-342

chical and non-hierarchical models used here. DIC includes two two terms: one which quan-343

tifies in-sample predictive accuracy and one which corrects for model complexity to approx-344

imate out-of-sample predictive accuracy under certain assumptions [Gelman et al., 2014].345

As a relative measure of predictive power, models with lower DIC are expected to have lower346

prediction error than models with higher DIC. However, DIC is not a perfect measure of rel-347

ative prediction error and is reported here (Table 2) to inform model evaluation rather than as348

the sole discriminatory factor.349
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3.3 Field methods350

Transport-related data were collected at one field site on the Colorado River in Grand351

Canyon National Park during three field campaigns in the Spring and Summer of 2015, as352

well as the Fall of 2016. The site (Figure 2) is located at river mile 225 in the vicinity of353

USGS monitoring station 09404200 (Colorado River above Diamond Creek near Peach354

Springs, AZ). Hereafter, we refer to this site informally as "Diamond Creek" or the "Dia-355

mond Creek field site". Data include repeat bathymetric surveys of dune migration, ADCP356

surveys of flow velocity, suspended sediment and bed sediment samples, and bed photographs357

for optical grain-size analysis [Buscombe et al., 2010]. Concurrent gage measurements of358

water discharge, suspended sand concentration, and grain size were also collected following359

standard procedures during this time [Rantz et al., 1982; Topping & Wright, 2016].360

Estimates of bedload flux were obtained using 320 high resolution, full-width bathy-361

metric surveys of an approximately 400 meter reach adjacent to the Diamond Creek gag-362

ing station. Surveys were collected using a 400 kHz Reson 7125 multibeam echo sounder363

(MBES) which produces a swath comprised of 512 beams (each 1 x 0.5 degrees) across a364

transverse subtended angle of 135 degrees. In order to map sonar returns onto a global co-365

ordinate system, the location of the boat was tracked using a robotic Total Station referenced366

to a fixed position on the bank, and a fiber-optic gyrocompass and inertial sensors were used367

to calculate heading, roll, and pitch of the sonar head. Patch tests were conducted before the368

surveys to determine the offset angles and timing latency between the various system com-369

ponents. Bad soundings and sweep misalignments (due to, for example, systematic side-lobe370

interference; and scattering of soundings by air bubbles, drifting insects and other organic371

matter in the water) were identified by manual sweep editing and systematically stepping372

through overlapping sweeps. Quality assurance assessments were performed after the sur-373

veys by comparing selected soundings from all surveys over a large, flat-topped rock located374

along the channel margin. The mean standard deviation of soundings over this feature was375

0.015 m and indicate a high level of survey precision. The final, edited surveys used here are376

ungridded point clouds, where each point corresponds to a valid sonar return from the river377

bed. More details about acquisition of MBES data with this instrument and configuration378

are found in Kaplinski et al. [2009]; Kaplinski et al. [2014], Grams et al. [2013, 2018], and379

Buscombe et al. [2014a,b]. Four example surveys are plotted in Figure 3.380

Simons et al. [1965] provide the method by which bathymetric data can be used to gen-384

erate bedload flux estimates. Their expression is given by:385

qb = (1 − p)Vc
Hc

2
+ C, (11)

where qb [L2T−1] is the volumetric bedload flux per unit width, p [−] is the bed porosity386

taken to be a constant 0.35, Vc [LT−1] is a characteristic bedform migration rate, Hc[L] is a387

characteristic bedform height, and C is a constant of integration assumed to be zero. Mea-388

sured bedform heights ranged from 0.15 to 0.70 m, and measured migration rates ranged389

from 0.21 to 1.76 m/hr . Both of these quantities varied predictably with water discharge.390

Equation (11) is derived from a statement of mass conservation (the Exner equation,391

Paola & Voller [2005]) combined with a simplified model for dune evolution characterized392

by translationally invariant migration of triangular or sinusoidal forms. Although it repre-393

sents substantial simplifications of physical process (for example, by ignoring bedform de-394

formation and variability in bedform migration rate and geometry), flume and field studies395

find good agreement between (11) and other estimates of bedload flux across a wide range of396

conditions extending from the threshold of bedform development to suspension-dominated397

dunes [Simons et al., 1965; Engel & Lau, 1980; van den Berg, 1987; Mohrig & Smith, 1996].398

Consequently, we argue that this expression provides a reasonable estimate of bedload trans-399

port that is not captured by acoustic estimates of suspended sand load. Equation (11) was400

used to compute 55 hourly estimates of average bedload flux (Figure 4). Major elements of401
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Figure 3. Example bathymetric surveys with shaded relief plotted at 10 cm resolution. Water discharge dur-
ing the survey is indicated in the upper right corner of each survey. Flow is from right to left. Colors represent
water depth, as in figure 2.

381

382

383

this procedure are discussed in Appendix A. Additional details can be found in the documen-402

tation of software developed for this purpose [Ashley, 2019a]403

3.4 Additional data from other rivers408

The large river dataset presented by Toffaleti [1968] (and derived quantities) is used to409

supplement limited data from our field site. This dataset comprises a total of 262 concurrent410

observations of bedload flux Qb , water discharge Qw , suspended sand concentration Cs , me-411

dian suspended sand diameter Ds , and channel width W on the Atchafalaya River (n = 60),412

the Mississippi River in Louisiana (n = 47), the Mississippi River in Missouri (n = 63),413

the Red River (n = 28), the Rio Grand River (n = 36), the Middle Loup River (n = 9),414

and the Niobrara River (n = 19). These sites are similar to the Diamond Creek field site in415

that the predominant bed material is sand; however they are different in that they are all al-416

luvial rivers (whereas the Colorado River in Grand Canyon is a bedrock-confined alluvial417

river with gravelly and sandy reaches). Our model is based on physical theory describing418

one-dimensional transport, and assumes nothing about channel form. Consequently, it can be419

applied in rivers that are not fully alluvial as long as the bed material at the site of interest is420

sand.421

Total suspended sand concentration Cs and median suspended sand grain size Ds were422

computed from reported grain-size specific suspended sediment concentrations. Bedload423

flux was computed according to the revised Meyer-Peter & Müller bedload equation [Wong424

& Parker, 2006] with grain stresses estimated using the Einstein drag partition as reformu-425

lated by Garcia [2008]. This procedure was also used to compute bedload flux at our study426

site when flow velocity and bed sediment data are available to check approximate correspon-427
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Figure 4. Time series plot of water discharge (A) and bedload flux (B) at the Diamond Creek sediment
monitoring station in 20015 and 2016. Grey line shows bedload flux estimated as a constant fraction (5%) of
suspended load, and black diamond show hourly average estimates of bedload flux from bedform migration.
Insets (C, D) highlight the periods where bedform flux estimates are available.

404

405

406

407

dence with estimates of flux from dune migration. Note that here, and throughout, “observa-428

tions” is used as part of the statistical vernacular to refer to independent samples of variables429

and implies nothing about how those samples were obtained. This distinction is particularly430

important here because “observations” of bedload flux are actually computed from depth,431

slope, grain size, and flow velocity using physically-based model. Similarly, observations432

of bedload flux at Diamond Creek are computed using a physically-based model from dune433

height and velocity.434

3.5 Data treatment436

The statistical methods employed here assume errors in observations are uncorrelated.437

However, the 55 hourly estimates of average bedload flux from the Diamond Creek field site438

were collected over seven days during which temporal correlation is likely. Unqualified ex-439

trapolation of trends in this dataset to the full gage record spanning nearly ten years may440

therefore produce unrealistic results. In order to mitigate this effect, we use only the first and441

last measurement from each day (n = 14) in order to estimate model parameters.442

The full data set used for statistical analysis comprises a total of 276 observations from443

eight sites. Data were log-transformed to obtain the linear regression variables q∗w , C∗s , D∗s ,444

and q∗
b
using fixed reference values of each variable (Figure 5). We chose to use a single445

reference values for each variable (as opposed to individual reference values for each site)446

computed as the geometric mean of all 276 pooled observations of each variable, which re-447

sults in centered (zero mean) log-transformed variables. Other choices may provide addi-448

tional insight (if for example, different physically important reference values are used on a449

site-specific basis like mean annual discharge or bankfull discharge); however, such anal-450

yses are beyond the scope of this paper. Reference values of model variables are given by:451

qb0 = 0.039 kg/s/m, qw0 = 4.35 m2/s, Cs0 = 1.07 × 10−4, and Ds0 = 0.13 mm. Chan-452
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Table 1. Summary of variable ranges measured at each site435

Qw [m3/s] W [m] log10(S) Db [mm]
min max min max min max min max

Atchafalaya River 931 14186 314 503 -5.0 -4.3 0.10 0.41
Mississippi @ Tarbert Landing 4248 28827 896 1414 -4.7 -4.4 0.20 0.38
Mississippi @ St. Louis 1512 8778 457 518 -5.0 -3.2 0.20 0.86
Red River 190 2826 130 183 -4.2 -3.1 0.11 0.28
Rio Grande River 35 286 41 198 -3.1 -3.0 0.25 0.45
Middle Loup River 9 14 22 46 -2.9 -2.7 0.34 0.48
Niobrara River 6 21 19 41 -2.9 -2.7 0.30 0.40
Colorado @ Diamond Creek 267 590 59 64 -4.0 -3.7 0.30 0.50

qw [m2/s] Cs [ppm] Ds [mm] Qb [kg/s]
min max min max min max min max

Atchafalaya River 2.9 28.6 4 372 0.08 0.16 0.20 12.5
Mississippi @ Tarbert Landing 4.7 24.2 5 199 0.10 0.18 0.43 6.7
Mississippi @ St. Louis 3.3 17.2 13 307 0.10 0.25 0.63 11.6
Red River 1.2 20.1 8 495 0.09 0.12 0.10 3.3
Rio Grande River 0.3 3.4 373 3177 0.12 0.22 1.5 41.1
Middle Loup River 0.2 0.6 183 1032 0.13 0.18 1.8 7.8
Niobrara River 0.2 0.9 189 1088 0.08 0.18 1.0 11.0
Colorado @ Diamond Creek 4.5 9.1 2 135 0.12 0.22 0.33 8.6

nel widths were computed using an empirical power-law function of water discharge at the453

Diamond Creek field site. Reported widths were used at other sites.454

Here, we emphasize that the full dataset contains observations of bedload flux that455

were obtained using two very different methods. Bedload was estimated from grain stresses456

computed using the Einstein drag partition and the Wong & Parker bedload equation for the457

large river dataset reported by Toffaleti [1968], while bedload flux at Diamond Creek was458

computed using observations of bedform migration. For the purposes of statistical analysis,459

we assume both methods produce unbiased estimates of bedload flux with comparable un-460

certainty. Consequently, both methods are treated identically in the context of inference and461

prediction.462

4 Results467

4.1 Bedload fluxes at Diamond Creek468

Bedload flux computed from bedform migration is similar to bedload flux estimated as469

a constant 5% of suspended sand load during the July 2015 survey period, corresponding to470

the highest water discharges observed (450 m3/s to 600 m3/s). Bedload fractions are signif-471

icantly higher during the March 2015 and November 2016 survey periods, corresponding to472

lower water discharges (275 m3/s to 400 m3/s). Bedload flux ranged from 0.33 kg/s to 8.6473

kg/s during the various data collection intervals (Figure 4). The bedload fraction is nega-474

tively correlated with suspended sand flux, ranging from as little as 3% to as much as 26% of475

suspended sand flux.476

4.2 Inference on model parameters477

Kernel density estimates of the marginal posterior distributions of model parameters478

are are plotted in Figure (6). The statistical effect of each predictor variable is quantified by479

the value of the β exponent corresponding to that variable. Peaked distributions indicate low480
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Figure 5. Expanded visualization of regression data. Pale colored markers indicate values of model vari-
ables computed from data reported by Toffaleti [1968]. Note that predictor variables (qw , CS and Ds) cover a
wide range of conditions and are only weakly correlated when viewed collectively. Site-specific correlations
are evident, especially between Cs and qw

463

464

465

466

.
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Table 2. Median posterior parameter estimates492

Location β0 β1 β2 β3 σ

Grouped Model (DIC = 552)

All 0.08 0.048 0.68 1.65 0.52

Ungrouped Model (DIC = 382)

Atchafalaya River -1.68 1.65 0.21 -0.24 0.20
Mississippi @ Tarbert Landing -1.41 1.39 0.09 -0.27 0.16
Mississippi @ St. Louis -0.58 1.29 0.11 0.02 0.25
Red River -0.90 1.01 0.41 -0.18 0.24
Rio Grande River 1.07 0.92 0.68 0.01 0.34
Middle Loup River 2.95 0.95 0.02 -0.96 0.26
Niobrara River 2.84 1.08 0.27 -1.10 0.32
Colorado @ Diamond Creek -2.56 5.04 -0.16 -0.35 0.10

Hierarchical Model (DIC = 123)

Atchafalaya River -1.63 1.61 0.22 -0.19 0.22
Mississippi @ Tarbert Landing -1.35 1.36 0.11 -0.20 0.22
Mississippi @ St. Louis -0.51 1.24 0.15 -0.16 0.22
Red River -0.90 1.04 0.39 -0.19 0.22
Rio Grande River 1.47 1.01 0.57 -0.16 0.22
Middle Loup River 2.45 0.87 0.14 -0.22 0.22
Niobrara River 2.68 1.07 0.31 -0.30 0.22
Colorado @ Diamond Creek -0.43 2.07 0.36 -0.12 0.22
µk 0.19 1.30 0.28 -0.21
σk 1.83 0.44 0.18 0.11

parameter estimation uncertainty, and wide distributions indicate high uncertainty. Median481

parameter estimates are reported in Table 2.482

Computed DIC values indicate that the hierarchical model has the lowest expected pre-483

diction error averaged across all sites. In order to evaluate the effect of each parameter on484

predictive power, we computed DIC using permutations of each model involving only two485

predictor variables. The predictive power using the grouped model is significantly reduced486

using any of the two-variable permutations. However, we find that the predictive power of487

the ungrouped model is improved by ignoring D∗s (DIC = 298 compared to 382). This indi-488

cates that considering D∗s does not improve model fit enough to justify the added complex-489

ity. Excluding D∗s has essentially no effect on the predictive power of the hierarchical model490

(DIC = 112 compared to 123).491

4.3 Prediction493

Predictive distributions of total mass bedload flux (Appendix B.5) were computed us-494

ing all three models using hourly-average measurements of Q, Cs , and Ds recorded at the495

Diamond Creek gage from January 1, 2008 to December 31, 2016. This was accomplished496

by computing full posterior predictive distributions for each gage measurement of model497

variables. Median predictions are compared against observational data in Figure (7). The full498

simulated time series of bedload flux, the ratio of bedload to suspended load, and predictor499

variables are plotted in Figure (8).500
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Figure 7. Plot comparing predicted and observed bedload flux. Predictions reflect median parameter es-
timates. Dashed lines indicate a factor of two deviation between predicted and observed bedload flux. Note
that the ungrouped and hierarchical models provide improved fit compared with the grouped model. The
hierarchical model leads to more precise estimates of model parameters while providing similar fit to the data
when compared with the ungrouped model.

501

502

503

504

505

Ds Cs

Figure 8. Simulated hourly-averaged bedload fraction (upper panel), bedload flux (middle panel) and
transformed predictor variables (lower panel) over the full gage record. Dark lines represent the median of
the predictive distribution for bedload flux. Shaded regions represent 95% prediction intervals. Bracketed
segments denoted A through I are plotted in Figures (9), (10), and (11). Plotted predictor variables are log-
transformed and then normalized by subtracting the mean and dividing by the standard deviation. Controlled
flood experiments (CFE’s) and elevated "equalizing flows" used to balance reservoir levels are also indicated
in the bottom panel.
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5 Discussion513

5.1 Comparison of model variations514

We have presented three variations on our generalized bedload modeling framework515

that differ in their assumptions, implementation, and interpretation. Here, we compare model516

variations in the context of the statistical inference and predictions reported in Section 4.517

The grouped model most closely encapsulates the physical reasoning presented in518

Section 3.1, which argues that quasi-universal relationships between transport parameters519

emerge through the processes governing their interaction and equilibration. These relation-520

ships comprise three primary modes of variability driven by water discharge, channel geome-521

try, and bed composition. Three predictor variables improve predictive power compared with522

any two-parameter model permutation, indicating that that all three modes of variability are523

represented in the data.524

In principle, the grouped model can be applied at any site to predict bedload flux, in-525

cluding new sites that lack direct observational data. However, while individual predictions526

are unbiased relative to the full dataset, systematic biases exist among groups of measure-527

ments that come from a single site; for example, the grouped model under-predicts bedload528

flux at the Diamond Creek field site (Figure 7). Systematic biases are problematic when529

computing sediment budgets because they accumulate over time to cause compounded er-530

rors.531

By considering each site separately, the ungrouped and hierarchical models reduce532

site-specific systematic biases. They also reflect a restricted scope of physical process: while533

the grouped model represents quasi-universal physical relationships across many sites, the534

ungrouped and hierarchical models capture site-specific associations between variables. As535

a result, we find that two-parameter permutations of the grouped and hierarchical models536

(ignoring Ds) provide equal or better predictive power than the generalized three-parameter537

approach. This observation can be explained by the fact that slope is effectively fixed at each538

site over human timescales in comparison to the differences observed between rivers, reduc-539

ing the number of principle modes of variability to two. These modes are driven by fluctua-540

tions in flow strength and sediment supply, where sediment supply influences fluxes through541

both “grain size and reach-geometric effects” (sensu Topping et al. [2000a,b]). This finding542

is potentially valuable for sediment monitoring purposes because measurements of Cs are543

significantly easier to obtain than measurements of Ds . Cs varies by many orders of magni-544

tude and can be measured accurately using single-frequency instruments in a wide range of545

conditions, while Ds requires well sorted suspended material, two-frequency instrumenta-546

tion, and is only accurate for a small range of grain sizes [Topping & Wright, 2016].547

The hierarchical model differs from the ungrouped model in that the site-specific asso-548

ciations between variables are assumed to be similar between sites. Through this assumption,549

sites with many observations inform prediction at sites with relatively few observations. This550

effect is most clear at our field site, where few observations (n = 14) lead to spurious point551

estimates of regression parameters (Table 2) and large uncertainty (Figure 6) using the un-552

grouped model. The hierarchical model produces a slightly poorer fit to the data but yields553

much more precise and consistent estimates of regression parameters.554

In summary, each model has a specific set of assumptions, data requirements, and lim-555

itations that must be evaluated in order to be applied to a specific problem. The grouped556

model reflects quasi-universal physical relationships between variables and can be applied at557

any site without training data but introduces systematic bias to cumulative bedload estimates.558

The ungrouped model minimizes site-specific, systematic biases and assumes nothing about559

similarity between sites but requires extensive observational data to be applied at a given560

site. The hierarchical model reduces the number of observations needed at a site relative to561

the ungrouped model under the assumption that sites are similar. Grouped and hierarchical562

models can potentially be applied using only measurements of Qw and Cs .563
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Presently, we aim to compute sediment budgets over the full gage record at the Dia-564

mond Creek sediment monitoring station. We argue that the hierarchical model is the best565

choice for this purpose because it reduces systematic bias but provides efficient use of lim-566

ited data. Time series predictions made using the hierarchical model are plotted over select567

intervals in Figures (9), (10), and (11).568

5.2 Comparison with existing methods for estimating bedload flux569

Prior to this research, the two primary methods for estimating bedload flux from gage570

data in practical applications are (1) rating curves with discharge [e.g., Leopold & Maddock,571

1953; Emmett & Wolman, 2001] and (2) constant bedload coefficients based on continuous572

measurements of Cs [e.g., Rubin et al., 2001; Grams et al., 2013]. To highlight the advan-573

tages of the model presented here, we compare simulated bedload time series with rating574

curve and bedload coefficient predictions. Several short example intervals were selected for575

this purpose and are plotted in Figures (10) and (11).576

Both approaches are special cases of our general model (equation 1), wherein certain577

parameters are fixed. For example, rating curves express bedload flux as a power-law func-578

tion of water discharge, i.e.:579

Qb = kQm
w (12)

which is similar to equation (1) with null coefficients on suspended sand concentration Cs580

and diameter Ds:581

qb = Aeβ0 qβ1
w C0

s D0
sW

1−β1 . (13)
Assuming width scales with discharge (W = aQb

w), this reduces to582

Qb = (Aeβ0 a1−β1 )Qβ1+b(1−β1)
w . (14)

Here, k = Aeβ0 a1−β1 and m = β1 + b(1 − β1) are assumed to be constant. For the purposes583

of comparing rating curve and hierarchical predictions, rating curve parameters (k and m)584

were found using ordinary least-squares regression applied to concurrent observations of wa-585

ter discharge and bedload flux obtained at the gaging station and from repeat surveys of dune586

migration, respectively. By specifying β2 = 0 and β3 = 0, rating curves assume a unique re-587

lationship between bed composition, channel geometry, and discharge, which is problematic588

because sediment supply limitation is known to modify the transport efficiency of a given589

discharge through reach-geometric and grain size effects [Topping et al., 2000a,b]. Sedi-590

ment supply variability can thus cause systematic deviations from rating-curve predictions;591

pulses of fine bed material result in an enriched state characterized by increased bedload flux.592

Subsequent preferential evacuation of fine material produces a depleted state during which593

bedload flux is suppressed relative to a hypothetical discharge rating curve prediction (Figure594

12). Our modeling approach provides the potential to capture the effects of sediment supply595

limitation parameterized by Cs and Ds . As a result, we interpret the difference between hier-596

archical model predictions and rating curve predictions as an indicator of the relative supply-597

limitation state of the Diamond Creek sediment monitoring reach: a positive difference is598

indicative of relative enrichment of fine sand whereas a negative difference is indicative of599

relative depletion.600

Such enrichments or depletions are particularly pronounced during and after controlled601

flood experiments (Figure 10). For example, the period following each controlled flood typ-602

ically records finer suspended sand grain sizes and elevated suspended sand concentrations603

relative to antecedent conditions, indicating fine-sediment enrichment [Rubin & Topping,604

2001]. This is perhaps caused by delivery of fine material accessed above the typical high605

water line and/or the reworking of existing alluvial deposits in a manner that increases trans-606

port efficiency. Hierarchical model predictions are correspondingly elevated relative to rating607

curve predictions following each controlled flood.608

Bedload coefficients are sometimes used to account for the contribution of bedload614

to total load in scenarios where measurements of suspended flux are available and bedload615
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Figure 12. Plot illustrating the advantages of the proposed model over a traditional rating curve approach.
Note that predicted bedload flux may vary by over an order of magnitude with respect to a fixed water dis-
charge, an effect that is typically attributed to supply-limitation effects. Suspended sand concentration is
connected to the supply-limitation state of a reach; here, elevated suspended sand concentrations indicative of
fine-sediment enrichment and amplified bedload flux.

609

610

611

612

613

is thought to be small [e.g., Grams et al., 2013]. In order to estimate total load, researchers616

sometimes apply a universal correction factor 1 + α to measurements of suspended sand flux617

Qs , which implies618

qb = αqs . (15)

Noting that qs = qwCs , equation (15) is a special case of the our general bedload model (1)619

wherein β1 = 1, β2 = 1, and β3 = 0, i.e.:620

qb = Aeβ0 q1
wC1

s D0
s . (16)

Here, α = Aeβ0 is the constant bedload coefficient. In some sense, this expression represents621

a crude attempt to account for supply limitation effects by assuming bedload and suspended622

load are equally sensitive to changes in their mutual causal predictors (water discharge, chan-623

nel geometry, and bed composition). However, suspension conditions (parameterized by the624

Rouse number, ZR = ws/κu∗, where ws is the particle setling velocity, u∗ is the basal shear625

velocity, and κ is von Karman’s constant) vary with flow strength and sediment supply, and626

are the most important predictor of α (van Rijn [1984], Equation 45). Insofar as the Rouse627

number may vary over time at a site, it is unreasonable to expect that the bedload fraction628

should remain constant. Instead, increasing ZR should generally cause an increase in α. This629

may occur due to changes in u∗ (as a function of water discharge, channel geometry, and bed630

roughness), or due to changes in ws , which is a monotonically increasing function of Db .631

Comparison of hierarchical model and bedload coefficient predictions reveals sev-636

eral expected behaviors. In general, elevated suspended sand fluxes tend to correspond to637

increased suspension conditions (low Rouse numbers) and low bedload fractions (Figure 13).638

Bedload flux is a larger fraction of total load when discharge is low, corresponding to higher639

Rouse numbers due to decreases in u∗. Sediment supply depletion also increases the bed-640

load fraction when discharge is held constant, corresponding to higher Rouse numbers due to641
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Figure 13. Plot illustrating the advantages of the proposed model over a constant bedload fraction ap-
proach. Diagonal lines show contours of constant bedload fraction. The predicted (and to a lesser extent,
measured) trend seen here is consistent with the notion that high suspended sand fluxes correspond to elevated
suspension conditions and lower bedload fractions.

632

633

634

635

increases in ws . Discharge effects are most pronounced before, during, and after controlled642

flood experiments (Figure 10), which exemplify both the high and low bedload fraction ex-643

tremes. Supply limitation effects are evident during long periods of nearly constant discharge644

which tend to be associated with gradual sediment-supply depletion (Figure 11). Gradual de-645

pletion causes a concurrent increase in the bedload fraction which is also apparent after the646

2014 controlled flood experiment (Figure 10).647

5.3 Management implications648

Sediment budgets are used to estimate changes in stored sediment mass over a wide649

range of timescales. Short term effects of interest include perturbations related to dam-regulated650

water discharge or tributary sand delivery. Serendipitously (in the context of 5% bedload co-651

efficients used by Rubin et al. [2001]; Topping et al. [2010]; Grams et al. [2013]), we find652

that cumulative bedload discharge was approximately 5% of the cumulative suspended sand653

discharge over the nine-year record considered here. However, instantaneous bedload flux654

ranges from less than 1% to as much as 75% of suspended sand load depending on water655

discharge and the supply-limitation state. As a result, short-term mass-balance fluctuations656

caused by experimental changes in discharge regime (i.e. controlled floods), transient ac-657

commodation of tributary sand pulses, or prolonged periods of constant discharge are not658

adequately represented using a constant bedload fraction or rating curve model for bedload659

flux. For example, cumulative bedload during controlled floods is only 2% of cumulative660

suspended load during the same intervals, whereas the cumulative bedload is 10% of cu-661

mulative suspended load during period when flow is below the mean annual discharge. In662

general, the magnitude of deviations in short-term average bedload fraction from a measured663

long-term average is a function of averaging timescale (Figure 14)664

–24–



Confidential manuscript submitted to Water Resource Research

Figure 14. Plot illustrating the timescale dependence of the average bedload fraction, 〈α〉. Average bedload
fraction was computed for every period with the duration indicated on the x axis. The filled gray area spans
the full range of average bedload fractions computed for intervals with the specified duration. The dotted gray
line shows the standard deviation of the average bedload fraction as a function of interval duration. At the
minimum model resolution, bedload fraction may range from 0.004 to 0.74.

665

666

667

668

669

Over longer timescales, researchers aim to constrain the effects of changes in the water670

discharge or sediment delivery regime as dictated by dam protocols, climate, and land use671

in the upper Colorado River basin [e.g., Andrews, 1991; Grams et al., 2013; Mueller et al.,672

2014; Grams et al., 2015; Kasprak et al., 2018; Mueller et al., 2018]. In particular, the dam-673

regulated water discharge regime is the primary tool for enacting management decisions674

aimed at balancing ecological, social, and economic goals. Nearly three decades of Grand675

Canyon research suggests that a return to a more natural, seasonal discharge regime would676

induce a desirable geomorphic response. Actionable proposals like the “Fill Mead First”677

plan [Schmidt et al., 2016] are designed to balance this and other management objectives678

by changing the annual cycle of dam releases, and flux-based sediment budgets are critical679

for accurately evaluating the effects and effectiveness of such plans. However, the intended680

geomorphic response will necessarily involve changes in channel geometry and bed composi-681

tion, affecting sediment flux in a manner that cannot be tracked using traditional rating curve682

or bedload fraction approaches. Measurements of qw , Cs and Ds are indicative of changes in683

qb and such that it is possible to resolve short-term morphodynamic adjustment and evaluate684

the effects of future changes in the water discharge and sediment supply regime.685

5.4 Other applications of modeling approach686

Bedload has historically been difficult to measure directly. As a result, its role in gov-687

erning large-scale river organization poorly understood. Although this paper focuses on es-688

timating bedload on the Colorado River, the modeling approach presented herein will en-689

able improved estimates of bedload flux in any sand-bedded river. Our model can be applied690

retroactively to innumerable historical measurements of suspended sediment concentration691

and grain size, providing a new approach for connecting bedload transport to continent- and692

basin-scale river dynamics.693
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This work also supports a more general principle that extends beyond the problem of694

estimating bedload flux. We have argued that our bedload model provides reliable predic-695

tions because it approximates quasi-universal relationships between transport parameters696

emerge through the processes governing their interaction and equilibration. In this view,697

first order changes in flow and transport conditions including bedload flux, suspended sand698

concentration, and suspended sand diameter are driven by three variables: water discharge,699

slope, and bed material grain size. This implies that any relevant variable can be estimated700

from measurements of three other variables, providing a general formula for constructing701

predictive empirical relations in sandy fluvial systems. This strategy may prove useful for re-702

constructing hydraulic and transport conditions in scenarios where certain variables are dif-703

ficult or impossible to measure, for example in applications involving remotely sensed river704

data or measurements of fluvial sedimentary rocks.705

6 Conclusions706

The modeling approach presented here was developed to estimate reach-averaged bed-707

load flux from measurements of water discharge, concentration, and grain size in suspen-708

sion. This approach is based on the assumption that most of the variability in sand-bed rivers709

can be reduced to three principle modes of variation that are causally attributed to water dis-710

charge, slope, and bed grain size. Measurements of concentration and grain size in suspen-711

sion provide reliable proxies for the effect of slope and bed material grain size on bedload712

flux.713

Bayesian hierarchical modeling assumes similarity between rivers to ensure efficient714

use of limited data. This approach reduces in-sample bias compared with a fully grouped715

regression, and it improves parameter estimation precision compared with the ungrouped716

regression. However, we anticipate that the general modeling approach presented here may717

prove useful in other contexts for which grouped or ungrouped generative data models may718

be preferable.719

We find that predicted bedload flux during the period from 2008 to 2016 averaged over720

the full gage record at Diamond Creek is approximately 5% of the measured suspended sed-721

iment load. However, instantaneous values deviate significantly from 5% depending on flow722

strength and sediment supply conditions. Notably, changes in bedload flux at a constant wa-723

ter discharge are indicative of short-term sediment supply enrichment and depletion. Using724

the median prediction from the hierarchical model, we find that bedload flux ranges from as725

high as 75 % of suspended sand load (during fine-sand depleted, low-discharge periods) to726

less than 1% (during fine-sand enriched floods). The decade-average bedload fraction is ex-727

pected to deviate systematically from 5% in the future if bed composition and channel geom-728

etry evolve due to changes in tributary sand supply or the dam-regulated discharge regime.729

In order to ensure accurate quantification of fluctuations in sediment storage over a range of730

timescales, it is critical to account for deviations in the ratio of bedload to suspended load731

driven both by individual events (for example, high flow experiments or tributary floods) and732

long-term evolution of channel geometry and bed composition.733

A: Estimating bedload flux from repeat bathymetric surveys of dune migration734

Bedload flux estimates at our site were computed from point clouds of bed topography735

obtained at approximately six-minute intervals. This was accomplished using the following736

procedure:737

1. Flow direction is determined by inspection and point clouds are transformed to stream-738

wise and cross-stream coordinates.739
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2. An upstream and downstream extent is chosen to bracket a region of the bed used for740

computation of flux. The region used here is largest region where the margins of the741

bedform field are parallel and bedform geometry appears to be uniform in all surveys.742

3. Point clouds are divided by cross-stream coordinate into streamwise oriented transects743

spaced at 25 cm.744

4. Ungridded points that fall within each 25 cm-wide transect are gridded at a 10 cm745

streamwise resolution using a locally-weighted nonparametric filter.746

5. Transects are detrended using a high-pass Fourier filter. The filter wavelength used747

here is three times the largest dune length determined by inspection.748

6. Characteristic bedform height is estimated as 2
√

2 ∗ ση where ση is the root mean749

squared detrended bed elevation [McElroy, 2009]750

7. A matrix of dune displacements (determined from the maximum of the cross-correlation751

function) is computed for each transect using every pair of surveys. Valid displace-752

ments are retained to calculate migration rate according to the following criteria: (a)753

temporal separation is not greater than one hour, (b) displacement is not greater than754

20 percent of the bedform length, determined from the spectral centroid of the de-755

trended bed profile [Van der Mark & Blom, 2007], (c) the maximum of the cross cor-756

relation function is not less than 0.8, and (d) the implied migration rate (displacement757

divided by temporal separation) is not greater than 3 meters per hour and not less than758

0.3 meters per hour. These criteria optimize temporal resolution and stability of the759

bedload flux calculation, and reliably discriminate transects with active dune evolu-760

tion from plane-bed topography.761

8. Bedform migration rate is computed for each transect using ordinary least-squares762

regression forced through the origin with all valid displacements.763

9. Volumetric bedload flux per unit width is computed for each streamwise transect us-764

ing the bedform bedload equation [Simons et al., 1965].765

10. Total bedload mass flux was computed for each transect by multiplying unit bed-766

load flux by the transect width (25 cm) and the density of quartz (2650 kg/m3), then767

summed.768

We find that the bedform migration rate regression using displacements forward and back-769

ward in time is necessary to ensure stable results. However, this means that bedload flux es-770

timates are derived from overlapping data. Down sampling is thus necessary to ensure that771

each reported value of bedload flux is computationally independent: we consider a maximum772

temporal resolution of one hour. Results are plotted in Figure 4.773

B: Bayesian regression774

Here, we provide additional details on the statistical techniques employed in this pa-775

per. In order to make this explanation more clear, we adopt notation that is common in sta-776

tistical literature [e.g. Gelman et al., 1995; Christensen et al., 2011]. We consider the prob-777

lem of predicting a continuous response variable y from a vector of predictor variables x̄ =778

[1, x1, x2, x3]. The relationship between predictor variables and response variables is studied779

using a probabilistic model with parameters θ for the data generating process.780

Physical variables of interest are log-transformed and normalized to obtain linear pre-781

dictor and response variables such that y = log(qb/qb0), x1 = log(Q/Q0), x2 = log(Cs/Cs0)782

and x3 = log(Ds/Ds0) and The subscript 0 denotes the geometric mean of all observations,783

which is equivalent to subtracting the arithmetic mean of log-transformed variables and re-784

sults in centered response and predictor variables. This is a convention that facilitates inter-785

pretation of the intercept term β0. The subscript i denotes a specific observation such that yi786

and x̄i are the ith of n observations of response and predictor variables, respectively. A cap-787

ital X is short hand for all observations of model variables, i.e. X = (x̄0, ..., x̄n, y0, ..., yn).788

Finally, we use x̃i to denote a vector of observations of predictor variables for which we in-789

tend to predict an unobserved value of the response variable, ỹi .790
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B.1 Grouped model791

The grouped model ignores potential correlations that may exist on a site specific ba-792

sis. All data is pooled into a single normal linear regression analysis. Regression coefficients793

and errors are assumed to be equivalent at all sites. Here, β = [β0, β1, β2, β3] is a 1 × 4 vec-794

tor of regression coefficients. The ith observation of the response variable yi is modeled as a795

linear function of predictor variables plus a normally-distributed independent error term (e.g.796

equation 8). This is equivalent to specifying that the yi follows a normal distribution with797

mean βx̄i and standard deviation σ. Formally, the probability of observing yi given x̄i , β,798

and σ is given by:799

p(yi |xi, β, σ) =
1

√
2πσ2

exp
[
−(yi − βxi)2

2σ2

]
(B.1)

and the likelihood of model parameters θ = (β, σ) conditional on all observational data X =800

(x0, ..., xn, y0...yn) is simply the product of the probabilities of each individual observation:801

L(θ |X) =
n∏
i=1
(yi |xi, β, σ). (B.2)

For the grouped model, we employ the following independent priors for model parame-802

ters:803

β0 ∼ N(0, 100) (B.3)
β1 ∼ N(0, 100) (B.4)
β2 ∼ N(0, 100) (B.5)
β3 ∼ N(0, 100) (B.6)
σ ∼ Γ

−1(0.001, 0.001). (B.7)

Here, N(µ, σ) denotes a normal distribution with mean µ and standard deviation σ,804

and Γ−1(α1, α2) denotes the inverse gamma distribution with shape parameter α1 and scale805

parameter α2. Since the marginal priors are independent, p(β, σ) = p(β0)p(β1)p(β2)p(β3)p(σ).806

These priors approximate Jeffrey’s prior for normal linear regression which is a uniform dis-807

tribution on (β, log(σ)) [Gelman et al., 1995; Christensen et al., 2011].808

The posterior probability distribution of model parameters θ given data X is propor-809

tional to the product of the likelihood function and the prior:810

P(θ |X) = L(θ |X)P(θ)∫
L(θ |X)P(θ)dθ

, (B.8)

where the constant of proportionality [
∫

L(θ |X)P(θ)dθ]−1 ensures that the posterior inte-811

grates to 1.812

B.2 Ungrouped model813

The ungrouped model involves fitting separate regression models for each site. Hence-814

forth, the subscript j = 1, ...m denotes the j th of m = 8 sites. β j = [β0j, β1j, β2j, β3j] is thus815

the vector of regression coefficients corresponding to site j, and σj is the standard deviation816

of the error term at site j. The full data model thus contains 4 × m regression coefficients and817

m error terms, totaling 40 parameters compared with the 5 parameters used in the ungrouped818

model.819

Each site has a different number of observations, nj . The probability of observing ith820

of nj observations of the response variable at site j, yi, j given xi, j , βj , and σj is given by821

p(yi, j |xi, j, β j, σj) =
1√

2πσ2
j

exp

[
−
(yi, j − β j xi, j)2

2σ2
j

]
(B.9)
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and the likelihood function of model parameters θ = (β0, ..., βm, σ0, ..., σm) conditional on822

all observational data X is given by the product of the probabilities of all observations:823

L(θ |X) =
m∏
j=1

n j∏
i=1
(yi, j |xi, j, β j, σj) (B.10)

Separate indpendent priors are used for each site, i.e:824

β0j ∼ N(0, 100) (B.11)
β1j ∼ N(0, 100) (B.12)
β2j ∼ N(0, 100) (B.13)
β3j ∼ N(0, 100) (B.14)
σj ∼ Γ

−1(0.001, 0.001). (B.15)

B.3 Hierarchical Model825

Like the ungrouped model, the hierarchical model involves fitting separate regression826

coefficients for each site. However, unlike the ungrouped model, these regression coefficients827

are assumed to come from a common distribution that encompasses the range of parameters828

that exist in sand bed rivers. Additionally, there a single error term σ is applied at all sites.829

Instead of using separate, diffuse priors with fixed parameters for the regression coefficients830

at each site, informative, dynamic priors are used, i.e.:831

β0j ∼ N(µβ0, ςβ0 ) (B.16)
β1j ∼ N(µβ1, ςβ1 ) (B.17)
β2j ∼ N(µβ2, ςβ2 ) (B.18)
β3j ∼ N(µβ3, ςβ3 ) (B.19)
σ ∼ Γ

−1(0.001, 0.001). (B.20)

Here, ψ = (µβ0, µβ1, µβ2, µβ3, ςβ0, ςβ1, ςβ2, ςβ3 ) are known as hyperparameters; µ terms are832

the mean of the prior on the regression coefficients and represent the central tendency of sites833

in our data set (as a proxy for sand bed rivers), while ς terms are the standard deviation of834

the priors and represent the variability present across sites in our dataset. Because the priors835

depend on dynamic hyperparameters, the posterior probability takes a slightly different form:836

p(θ |X) = L(θ |X)P(θ |ψ)P(ψ)∫
[L(θ |X)P(θ |ψ)P(ψ)]dθdψ

, (B.21)

where P(θ |ψ) is the prior probability distribution for model parameters θ given hyperparame-837

ters ψ, and P(ψ) is the prior probability distribution for ψ, or the hyperprior. Reported results838

were obtained using the following diffuse, independent hyperpriors:839

µk ∼ N(0, 100) (B.22)
ςk ∼ Γ

−1(0.001, 0.001) (B.23)

for k = 0, 1, 2, 3. The grouped and ungrouped models can be framed as special cases of the840

hierarchical model with informative hyperpriors. Specifically, the grouped model is a case841

where ςk ∼ δ(0), where δ is the dirac delta function. This leads to to βk = µk for all sites.842

The ungrouped model is a case where µk ∼ δ(0) and ςk ∼ δ(100) such that the hyperpriors843

exert minimal influence on βk .844

B.4 MCMC sampling845

Posterior distributions for model parameters were constructed using the No-U-Turn846

sampling (NUTS) algorithm [Hoffman & Gelman, 2014], as implemented in the open source847
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Python package, PyMC3 [Salvatier et al., 2016]. The sampler was initiated using the auto-848

matic differentiation variational inference algorithm [Kucukelbir et al., 2016]. Three chains849

were used, and 1000 burn-in steps were more than sufficient to achieve convergence. The850

posterior distribution of model parameters was approximated using 5000 steps without thin-851

ning.852

B.5 Prediction853

Once the posterior probability distribution of model parameters is known, unobserved854

values of the response variable ỹi can be estimated using Bayesian posterior predictive dis-855

tributions. The posterior predictive density P(ỹi | x̃i, X) is found by integrating the sampling856

distribution of ỹi given a specific set of parameters, p(ỹi | x̃i, θ), against the posterior distribu-857

tion of model parameters, P(θ |X):858

P(ỹi | x̃i, X) =
∫

P(ỹi | x̃i, θ)P(θ |X)dθ. (B.24)

This distribution is straightforward to compute numerically using MCMC techniques.859

In addition to predicting single unobserved values of qb , it is possible to obtain a simulated860

predictive distribution for any conceivable quantity that can be expressed as a function of861

model parameters (for example, time-integrated bedload flux).862

B.6 Deviance Information Criterion863

The Deviance Information Criterion (DIC) is a measure of relative predictive power864

that reflects the trade-off between goodness of fit and parameter estimation precision [Spiegel-865

halter et al., 2002; Gelman et al., 2014]. It is used here instead of other more well-known866

model selection criteria like the Akaike information criterion (AIC) or the Bayesian infor-867

mation criterion (BIC) because unlike AIC, it is suitable for comparing the hierarchical and868

non-hierarchical models considered here, and unlike BIC, its intended use is for comparing869

expected out-of-sample predictive accuracy under the assumption that the data model is cor-870

rect.871

DIC uses the log-likelihood log L(θ |X) of different models to compare expected out872

of sample predictive accuracy. Models that achieve higher values of the likelihood function873

provide better in-sample fit. The log-likelihood of the posterior mean parameter estimate874

log L(θ̄ |X) is used here to quantify model fit. For clarity, θ̄ = E(θ |X) is the posterior mean875

parameter estimate.876

More complex models may lead to higher log-posterior densities and better in-sample877

fit at the cost of parameter estimation precision. In other words, a much wider range of model878

parameters provide a good fit to the data such that it is difficult to select optimal values. For879

models that are too complex, predictive uncertainty is primarily related to uncertainty in880

model parameters rather than being directly quantified by the noise term (σ in the models881

presented here). It is thus necessary to introduce a correction factor that accounts for param-882

eter estimation uncertainty. Here, the effective number of parameters pDIC = 2varpost (log L(θ |X)883

is framed in terms of the posterior variance in the log-likelihood, and can be computed by884

taking the variance of MCMC sampled log-likelihoods.885

The expected log predictive density is given by elpd = log L(θ̄ |X) − pDIC . Assuming886

predictive error is normally distributed, the expected log predictive density is proportional to887

the mean squared error. DIC is a related to the expected log posterior density by a factor of888

-2 due to convention:889

DIC = −2 log L(θ̄ |X) + 2pDIC (B.25)
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For additional details on the derivation and interpretation of DIC, see Spiegelhalter et890

al. [2002]; Gelman et al. [2014].891
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