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Abstract

The Fletcher-Ponnambalam (FP) method is an explicit stochastic optimization method for design and operations management

of storage systems. It has been applied successfully in many real-world operations optimization problems (for example, the

Great Lakes system and the Parambikulam-Aliyar project) and groundwater management problems. The FP method faces

no curse of dimensionality unlike stochastic dynamic programming (SDP) and no need for scenarios generation as in implicit

stochastic programming (ISP) methods. The paper introduces a novel implementation for the FP method by removing the need

for nonlinear constraints and by decreasing the number of decision variables to just one third of its original value, significantly

reducing solving time (˜27 times faster than the original formulation). Additionally, new expressions derived for first and second

moments of both reservoir release deficit and spill terms and the already-derived expression for second moments of reservoir

storage are incorporated into the new formulation enabling the FP method to reach an improved optimality for a nonlinear

objective function. The enhanced procedure is applied to solving a water reservoir operation optimization problem for a major

dam in Brazil. The result comparisons made with SDP, two-stage stochastic programming and ISP along with a thorough

analysis of release operation policies for both non-Gaussian correlated and Gaussian independent inflows prove the optimality

of this highly numerically efficient and convenient-to-use FP method.
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 Newly-derived moments of deficits and spills lead to an even better optimality of the FP 16 

model in the case of nonlinear objective functions. 17 

 FP results are compared to stochastic dynamic programming and novel two-stage 18 

stochastic programming results show its overall superiority. 19 

  20 

mailto:email@address.edu)


manuscript in the format required for Water Resources Research  

 

Abstract 21 

The Fletcher-Ponnambalam (FP) method is an explicit stochastic optimization method for design 22 

and operations management of storage systems. It has been applied successfully in many real-23 

world operations optimization problems (for example, the Great Lakes system and the 24 

Parambikulam-Aliyar project) and groundwater management problems. The FP method faces no 25 

curse of dimensionality unlike stochastic dynamic programming (SDP) and no need for scenarios 26 

generation as in implicit stochastic programming (ISP) methods. The paper introduces a novel 27 

implementation for the FP method by removing the need for nonlinear constraints and by 28 

decreasing the number of decision variables to just one third of its original value, significantly 29 

reducing solving time (~27 times faster than the original formulation). Additionally, new 30 

expressions derived for first and second moments of both reservoir release deficit and spill terms 31 

and the already-derived expression for second moments of reservoir storage are incorporated into 32 

the new formulation enabling the FP method to reach an improved optimality for a nonlinear 33 

objective function. The enhanced procedure is applied to solving a water reservoir operation 34 

optimization problem for a major dam in Brazil. The result comparisons made with SDP, two-35 

stage stochastic programming and ISP along with a thorough analysis of release operation 36 

policies for both non-Gaussian correlated and Gaussian independent inflows prove the optimality 37 

of this highly numerically efficient and convenient-to-use FP method. 38 

    39 

1 Introduction 40 

Most complex natural phenomena modeled by means of the systems concept are affected 41 

by the presence of unpredictable variables. This is the case of storage systems governed by the 42 

mass balance equation in which the input∕output are stochastic processes. Storage systems 43 

analysis is encountered in many areas today, e.g., warehouse management, energy management, 44 

ATM cash machines, etc. Water resource systems planning and management in view of 45 

uncertain hydrology and changing climate is another mature field dealing with these problems 46 

for the past several decades. This paper presents an improved stochastic reservoir operation 47 

optimization method.  48 

Explicit (ESP) and implicit (ISP) stochastic programming (optimization) techniques are 49 

recognized to be efficient tools for identifying optimal planning and operating strategies for 50 

multipurpose multireservoir systems under uncertainty (Alizadeh et al., 2018; Archibald & 51 

Marshall, 2018; Pan et al., 2015; Fayaed et al., 2013; Nagy et al., 2002; Celeste & 52 

Billib, 2009; Labadie, 2004). ESP incorporates probabilistic inflow models directly into the 53 

optimization formulation. In the practice of reservoir systems operation optimization under 54 

uncertainty, stochastic dynamic programming (SDP) based models are typically the optimization 55 

approach of choice. SDP finds steady-state operating policies by means of a discretization 56 

scheme of reservoir inflows and storage (Loucks & van Beek, 2017). The need for discretization 57 

in multiple state variables discrete SDP results in the so-called “curse of dimensionality”. In this 58 

context, several modifications and enhancements of the traditional SDP formulation have been 59 

introduced (Ponnambalam & Adams, 1987; Turgeon, 1981; Adams & Ponnambalam, 1994; 60 

Ponnambalam & Adams, 1996; Mousavi et al, 2004; Saadat & Asghari, 2017). ISP methods on 61 

the other hand, applies perfect-forecast deterministic optimization to operate the reservoir for 62 

several equally possible inflow scenarios and then examines the set of optimal results in order to 63 

define release policies. The main inconvenience of ISP especially for use in multireservoir 64 
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systems is the need for many inflow scenarios and deterministic optimization problems to be 65 

solved, which may turn to be laborious. It also requires proper post-processing methods to infer 66 

general operation rules from the optimization results (Labadie, 2004; Mousavi et al. 2007; 67 

Alizadeh et al, 2014). Additionally, Cai et al. (2003) compared the results of a two-stage model 68 

and an ISP model and demonstrated the possible bias with the ISP model for when the number of 69 

scenarios are limited. 70 

Fletcher and Ponnambalam (FP) (1996) introduced a new discretization-free explicit 71 

stochastic optimization method that incorporates indicator functions into the reservoir mass 72 

balance equation in order to deal with storage bounds and to find statistical moments of storage 73 

together with probabilities of deficit and spill. The FP method requires neither discretization of 74 

state variables nor generation of inflow scenarios to deal with uncertainty, making it fast to easily 75 

address multireservoir problems without facing the curse of dimensionality. The most recent 76 

version (Fletcher & Ponnambalam, 2008) of the FP method using S-type linear decision rules 77 

rather than the original (Fletcher & Ponnambalam, 1996) open-loop constant release policy has 78 

been applied successfully to single and multireservoir systems (Mahootchi & 79 

Ponnambalam, 2013; Ganji & Jowkarshorijeh, 2012; Mahootchi et al., 2010) and has been 80 

adapted to groundwater management problems (Joodavi et al., 2017) and to other storage 81 

systems such as energy storage systems (Ponnambalam et al., 2010) and warehouse systems 82 

(Mahootchi et al., 2012).  83 

Although the FP method is well established, there is still room to improve its 84 

performance in both its formulation and its computer implementation. This paper introduces a 85 

novel implementation that formulates the FP method into an entirely unconstrained optimization 86 

problem with a drastic reduction in the number of decision variables that is easily implemented 87 

in a vectorized form facilitating its coding in numerical matrix computing environments such as 88 

MATLAB or Octave. Additionally, newly derived equations for reservoir release deficit and spill 89 

terms as well as information already derived from the FP method (second moments of storage) 90 

will be fully used for the improvement of the model formation. In this regard, most applications 91 

of the FP method so far have adopted zeroth-order Taylor series expansion of the expected value 92 

of the objective function. Thus, in spite of expressions estimating first and second moments of 93 

reservoir storage have been available, only first moments have been used in the objective 94 

function formulation in most applications (one exception being Mahootchi et al. (2010) where a 95 

risk part using second moments of storage was included for the original linear objective 96 

function), and second moments have been left just for comparison purposes with sample second 97 

moments calculated by simulating the policies derived by the FP optimization model. That has 98 

been one reason for a gap between the simulated objective function values and those estimated 99 

by the FP optimization. Analyzing this gap, we show that for a nonlinear quadratic objective 100 

function it is important to include the second moments of storage in the objective function to 101 

accurately estimate the expected value of the objective function. Moreover, in the FP model 102 

applications so far, there are expressions derived for probabilities of containment, deficit and 103 

spill, but not for the moments of deficit and spill. Those derived probabilities are also not utilized 104 

in the objective function and are left just for comparison purposes with simulation results. This 105 

study presents new explicit expressions for the moments of deficit and spill that are incorporated 106 

in the model’s objective function, resulting in a much more accurate evaluation of the objective 107 

function compared to when they are not included.    108 
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The significance of the proposed enhancements and the performance of the new model 109 

implementation is assessed by applying it to the operation of a real-world system in Brazil, the 110 

very large Sobradinho reservoir. Moments and variances of storage, deficit and spill variables as 111 

well as probabilities of containment, deficit and spill terms found by a single run of the new 112 

vectorized version of the FP method are compared with those obtained by Monte Carlo 113 

simulations of monthly reservoir operations for many different scenarios including for a scenario 114 

of over 1,000 years. A comprehensive analysis of the derived optimal policies is also made by 115 

comparing the results of the enhanced FP model with those of SDP, two-stage stochastic 116 

programming (TSP) and ISP models for different types of operating policies and both non-117 

Gaussian correlated and independent Gaussian inflows. 118 

2 Models and Methods  119 

This section presents the basic FP method, new modifications to a quadratic objective 120 

function that provide a better accuracy, the directions for vectorized implementation of the 121 

method, new time complexity, and extensions to other nonlinear objective functions and 122 

multireservoir systems. In order to compare the results of the FP method, we present briefly the 123 

two stage stochastic programming method which also allowed us to test the LDR policies used in 124 

FP method with other more general policies and inflow scenarios. Readers are referred to other 125 

literature for descriptions of SDP which is also used to compare the results. 126 

2.1 The FP Method  127 

The main function of a water supply reservoir is to accumulate water in periods of high 128 

flows in order to regulate streamflows and to meet demands to the greatest extent possible during 129 

dry seasons. A general equation that describes the mass balance of a water supply reservoir may 130 

be written as follows  131 

𝑆𝑡 = 𝑆𝑡−1 + 𝐼𝑡 − 𝑈𝑡 − 𝑆𝑝𝑡 + 𝛿𝑡                                                                                                      (1)  

where 𝑆𝑡 and 𝑆𝑡−1 represent the reservoir storage at (the end of) time periods 𝑡 and 𝑡 − 1, 132 

respectively; 𝐼𝑡 is the (net) natural inflow into the reservoir during the time period 𝑡; and 𝑈𝑡 is the 133 

(proposed) total release from the reservoir in time 𝑡. 𝑆𝑝𝑡 represents the spill when the reservoir is 134 

full; while 𝛿𝑡 is defined as the storage deficit when the reservoir storage goes below the 135 

minimum active storage with the proposed release (𝑈𝑡). In the actual operation, 𝑈𝑡 is usually 136 

reduced to a level to make the storage to stay within the minimum storage bound. 137 

According to Figure 1, we assume the storage 𝑆𝑡 to be bounded by lower (𝑆𝑡
𝑚𝑖𝑛) and 138 

upper (𝑆𝑡
𝑚𝑎𝑥) limits. Let 𝑆̂𝑡 = 𝑆𝑡−1 + 𝐼𝑡 − 𝑈𝑡 denote the projected storage volume, i.e., the 139 

storage at the end of time 𝑡 if the proposed 𝑈𝑡 is released and the final storage is contained or 140 

remains within the bounds, i.e., 𝑆𝑡
𝑚𝑖𝑛 ≤ 𝑆̂𝑡 ≤ 𝑆𝑡

𝑚𝑎𝑥 (in this case, 𝑆𝑡 = 𝑆̂𝑡).  141 
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 142 

Figure 1. Representation of a reservoir system showing the variables used to represent its 143 

dynamics 144 

When the projected storage is not contained, there will be either (but not simultaneously) 145 

spill (𝑆𝑝𝑡) or deficit (𝛿𝑡). If releasing 𝑈𝑡 causes the projected storage to violate the upper bound 146 

(i.e., 𝑆̂𝑡 > 𝑆𝑡
𝑚𝑎𝑥), then the excess water must spill from the reservoir. In this case, the spill 147 

variable 𝑆𝑝𝑡 denotes the volume of spill so that the final storage becomes 𝑆𝑡 = 𝑆𝑡
𝑚𝑎𝑥; the amount 148 

of spill will be 𝑆𝑝𝑡 = 𝑆̂𝑡 − 𝑆𝑡
𝑚𝑎𝑥. Alternatively, when 𝑆̂𝑡 < 𝑆𝑡

𝑚𝑖𝑛 then 𝑈𝑡 cannot be fully met and 149 

there will be a release deficit 𝛿𝑡, a situation that requires an alternative release  𝑅𝑡 ≤ 𝑈𝑡 so that 150 

the final storage becomes at least 𝑆𝑡
𝑚𝑖𝑛. In this case, the amount of deficit will be 𝛿𝑡 = 𝑆𝑡

𝑚𝑖𝑛 − 𝑆̂𝑡 151 

and the actual release will be 𝑅𝑡 = 𝑈𝑡 − 𝛿𝑡. Note that both 𝑆𝑝𝑡 and 𝛿𝑡 are nonnegative quantities. 152 

Consequently, the actual total outflow 𝑟𝑡  from the system is:  153 

𝑟𝑡 = {

(𝑈𝑡 − 0) + 0 = 𝑈𝑡                                       𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡                                   
(𝑈𝑡 − 𝛿𝑡) + 0 = 𝑈𝑡 − 𝛿𝑡 = 𝑅𝑡                    𝑖𝑓 𝑑𝑒𝑓𝑖𝑐𝑖𝑡                                                 
(𝑈𝑡 − 0) + 𝑆𝑝𝑡 = 𝑈𝑡 + 𝑆𝑝𝑡                       𝑖𝑓 𝑠𝑝𝑖𝑙𝑙                                                    

 (2) 

In the FP method, the dynamics of a reservoir system taking all the above situations into 154 

account is written as  155 

𝑆𝑡 = (𝑆𝑡−1 + 𝐼𝑡̅ + 𝜂𝑡 − 𝑈𝑡) ∙ 𝕝[𝑆𝑡
𝑚𝑖𝑛.𝑆𝑡

𝑚𝑎𝑥](𝑆̂𝑡) + (𝑆𝑡
𝑚𝑖𝑛) ∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡) + (𝑆𝑡
𝑚𝑎𝑥) ∙156 

𝕝[𝑆𝑡
𝑚𝑎𝑥.+∞](𝑆̂𝑡)            (3) 157 

in which the inflow is now split into 𝐼𝑡 = 𝐼𝑡̅ + 𝜂𝑡, the mean inflow 𝐼𝑡̅ plus a zero-mean random 158 

component 𝜂𝑡 with variance 𝑉𝑎𝑟(𝜂𝑡). The notation 𝕝[.](𝑆̂𝑡) denotes the indicator (characteristic) 159 

function with the following properties:  160 
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 161 

𝕝[𝑆𝑡
𝑚𝑖𝑛.𝑆𝑡

𝑚𝑎𝑥](𝑆̂𝑡) ≔ {1                             for  𝑆𝑡
𝑚𝑖𝑛 ≤ 𝑆̂𝑡 ≤ 𝑆𝑡

𝑚𝑎𝑥   (containment)

0 otherwise                          
      (4) 162 

    163 

𝕝[−∞.𝑆𝑡
𝑚𝑖𝑛](𝑆̂𝑡)  ≔ {1                             for  𝑆̂𝑡 < 𝑆𝑡

𝑚𝑖𝑛  (deficit)                               
0 otherwise                            

     (5) 164 

 165 

𝕝[𝑆𝑡
𝑚𝑎𝑥.+∞](𝑆̂𝑡)  ≔ {1                             for  𝑆̂𝑡 > 𝑆𝑡

𝑚𝑎𝑥  (spill)                                   
0 otherwise                            

    (6) 166 

 167 

Therefore, at a given time, only one of three indicator functions can have a value of 1 and 168 

others must be zero. Continuity equation (5) can be simplified if we write the projected reservoir 169 

release in the form of an S-type linear decision rule (ReVelle et al., 1969), hence the proposed 170 

release is a function of current storage unlike in Fletcher and Ponnambalam (1996,1998):  171 

𝑈𝑡 = 𝑆𝑡−1 + 𝑘𝑡 (7) 

Equation (7) is an important assumption in the proposed FP model. Therefore, we present 172 

in section 4.1 the results of a thorough analysis conducted for assessing how this simple linear 173 

decision rule (LDR) performs compared to other methods, benefiting from more sophisticated 174 

release policies, and a policy-free ISP method with a large number of scenarios which are the 175 

same used in simulation for comparison purposes.   176 

By applying the above LDR, the projected storage volume becomes  177 

𝑆̂𝑡 = 𝐼𝑡̅ + 𝜂𝑡 − 𝑘𝑡 (8) 

and substituting 𝑈𝑡 t from equation (9) into equation (5) in order to eliminate 𝑆𝑡−1 yields  178 

𝑆𝑡 = (𝐼𝑡̅ + 𝜂𝑡 − 𝑘𝑡) ∙ 𝕝[𝑆𝑡
𝑚𝑖𝑛.𝑆𝑡

𝑚𝑎𝑥](𝑆̂𝑡) + (𝑆𝑡
𝑚𝑖𝑛) ∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡)  + (𝑆𝑡
𝑚𝑎𝑥) ∙ 𝕝[𝑆𝑡

𝑚𝑎𝑥.+∞](𝑆̂𝑡) 179 

            (9) 180 

Thus, if we square the above equation, the terms containing the products of different 181 

indicator functions will disappear resulting in the final expression below  182 

𝑆𝑡
2 = (𝐼𝑡̅ + 𝜂𝑡 − 𝑘𝑡)

2 ∙ 𝕝[𝑆𝑡
𝑚𝑖𝑛.𝑆𝑡

𝑚𝑎𝑥](𝑆̂𝑡) + (𝑆𝑡
𝑚𝑖𝑛)

2
∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡)  + (𝑆𝑡
𝑚𝑎𝑥)2 ∙ 𝕝[𝑆𝑡

𝑚𝑎𝑥.+∞](𝑆̂𝑡) 183 

            (10) 184 

where the indicator functions squared yield only binary outcomes and hence, for simplicity, not 185 

shown as squared.  186 
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Taking expectation of equations (9) and (10) enables the derivation of expressions for 187 

storage first and second statistical moments, respectively. For the assumption of Gaussian 188 

statistically independent random inflows, such expressions are presented below (see Fletcher and 189 

Ponnambalam (2008) for their detailed derivations; see Mahootchi et al. (2010) for removing the 190 

Gaussian assumption to arbitrary non-gaussian inflows modelled by the Kumaraswamy 191 

distribution): 192 

𝔼(𝑆𝑡) =
𝐼𝑡̅−𝑘𝑡

2
[𝑒𝑟𝑓(𝑈𝐵) − 𝑒𝑟𝑓(𝐿𝐵)] − √

𝑉𝑎𝑟(𝜂𝑡)

2𝜋
[𝑒𝑥𝑝(−𝑈𝐵2) − 𝑒𝑥𝑝(−𝐿𝐵2)]  +193 

𝑆𝑡
𝑚𝑖𝑛

2
[1 + 𝑒𝑟𝑓(𝐿𝐵)] +

𝑆𝑡
𝑚𝑎𝑥

2
[1 − 𝑒𝑟𝑓(𝑈𝐵)]       (11) 194 

𝔼(𝑆𝑡
2) =

(𝐼𝑡̅−𝑘𝑡)
2

2
[𝑒𝑟𝑓(𝑈𝐵) − 𝑒𝑟𝑓(𝐿𝐵)] + 2(𝐼𝑡̅ − 𝑘𝑡)√

𝑉𝑎𝑟(𝜂𝑡)

2𝜋
[𝑒𝑥𝑝(−𝑈𝐵2) − 𝑒𝑥𝑝(−𝐿𝐵2)] −195 

√
𝑉𝑎𝑟(𝜂𝑡)

2𝜋
{[𝑆𝑡

𝑚𝑎𝑥 − (𝐼𝑡̅ − 𝑘𝑡)] 𝑒𝑥𝑝(−𝑈𝐵2) − [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] 𝑒𝑥𝑝(−𝐿𝐵2)} +196 

𝑉𝑎𝑟(𝜂𝑡)

2
[𝑒𝑟𝑓 (𝑈𝐵) − 𝑒𝑟𝑓(𝐿𝐵)] +

(𝑆𝑡
𝑚𝑖𝑛)

2

2
[1 + 𝑒𝑟𝑓(𝐿𝐵)] +

(𝑆𝑡
𝑚𝑎𝑥)2

2
[1 − 𝑒𝑟𝑓(𝑈𝐵)]  (12) 197 

where 𝔼 denotes the expectation operator, 𝜂𝑡 is a zero-mean random variable following a 198 

Gaussian distribution of the form 𝑁(0, 𝑉𝑎𝑟(𝜂𝑡)),  𝐿𝐵 =
𝑆𝑡

𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

√2𝑉𝑎𝑟(𝜂𝑡)
 ,  𝑈𝐵 =

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

√2𝑉𝑎𝑟(𝜂𝑡)
, and 199 

𝑒𝑟𝑓 is the error function (see Appendix B for more details). It is important to note that the right-200 

hand side of equations (11) and (12) are only a function of 𝑘𝑡, the decision variable, and other 201 

known values and hence is easily evaluated and are not considered in constraints as in the 202 

original formulation the FP method. 203 

 204 

2.2 Implementation of the FP Method 205 

Since the new implementation of the FP method explicitly accounts for the role of deficit 206 

and spill terms to model a quadratic objective function exactly, we first derive the expressions 207 

for these terms.  208 

2.2.1 New expressions for the moments of deficit and spill 209 

As defined previously, the actual total reservoir outflow 𝑟𝑡 = 𝑈𝑡 + 𝑆𝑝𝑡 − 𝛿𝑡 is the 210 

proposed release 𝑈𝑡 accounting for either deficit or spill. The deficit and spill terms can be 211 

determined as follows:  212 

𝛿𝑡 = (𝑆𝑡
𝑚𝑖𝑛 − 𝑆̂𝑡) ∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡) = [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡) − 𝜂𝑡] ∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡)   (13) 213 

𝑆𝑝𝑡 = (𝑆̂𝑡 − 𝑆𝑡
𝑚𝑎𝑥) ∙ 𝕝[𝑆𝑡

𝑚𝑎𝑥.+∞](𝑆̂𝑡) = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡
𝑚𝑎𝑥 + 𝜂𝑡] ∙ 𝕝[𝑆𝑡

𝑚𝑎𝑥.+∞](𝑆̂𝑡)   (14) 214 

Squaring the above expressions yields  215 
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𝛿𝑡
2 = [𝑆𝑡

𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)]
2
∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡) − 2𝜂𝑡[𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] ∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡) +216 

𝜂𝑡
2 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡)          (15) 217 

𝑆𝑝𝑡
2 = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡

𝑚𝑎𝑥]2 ∙ 𝕝[𝑆𝑡
𝑚𝑎𝑥.+∞](𝑆̂𝑡) + 2𝜂𝑡[(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡

𝑚𝑎𝑥] ∙ 𝕝[𝑆𝑡
𝑚𝑎𝑥.+∞](𝑆̂𝑡) + 𝜂𝑡

2 ∙218 

𝕝[𝑆𝑡
𝑚𝑎𝑥.+∞](𝑆̂𝑡)           (16) 219 

Taking expectation of all above equations enables the derivation of expressions for first 220 

and second statistical moments of deficit and spill. Such expressions are presented below and 221 

their detailed derivation is given in Appendix A.  222 

𝔼(𝛿𝑡) = [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] ∙ ∫ 𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡
𝑆𝑡

𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞
− ∫ 𝜂𝑡𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡
𝑆𝑡

𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞
  (17) 223 

𝔼(𝛿𝑡
2) = [𝑆𝑡

𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)]
2
∙ ∫ 𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡
𝑆𝑡

𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞
− 2 [𝑆𝑡

𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] ∙224 

∫ 𝜂𝑡𝑓𝜂𝑡
(𝜂𝑡)𝑑𝜂𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞
+ ∫ 𝜂𝑡

2𝑓𝜂𝑡
(𝜂𝑡)𝑑𝜂𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞
     (18) 225 

𝔼(𝑆𝑝𝑡) = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡
𝑚𝑎𝑥] ∙ ∫ 𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡
+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

+ ∫ 𝜂𝑡𝑓𝜂𝑡
(𝜂𝑡)𝑑𝜂𝑡

+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

  (19) 226 

𝔼(𝑆𝑝𝑡
2) = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡

𝑚𝑎𝑥]2 ∙ ∫ 𝑓𝜂𝑡
(𝜂𝑡)𝑑𝜂𝑡

+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

 +2 [(𝐼𝑡̅ − 𝑘𝑡) −227 

𝑆𝑡
𝑚𝑎𝑥]  ∫ 𝜂𝑡𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡
+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

+ ∫ 𝜂𝑡
2𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡
+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

    (20)  228 

where 𝑓𝜂𝑡
(𝜂𝑡) is the probability density function of inflow random component 𝜂𝑡. Based on 229 

equations (19) and (20), analytical expressions for the first and second moments of deficit and 230 

spill have been derived and presented in Appendix B for Gaussian inflows. An important aspect 231 

to notice is that all expressions become a function of the known inflow moments, system storage 232 

bounds 𝑆𝑡
𝑚𝑎𝑥 and 𝑆𝑡

𝑚𝑖𝑛, and the LDR parameters 𝑘𝑡, which are the only decision variables to 233 

optimize. 234 

2.2.2 Optimization problem formulation 235 

A monthly stochastic reservoir operation optimization problem may be formulated with 236 

the objective of minimizing the expected value of the sum of squared deviations between 237 

releases and demands:  238 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑍 = 𝔼 [∑(𝑟𝑡 − 𝐷𝑡)
2

12

𝑡=1

] = 𝔼 [∑(𝑈𝑡 + 𝑆𝑝𝑡 − 𝛿𝑡−𝐷𝑡)
2

12

𝑡=1

]                                    (21) 239 

in which 𝐷𝑡 is the target demand for the month 𝑡. Adding terms for storage targets and 240 

minimizing the sum of deviations in (21) is possible and has been dealt with in Fletcher and 241 

Ponnambalm (1998); also see Section 2.2.4 later for other general nonlinear objective functions. 242 

The inclusion of deficit and spill terms in the objective function means that both water supply 243 

and flood control are important for the operation (if the only objective is water supply, then 𝑅𝑡 244 

may be used instead of 𝑟𝑡 and the objective function becomes 𝑍 = 𝔼 [∑ (𝑅𝑡 − 𝐷𝑡)
212

𝑡=1 ] =245 
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𝔼 [∑ (𝑈𝑡 − 𝛿𝑡−𝐷𝑡)
212

𝑡=1 ]. Currently, release bound constraints are not considered during 246 

optimization because the objective function penalizes both spills and deficits.  247 

The assumed LDR is 𝑈𝑡 = 𝑆𝑡−1 + 𝑘𝑡; therefore, the objective function becomes  248 

𝑍 = 𝔼 [ ∑ [𝑆𝑡−1 + 𝑆𝑝𝑡 − 𝛿𝑡 + (𝑘𝑡 − 𝐷𝑡)]
2

𝑇=12

𝑡=1

] (22) 

which can be developed to  249 

𝑍 = ∑[𝔼(𝑆𝑡−1
2 ) + 2(𝑘𝑡 − 𝐷𝑡) ∙ 𝔼(𝑆𝑡−1) + (𝑘𝑡 − 𝐷𝑡)

2 + 𝔼(𝛿𝑡
2) − 2 ∙ 𝔼(𝑆𝑡−1 ∙ 𝛿𝑡) − 2(𝑘𝑡 − 𝐷𝑡)

12

𝑡=1

250 

∙ 𝔼(𝛿𝑡) + 𝔼(𝑆𝑝𝑡
2) + 2 ∙ 𝔼(𝑆𝑡−1 ∙ 𝑆𝑝𝑡) − 2 ∙ 𝔼(𝑆𝑝𝑡 ∙ 𝛿𝑡) + 2(𝑘𝑡 − 𝐷𝑡) ∙ 𝔼(𝑆𝑝𝑡)]   251 

            (23) 252 

Since for any time period t, either 𝑆𝑝𝑡 or 𝛿𝑡 is zero, then 𝔼(𝑆𝑝𝑡 ∙ 𝛿𝑡) = 0. Assuming 𝑆𝑡−1 253 

to be independent of both 𝛿𝑡 and 𝑆𝑝𝑡, the objective function finally becomes  254 

𝑍 = ∑[𝔼(𝑆𝑡−1
2 ) + 2(𝑘𝑡 − 𝐷𝑡) ∙ 𝔼(𝑆𝑡−1) + (𝑘𝑡 − 𝐷𝑡)

2 + 𝔼(𝛿𝑡
2) − 2 ∙ 𝔼(𝑆𝑡−1) ∙ 𝔼(𝛿𝑡)

12

𝑡=1

255 

− 2(𝑘𝑡 − 𝐷𝑡) ∙ 𝔼(𝛿𝑡) + 𝔼(𝑆𝑝𝑡
2) + 2 ∙ 𝔼(𝑆𝑡−1) ∙ 𝔼(𝑆𝑝) + 2(𝑘𝑡 − 𝐷𝑡) ∙ 𝔼(𝑆𝑝𝑡)] 256 

             (24) 257 

The assumption on independence of  𝑆𝑡−1 and both 𝛿𝑡 and 𝑆𝑝𝑡 was indeed verified using 258 

simulation results, and it was found that corresponding Spearman correlation coefficients that 259 

measure nonlinear dependence better were very low for the case studied. We have also provided 260 

some insight on the validity of this assumption for other systems in Section Final Remark. As all 261 

first and second moments in the above expression are dependent only on 𝑘𝑡, so is the objective 262 

function 𝑍. Consequently, the vector of decision variables of the final optimization problem is 263 

𝒌 = {𝑘1, ⋯ , 𝑘12}
⊤, i.e., one value of 𝑘𝑡 for each month of the year, 𝑡 = 1 (January) through 𝑡 =264 

12 (December). The symbol ⊤ represents the vector transpose operator.  265 

The value of 𝑘𝑡 in 𝑈𝑡 = 𝑆𝑡−1 + 𝑘𝑡 may be negative (storage has enough water to meet 266 

proposed release) or positive (storage needs additional water to meet proposed release). Thus, the 267 

decision vector 𝒌 may be unbounded, i.e., -∞≤ 𝒌 ≤ +∞. Since the only decision variables are the 268 

elements of vector 𝒌, which is unbounded, we face an unconstrained nonlinear optimization 269 

problem. This formulation can be easily vectorized as detailed in Appendix C. 270 

Once the optimal values of the LDR parameters 𝑘1, ⋯ , 𝑘12 are found, the monthly values 271 

of first and second moments (variances) of storage, deficit and spill variables can be calculated 272 

by the derived expressions presented earlier. Furthermore, the probabilities of containment 273 

(ℙt
con), deficit (ℙt

def) and spill (ℙt
sp) for the projected storage 𝑆̂𝑡 t are simply the expected values of 274 
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the three indicator functions in equation (5) as presented in the FP method (Fletcher and 275 

Ponnambalam, 2008) whose expressions are also known (see also appendices A and B).  276 

The assumed LDR can be used as a guide to operate the reservoir. For a given initial 277 

storage 𝑆𝑡−1 and inflow 𝐼𝑡, a total release of 𝑈𝑡 = 𝑆𝑡−1 + 𝑘𝑡 is proposed. The actual total 278 

outflow for that month, 𝑟𝑡 = 𝑈𝑡 + 𝑆𝑝𝑡 − 𝛿𝑡, can then be decided by checking the mass balance to 279 

identify whether spill or deficit should be triggered.  280 

Note that in previous applications of the FP method, a zeroth-order Taylor series 281 

expansion of the objective function has been used where neither second moments of storage nor 282 

deficit and spill terms have been used leading to the following approximation:  283 

𝑍1 =  𝔼 [∑(𝑈𝑡 − 𝐷𝑡)
2

12

𝑡=1

] ≈ ∑[𝔼(𝑈𝑡) − 𝐷𝑡]
2

12

𝑡=1

284 

= ∑[𝔼(𝑆𝑡−1 + 𝑘𝑡) − 𝐷𝑡]
2

12

𝑡=1

285 

= ∑[𝔼(𝑆𝑡−1) + (𝑘𝑡 − 𝐷𝑡)]
2

12

𝑡=1

286 

= ∑[(𝔼(𝑆𝑡−1))
2
+ 2(𝑘𝑡 − 𝐷𝑡) ∙ 𝔼(𝑆𝑡−1) + (𝑘𝑡 − 𝐷𝑡)

2]

12

𝑡=1

  287 

            (25)  288 

In the above equation, only the first moment of storage is needed. 𝔼(𝑆𝑡−1) has already 289 

been estimated by equation (11) considering storage bounds using indicator functions. However, 290 

a more exact objective function estimate from equation (24), if spill and deficit terms are 291 

omitted, is  292 

𝑍2 = ∑[𝔼(𝑆𝑡−1
2 ) + 2(𝑘𝑡 − 𝐷𝑡) ∙ 𝔼(𝑆𝑡−1) + (𝑘𝑡 − 𝐷𝑡)

2]

12

𝑡=1

 (26) 

Function 𝑍2 requires the second moment of storage 𝔼(𝑆𝑡−1
2 ), given in equation (12). The 293 

difference between equations (26) and (25) (objective functions 𝑍2 and 𝑍1) is simply equal to 294 

𝔼(𝑆𝑡−1
2 ) − (𝔼(𝑆𝑡−1))

2
= 𝑉𝑎𝑟(𝑆𝑡−1), i.e. the variance of the initial storage. Therefore, as 295 

expected, the larger the variance of the monthly storage, the greater the error in the zeroth-order 296 

Taylor approximation will be.  297 

2.2.3 Reduction in computing time 298 

It was noted in Section 2.2.2 that, at any given time 𝑡, all necessary expressions can be 299 

calculated as simply as a function of decision vector 𝒌 leading to vectorization possibilities 300 

shown in Appendix C. The speed up one gets is a function of the software that we use, but 301 
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MATLAB ® allows for such vectorized calculations and executes much faster than 302 

nonvectorized equivalents. 303 

However, by removing the constraints, the time to solve significantly decreases. Even in 304 

a linear programming case, the time complexity is 𝑂(𝑁𝑉3) where NV is the number of variables 305 

to be optimized. Here (i) we remove the 𝑂(𝑁𝑉) constraints that was used to define the first and 306 

second moments in the original FP formulation (Fletcher and Ponnambalam, 2008)), and (ii) 307 

because of (i), the number of variables becomes 1/3 of the original number of variables as the 308 

expressions for the moments are simply calculated and defined only by the decision vector 𝒌. 309 

The time to solve now reduces to 𝑂((
1

3
𝑁𝑉)3); therefore, the speed up of this current formulation 310 

compared to the original formulation is at least 27 times.  311 

2.2.4 Other nonlinear objective functions 312 

The derivation for the quadratic objective function in equation (21) produced equation 313 

(24) which required only the first and second order moments of any decision and storage 314 

variables; all of them are available in explicit analytical forms in the FP method. On the other 315 

hand, for other functions that are nonlinear but not quadratic, it is possible to use the First-order 316 

Second Moment Taylor-Series methods to approximate such objective functions as they only 317 

need the first and second order moments of the required variables such as release and water level 318 

(say hydraulic head for hydropower operations) that is related to storage nonlinearly) and are 319 

available. One can also use the approximations suggested in Loucks and van Beek (2017, page 320 

504), which is simpler as it linearizes the equations around the mean values of variables and uses 321 

only the zeroth order Taylor-Series terms. The advantage of these approaches is that the point at 322 

which linearization is done is at the mean values of the storage and release variables that are 323 

available and are continuously updated as the optimization proceeds. The problems we solve are 324 

nonconvex so there is no global optimality guarantee, but the use of Monte Carlo simulations 325 

help us validate the accuracy of the estimates between the FP method and the corresponding 326 

simulation results.  327 

Apart from the possibility explained above, we can easily use an extended form of the 328 

objective function in which deviations from both target releases (water demands) and target 329 

storages (𝑆𝑡𝑎𝑟𝑔) are included as 𝔼 [∑ ((𝑟𝑡 − 𝐷𝑡)
212

𝑡=1 + (𝑆𝑡−1 − 𝑆𝑡𝑎𝑟𝑔𝑡)
2)]. This objective 330 

function accounts for both release- and storage-dependent purposes such as navigation, 331 

recreation, and hydropower operations in many practical real-world problems. Note that all we 332 

need in the above function are the newly derived first and second moments of release, including 333 

spill and deficit, and the already derived moments of storage variables in the FP model. 334 

Additionally, we have probabilities of spills and deficits that can be utilized in the model 335 

formulation for risk-based operation or other specific planned purposes. To the best of our 336 

knowledge, there is no other explicit optimization model available where such terms and 337 

information are available with high accuracies as shown in the results in many Figures in this 338 

paper.  339 

2.2.5 Extension to multireservoir systems 340 

The FP method extended to multireservoir systems still has the linear time complexity 341 

thus avoiding any curse of dimensionalities. The derivation of the means and variances of 342 

storage states of multireservoir systems using the model of Fletcher and Ponnambalam (2008) 343 



manuscript in the format required for Water Resources Research  

 

has been already presented in Mahootchi et al. (2010) solving a five-reservoir system for both 344 

Gaussian and non-Gaussian inflows. However, the objective function in that work was linear and 345 

the second moments of spills and deficits were not included in water balance equations. In order 346 

to extend the FP method and the vectorized implementations presented here to multireservoir 347 

systems or extending the previous multireservoir systems method to consider other objective 348 

functions is now possible. The only changes needed are in the objective function and the use of 349 

the moments of spills and deficits as presented here and is left for the future. The use of the 350 

linear decision rule removes the dependence of releases on the storage volumes and hence the 351 

multireservoir expressions are much simpler than in Fletcher and Ponnambalam (1998) that 352 

solved the operations optimization problem of the Great-Lakes system considering five of the 353 

lakes using standard operating policy.  354 

2.3 Two-stage Programing (TSP)  355 

The open loop constant-release policy (no direct dependence on the storage state) and the 356 

S-type linear decision rule (dependent on the storage state) are the policies used in previous (in 357 

1996) and current FP (since 2008) models, respectively. These decision rules make the model 358 

formulation tractable so as to derive analytical expressions for different variables of interest. 359 

Inflows were also assumed to be normally distributed and statistically independent, ignoring 360 

serial (persistence) correlations. To assess how these assumptions impact the performance of the 361 

proposed FP model, we compare it with other methods including SDP in which a more general 362 

state-dependent policy is available and the TSP, as the implicit stochastic optimization 363 

counterpart of the FP, and ISP. The TSP method can also be used to easily account for a variety 364 

of operating policies and to consider non-Gaussian serially-correlated inflow time series as TSP 365 

can be implemented under any inflow scenarios. Such comparisons have been made in 366 

Mahootchi et al. (2010 and 2012) presenting good comparable results for all the three methods; 367 

however, the original objective function was linear where the current extension to quadratic 368 

objective function was not needed as well as deficits and spills and comparisons with general 369 

SQ-type and policy-free policies were not considered.   370 

Following is the TSP model’s formulation to compare with the FP method description 371 

above. The formulation implemented here for random inflow scenarios uses the fan-type as 372 

against the tree-type scenarios. Although both fan and tree types give good results (Séguin et al. 373 

2017), fan-type scenario generations are more commonly used in water resources as Monte Carlo 374 

simulations: 375 

𝑚𝑖𝑛 𝑍 = 𝑚𝑖𝑛 {
1

𝑁
. ∑ ∑ [(𝑈𝑡 − 𝐷t + 𝛿𝑡

𝑖 − 𝑆𝑝𝑡
𝑖)

2
]𝑇=12

𝑡=1
𝑁
i=1 }                                (27) 376 

Subject to the constraint set for each scenario: 377 

𝑆𝑡 − 𝑆𝑡−1 + 𝑈𝑡 + 𝛿𝑡
1 − 𝑆𝑝𝑡

1 = 𝐼𝑡
1   for 𝑡 = 1, … . 𝑇 378 

𝑆𝑡 − 𝑆𝑡−1 + 𝑈𝑡 + 𝛿𝑡
2 − 𝑆𝑝𝑡

2 = 𝐼𝑡
2 for 𝑡 = 1, … . 𝑇 379 

                           . 380 

                           . 381 

https://ascelibrary.org/author/S%C3%A9guin%2C+Sara
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                           . 382 

𝑆𝑡 − 𝑆𝑡−1 + 𝑈𝑡 + 𝛿𝑡
𝑁 − 𝑆𝑝𝑡

𝑁 = 𝐼𝑡
𝑁 for 𝑡 = 1, … . 𝑇  383 

𝑆0 = 𝑆𝑇            (28) 384 

where 𝑁 is the number of scenarios (years). Other variables are already defined in the FP method 385 

description. In this original TSP model that we have named it later Model TSP1, storage 386 

variables (𝑆𝑡) and the proposed release variables (𝑈𝑡) are first-stage variables and do not change 387 

with the scenario number (year). However, since for each scenario or sample (one year with 12 388 

months), inflow to the reservoir in a season (month) is different, the second-stage variables of 389 

surplus (𝑆𝑝𝑡
𝑖) and deficit (𝛿𝑡

𝑖) are added to the balance equations of each scenario 𝑖 to keep the 390 

model feasible. We also examine other versions of TSP depending on the variability of storage 391 

variables over different scenarios and the release operating policies adopted.        392 

We can set a specific type of release operating policy in the TSP model by replacing 𝑈𝑡 393 

with the form or equation of that policy. For example, if equation 𝑈𝑡 = 𝑆𝑡−1 + 𝑘t is added to the 394 

above formulation, we will have a TSP model equipped by the S-type release operation policy, 395 

the same policy employed in the FP model.  396 

Another well-known stochastic optimization method we use to compare the FP model 397 

with is the SDP, which works based on Bellman’s principle of optimality and solves a recursive 398 

form of the objective function for different discrete values of the state variables vector within the 399 

state-decision space. We do not present here the SDP model formulation of the problem as SDP 400 

is a well-documented approach (see for example Vedula and Mujumdar (2005) or Loucks and 401 

van Beek (2017)). Note that SDP faces the curse of dimensionality in multireservoir problems 402 

due to discretization of the state variables.    403 

3. Case Study and Data 404 

One of the most important hydropower plants in Brazil’s grid is the one located at the 405 

Sobradinho dam within the São Francisco River Basin (SFRB), in the southeast and northeast 406 

regions of the country (Figure 2). The reservoir holds approximately the same volume of water 407 

as the Three Gorges dam in China, which of course has a much higher flow capacity due to being 408 

built on the Yangtze river. The SFRB covers an area of approximately 640,000 km² (7.5% of the 409 

Brazilian National Territory), extending over six Brazilian states. Fifty-eight percent of the 410 

SFRB includes part of the so-called Polygon of Droughts (semiarid region), characterized by 411 

critical periods of prolonged droughts as a result of low rainfall and high evapotranspiration 412 

(Agência Nacional de Águas, 2015).  413 
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 414 

Figure 2. Map of the São Francisco River Basin and location of the Sobradinho dam. 415 

The Sobradinho reservoir provides multiyear regulation of the São Francisco river with a 416 

minimum flow of 2,060 m³/month, allowing the full utilization of other hydroelectric plants 417 

located downstream. The 34-billion-cubic-meter capacity of the Sobradinho reservoir floods an 418 

area of 4,241 km², with a length of 327.5 km at the 393.5-meter water level (design flood), 419 

forming the largest artificial lake in Latin America (Oliveira Dantas, 2005). Hydropower 420 

production plays an important role in the SFRB. We, however, assume the Sobradinho reservoir 421 

is to be used only for water supply to test the new version of the FP model, and hence the 422 

assumption of constant demand. Note that this is not a limitation of the method as shown in 423 

equation (26), and it only facilitates focusing on the main purpose of this study. As explained in 424 

Section 2.2.4, terms penalizing deviations from target storage levels can easily be added to the 425 

objective function of the proposed FP model to consider other storage-related purposes such as 426 

recreation and hydropower operations.  427 

In order to satisfy the real-world system requirement of constant releases (see above), a 428 

constant demand equal to 80% of the mean annual flow was specified as 𝐷𝑡. First, the FP method 429 

was run in order to find the best LDR parameters together with the estimation of first and second 430 

moments as well as probabilities of containment, deficit and spill. Later, a 1,000-year monthly 431 

reservoir operation implementing the derived LDR operating policy was carried out (as 432 

explained in section 2.2.2). From this Monte Carlo simulation, values of moments and 433 

frequencies were calculated to be compared with those already found by the FP method. The 434 

1,000-year monthly inflow scenario was synthetically generated from historical records provided 435 

by government-established National Electric System Operator (ONS – Operador Nacional do 436 

Sistema Elétrico) for the period 1931–2015 (85 years). 437 

4 Results and Discussion  438 

In the original FP model, in the objective function, neither the second moment of storages 439 

nor the first and second moments of spill and deficit have been incorporated into the model’s 440 

formulation so far as done here in equation (26); however, zeroth Taylor Series expansion has 441 
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been used in the objective function, for example in Fletcher and Ponnambalam (1996) for 442 

solving the Great Lakes storage and release target operations optimization.  443 

In the application to the case study, the role played by each new element is presented 444 

separately in Appendices D and E. Here we discuss the results of full equation (26) or what is 445 

called Model 4 in Appendix E. Initially we assume that the inflows at each month in Sobradinho 446 

follow a Gaussian distribution. That means that the 1,000-year monthly inflow scenario is 447 

generated from Gaussian-distributed random numbers with same mean and standard deviation as 448 

historical records to simulate the reservoir operation. This simulation is conducted using the 449 

optimal policies obtained by the FP method (optimal 𝑘𝑡 values) to assess how optimal solutions 450 

of the discretization-free FP method perform under different conditions and assumptions, for 451 

example inclusion or not inclusion of first or higher moments of storage, deficit and spill 452 

variables in its formulation. We present results corresponding to the actual inflow data from 453 

Sobradinho later in Section 4.4.  454 

4.1. Analysis of Release Operating Policies  455 

Simple release policies of S-type, 𝑈𝑡 = 𝑆𝑡−1 + 𝑘𝑡, and open-loop, 𝑈𝑡 = 𝑘𝑡, have been 456 

used in the current and previously-developed FP models, respectively. One can argue that such 457 

simple operation policies may not be efficient enough. Therefore, the question to be assessed 458 

here is whether these simple policies affect the FP Model’s performance drastically, compared to 459 

other stochastic optimization models such as SDP employing more sophisticated, nonlinear, 460 

state-dependent policies. This comparative analysis of various operating policies with FP results 461 

is new. We compare in this section the proposed FP model with SDP, TSP and policy-free ISP 462 

approaches. The reason is that we can easily develop different versions of TSP or ISP accounting 463 

for different operation policies from the simplest constant-release policy to a policy-free model. 464 

Therefore, comparison of TSP and ISP models, as the implicit stochastic counterpart of the FP 465 

model, with the FP model when their difference is only in their release operating polices can 466 

quantify what impact using those simple linear policies will have on the performance of the FP 467 

model. To do so, the following five alternative models are tested:  468 

1) The original TSP (TSP1-open/TSP1-S-type) in which a constant-release open loop/S-type 469 

policy is considered, respectively. For a typical year with 12 seasons (months), the 470 

number of release decision variables in TSP1 is 12 with additional 12+1=13 storage 471 

variables; these are called the first-stage variables and do not vary from one scenario to 472 

another. To these 2×12× 𝑁 additional surplus and deficit decision variables are added, 473 

where 𝑁 is the number of scenarios (years).     474 

2) TSP2-(open/S-type) considers reservoir storage volumes to vary over both seasons and 475 

scenarios (years). It means that in addition to 12 constant release decision variables 476 

(which are now the only first-stage variables), 12× 𝑁 +1 storage volumes are also 477 

decision variables to be optimized (so now these are second stage variables). This allows 478 

for storage variances to be non-zero like the FP method when the second moments of 479 

storages are accounted for. In other words, the FP model is the explicit stochastic 480 

equivalent version of the TSP2 model.           481 

3) TSP3 is similar to TSP2 in which a more general complete release rule called general 482 

SQ-Type, 𝑟𝑡 = 𝑆𝑡−1 + 𝑘𝑘𝑡 × 𝐼𝑡 − 𝑘𝑡, is employed. Traditional SQ-Type policy, where 483 

𝑘𝑘𝑡=1 for all months, has already been used in chance-constrained programming (Loucks 484 
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1980, Mousavi et al. 2010).  Therefore, here the variables 𝑘𝑘𝑡 and 𝑘𝑡 are the first-stage 485 

variables. 486 

4) The last one, the implicit stochastic optimization (ISP), allows all release variables to 487 

vary both over different seasons and scenarios (years). It is a policy-free model in terms 488 

of release rules (Mousavi et. al 2010) in which time series of releases are among 489 

unknown decision variables. In this model, deficits or surpluses are part of total releases, 490 

so no need to define and consider them as separate variables. The importance of this 491 

model is because it provides the best possible objective function value that can ever be 492 

reached as it does not impose any additional constraint (release policies) on the TSP 493 

optimization model, and it benefits from having perfect foresight on future inflows. 494 

Therefore, any other model utilizing even a very sophisticated nonlinear state-dependent 495 

release policy cannot perform better than this model, and its global optimum objective 496 

function value will be the upper bound of the best possible objective function value. 497 

Therefore, comparison of TSP1, TSP2, TSP3, and FP models with such a policy-free ISP 498 

model will show what impact the release operation policies used in each of them can 499 

have on the optimality of their solutions.  500 

The number of variables of each method and sample CPU times for the FP, SDP, and 501 

TSP2 methods are presented in Table 1 and Table 3, respectively. It is clear that when the 502 

number of reservoirs increases, the number of variables in the FP method increases linearly (see 503 

also Mahootchi et al. (2010) for solving a five reservoir problem with FP method) while other 504 

methods face the curse of dimensionality and cannot be solved. 505 

One important point for TSP1, TSP2, and TSP3 models is that if we don’t make them forced to 506 

activate surplus/deficit variables (second-stage variables) only if the end-of-month storage 507 

volume reaches the upper/lower bound of the reservoir storage volume, then they will be exactly 508 

the same as ISP because of the freedom of surplus and deficit variables to take any arbitrary 509 

values in the balance equations. Additionally, in each period, simultaneously spill and deficit 510 

terms cannot be nonzero. To account for these requirements, three additional penalty terms were 511 

added to the objective function of the TSP models as follows where Z is the same as in equation 512 

(27):   513 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍′ = 𝑍 + 𝑊1 × ∑∑[𝑆𝑝𝑡
𝑖 × (𝑆𝑡

𝑚𝑎𝑥 − 𝑆𝑡
𝑖)) ]

12

𝑡=1

𝑁

𝑖=1

+ 𝑊2 × ∑∑[𝛿𝑡
𝑖 × (𝑆𝑡

𝑖 − 𝑆𝑡
𝑚𝑖𝑛)) ]

12

𝑡=1

𝑁

𝑖=1

514 

+ 𝑊3 × ∑∑[𝑆𝑝𝑡
𝑖 × 𝛿𝑡

𝑖]

12

𝑡=1

𝑁

𝑖=1

 515 

            (29) 516 

The second and the third terms in the above formula ensure spill (surplus) and deficit 517 

variables, i.e. 𝑆𝑝𝑡
𝑖  𝑜𝑟 𝛿𝑡

𝑖, are not triggered until 𝑆𝑡
𝑖 = 𝑆𝑡

𝑚𝑎𝑥 and 𝑆𝑡
𝑚𝑖𝑛 , respectively, and the last 518 

term guarantees the spill and deficit terms do not take positive values concurrently. Our 519 

experiments showed that 𝑊1 = 𝑊2 = 𝑊3 = 1 worked well. Table 1 presents the results in terms 520 

of objective function values (both in simulation and optimization) for all the models. To be fair 521 

and focus only on the role of operations policies, we have calculated SDP transition probabilities 522 
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using a 125-year synthetic Gaussian inflow series. This is because other models’ results being 523 

reported are also for Gaussian inflows. Later in the next section we present the SDP model 524 

results for correlated non-Gaussian historical inflows. Note that CPU time reported for the SDP 525 

method corresponds to 𝑁𝐼 =7 inflow classes (resulted in the best obj. function in 526 

optimization/simulation), 𝑁𝑆 = 30 discrete storages, and 𝑁𝑖𝑡𝑒𝑟 =10 cycles to reach steady-state 527 

conditions.            528 

Table 1: Comparison of FP, SDP, TSP, and ISP models for different operation policies 529 

Model 

 

Descrip
tion 

No of 
decision 
variables 

Release 
Operation 
Policy 

Obj. function value in 
optimization 

Obj. function value in simulation 

    Sample size (N) for TSP Sample size 

    55            125 55 1,000 125 

FP ESO 12 S-type 27.08 29.22 27.33 27.87 

SDP ESO NS=30, 
NI= 7, and 
Niter=10  

State 
depended 
policies as 
R*t(St, It)  

27.32   28.65  26.95  27.39 

TSP1-
open 

ISO 25+24×N open loop 29.62 28.299 30.74 29.53 (by 
55) 

29.15(by 
125) 

29.26 

TSP1-
Stype 

ISO 25+24×N open loop 29.62 28.30 30.15 28.86 (by 
55) 

28.55(by 
125) 

28.92 

TSP2-
open 

ISO 13+36×N Open loop 28.82 30.10 
(stopped 
after 
200000 
iterations) 

28.82(fro
m 55) 

30.88(fro
m 125) 

 

27.37(fro
m 55) 

29.99(fro
m 125) 

30.10(fro
m 125) 

27.72(fro
m 55) 

 

TSP2-
Stype 

ISO 13+36×N S type 28.95 28.34 28.95(fro
m 55) 

29.30 
(from 
125) 

27.40 
(from 55) 

27.99(fro
m 125) 

 

28.34(fro
m 125) 

27.84(fro
m 55) 

TSP3 ISO 25+36×N General s-q 
type 

28.65 27.55 28.65(fro
m 55) 

28.72(fro
m 125) 

 

27.16(fro
m 55) 

27.10 
(from 
125) 

 

27.55(fro
m 125) 

27.59(fro
m 55) 
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ISP ISO 24×N+1 Free policy 27.80 26.63 27.80(onl
y from 55) 

- 26.63(onl
y from 
125) 

From above results, one can see that as expected the best objective function value is that 530 

of policy-free ISP model (26.63), and the differences among the models’ solutions both in 531 

optimization and the simulation are between 1-15%, and the worst is TSP1-open (ignoring the 532 

unfinished TSP2-open). Additionally, the TSP2-Stype’s (and TSP2-open’s) objective function 533 

value is ~8 % worse than the best possible result that can ever be achieved which is that of ISP. 534 

These results clearly indicate that simple open-loop or S-type release policies employed in 535 

original or current extended FP models perform quite well (the difference in the long term 536 

simulation with the best ISP policy is 2.6%) and close to the best possible state-dependent more 537 

sophisticated release policies of SDP. The FP’s open loop policy is slightly better than FP’s S-538 

Type policy but leads to more complicated expressions, especially for mutireservoir systems 539 

(Fletcher and Ponnambalam, 1996) and is not clear that it is worth losing simplicity in practice. 540 

Therefore, the concern about using simple optimal release rules in the proposed extended FP 541 

model is not really important at least for the problem approached, which is a long-term optimal 542 

reservoir operation planning problem. On the other hand, FP can solve multireservoir problems 543 

very fast, while most of the other methods have to use other approximations even to solve 544 

multireservoir problems. The approximations are either in modeling the system, e.g. in the 545 

aggregation method of Turgeon (1981) and Ponnambalam and Adams (1987, 1996) as explicit 546 

stochastic programming (ESP) methods, or by using a reduced number of scenarios in ISP, 547 

which also produces suboptimal solutions. 548 

4.2 Performance Assessment for Correlated Inflows 549 

In this section, we show the application of the proposed formulation and implementation 550 

of the proposed FP model to the Sobradinho reservoir system without assuming that the synthetic 551 

inflows used in simulation follow a Gaussian distribution as in Section 4.1. This is because 552 

another concern with the proposed FP model is that of assuming serially independent Gaussian 553 

inflows. Of course FP model is not restricted to only Gaussian inflows and can easily applied by 554 

other distributions such as Kumaraswamy distribution (Mahootchi et al., 2010). However, it is 555 

yet to be extended to cases considering serial and cross correlations. Therefore, in this section we 556 

want to assess how significant the role of such simplification would be compared to models 557 

accounting for inflows persistence such as SDP.   558 

Now, the 1,000-year monthly inflow scenario for simulation is synthetically generated by 559 

the Method of Fragments (Svanidze, 1980) trying to preserve the actual inflow structure of the 560 

historical records. Figure S1 included in the supporting information shows comparison of mean 561 

and standard deviation of historical inflow records against synthetic scenario values, indicating 562 

that historical monthly means and standard deviations were properly preserved in the generated 563 

scenario.  564 

The final equations for storage∕deficit∕spill moments as well as those for probabilities 565 

were still derived assuming normality of inflows for each month of the year (January–566 

December). Therefore, Lilliefors tests for normality (Lilliefors, 1967) were performed for each 567 

month in the inflow records. Figure S2 included in the supporting information shows the results 568 

from the tests together with normality plots, indicating that normality is reasonable only for 569 
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January, October, November and December. Inflow data for all other eight months were rejected 570 

to follow a Gaussian distribution.  571 

After running the vectorized FP model optimization with input data from the Sobradinho 572 

reservoir, the following results (shown in Tables S1 and S2 in the supporting information) were 573 

obtained for every month of the year (𝑡 = 1,… ,12):  574 

 LDR parameters (𝑘𝑡);  575 

 First (𝔼(𝑆𝑡)) and second moments (𝔼(𝑆𝑡
2)) as well as variance (𝑉𝑎𝑟(𝑆𝑡)) of storage;  576 

 Probabilities of containment (ℙt
con), deficit (ℙt

def), and spill (ℙt
sp);  577 

 First (𝔼(𝛿𝑡)) and second moments (𝔼(𝛿𝑡
2)) as well as variance (𝑉𝑎𝑟(𝛿𝑡)) of deficit;  578 

 First (𝔼(𝑆𝑝𝑡)) and second moments (𝔼(𝑆𝑝𝑡
2)) as well as variance (𝑉𝑎𝑟(𝑆𝑝𝑡)) of spill. 579 

Next, same statistics (M1 and M2 stand for first and second moments, respectively) were 580 

calculated using the optimal values of 𝑘𝑡 by conducting a simulation model under the generated 581 

1,000-year inflow scenario. Therefore, the FP model results were validated if they were close to 582 

those obtained by the long-period simulation in terms of the objective function value and the 583 

storage∕deficit∕spill moments as well as probabilities of containment∕deficit∕spill. Figure 3 584 

compares the FP model optimization and simulation results when the FP optimal policies derived 585 

under Gaussian inflow assumption are simulated against a 1,000-year independent non-Gaussian 586 

inflow series. The agreement is very good, and the difference between optimization and 587 

simulation objective function values is just 0.32%. The only major issue was an underestimation 588 

of the moment of spill for the month of March (optimization provided 𝔼(𝑆𝑝𝑡) = 0.0081 against 589 

the simulated 𝑀1(𝑆𝑝𝑡) = 0.0401, as displayed in Tables S2 and S4 in the supporting 590 

information, respectively). 591 



manuscript in the format required for Water Resources Research  

 

 592 

Figure 3. Comparison of FP optimization and simulation results when the optimal policies 593 

derived under Gaussian inflow assumption are simulated against a long-term non-Gaussian 594 

inflow series  595 
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Therefore, normality assumption has not been a restriction in the FP model for the case 596 

studied. Moreover, FP model provides accurate estimations of random variables up to second 597 

moments and also accurate estimations of probabilities of important storage states. However, to 598 

further investigate the issue and to quantify the impact of both normality and independence of 599 

inflows assumptions on the optimal polices derived by the FP model, we subsequently compare 600 

the results of FP, SDP, and TSP2 methods against different inflow scenarios. These scenarios 601 

include non-normal, serially-correlated historical inflow times series having lag-1 serial 602 

correlation coefficients as reported in Table 2. Among different TSP models, TSP2 is used here 603 

because it is the implicit stochastic optimization counterpart model of the FP model as both of 604 

them consider non-zero second moments of storages and employ S-type operating policy. 605 

 606 

Table 2: Serial correlation coefficients of historical time series  607 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Corr. 
Coef. 

0.54 0.76 0.65 0.82 0.93 0.97 0.98 0.95 0.84 0.73 0.66 -0.04 

Different optimization and simulation experiments are conducted including 1) simulating 608 

the derived-by-FP policies against a) a 85-year historical inflow time series where inflows are 609 

neither Gaussian nor independent, b) a 85-year Gaussian independent synthetic inflow time 610 

series, and c) a 1,000-year Gaussian independent synthetic inflow time series, 2) running the 611 

TSP2 model using the 85-year Non-Gaussian correlated historical inflows, then simulating the 612 

resulting policies against the three inflow scenarios a-c, and 3) running the TSP2 model using the 613 

85-year Gaussian independent synthetic inflow series, then simulating the resulting policies 614 

against the three mentioned a-c inflow scenarios. Additionally, SDP transitional probabilities are 615 

determined from the 85-year historical series (scenarios a) with  𝑛𝑐𝑙𝑎𝑠𝑠 = 7, and its policies are 616 

simulated against scenarios a-c. Table 3 presents the results obtained using MATLAB ® in a 617 

Windows 10 Intel5 laptop:  618 

Table 3: Analysis of the role of normality/non-normality and independence/dependence 619 

of random inflow series 620 

Model Obj. func. in 
optimization 

simulation with 

85-year historical 
non-Gaussian 
correlated inflows 

simulation with 

85-year uncorrelated 
Gaussian synthetic 
inflows 

simulation with 

1,000-year 
uncorrelated 
Gaussian synthetic 
inflows 

FP 27.08 28.04 28.27 27.30 

CPU seconds 1.44 1.46                 ---  --- 

SDP 27.49 27.84 28.22 27.29 

CPU seconds 4.01 1.46                 ---  --- 

TSP2-Hist 27.92 27.92 28.43 27.50 

CPU seconds ~6000 ---                 ---  --- 

TSP2-Gauss 27.88 27.77 27.88 27.12 

TSP2-Hist uses the 85-year historical monthly inflows, whereas TSP2-Gauss works with 621 

Gaussian independent synthetic inflow time series having the same length and same first and 622 

second moments as those of the historical time series. Therefore, in above results, 28.43 is about 623 

simulating optimal policies obtained from correlated historical inflows (85 years) against 624 

independent Gaussian inflows of the same size (85 years), and 27.77 is about simulating the 625 
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policies obtained from 85-year Gaussian inflow series against 85-year correlated historical 626 

inflows. Additionally, 27.5038 is for simulation the policies obtained from 85-year historical 627 

inflows against a 1,000-year Gaussian independent series, whereas 27.1241 is about simulating 628 

the optimal policies obtained from 85-year Gaussian independent flows against a 1,000-year 629 

Gaussian independent inflow time series. We also mentioned that SDP policies have been 630 

derived using serially correlated non-Gaussian historical inflows, and they are then simulated 631 

against three different scenarios of correlated and non-correlated inflows.        632 

The results presented in Table 3 demonstrate that the assumption of normality and 633 

independence for inflows do not have significant impacts on the optimal policies derived by the 634 

proposed FP and SDP models as the objective function values resulted from optimization and 635 

simulation under the examined scenarios are close and their differences are between 1-4%. Even 636 

if we cannot generalize such an outcome to all other case studies, we believe the same situation 637 

would be the case for long-term reservoir operation problems according to previous experiences 638 

such as Zhang and Ponnambalam (2005). A same analysis and examination can be carried out for 639 

a multireservoir system with respect to the impact of cross correlations of inflows, where the FP 640 

model has a significant advantage over other techniques such as SDP in dealing with the curse of 641 

dimensionality problem.  642 

4.3. Final Remarks and Discussion 643 

In terms of implementation, the FP method here needs only the LDR and equation (26) to 644 

be minimized as an unconstrained objective function while calculating moments in equations 645 

(11) and (12) and if necessary, the various probabilities can be calculated as well using equations 646 

in Appendix B. This extends to multireservoir systems in a similar form as in Mahootchi et al. 647 

(2010) but using an appropriate extension of equation (26). Hardly any stochastic method can be 648 

as simple as this method. Analyses and results presented in Sections 4.1 and 4.2 revealed that the 649 

FP method even under simplifying assumptions of linear decision rules and the non-correlated 650 

inflows still performed well for the case studied. We also elaborated on how the proposed FP 651 

method can deal with other objective functions accounting for storage-dependent purposes such 652 

as recreation and hydropower operations. However, we provide a brief discussion here on the 653 

applicability of the results for other problems including multireservoir systems.   654 

Although more investigation is required regarding simple linear release rules assumption 655 

for large reservoir systems that carry storage crossing years under different inflow and demand 656 

variability and correlation conditions, we think the reason the simple linear policies works well 657 

(like in this case study where there are inter-annual storage happens) is that all future statistics 658 

are used when deriving the parameters 𝑘𝑡. Of course, if the inflow data is not stationary these 659 

parameters not varying over different years won’t work, but that is a completely different 660 

problem which should be studied separately. Note that for this case studied here, inflows were 661 

highly correlated and demands are too as they were considered the same value for all periods. 662 

While expanding the nonlinear quadratic objective function, we also assumed the 663 

beginning-of-month storage and deficit/spill in that month are independent which is another 664 

limitation that need to be considered further in the future. Our simulation experiments showed 665 

the validity of this assumption for most but not all months. The limitations of such investigations 666 

have been studied in Fletcher & Ponnambalam (2008) for systems having high probabilities of 667 

spill/deficit compared to probability of containment, i.e. systems with small storage capacity and 668 

high inflow variability that frequently become full and empty, or systems staying at full or empty 669 



manuscript in the format required for Water Resources Research  

 

storage state for long sustained periods. For example, they also considered correlation of inflow 670 

noise with beginning-of-period storage as a variable whose result was available from 671 

optimization. The simulation results compared well with the FP model results for this 672 

correlation. Additionally, in the problem studied here the probability of deficit has been equal to 673 

one for three months and some few months with nonzero probability of spill, so the bounds have 674 

been hit in some months even for this relatively large reservoir, and the FP method accounting 675 

explicitly for the probabilities of deficits and spills has performed well in terms of the match 676 

between optimization and simulation results for problems where the bounds have been hit 677 

frequently.        678 

As a summary, the FP model 1) accounts for stochasticity of independent, Gaussian and 679 

non-Gaussian inflows explicitly, 2) it has no dimensionality problem and 3) it can address the 680 

nonlinear objective functions no worse than most other optimization methods that use only up to 681 

a second order approximation. These advantages are important considering that there is still no 682 

explicit stochastic optimization method capable of addressing all aspects of nonlinearity, 683 

stochasticity and dimensionality challenges perfectly at such rapid speed as this method. While 684 

FP method can be used to solve systems with hundreds of reservoirs (especially for the long term 685 

operations), other methods will be impossible to apply without significant approximations. The 686 

tradeoffs between approximations in such methods and the simpler linear decision rule used in 687 

multireservoirs and certain independent assumptions in FP method are yet to be studied. 688 

 689 

5 Conclusions 690 

This paper proposes novel extensions to the FP explicit stochastic optimization method 691 

applied to the operation of a water supply reservoir. The main conclusions and contributions are:  692 

1) When the FP approach was introduced by Fletcher and Ponnambalam (1996), Taylor 693 

series approximations were used for the derivation of the first and second storage 694 

moments and the final optimization model had to include also the moments as 695 

decision variables. These typically led to an optimization problem with 36 decision 696 

variables, 12 equality constraints, 12 inequality constraints and 24 bound constraints, 697 

which has been applied in all applications of the FP method. The new implementation 698 

in this paper considerably simplified the original highly-constrained nonlinear 699 

optimization problem to a completely unconstrained, vectorized and faster 12-700 

variable (linear decision rule parameters) optimization model that is able to explicitly 701 

determine first and second statistical moments of storage, deficit, and spill as well as 702 

probabilities of deficit, containment, and spill. Also, it is easy to see that this provides 703 

at least a 27 times speedup. In addition to this, the computational efficiency also 704 

increases significantly for using unconstrained instead of constrained optimization. 705 

The significance of the proposed modifications was investigated through the 706 

application of the new procedure to the monthly operation of the Sobradinho 707 

reservoir, Brazil.  708 

2) New expressions were proposed for first and second moments of deficit and spill 709 

terms. These expressions together with already-derived second moments of storage 710 

were then incorporated in the FP model’s nonlinear objective function and provided 711 

new information that considerably improved the model’s ability to estimate the 712 
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expected value of the sum of squared deviations between releases and demands. The 713 

results obtained by the new FP formulation showed agreement with those obtained by 714 

simulating the reservoir operation over a long period using the derived-by-FP release 715 

policies.  716 

3) We also conducted detailed analyses to assess the role of simple linear decision rules 717 

(LDR) and Gaussian independent inflows assumptions employed in the FP method. 718 

The FP method’s results revealed that the derived-by-FP policies based on LDR 719 

performed quite satisfactorily compared to SDP, TSP, and ISP methods, benefiting 720 

from more sophisticated operation policies, even when the derived policies were 721 

simulated against non-Gaussian correlated inflows.  722 

Together with the non-requirement for discretization of storage and inflow state 723 

variables, these characteristics can be of great advantage when compared to other strategies 724 

based on for example SDP, and are especially valuable to the design and operation of 725 

multireservoir systems. The application of the newly proposed extensions to the FP method to 726 

multireservoir systems under different inflow and demand variability and correlation conditions 727 

should be studied in future.  728 
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 740 

A: Derivation of the New Expressions for the Moments of Deficit and Spill 741 

A.1 First Moment of Deficit 742 

Taking expectation of equation (17) gives  743 

𝔼(𝛿𝑡) = 𝔼[𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡) − 𝜂𝑡] ∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡))744 

= [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] ∙ 𝔼(𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡)) − 𝔼(𝜂𝑡 ∙ 𝕝[−∞.𝑆𝑡
𝑚𝑖𝑛](𝑆̂𝑡)) 745 

            (A1) 746 

The expected value of the indicator function of a random variable over any region is the 747 

probability of that random variable occurring within that same region. Thus, the first expectation 748 

https://doi.org/10.5683/SP2/SBQFWO
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in equation (34) represents the probability of deficit ℙt
def (i.e., projected storage below the 749 

minimum) and can be calculated as  750 

𝔼(𝕝[−∞.𝑆𝑡
𝑚𝑖𝑛](𝑆̂𝑡)) = 𝕡𝑡

def = Pr (𝑆̂𝑡 < 𝑆𝑡
𝑚𝑖𝑛)751 

= Pr (𝐼𝑡̅ + 𝜂𝑡 − 𝑘𝑡 < 𝑆𝑡
𝑚𝑖𝑛)752 

= Pr (𝜂𝑡 < 𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)) =∫ 𝑓

𝜂𝑡
(𝜂

𝑡
)𝑑𝜂

𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞

 753 

            (A2) 754 

in which Pr) ( denotes probability. The second term on the right-hand side of equation (A1) 755 

represents the expectation of a function 𝑔(𝜂𝑡) = 𝜂𝑡  .  𝕝[𝑆𝑡
𝑚𝑖𝑛.𝑆𝑡

𝑚𝑎𝑥](𝑆̂𝑡) of the random variable 𝜂𝑡. 756 

Given the expectation property 𝔼(𝑔(𝑋)) =  ∫ 𝑔(𝑥). 𝑓(𝑥)𝑑(𝑥)
+∞

−∞
 in which X is a random 757 

variable and f(x) is its probability density function, then  758 

𝔼(𝜂𝑡 ∙ 𝕝[−∞.𝑆𝑡
𝑚𝑖𝑛](𝑆̂𝑡)) = ∫ [𝜂𝑡 ∙ 𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡)] 𝑓(𝜂
𝑡
)𝑑𝜂

𝑡

+∞

−∞

 (A3) 

This integral can be separated into two parts corresponding to intervals (−∞, 𝑆𝑡
𝑚𝑖𝑛 −759 

(𝐼𝑡̅ − 𝑘𝑡)]  and (𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡), +∞) and finally be expressed only for the limits where the 760 

indicator function is the unity (first interval) as  761 

𝔼(𝜂𝑡 ∙ 𝕝[−∞.𝑆𝑡
𝑚𝑖𝑛](𝑆̂𝑡)) = ∫ 𝜂

𝑡
𝑓

𝜂𝑡
(𝜂

𝑡
)𝑑𝜂

𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞

 (A4) 

Thus, equation (A1) for the first moment of deficit finally becomes  762 

𝔼(𝛿𝑡) = [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] ∙ ∫ 𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞

− ∫ 𝜂𝑡𝑓𝜂𝑡
(𝜂𝑡)𝑑𝜂𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞

 763 

            (A5) 764 

A.2 Second Moment of Deficit 765 

Taking expectation of equation (19) gives  766 

𝔼(𝛿𝑡
2) = [𝑆𝑡

𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)]
2
∙ 𝔼 (𝕝[−∞.𝑆𝑡

𝑚𝑖𝑛](𝑆̂𝑡)) − 2 [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)]767 

∙ 𝔼 (𝜂𝑡 ∙ 𝕝[−∞.𝑆𝑡
𝑚𝑖𝑛](𝑆̂𝑡)) + 𝔼(𝜂𝑡

2 ∙ 𝕝[−∞.𝑆𝑡
𝑚𝑖𝑛](𝑆̂𝑡)) 768 

            (A6) 769 
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Using the same principle applied in equation (A3) for the second and third terms and 770 

substituting equation (A2) yields the expression for the second moment of deficit:  771 

𝔼(𝛿𝑡
2) = [𝑆𝑡

𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)]
2
∙ ∫ 𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞

− 2 [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)]772 

∙ ∫ 𝜂𝑡𝑓𝜂𝑡
(𝜂𝑡)𝑑𝜂𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞

+ ∫ 𝜂𝑡
2𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

−∞

 773 

             (A7) 774 

 775 

A.3 First Moment of Spill 776 

Taking expectation of equation (16) gives  777 

𝔼(𝑆𝑝𝑡) = 𝔼([(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡
𝑚𝑎𝑥 + 𝜂

𝑡
] ∙ 𝕝[𝑆𝑡

𝑚𝑎𝑥.+∞](𝑆̂𝑡))778 

= [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡
𝑚𝑎𝑥] ∙ 𝔼 (𝕝[𝑆𝑡

𝑚𝑎𝑥.+∞](𝑆̂𝑡)) + 𝔼(𝜂
𝑡
∙ 𝕝[𝑆𝑡

𝑚𝑎𝑥.+∞](𝑆̂𝑡)) 779 

            (A8) 780 

The first expectation in equation (A8) represents the probability of spill 𝕡𝑡
sp

 (i.e., 781 

projected storage above maximum) and can be calculated as  782 

𝔼(𝕝[𝑆𝑡
𝑚𝑎𝑥.+∞](𝑆̂𝑡)) = 𝕡𝑡

sp
783 

= Pr (𝑆̂𝑡 > 𝑆𝑡
𝑚𝑎𝑥) =784 

= Pr (𝐼𝑡̅ + 𝜂𝑡 − 𝑘𝑡 > 𝑆𝑡
𝑚𝑎𝑥)785 

= Pr (𝜂𝑡 > 𝑆𝑡
𝑚𝑎𝑥 − (𝐼𝑡̅ − 𝑘𝑡)) = ∫ 𝑓

𝜂𝑡
(𝜂

𝑡
)𝑑𝜂

𝑡

+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

 786 

             (A9) 787 

Using the same principle applied in equation (A3) for the second expectation in (A8) and 788 

substituting equation (A9) yields the expression for the first moment of spill:  789 

𝔼(𝑆𝑝𝑡) = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡
𝑚𝑎𝑥] ∙ ∫ 𝑓

𝜂𝑡
(𝜂

𝑡
)𝑑𝜂

𝑡

+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

+ ∫ 𝜂
𝑡
𝑓

𝜂𝑡
(𝜂

𝑡
)𝑑𝜂

𝑡

+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

 790 

            (A10)  791 

A.4 Second Moment of Spill 792 

Taking expectation of equation (18) gives  793 



manuscript in the format required for Water Resources Research  

 

𝔼(𝑆𝑝𝑡
2) = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡

𝑚𝑎𝑥]2 ∙ 𝔼 (𝕝
[𝑆𝑡

𝑚𝑎𝑥.+∞]
(𝑆̂𝑡)) + 2 [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡

𝑚𝑎𝑥] ∙ 𝔼 (𝜂𝑡 ∙ 𝕝[𝑆𝑡
𝑚𝑎𝑥.+∞]

(𝑆̂𝑡))794 

+ 𝔼(𝜂𝑡
2 ∙ 𝕝

[𝑆𝑡
𝑚𝑎𝑥.+∞]

(𝑆̂𝑡)) 795 

             (A11) 796 

Using the same principle applied in equation (A3) for the second and third terms and 797 

substituting equation (A9) yields the expression for the second moment of spill:  798 

𝔼(𝑆𝑝𝑡
2) = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡

𝑚𝑎𝑥]2 ∙ ∫ 𝑓𝜂𝑡
(𝜂𝑡)𝑑𝜂𝑡

+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

+ 2 [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡
𝑚𝑎𝑥]799 

∙ ∫ 𝜂𝑡𝑓𝜂𝑡
(𝜂𝑡)𝑑𝜂𝑡

+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

+ ∫ 𝜂𝑡
2𝑓𝜂𝑡

(𝜂𝑡)𝑑𝜂𝑡

+∞

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

 800 

             (A12) 801 

Similar to equations (A2) and (A9), the probability of containment ℙ𝑡
con can be expressed 802 

as  803 

𝔼(𝕝[𝑆𝑡
𝑚𝑖𝑛.𝑆𝑡

𝑚𝑎𝑥](𝑆̂𝑡)) = ℙ𝑡
con = Pr (𝑆𝑡

𝑚𝑖𝑛 ≤ 𝑆̂𝑡 ≤ 𝑆𝑡
𝑚𝑎𝑥)804 

= Pr (𝑆𝑡
𝑚𝑖𝑛 ≤ 𝐼𝑡̅ + 𝜂𝑡 − 𝑘𝑡 ≤ 𝑆𝑡

𝑚𝑎𝑥)805 

= Pr (𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡) ≤ 𝜂𝑡 ≤ 𝑆𝑡

𝑚𝑎𝑥 − (𝐼𝑡̅ − 𝑘𝑡)) =∫ 𝑓
𝜂𝑡
(𝜂

𝑡
)𝑑𝜂

𝑡

𝑆𝑡
𝑚𝑎𝑥−(𝐼𝑡̅−𝑘𝑡)

𝑆𝑡
𝑚𝑖𝑛−(𝐼𝑡̅−𝑘𝑡)

 806 

             (A13)  807 

B: Expressions Assuming Gaussian Inflows 808 

The probability density function of a zero-mean random variable 𝜂 following a Gaussian 809 

distribution of the form 𝑁(0, Var(𝜂𝑡)) is given by  810 

𝑓𝜂𝑡
(𝜂) =

1

√2𝜋Var(𝜂𝑡)

exp [
𝜂2

2Var(𝜂𝑡)
] 

(B1) 

Its correspondent cumulative distribution function (CDF) is  811 

𝐹𝜂𝑡
(𝜂) = Pr(𝜂𝑡 ≤ 𝜂) = ∫ 𝑓(𝑡)𝑑𝑡 =

1
2

𝜂

−∞
[
 
 
 

1 + erf

(

 
𝜂

√2Var(𝜂𝑡))

 

]
 
 
 

 812 

            (B2) 813 
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in which erf (. ) is the error function formulated as  814 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑥

0

𝑑𝑡 (B3) 

With these, the solutions for the three types of integrals appearing in the expressions of 815 

moments of storage (equations (13) and (14)), deficit (equations (19) and (20)) and spill 816 

(equations (21) and (22)), as well as in the expressions for probabilities (equations (A3), (A9) 817 

and (A13)) are given as below, assuming generic lower L and upper U limits of integration:  818 

∫ 𝑓
𝜂𝑡
(𝜂)𝑑𝜂 = 𝐹𝜂𝑡

(𝑈) − 𝐹𝜂𝑡
(𝐿)

𝑈

𝐿

=
1

2
[𝑒𝑟𝑓 (

𝑈

√2𝑉𝑎𝑟(𝜂𝑡)
) − 𝑒𝑟𝑓 (

𝐿

√2𝑉𝑎𝑟(𝜂𝑡)
)] 819 

            (B4) 820 

∫ 𝜂𝑓𝜂𝑡
(𝜂)𝑑𝜂𝑡 =

1

√2𝜋𝑉𝑎𝑟(𝜂𝑡)
∫ 𝜂

𝑈

𝐿

𝑒𝑥𝑝 [
𝜂2

2𝑉𝑎𝑟(𝜂𝑡)
]

𝑈

𝐿

𝑑𝜂821 

= −√
𝑉𝑎𝑟(𝜂𝑡)

2𝜋
[𝑒𝑥𝑝 (

−𝑈2

2𝑉𝑎𝑟(𝜂𝑡)
) − 𝑒𝑥𝑝 (

−𝐿2

2𝑉𝑎𝑟(𝜂𝑡)
)] 822 

             (B5)  823 

∫ 𝜂2𝑓𝜂𝑡
(𝜂)𝑑𝜂𝑡 =

1

√2𝜋𝑉𝑎𝑟(𝜂𝑡)
∫ 𝜂2

𝑈

𝐿

𝑒𝑥𝑝 [
𝜂2

2𝑉𝑎𝑟(𝜂𝑡)
]

𝑈

𝐿

𝑑𝜂 =824 

= −√
𝑉𝑎𝑟(𝜂𝑡)

2𝜋
[𝑈 𝑒𝑥𝑝 (

−𝑈2

2𝑉𝑎𝑟(𝜂𝑡)
) − 𝐿 𝑒𝑥𝑝 (

−𝐿2

2𝑉𝑎𝑟(𝜂𝑡)
)]825 

+
𝑉𝑎𝑟(𝜂𝑡)

2
[𝑒𝑟𝑓 (

𝑈

√2𝑉𝑎𝑟(𝜂𝑡)
) − 𝑒𝑟𝑓 (

𝐿

√2𝑉𝑎𝑟(𝜂𝑡)
)] 826 

             (B6) 827 

The limits of integration L and U can be changed accordingly in order to derive the final 828 

expressions. The expressions for the storage moments were already shown in equations (13) and 829 

(14). The final expressions for probabilities and moments of deficit and spill are displayed 830 

below, using LB and UB defined in section 2.1.  831 

 Probability of containment:  832 

ℙ𝑡
𝑐𝑜𝑛 =

1

2
[𝑒𝑟𝑓(𝑈𝐵) − 𝑒𝑟𝑓(𝐿𝐵)] (B7) 

 Probability of deficit:  833 
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ℙ𝑡
def =

1

2
[1+erf(LB)] (B8) 

 Probability of spill:  834 

ℙ𝑡
sp

=
1

2
[1−erf(UB)] (B9) 

 First moment of deficit:  835 

𝔼(𝛿𝑡) = [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] ℙ𝑡

def + √
Var(𝜂𝑡)

2𝜋
exp(−LB2) 836 

             (B10) 837 

 Second moment of deficit:  838 

𝔼(𝛿𝑡
2) = [𝑆𝑡

𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)]
2
 ℙ𝑡

def − 2 [𝑆𝑡
𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] [−√

Var(𝜂𝑡)

2𝜋
exp(−LB2)]839 

− √
Var(𝜂𝑡)

2𝜋
[𝑆𝑡

𝑚𝑖𝑛 − (𝐼𝑡̅ − 𝑘𝑡)] exp(−LB2) +
Var(𝜂𝑡)

2
[1 + erf(𝐿𝐵)] 840 

             (B11) 841 

 First moment of spill:  842 

𝔼(𝑆𝑝𝑡) = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡
𝑚𝑎𝑥] ℙ𝑡

sp
+ √

Var(𝜂𝑡)

2𝜋
exp(−UB2) 843 

             (B12) 844 

 Second moment of spill:  845 

𝔼(𝑆𝑝𝑡
2) = [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡

𝑚𝑎𝑥]2  ℙ𝑡
sp

+ 2 [(𝐼𝑡̅ − 𝑘𝑡) − 𝑆𝑡
𝑚𝑎𝑥] [√

Var(𝜂𝑡)

2𝜋
exp(−UB2)]846 

+ √
Var(𝜂𝑡)

2𝜋
[𝑆𝑡

𝑚𝑎𝑥 − (𝐼𝑡̅ − 𝑘𝑡)] exp(−UB2) +
Var(𝜂𝑡)

2
[1 − erf(UB)] 847 

            (B13) 848 
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C: Vectorization 849 

Let 𝒌 = {𝑘1, ⋯ , 𝑘12}
⊤ be the vector formed by the twelve unknown LDR parameters. 850 

Similarly, we can define vectors for minimum and maximum storages as well as for monthly 851 

mean inflow and inflow variances, respectively:  852 

S𝑚𝑖𝑛 = {𝑆1
𝑚𝑖𝑛. ⋯ . 𝑆12

𝑚𝑖𝑛}          (C1) 853 

S𝑚𝑎𝑥 = {𝑆1
𝑚𝑎𝑥 . ⋯ . 𝑆12

𝑚𝑎𝑥}          (C2) 854 

I̅ = {𝐼1̅.⋯ . 𝐼1̅2}          (C3) 855 

Var𝜂 = {Var(𝜂1).⋯ . Var(𝜂12)}         (C4) 856 

Corresponding vectorized versions of LB and UB may be written as  857 

𝐿𝐵 =
𝑆𝑚𝑖𝑛−(𝐼−̅𝑘)

√2𝑉𝑎𝑟𝜂
          (C5) 858 

𝑈𝐵 =
𝑆𝑚𝑎𝑥−(𝐼−̅𝑘)

√2𝑉𝑎𝑟𝜂
          (C6) 859 

which, in turn, provide a means to write the vectorized expression for the first moment of storage 860 

(equation (13)):  861 

𝔼1 =
𝐼 ̅ − 𝑘

2
[𝑒𝑟𝑓(𝑈𝐵) − 𝑒𝑟𝑓(𝐿𝐵)] − √

𝑉𝑎𝑟𝜂

2𝜋
[𝑒𝑥𝑝(−𝑈𝐵2) − 𝑒𝑥𝑝(−𝐿𝐵2)]862 

+
𝑆𝑚𝑖𝑛

2
[1+ 𝑒𝑟𝑓(𝐿𝐵)] +

𝑆𝑚𝑎𝑥

2
[1− 𝑒𝑟𝑓(𝑈𝐵)] 863 

            (C7) 864 

where E1 =  {𝔼(𝑆12). 𝔼(𝑆1).⋯ . 𝔼(𝑆11)}
⊤ and all operations are conducted element-wise. 865 

Alternative vector expressions can be easily derived for second storage moment (E2) and 866 

moments of deficit (𝔼1δ, E2δ) and spill (E1Sp, E2Sp). Defining two other vectors  867 

𝔼10 = {𝔼(𝑆12). 𝔼(𝑆1).⋯ . 𝔼(𝑆11)}
 ⊺        (C8) 868 

𝔼20 = {𝔼(𝑆12
2 ). 𝔼(𝑆1

2).⋯ . 𝔼(𝑆11
2 )} ⊺         (C9)  869 

the vectorized version of the objective function (28) may be written as  870 

𝑍 = 𝑠𝑢𝑚[𝔼20 + 2 ∙ (𝑘 − 𝐷) ∙ 𝔼10 + (𝑘 − 𝐷)2 + 𝔼2𝛿 − 2 ∙ 𝔼10 ∙ 𝔼1𝛿 − 2 ∙ (𝑘 − 𝐷) ∙ 𝔼1𝛿871 

+ 𝔼2𝑆𝑝 + 2 ∙ 𝔼10 ∙ 𝔼1𝑆𝑝 + 2 ∙ (𝑘 − 𝐷) ∙ 𝔼1𝑆𝑝] 872 

            (C10) 873 
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for demand vector D = {𝐷1, ⋯ , 𝐷12}
⊤ and operator sum [.] representing the sum of array elements. 874 

All these vectorized expressions are straightforwardly implemented in matrix programming 875 

environments such as MATLAB or Octave. 876 

D: Evaluating the Role of the Second Moment of Storage 877 

Omitting the deficit and surplus terms at this stage, by comparing the results of the FP 878 

method in which 𝑍1 (equation (25)) and 𝑍2 (equation (26)) are used as the objective function and 879 

simulating their policies, we can evaluate how important the role of incorporating the second 880 

moments of storage is.  881 

For convenience, the implementations using 𝑍1 and 𝑍2 were named Model 1 and Model 882 

2, respectively. Figures D1 (Model 1) and D2 (Model 2) show comparison of statistics obtained 883 

by optimization and simulation for both models. Note that in both optimization and simulation 884 

modes, the values of variables (inflow, storage, release, spill, deficit) in units of volume were 885 

scaled by the volume equivalent to the mean annual flow. 886 

 887 

Figure D1. Comparison of (a) first and (b) second moments of storage found by found by the 888 

FP method for Model 1  889 

 890 

 891 

Figure D2. Comparison of (a) first and (b) second moments of storage found by the FP 892 

method for Model 2 893 

As mentioned before, the simulation of the reservoir operation employed the LDR-guided 894 

policies derived from optimization (optimal 𝑘𝑡 values) for 1,000 years from which the simulated 895 

first and second (sample) moments of storage were calculated for every month of the year. From 896 
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the figures, acceptable match between simulated and optimization-based first and second 897 

moments are seen. However, to be more precise, the sums of squared errors between optimized 898 

and simulated first (𝑆𝑆𝐸1) and second moments (𝑆𝑆𝐸2) for both models were used for 899 

comparison. 𝑆𝑆𝐸1 values were 0.00094 (0.00065) whereas 𝑆𝑆𝐸2 was 0.060 (0.049) for Model 1 900 

(Model 2). Therefore, the match between optimization and simulation-based raw moments of 901 

storage for Model 2 (with exact objective function) was better than that for Model 1 (with zeroth-902 

order Taylor approximation of the objective function). It is also important to evaluate the 903 

performance of these models in terms of the most important optimality criterion, i.e., the 904 

objective function value. For Model 1, while the objective function value of the optimization 905 

model was almost zero (𝑍1
𝑜𝑝𝑡 = 2.75 × 10−7), the simulated objective function value was quite 906 

different (𝑍1
𝑠𝑖𝑚 = 0.79). However, for Model 2, not only the simulated objective function 907 

(𝑍2
𝑠𝑖𝑚 = 0.61) was about 23% better than that of Model 1, it also better matched the optimization 908 

objective function (𝑍2
𝑜𝑝𝑡= 0.70).  909 

E: Evaluating the Role of Deficits and Spills 910 

Looking carefully at the most important set of equations (3), representing the dynamics of 911 

a nonlinear bounded system, one can notice that 𝑈𝑡 is not the total release from the reservoir, but 912 

part of the release that makes the end-of-period storage volume contained. In all applications of 913 

the FP model so far only 𝑈𝑡 has been used in the objective function meaning that the role of 914 

deficit and spill terms have not been included in the objective function evaluation of any 915 

candidate solution. However, we show here that consideration of deficit and spill terms is quite 916 

important when a nonlinear objective function like the one used in this study is being considered. 917 

The importance of the issue is because penalizing the objective function due to deficit or spill 918 

occurrences is all what the model’s objective is about. To account for these terms, we derived 919 

new expressions for the first and second moments of deficit and spill and used them in the 920 

expected value of the objective function. We first analyze the role of incorporating the deficit 921 

term. Typically, spillway capacity is very large, so in cases where the downstream river’s safe 922 

discharge is also large enough, we may not care about spill volumes to be penalized in the 923 

objective function.  924 

Role of deficits 925 

To evaluate how important the incorporation of the deficit term in the objective function 926 

is, two other FP formulations were compared, one that uses only 𝑈𝑡 in the objective function 927 

(with consideration of the second moment of storage) (Model 2B), and another using the deficit 928 

term and new expressions for its first (𝔼(𝛿𝑡)) and second 𝔼(𝛿𝑡
2) moments added to the 929 

optimization model formulation (Model 3). However, in both cases the release made in the 930 

simulation model is the actual total release including 𝑈𝑡 and 𝛿𝑡. Therefore, the difference 931 

between simulated objective functions in Model 2B and Model 3 will be due to the impact of 932 

how the deficit term has been considered in the optimization model’s formulation. Note that 933 

Model 2B is the same as Model 2 introduced in the previous section in optimization mode, and 934 

their difference is just in simulation mode. The deficit term is included in simulated releases in 935 

Model 2B whereas they are not in Model 2. For Model 3, the objective function is  936 
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𝑍3 = ∑[𝔼(𝑆𝑡−1
2 ) + 2(𝑘𝑡 − 𝐷𝑡). 𝔼(𝑆𝑡−1) + (𝑘𝑡 − 𝐷𝑡)

2 + 𝔼(𝛿𝑡
2) − 2𝔼(𝑆𝑡−1) ∙ 𝔼(𝛿𝑡)

12

𝑡=1

937 

− 2(𝑘𝑡 − 𝐷𝑡). 𝔼(𝛿𝑡)] 938 

            (E1) 939 

The objective function values in optimization (simulation) for Model 2B and Model 3 940 

were 0.7 (0.61) and 3.69 (3.52), respectively. We also tested the case when the target demand 941 

(80% of the mean annual flow) was doubled because the larger the demand, the more important 942 

the impact of incorporating deficit is expected to be. The objective function values in 943 

optimization (simulation) were 1.31 (9.63) and 7.15 (6.81) for Models 2B and 3, respectively. 944 

We observe that for the newly derived objective function expressions (Model 3), the objective 945 

function values in simulation and optimization matched better. However, there was a big gap 946 

between these values with the old expressions (Model 2B) where the optimization model always 947 

underestimated the real objective function value (simulated value). Another interesting point to 948 

know is what we would lose if we modeled the second moment of storage accurately, but still did 949 

not account for deficit (Model 2). The Model 3’s objective function value (both simulation and 950 

optimization) as the correct value was about 3.62 (estimated by averaging optimization and 951 

simulation values), whereas it was underestimated as 0.70 by Model 2. Therefore, 3.62 - 0.70 = 952 

2.92 is due to not accounting for the role of deficits in the optimization model formulation. On 953 

the other hand, the difference between the objective functions values of Model 3 and Model 1 is 954 

3.62 − 2.75 × 10−7 = 3.62. Therefore, from the two sources of error associated with Model 1, 955 

(considering neither the second moments of storages nor first and second moments of deficits), 956 

0.70∕3.62 = 19% is because of not accounting for the second moments of storages and 2.92∕3.62 957 

= 81% is due to not modeling deficits appropriately.   958 

Role of spills 959 

A similar analysis was conducted for evaluating the role of incorporating spills by 960 

running two other types of models, one where the spill term is not accounted for in the 961 

optimization model formulation (Model 3B) versus another in which such term is included using 962 

the newly derived expressions for the first (𝔼(𝑆𝑝𝑡)) and second (𝔼(𝑆𝑝𝑡
2)) moments of spill 963 

(Model 4). Note that for both cases the surplus term is included in the simulation model while 964 

determining reservoir releases and evaluating the objective function value. Additionally, to be 965 

fair and to analyze only the effect of spills without having the results being affected by the 966 

influence of deficit, the deficit term is considered in both optimization and simulation for both 967 

Models 3B and 4. Model 3B is the same as Model 3 in optimization mode, and their difference is 968 

only in simulation mode. For Model 3B, spills are considered while simulating FP’s optimal 969 

policies whereas they are not for Model 3. For Model 4, the objective function is equation (26), 970 

including all moments of storage, deficit, and spill in both optimization and simulation. To have 971 

the role of spills more sensed, experiments were carried out for inflow mean values equal to 2 972 

times of the normal inflows. The objective function values in optimization (simulation) were 973 

8.91 (26.04) and 21.30 (21.52) for Models 3B and 4, respectively. We see that Model 4 has 974 

improved the agreement between optimization and simulation significantly as the difference 975 

between optimization and simulation objective function values is around 192% for Model 3B, 976 
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whereas it is only 1% for Model 4. See Figure E1 for a comparison of simulation-optimization 977 

results for 1000 years of simulated Gaussian inflows. 978 

 

 979 

Figure E1. Results from the proposed formulation/implementation of the FP model applied to 980 

the Sobradinho reservoir with Gaussian inflows. 981 
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Figure S1. Comparison of (a) mean and (b) standard deviation of historical in�ow records against

synthetic scenario values.
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Figure S2. Normality plots and results from the Lilliefors test for each month in the in�ow records.

When all data points fall near the line, the assumption of normality is reasonable.
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Table S1. Results from the FP Optimization: Moments of Storage, Probabilities and LDR Parameters

1st Moment 2nd Moment Variance Prob. of Prob. of Prob. of LDR Parameter

Month (rmaf) (rmaf2) (rmaf2) Containment De�cit Spill (rmaf)

t E (St ) E
(
S2t
)

Var (St ) Pcon
t Pdef

t P
sp
t kt

1 1.6087 2.8613 0.2733 0.92 0.08 0.00 0.1907

2 2.3746 6.2396 0.6011 0.98 0.02 0.00 -0.5177

3 3.1131 10.5700 0.8785 0.97 0.01 0.02 -1.3273

4 3.4661 12.4244 0.4109 0.99 0.00 0.01 -2.0419

5 3.2466 10.7316 0.1911 1.00 0.00 0.00 -2.3836

6 2.7537 7.6265 0.0437 1.00 0.00 0.00 -2.1641

7 2.1637 4.7046 0.0232 1.00 0.00 0.00 -1.6712

8 1.5074 2.2882 0.0159 1.00 0.00 0.00 -1.0812

9 0.8063 0.6502 0.0000 0.00 1.00 0.00 -0.0291

10 0.8069 0.6511 0.0001 0.01 0.99 0.00 -0.0482

11 0.8063 0.6502 0.0000 0.00 1.00 0.00 3.2033

12 0.9652 0.9947 0.0631 0.45 0.55 0.00 0.5191

rmaf: ratio of MAF (mean annual �ow)
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Table S2. Results from the FP Optimization: Moments of De�cit and Spill

De�cit Spill

1st Moment 2nd Moment Variance 1st Moment 2nd Moment Variance

Month (rmaf) (rmaf2) (rmaf2) (rmaf) (rmaf2) (rmaf2)

t E (δt ) E
(
δ 2t
)

Var (δt ) E
(
Spt

)
E
(
Sp2t

)
Var

(
Spt

)
1 0.0211 0.0096 0.0091 0.0000 0.0000 0.0000

2 0.0073 0.0040 0.0039 0.0001 0.0000 0.0000

3 0.0026 0.0016 0.0015 0.0081 0.0053 0.0052

4 0.0000 0.0000 0.0000 0.0015 0.0006 0.0006

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 0.3958 0.1695 0.0129 0.0000 0.0000 0.0000

10 0.3325 0.1313 0.0208 0.0000 0.0000 0.0000

11 3.3061 11.0209 0.0909 0.0000 0.0000 0.0000

12 0.2114 0.1271 0.0824 0.0000 0.0000 0.0000

April 25, 2019, 9:53am



X - 6 :

Table S3. Results from the Monte Carlo Simulation: Sample Moments of Storage and Frequencies

Sample Sample Sample

1st Moment 2nd Moment Variance Freq. of Freq. of Freq. of

Month (rmaf) (rmaf2) (rmaf2) Containment De�cit Spill

t M1 (St ) M2 (St ) var (St ) Fcon
t Fdef

t F
sp
t

1 1.6170 2.8687 0.2543 0.93 0.07 0.00

2 2.3984 6.3328 0.5813 1.00 0.00 0.00

3 3.0392 9.8646 0.6284 0.97 0.00 0.03

4 3.4864 12.6751 0.5204 0.98 0.00 0.02

5 3.2357 10.6288 0.1594 1.00 0.00 0.01

6 2.7583 7.6494 0.0414 1.00 0.00 0.00

7 2.1623 4.6994 0.0240 1.00 0.00 0.00

8 1.5091 2.2936 0.0161 1.00 0.00 0.00

9 0.8070 0.6514 0.0001 0.01 0.99 0.00

10 0.8072 0.6516 0.0001 0.01 0.99 0.00

11 0.8063 0.6502 0.0000 0.00 1.00 0.00

12 0.9451 0.9475 0.0543 0.39 0.61 0.00
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Table S4. Results from the Monte Carlo Simulation: Sample Moments of De�cit and Spill

De�cit Spill

Sample Sample Sample Sample Sample Sample

1st Moment 2nd Moment Variance 1st Moment 2nd Moment Variance

Month (rmaf) (rmaf2) (rmaf2) (rmaf) (rmaf2) (rmaf2)

t M1 (δt ) M2 (δt ) var (δt ) M1
(
Spt

)
M2

(
Spt

)
var

(
Spt

)
1 0.0208 0.0077 0.0073 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0401 0.0869 0.0854

4 0.0000 0.0000 0.0000 0.0014 0.0004 0.0004

5 0.0000 0.0000 0.0000 0.0034 0.0024 0.0023

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 0.3964 0.1705 0.0133 0.0000 0.0000 0.0000

10 0.3360 0.1329 0.0200 0.0000 0.0000 0.0000

11 3.3153 11.0726 0.0817 0.0000 0.0000 0.0000

12 0.2311 0.1268 0.0735 0.0000 0.0000 0.0000
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