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Abstract

Ice shelf fracture is responsible for roughly half of Antarctic ice mass loss in the form of calving and can weaken buttressing

of upstream ice flow. Large uncertainties associated with the ice sheet response to climate variations are due to a poor

understanding of these fracture processes and how to model them. Here, we address these problems by developing an anisotropic,

nonlocal, creep damage model for large-scale shallow-shelf ice flow. This model can be used to study the full evolution of fracture

from initiation of crevassing to rifting that eventually causes tabular calving. While previous ice shelf fracture models have

largely relied on simple expressions to estimate crevasse depths, our model parameterizes fracture directly in 3-D. We also

develop an efficient supporting numerical framework based on the material point method, which avoids advection errors. Using

an idealized marine ice sheet, we test our methods in comparison to a damage model that parameterizes crevasse depths, as well

as a modified version of the latter model that accounts for how necking and mass balance affect damage. We demonstrate that

the creep damage model is best suited for capturing weakening and rifting, and that anisotropic damage reproduces typically

observed fracture patterns better than isotropic damage. However, we also show how necking and mass balance can significantly

influence damage on decadal timescales. Because these processes are currently absent from the creep damage parameterization,

we discuss the possibility for a combined approach between models to best represent mechanical weakening and tabular calving

within long-term simulations.
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Key Points

 Our shallow-shelf creep damage model can represent the full evolution of ice shelf 
fracture from crevasse initiation to tabular calving

 Strongly anisotropic damage produces sharp rift patterns more consistent with 
observations than isotropic damage

 Conversely, zero-stress damage poorly captures rifting, but is easily modified to represent
mass balance/necking effects. Necking mostly acts to heal damage.

† Current affiliation: Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA

1

1



Abstract

Ice shelf fracture is responsible for roughly half of Antarctic ice mass loss in the form of calving 

and can weaken buttressing of upstream ice flow. Large uncertainties associated with the ice 

sheet response to climate variations are due to a poor understanding of these fracture processes 

and how to model them. Here, we address these problems by developing an anisotropic, 

nonlocal, creep damage model for large-scale shallow-shelf ice flow. This model can be used to 

study the full evolution of fracture from initiation of crevassing to rifting that eventually causes 

tabular calving. While previous ice shelf fracture models have largely relied on simple 

expressions to estimate crevasse depths, our model parameterizes fracture directly in 3-D. We 

also develop an efficient supporting numerical framework based on the material point method, 

which avoids advection errors. Using an idealized marine ice sheet, we test our methods in 

comparison to a damage model that parameterizes crevasse depths, as well as a modified version 

of the latter model that accounts for how necking and mass balance affect damage. We 

demonstrate that the creep damage model is best suited for capturing weakening and rifting, and 

that anisotropic damage reproduces typically observed fracture patterns better than isotropic 

damage. However, we also show how necking and mass balance can significantly influence 

damage on decadal timescales. Because these processes are currently absent from the creep 

damage parameterization, we discuss the possibility for a combined approach between models to 

best represent mechanical weakening and tabular calving within long-term simulations.

Plain Language Summary

Fracture of ice shelves decreases buttressing of grounded ice and accounts for approximately half

of ice mass loss in Antarctica in the form of calving. Here, we introduce a damage modeling 

framework for large-scale shallow ice shelf fracture that is based on a creep damage approach 
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used previously to model individual crevasses, where the accumulation and weakening effects of 

microcracks is calibrated to laboratory tests. Our damage model parameterizes fracture directly 

in 3-D, and in tensorial form to account for crevasse orientation. Using the material point 

methods from Part I, we maintain computational efficiency and avoid diffusion errors during 

damage advection. We demonstrate on an idealized ice configuration that our methods can 

represent fracture evolution ranging from crevasse initiation to rifting, and that anisotropic 

damage produces rift patterns that better match observations than isotropic damage. Furthermore,

we show how a previously-proposed damage model that parameterizes crevasse depths is 

relatively ill-suited for capturing rifting; however, it can easily be modified to account for the 

effects of mass balance and necking on damage evolution, and we demonstrate that these 

processes have a significant impact on decadal timescales. We then discuss potential approaches 

for implementing these additional processes into the creep damage model.

1. Introduction

Fracture of ice shelves strongly impacts the evolution of the Antarctic Ice Sheet and its 

interaction with climate. Approximately half of ice mass loss is attributed to fracture-induced 

calving, while the other half is attributed to ocean-driven basal melting (Depoorter et al., 2013; 

Rignot et al., 2013; Paolo et al., 2015). Furthermore, mechanical weakening associated with 

fracture processes can decrease ice shelf buttressing of upstream grounded ice flow into the 

ocean, leading to sea level rise (e.g. Borstad et al., 2013; MacGregor et al., 2012). For example, 

the Antarctic glaciers that will likely contribute the most to sea level rise in the next centuries, 

Pine Island and Thwaites, are buttressed by ice shelves that contain only a limited region of ice 

that can be lost or weakened without dynamic consequences that would lead to increased mass 

loss from the grounded ice sheet (Fürst et al., 2016). In extreme cases, fracture can eliminate 
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buttressing entirely if full ice shelf collapse occurs, as it did when the Larsen B Ice Shelf 

collapsed over a period of just 6 weeks in 2002, likely due to hydrofracture (Scambos et al., 

2004) related to surface meltwater ponding enabled by rising surface air temperatures. Fracture is

also interconnected with climate through ocean processes. Ocean driven basal-melting of ice 

shelves can cause thinning that makes ice shelves more vulnerable to fracture (Shepherd et al., 

2003; Liu et al., 2015). In turn, calved tabular icebergs can alter ocean circulation (e.g. Robinson 

et al., 2020; Stern et al., 2015, 2016; Cougnon et al., 2017). 

The importance of ice shelf fracture processes to ice sheet and climate dynamics 

motivates their incorporation into prognostic flow models of ice sheet-ice shelf systems to better 

assess ice shelf stability and project ice sheet response to climate change. An efficient, accurate, 

and commonly-used ice flow model for these systems is the Shallow Shelf Approximation 

(SSA), a 2-D vertically-integrated form of the incompressible Stokes equations. Prognostic 

representation of fracture in SSA models has ranged from simple calving parameterizations to 

explicitly modeling fracture evolution and its feedback on flow using damage variables. For 

calving alone, reasonable ice front positions have been obtained by parameterizing smooth 

calving rates (e.g. Alley et al., 2008; Levermann et al., 2012) or attempting to track crevasse 

depths over time, where crevasses are assumed to propagate to the depth where the horizontal 

Cauchy stress equals zero (e.g. Nye, 1957; Nick et al., 2010; Nick et al. 2013; Pollard et al., 

2015). This “zero-stress” approach assumes crevasse depths are in equilibrium with the stress 

field, and has been further developed into damage models that may be used with the SSA (Sun et

al., 2017; Bassis & Ma, 2015). Other SSA damage models do not explicitly track crevasse 

depths. For example, an SSA damage model was formulated by fitting a relationship between 

stress and damage fields inferred from observations of Larsen B Ice Shelf, but was mostly 

successful near the ice margins only and did not capture rifting (Borstad et al., 2016). Another 
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SSA damage model tested a variety of ad hoc measures for initiating fracture, but the approach 

was only sufficient for broadly capturing the feedback between flow dynamics and fracture-

induced weakening (Albrecht & Levermann, 2012; Albrecht et al., 2014).

An alternative approach to the above models for parameterizing ice shelf fracture is to 

implement traditional creep damage mechanics, where damage generalizes the nucleation and 

accumulation of microcracks and their influence on flow (Lemaitre, 1992). A creep damage 

model of this type (Murakami and Ohno, 1980; Murakami, 1983; Murakami et al., 1988) has 

already been calibrated for ice flow according to laboratory data (Pralong & Funk, 2005; Pralong

et al., 2006; Duddu & Waisman, 2012). This damage model is time-dependent, which allows 

better calibration to observed, dynamic fracture. Furthermore, the model may be implemented in 

isotropic or anisotropic form, where anisotropic damage is likely more consistent with the 

heavily-patterned fractures observed on ice shelves. While it has only been tested at the scale of 

individual crevasses and in isotropic form, this creep damage model has proved to be accurate 

enough to reasonably simulate two calving events in the Swiss Alps within a 2-D full-Stokes 

study (Pralong & Funk, 2005). Further progress with the isotropic creep damage model at similar

spatial scales has included additional calibration for temperature dependence (Duddu & 

Waisman, 2012), nonlocal formulations (Duddu & Waisman, 2013; Duddu et al., 2013; Londono

et al., 2017; Jimenez et al., 2017), and a modification to incorporate the effects of water pressure 

(Mobasher et al., 2016; Duddu et al., 2020). To our knowledge, only one study has considered 

parameterizing this damage model for application into SSA simulations of large-scale ice flow 

(Keller & Hutter, 2014). This study proposed updating the isotropic creep damage field in 3-D 

using parameterized Cauchy stresses, and vertically-averaging a 3-D damage-modified viscosity 

parameter for implementation into the 2-D SSA solution. However, this parameterization 
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remains untested, potentially due to the inhibiting computational expense and complexity of 

actually implementing such a parameterization within existing ice flow models.

The overarching goal of this paper is to develop an SSA creep damage parameterization 

and modeling framework that can be used to represent the entire progression of ice shelf fracture,

from initiation and evolution of subcritical damage to propagation of sharp rifts and calving of 

tabular icebergs. Our approach builds on the SSA parameterization proposed by Keller and 

Hutter (2014). We modify the model for an anisotropic creep damage variable, and construct a 

supporting numerical framework that minimizes error and maximizes efficiency so that it may be

applied effectively within large-scale ice flow simulations. We adapt several schemes for this 

framework that improve model performance and physical consistency, including extension of the

damage variable to nonlocal form, adaptive time-stepping based on damage accumulation, brittle

rupture criteria, and numerical treatment once maximum damage is reached. The damage model 

is implemented within our generalized interpolation material point method (GIMPM) code, a 

hybrid Lagrangian-Eulerian particle variation of the finite element method (Huth et al., 2020). 

Traditional Eulerian ice flow models are subject to artificial diffusion when advecting the 

damage field (e.g. Albrecht & Levermann, 2014; Borstad et al., 2016), whereas this error is 

avoided when using our GIMPM-SSA model, thereby allowing sharpness of cracks to be 

preserved regardless of flow. Additionally, the GIMPM-SSA model drastically increases the 

computational efficiency of advecting the 3-D damage field, or any other 3-D field such as 

temperature.

We test the SSA creep damage model on an idealized marine ice sheet system (Asay-

Davis et al., 2016) to demonstrate that it can capture all damage growth from initial 

accumulation to sharp rifting and tabular calving, and to conduct parameter sensitivity tests. We 

show, for example, that high level of creep damage anisotropy results in rifting more consistent 
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with the sharp, arcuate patterns observed on ice shelves. Furthermore, we compare the 

performance of our model with two previously-proposed crevasse-depth-based damage models 

(Sun et al., 2017; Bassis & Ma, 2015), which we also extend from isotropic to anisotropic form. 

These comparisons clarify the physical relationships between the damage models and the 

numerical advantages of our framework. We confirm that the creep damage model is better 

suited for capturing initiation of damage, rifting, and calving. However, only the Bassis and Ma 

(2015) damage model accounts for the impact of mass balance and necking processes, and we 

discuss how these processes may alter damage evolution significantly, especially regarding 

damage healing over decades. Thus, we conclude that a combined approach between the two 

models may be a viable approach for accurately simulating large-scale ice shelf fracture 

processes on decadal timescales, which will be the focus of a future paper. The outline of this 

paper is as follows: in Section 2 we summarize the governing equations, including the SSA and 

damage parameterization; in Section 3 we detail the implementation of the damage model; in 

Section 4 we present the idealized ice sheet experiments; in Section 5 we discuss the results and 

potential future developments and applications; and in Section 6 we offer concluding remarks.

2. Governing Equations

We begin this section by briefly reviewing the SSA equations. Then, we present the creep 

damage model and its parameterization for the SSA. We use a mix of tensorial and indicial 

notation as needed for conciseness or clarity. Vectors are donated as a=ai ê i, where the indicial 

notation of the right-hand side is framed within a Cartesian coordinate system (

x1 , x2 , x3¿=(x , y , z ), where i are the spatial indices and ê i are the orthonormal basis vectors. 

Second-order tensors are similarly denoted as A=A❑ij ê i⨂ ê j, where ⨂ is the dyadic product of 

two vectors. We assume Einstein’s convention of summation that repeated indices imply 
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summation. Principal values of A are written as ⟨ A i ⟩, where in this case, index i indicates 

principal components rather than Cartesian directions. Variables at time step m are indicated 

using the superscript Am.  

2.1. Shallow Shelf Approximation

Ice streams and ice shelves have little or no basal friction, so vertical shear is negligible. 

Consequently, horizontal velocities and the corresponding strain-rates can be assumed constant 

with depth. Excluding vertical shear components from the incompressible Stokes equations and 

vertically integrating yields the 2-D shallow shelf approximation, or SSA (MacAyeal, 1989; 

Weis et al., 2001)

∂T ij

∂ x j

+(τ ¿¿b)i=ρgH
∂s
∂ xi

,¿ (1)

where i ranges over {1,2} to indicate the horizontal x1−x2 plane, ρ is ice density, g is 

acceleration due to gravity, H is ice thickness, s is surface height above sea level, τ b ,i are the 

components the shear stress vector tangential to the glacier base, and T ij is the vertically-

integrated stress tensor

T ij=2ηH ( ε̇ij+( ε̇11+ ε̇22) δij ) . (2)

In (2), ε̇ ij is the strain rate tensor and η is the depth-averaged viscosity

η=
1
2

B ε̇e

1−n
n , (3)
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where, ε̇ e is the scalar effective strain rate, n is Glen’s Law exponent set to n = 3, and B is the 

depth-averaged flow rate factor. At the ice-ocean boundary (or ice front), the sea water pressure 

is applied using a depth-integrated Neumann boundary condition as

∫
b

s

σ ij n̂ j d z=¿−
1
2

ρw gb2 n̂i ,¿ (4)

where σ  is the Cauchy stress, n̂ is the unit (outward) normal to the ice front, ρw is sea water 

density, and b is the elevation of the ice shelf base below sea level (Morland & Zainuddin, 

1987). The SSA is solved for the in-plane velocity components (v1, v2 ) of the ice shelf/stream by 

reformulating (1) and (2) in terms of the velocity gradients derived from the strain rate tensor

ε̇ ij=
1
2 (

∂v i

∂x j

+
∂v j

∂xi
). 

2.2. Physical notion of continuum damage

We implement the anisotropic creep damage model originally proposed by Murakami and Ohno, 

(1980) and Murakami (1983,1988) for polycrystalline metals. Pralong and Funk (2005) first 

calibrated this model for glacier ice and discussed the thermodynamic considerations in Pralong 

et al. (2006). Damage is represented as a real-valued, symmetric second-order 3-D tensor, D, so 

that anisotropy is restricted to an orthotropic description where damage is tracked on three 

mutually perpendicular planes. The damage tensor has three real principal values, ⟨ Di ⟩, each 

representing the ratio of the area of cracks or voids to the originally undamaged area along the 

principal plane with a normal corresponding to principal direction i (Murakami, 1983; Duddu & 

Waisman, 2013). This physical or geometric interpretation is valid under isotropic
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( ⟨D1 ⟩= ⟨D2 ⟩= ⟨D3 ⟩ )and orthotropic damage (Qi & Bertram, 1999). Each principal damage 

component is bounded by 0≤ ⟨Di ⟩≤Dmax, where a material point is undamaged if all ⟨ Di ⟩=0 and 

fully damaged if any ⟨ Di ⟩=Dmax. Setting Dmax to the maximum possible value of unity 

corresponds to complete loss of strength, though numerically, Dmax must be set less than unity to 

prevent the SSA from becoming an ill-posed problem. Given the plug-flow regime of the SSA, 

we assume that the damage tensor is oriented so that one principal component, which we denote 

as ⟨ D3 ⟩, always aligns with the vertical x3 axis (⟨ D3 ⟩=D33¿. The other two principal axis lie in 

the horizontal x1−x2 plane, where we always ensure ⟨ D1 ⟩≥ ⟨ D2 ⟩. Because vertical shear stress 

components are zero in the SSA, the orthotropic damage tensor has only four non-zero 

components D11,D22, D33, and D12 that need to be determined.  

The damage evolution function and incorporation of the damage tensor into the SSA rely 

on the principle of strain equivalence (Lemaitre, 1971; Lemaitre & Chaboche, 1978). This 

principle states that strain is identical for a damaged state under the applied stress, σ ij (force per 

area of ice, including voids), as for its undamaged state under the effective stress, ~σ ij (force per 

ice area, ignoring any voids). A linear transformation between the two stress spaces that ensures 

the symmetry of the effective stress tensor can be written as

~σ=
1
2

[ ( I−D )
−1σ+σ (I−D )

−1 ] , (5)

where I  is the second-order identity tensor. The effective deviatoric stress may be defined as 

(Pralong and Funk, 2005; Pralong et al., 2006) 
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~σD
=
1
2

[ ( I−D )
−1σ D

+σ D
( I−D )

−1 ]
D
. (6)

An effective strain-rate is used to incorporate damage into the constitutive relation and calculate 

the applied stress, and takes the form

~ε̇=
1
2

[ ( I−D ) ε̇+ε̇ ( I−D ) ]
D
. (7)

2.3. Damage evolution function

The creep damage evolution function is expressed in rate form. While some SSA damage models

assume damage updates instantaneously with the stress field in a brittle manner (e.g. Sun et al., 

2017), a rate form is consistent with laboratory experiments on ice (Duddu &Waisman, 2012). 

Moreover, the creep damage model can be tuned to capture the time-dependent propagation of 

rifts in ice shelves based on satellite observations, and has numerical advantages related to 

adaptive time-stepping and extending the damage model to nonlocal form (Section 3). In the 

Lagrangian framework, we express the material derivative of the second-order creep damage 

tensor as the Jaumann derivative (Pralong & Funk, 2005)

Ḋ=
∂ D
∂ t

=f+WD−DW , (8)

where t is time, W is the spin tensor W ij=
1
2 (

∂ v i

∂x j

−
∂v j

∂x i
), and f is the dynamic damage evolution 

function as (Murakami, 1988) 

f=B¿

⟨ ⟨ χ−σ th ⟩ ⟩
r {Tr [ ( I−D )

−1∙ (ν (1 )⨂ν (1) ) ]}
k

[ (1−γ ) I+γ ν (1 )⨂ ν (1) ] , (9)
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χ=α ⟨ ~σ1 ⟩+β √3 ΙΙ~σ D+(1−α−β ) I~σ . (10)

In (9), B¿, r, k  are creep damage parameters (listed in Table 1) and χ  is the Hayhurst stress, 

which is an equivalent stress measure defined in (10) (Hayhurst, 1972). The Hayhurst stress is a 

weighted combination of the maximum effective principal stress (weighted byα), the effective 

von Mises stress (weighted by β), and the effective hydrostatic stress (weighted by λ = 1−α−β).

The terms I~σ and ΙΙ~σ D denote the first invariant of the effective Cauchy stress and the second 

invariant of the effective deviatoric stress, respectively. The Hayhurst weights must fulfill

0≤α , β , λ≤1 , (11)

which we take as α  = 0.21, β = 0.63, and λ = 0.16 as previously calibrated from laboratory data 

(Pralong and Funk, 2005). The first term in (9) determines the damage evolution rate based on 

the Hayhurst criterion and σ th, an assumed stress threshold that restricts damage evolution to 

whereχ>σ th. The Macaulay brackets ⟨ ⟨ ∙ ⟩ ⟩ are defined as 

⟨ ⟨ x ⟩ ⟩={x ,∧if x ≥0
0 ,∧if x<0

. (12)

In the second and third terms of (9), ν (1) is the eigenvector corresponding to the maximum 

effective principal stress, ⟨~σ1 ⟩, which we always

assume lies within the horizontal x1−x2plane to

be consistent with crevasse formation along

vertical planes. Operator Tr [∙ ] denotes the trace.

Parameter k has been calibrated based on
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laboratory experimental data to be a function of the Cauchy stress (e.g. Pralong & Funk, 2005; 

Duddu & Waisman, 2012), but we set it to a constant here for simplicity. The second term of (9) 

accounts for the increase in the damage rate at a spatial location based on any pre-existing 

damage on the principal plane normal to the ν (1) direction. The third term sets the level of 

anisotropy in damage accumulation according to the anisotropy weighting parameter γ, which 

can be set between zero (purely isotropic with damage accumulating on all principal planes 

equally) and one (purely anisotropic with damage accumulating only on the principal plane 

normal to the ν (1) direction). If D and ~σ  are always coaxial, the relationship between the principal

components of the damage rate is controlled by the anisotropy parameter as

⟨ Ḋ2 ⟩=⟨ Ḋ3 ⟩=(1−γ ) ⟨ Ḋ1 ⟩ . (13)

Any misalignment between D and ~σ  will cause damage accumulation to become more weighted 

towards ⟨ D2 ⟩ at the expense of ⟨ D1 ⟩. Misalignment can occur, for example, as a rift develops and 

causes the orientations of principal stresses to change downstream. Note that in the case of full 

anisotropy (γ=1), Equation (9) will never produce damage on ⟨ D3 ⟩, because we always assume 

the maximum effective principal stress lies within the horizontal x1−x2plane. We test sensitivity 

to γ in Section 4.2.

2.4. Parameterization of creep damage for the SSA

While the SSA is 2-D, creep damage evolution requires the evaluation of the full Cauchy stress 

tensor in 3-D. Damage can then be vertically averaged for incorporation into the next SSA 

solution step (Section 3.3). The 3-D deviatoric stress tensor from the 2-D velocity field defined 
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by the SSA with damage can be obtained at vertical coordinate z using the nonlinearly viscous 

constitutive relation for ice flow (Glen, 1955)

σ D ( z )=2η ( ε̇ e)
~
ε̇ ( z ) , (14)

where ~ε̇  is determined according to (7) using the 2-D strain-rates from the SSA solution and the 

local 3-D damage. Subtracting the pressure, p, from the deviatoric stresses yields the needed 

Cauchy stresses (σ ij=σ ij
D
−pi δ ij), but pressure is unknown in the SSA. Keller and Hutter (2014) 

therefore proposed parameterizing an effective pressure, given as

peff =p i−pw , (15)

where pi is the ice pressure according to the hydrostatic approximation

pi ( z )=ρg (s−z )−σ11
D ( z )−σ22

D ( z ) , (16)

and pw is the basal water pressure

pw ( z )={ 0 ,∧if z ≥ z sl

ρw g (zsl−z) ,∧if z<z sl

, (17)

where zsl is sea level elevation, which we set to zero. Furthermore, these authors proposed that 

pressure should be unaffected by damage, with the justification that volumetric effects oppose 

crack formation because they are largely dominated by the compressive ice overburden. 

Consequently, the effective stress is calculated as ~σ ij=
~σ ij

D
−peff δij rather than as given in 

Equation (5), and the Hayhurst criterion (10) is re-expressed as 
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χ SSA=α ( ⟨~σ 1
D ⟩−peff )+β√3 ΙΙ~σD+λ (−3 peff ) . (18)

We test this scheme as given, but acknowledge that improvements to this parameterization are 

possible, especially regarding the basal water pressure term in (17). This term is overly simplistic

for grounded ice; for example, Equation (17) assumes basal water pressure is zero for ice 

grounded above sea level, which may not be true in all cases. However, our focus here is largely 

on shelf ice, so we implement the parameterization as given. We also note that within a full-

Stokes setting, water pressure has been incorporated into damaged ice using a poromechanics 

approach (Mobasher, et al., 2016; Duddu et al., 2020). A similar approach could potentially be 

adapted for the SSA parameterization. 

3. Implementation

We start this section by discussing the GIMPM-SSA framework, including how damage is 

implemented within it and its advantages concerning accuracy and efficiency of the ice flow and 

damage solutions. We then present the solution for the local 3-D damage increment, and explain 

how it can be used to set an adaptive time step and diffused over a characteristic length scale to 

calculate a nonlocal damage increment. Furthermore, we describe a brittle rupture criterion, the 

depth-averaging of the 3-D damage field, and our current treatment of fully-damaged material 

points (rifts). Lastly, we detail incorporation of the depth-averaged damage variable into the SSA

solution.

3.1. Generalized interpolation material point method (GIMPM)

If using mesh-based numerical methods, then artificial diffusion errors may arise during 

advection of the damage variable, which smear sharp edges and makes critical features such as 
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rifts difficult to capture. This diffusion is inherent to purely Eulerian advection schemes, where 

the mesh is not moved with the computed velocity field, and can also arise when working in a 

Lagrangian frame (moving-mesh) due to frequent remeshing that may be required when 

modeling large-deformation materials like large-scale ice flow. While our creep damage model 

may be adopted for any flow-modeling framework, we implement it here within our GIMPM-

SSA code to avoid these diffusion errors (Huth et al., 2020). The GIMPM (Bardenhagen & 

Kober, 2004) is one of several material point methods, which all share the same basic procedure. 

In the GIMPM, a set of material points (or particles) provides a Lagrangian description of the 

material domain and holds all dynamic variables. The momentum equations are solved on a 

background grid in a similar manner to the finite element method, but with the material points 

serving as moving integration points. The grid solution is then used to update material point 

quantities such as position, velocity, and area, as well as material point history variables. Here, 

the history variables are ice thickness and damage. These updates are performed in a Lagrangian 

frame, which ensures that all fields advect without diffusion errors and enables tracking of the 

ice front and grounding line at sub-grid accuracy. The primary difference between the various 

material point methods concerns the shape functions used to map between material points and 

the grid. The most accurate variants use C1 continuous shape functions to ensure smooth 

transfers of stiffness as material points move between grid cells, and in the GIMPM, such shape 

functions are assembled by convolving linear grid functions with characteristic functions 

associated with each material point.

Within the GIMPM-SSA framework, we track damage and any other 3-D fields, such as 

temperature, upon a series of vertical layers assigned to each material point. For mesh-based 

methods, the vertical layers could be assigned to nodes or quadrature points instead. For the 

simulations in this paper, we always maintain an even distribution of layers between the local ice
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base and surface elevations, which is possible because we do not incorporate mass balance 

processes such as surface and basal melt, or infill of crevasses with snow at the surface or marine

ice at the base. Furthermore, we do not account for necking processes (Bassis & Ma, 2015), and 

do not implement healing because the simulations here are largely tensile, though healing models

have been proposed (Pralong & Funk, 2005; Pralong et al., 2006). Modifying the creep damage 

model to account for the impacts of mass balance, necking, and healing is beyond the scope of 

this paper. However, in Section 4.4, we test a damage model for comparison that does account 

for some of these processes (Bassis & Ma, 2015), and we discuss the potential for a combined 

approach between the models in Section 5.

3.2. Local 3-D damage increment

The 3-D damage updates take the form 

Dm+1
=Dm

+∆ Dm, (19)

where ∆ Dm is the damage increment over a time step and may be expressed in local or nonlocal 

form. For each material point layer, the local damage increment, ∆Dmloc , is found by integrating 

the damage evolution rate, Ḋm, over the length of the time step ∆ t  using the Runge-Kutta-

Merson (RKM) method as detailed in Zolochevsky et al., 2009 and Ling et al., 2000. The RKM 

update allows higher accuracy and larger time steps than a forward Euler update. During the 

RKM scheme, an internal damage variable is continuously updated over a series of sub-steps, 

whose sizes are optimized for speed and accuracy. The strain-rate determined from the preceding

SSA solution is unchanged during the RKM update. The damage rate is calculated by solving 
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Equations (7),(14),(6),(16),(17),(15),(9),(10), and (8). At completion, the RKM routine returns 

the local damage, Dm+1loc , from which ∆Dmloc  can be calculated as ∆Dmloc
= Dm+1loc

−Dm. 

We stop damage accumulation on a layer once the maximum principal damage 

component reaches Dmax, though further evolution via the spin terms in (8) is allowed. A damage

component that reaches Dmax is considered ruptured, and can roughly be associated with the 

formation of macrocracks or crevasses, though we currently make no explicit assumptions 

concerning their width, spatial distribution, or potential influence on driving stress. However, our

parameterization is probably most consistent with widely-spaced crevassing, given that we do 

not modify stresses at depth to account for stress shielding from damaged layers of neighboring 

material points. Stopping damage accumulation once ⟨ D1 ⟩=Dmax is a requirement of the current 

formulation of the damage model, which does not currently account for multi-axial damage 

accumulation after rupture. Therefore, our model does not currently allow development of cross-

cutting crevasses, though we estimate their occurrence and influence on flow is typically 

minimal for ice shelves. However, multi-axial damage accumulation before rupture, which may 

occur under biaxial tension, could possibly be accounted for by modifying the anisotropy 

parameter according to the relative magnitude of the two tensile principal effective stresses 

(Ganczarski & Skryzypek, 2001). This multi-axial modification has yet to be verified for ice, and

has minimal impact on the experiments presented here. Therefore, we present the results that did 

not use this modification.

We split the above solution for the 3-D damage increments into 2 loops over the layers of

a material point. The first loop is run from the bottom layer towards the top layer, and is exited if

a layer is encountered with ∆Dmloc
=0 and Dm = 0 for all components. If the first loop does not 

process all layers, a second loop from the surface towards the base is initiated with the same exit 
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criterion. During the second loop, we assume damage is associated with surface crevassing and 

ignore the sea water pressure term in the effective pressure. A surface meltwater pressure term 

could be added, instead. This two-loop scheme assumes cracks will not initiate in the middle of 

the shelf, and consequently, we achieve a faster solution by avoiding processing layers that will 

remain undamaged. 

3.3. Adaptive time stepping 

The maximum change in vertically-averaged local damage, dDmax, of all material points is used 

to adjust the time step as needed for both the current and next computational cycle, with the goal 

of limiting the amount of damage allowed to accumulate each cycle to ensure accuracy, stability,

and efficiency. Because the damage update can affect the current time step, it must begin each 

computational cycle. We define dDmax as

dDmax=max ( ⟨ Dm+1loc ⟩−⟨ Dm ⟩) , (20)

where ‘max’ on the right hand side indicates the maximum value of all principal components, 

and vertical averaging of the damage variables takes the form

D=

∫
b

s

D ( z ) B(z ,T ¿
)dz

∫
b

s

B(z ,T ¿
)dz

, (21)

where T ¿ is temperature, on which the 3-D flow-rate factor, B(z ,T ¿
), is dependent. The integrals 

are evaluated using the trapezoid rule. Note that since B(z ,T ¿
) can vary with depth, it must be 
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included in (21) alongsideD ( z ) to properly capture the combined effect of damage and thermal 

softening on the depth-averaged viscosity of ice (Keller & Hutter, 2014). 

If dDmax≥0.075, we decrease the current time step as ∆ tm
=∆ tm

/1.5 and recalculate the 

local damage increments. This situation rarely occurs, but serves as a safeguard against rapidly 

increasing damage. If dDmax<0.075, the time step for the next computational cycle is set as

∆ tm+1
=min(δ1∆ tm,

δ2∆tm

dDmax

,CFL), where we take δ 1=1.8 and a δ 2 of 0.05 (Ling et al., 2000), and

CFL=δ 3/max(|
v1

Δ x1|+| v2
Δ x2|) indicates the maximum timestep that satisfies the Courant-

Friedrichs-Lewy condition with constant δ 3≤1. Here, the time step is almost always restricted by

damage rather than the CFL condition, and consequently, dDmax ≈δ2  each computational cycle. 

The typical time increment varies based on the chosen damage parameters, but in all the 

simulations in this paper, it is on the order of days for sub-critical damage accumulation to hours 

during rapid rift propagation. 

3.4. Nonlocal 3-D damage increment

Implementing nonlocal damage is motivated by both physical and numerical considerations. 

Physically, the progressive accumulation of microcracks that damage mechanics describes is 

distributed over a characteristic length scale in quasi-brittle materials like glacier ice (Bazant, 

1986; Hall & Hayhurst, 1991). Numerically, local damage models suffer from directional mesh 

bias and mesh size sensitivity as damage localizes to single elements. We implement a nonlocal 

integral scheme (Duddu & Waisman, 2013), which diffuses the local damage increment between 
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neighboring material points over the characteristic length scale. Note the difference between this 

intentional diffusion and the artificial diffusion that may arise using mesh-based advection 

schemes: the nonlocal damage diffusion is physically-based on observations of fracture in quasi-

brittle materials, whereas artificial diffusion is a numerical error causes ice to lose damage 

unphysically over time.

Here, we apply the nonlocal scheme within each layer of neighboring material points. For

example, local damage of the second layer of a material point is only reweighted according to the

local damage of the second layer from surrounding material points, but not the layer above or 

below it. The nonlocal damage increment, ∆ Dm (xm ), is calculated as 

∆ Dm (xm )=
∑
j=1

N

ϕ (xm
− x̂ j

m ) ΔDmloc ( x̂ j
m )

∑
j=1

N

ϕ (x
m
− x̂ j

m
)

, (22)

where N  is the number of material points, x̂ j
m, positioned within a characteristic length, lc, of xm 

at timestep m. The weight function, ϕ is a Gaussian curve given as

ϕ (xm
− x̂ j

m )=exp(−( κ‖xm
− x̂ j

m‖
lc )

2

) , (23)

where constant κ  controls the rate of decay of the weight function. We use κ  = 2. The nonlocal 

length, lc, should reflect the size of the fracture process zone and should be set so that the number

of neighboring material points, j, is large enough to alleviate grid dependence (Duddu & 

Waisman, 2013). We note that as an alternative to the nonlocal integral scheme presented here, 

an implicit-gradient nonlocal scheme could be implemented, instead (Jimenez et al., 2017). 
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However, the gradient approach requires solving an equation on the mesh for each layer, and is 

therefore more computationally expensive.

3.5. 3-D damage update

On each material point layer, the 3-D damage tensor is updated from the damage increment 

according to (19). Afterwards, a brittle rupture or failure criterion is enforced, where if the 

principal value ⟨ D1
m+1 ⟩ for a layer reaches a specified critical damage, Dcr, then it set to Dmax. The

other two principal values ⟨ D2
m+1 ⟩ and ⟨ D3

m+1 ⟩ are also updated in a similar manner to Equation

(13) as ⟨ D2
m+1 ⟩=⟨ D3

m+1 ⟩=(1−γ ) ⟨Dmax ⟩, unless this update reduces their values. Previously, 

published values of Dcr for ice range from Dcr=0.45 (Duddu & Waisman, 2012) to 0.6 (Duddu 

& Waisman, 2013), and we set Dcr to 0.6 throughout this paper. Note that not all damage tensors 

on all layers of a material point are guaranteed to have the same orientation. Misalignments with 

depth can occur as damage initiates at different times and accumulates under varying stress fields

over time. However, misalignment is minimal in the simulations presented here.

3.6. 2-D damage update and rift treatment

After the 3-D damage update, the vertically-averaged damage that will be implemented into the 

SSA, Dm+1, is calculated according to (21). As was done for 3-D damage, a 2-D brittle rupture 

condition can be set by defining a vertically-averaged critical damage, Dcr, and maximum 

damage, Dmax. However, upon brittle rupture in 2-D, we set all components of D to Dmax rather 

than only the maximum principal component as in the 3-D case. This 2-D treatment is consistent 

with complete failure of the material point, or the formation of a rift. Larger values of Dmax are 
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associated with a faster rate of rift widening and greater downstream velocities, and we find 

values for Dmax of approximately 0.85—0.9 produce well-controlled and distinct rifts for the 

simulations presented here. Physically, setting a value of Dmax less than unity can be interpreted 

as allowing some residual strength between the flanks of the rift, which can occur when rifts 

contain ice mélange that is structurally coherent enough to transmit stresses (Rignot & 

MacAyeal, 1998; Larour et al., 2004; Borstad et al., 2013). A complete description of rift forces 

should include a boundary condition on the rift flank walls similar to at the ice front (4), but 

which can also account for the pressure of ice mélange (Larour et al., 2014). This boundary 

condition acts to oppose rift opening. For simplicity, we do not explicitly implement such a 

boundary condition here; rather, its effect on the rift opening rate is implicitly accounted for by 

setting the value of Dmax lower than unity. We discuss the potential for implementing more 

complex rift dynamics, including a rift wall boundary scheme, within the damage and GIMPM-

SSA framework in Section 5. 

3.7.  SSA solution and material point updates

Damage is incorporated into the SSA solution by replacing ε̇  in (2) with ~ε̇ , which is calculated 

from (7) using D as the damage variable. This substitution modifies the original SSA-GIMPM 

discretization (see Huth et al., 2020), yielding the following element sub-matrices of the tangent 

matrix, K , that are computed by summing over material points:

K 11 IJ :=∑
p=1

np

A p ηpH p ¿

+
∂SJp

∂ x2 [12
∂ϕ Ip

∂ x2
(2−D 11−D22 )−

∂ϕ Ip

∂ x1
D12]}+∑p=1

np

A p β̂ p ϕIp SJp,

(24)
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K22 IJ :=∑
p=1

n p

Ap ηp H p¿

¿

K12 IJ :=∑
p=1

n p

Ap ηp H p¿

¿

K21 IJ :=∑
p=1

n p

Ap ηp H p¿

+¿

In (24), material point parameters are indicated with the subscript p, where Ap is the material 

point area,β̂ p is the friction parameter, and np is the number of material points in the element. 

Nodal indices are indicated with I  and J. We adopt the same shorthand from Part I (Huth et al., 

2020) to notate the evaluation of the linear (ϕ Ip¿ and GIMPM (SJp) shape functions at a material 

point, where ϕ Ip=ϕI (xp ) and SJp=SJ (x p ). After the SSA is solved, the computational cycle for the

GIMPM then continues as described in Part I (Huth et al., 2020), where the grid solution is used 

to update material point velocity, 2-D position, areal domain, and thickness. We use the 

algorithm XPIC(k) (eXtended Particle In Cell of order k) to perform the velocity and position 

updates, an algorithm that eliminates potential noise or overdamping associated with simpler 

update schemes (Hammerquist & Nairn, 2017). In agreement with a previous damage study 

(Nairn et al., 2017), we find that taking k = 5 yields sharp and stable crack propagation. Because 

each layer of a material point has the same horizontal velocity, updating the 2-D position of the 

material points automatically accounts for advection of any 3-D field, such as damage. 

Therefore, 3-D advection is essentially computationally free in the GIMPM-SSA framework. 

Conversely, using mesh-based Eulerian methods for advection would require solving a 2-D 

equation for each layer, or a single 3-D equation for the whole system. These Eulerian 
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approaches would be much more expensive than the GIMPM-SSA framework, especially given 

our use of a tensorial damage variable; in addition, Eulerian advection schemes would suffer 

from artificial numerical diffusion. 

4. Idealized test case: MISMIP+

We carry out three experiments to test the SSA creep damage model under different tunings and 

compare its performance to previously-published SSA damage models. We begin each 

experiment from the undamaged steady state configuration from the Marine Ice Sheet Model 

Intercomparison Project (MISMIP+, Asay-Davis et al., 2016), and allow damage and ice flow to 

evolve over time. In Section 4.1, we describe the MISMIP+ model setup. In Section 4.2, we 

show how the creep damage model can initiate a realistic damage field, which subsequently 

evolves to propagate rifts resulting in tabular calving. We perform sensitivity tests for the 

anisotropy parameter, mesh resolution, the nonlocal length scale, and the impact of an isothermal

versus linear temperature profile. The creep damage model ultimately captures physically-

consistent and numerically-stable rifting that previous crevasse-tracking SSA damage 

approaches are not well suited for replicating. For comparison, we test a crevasse-tracking 

damage model (Sun et al., 2017) in Section 4.3. where crevasse depths are calculated using the 

“zero-stress” criterion (Nye, 1957). We conduct further tests with the zero-stress damage model 

in Section 4.4, but where we modify the model to also account for the effects on damage from 

necking and mass balance (Bassis & Ma, 2015).

4.1. MISMIP+
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The MISMIP+ geometry is rectangular. In the longitudinal direction, the domain spans from an 

ice divide at x1=0 km to an ice front at x1=640 km. We do not allow the position of this ice 

front to evolve over time. The lateral boundaries span from x2=0 km to x2=80 km, and the 

entire system has a plane of symmetry about x2=40 km. Normal velocities are set to zero (i.e. 

zero inflow) at all boundaries except at the ice front, where the Neumann boundary condition (4) 

is applied. The bedrock topography is a U-shaped submarine trough. Detail of the steady-state 

grounding configuration is shown in the grey shading of Figure 1. At the most retreated section 

of the steady-state grounding line (x1 450 km), the bed has a retrograde slope. The higher 

sidewalls of the bedrock trough result in thin protrusions of laterally grounded ice that define the 

maximum longitudinal extent of the grounding line at x1 537 km. All floating ice upstream of 

this point constitutes a laterally-supported shelf ice, whereas all ice downstream constitutes an 

unsupported floating ice tongue. The trajectories overlaying Figure 1 correspond to the 2nd 

principal component of anisotropic damage at the first time step, which may be interpreted as the

initial development of crevasse patterns, or the plane along which ⟨ D1 ⟩ accumulates. 

Starting from a thin slab of ice defined over the domain, we grew the system to steady 

state using the given MISMIP+ ice flow parameters and accumulation rate and a modified 
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Figure 1. The MISMIP+ steady-state grounding line configuration 
and initial anisotropic damage trajectories. The trajectories 
correspond to the plane along which  accumulates, and can be 
interpreted as crevasse patterns. 
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Coulomb law for friction (Schoof, 2005; Gagliardini et al., 2007; Leguy et al., 2014). For this 

spin-up procedure, we use the SSA and thickness evolution solvers in the finite element software

Elmer/Ice (Gagliardini et al., 2013). Without the damage model, the GIMPM-SSA model can 

hold the grounding line at its steady-state position for at least 100 years if no melt rate is 

assigned, satisfying the MISMIP+ Ice0 control experiment (Huth et al., 2020). Unless otherwise 

specified, we use a structured rectangular mesh/grid with a resolution of 0.5 km and initiate 9 

regularly-spaced material points within each grid cell.

4.2. SSA creep damage simulations

We test our SSA creep damage model using the nonlocal integral formulation with the 

parameters given in Table 1, where , , and r, assume the values calibrated by Pralong and Funk 

(2005). We initially specify that the ice shelf is isothermal, so that the 3-D flow rate factor, B, 

does not vary with depth, and we set a stress threshold of σ th=0.12 MPa. We set a nonlocal 

length scale of lc=1 km, which roughly corresponds to the horizontal length of the fracture 

process zone, which we estimate from clusters of seismicity detected around a propagating rift 

on Amery Ice Shelf (Bassis et al., 2007). For our initial creep damage experiment, we test three 

different levels of damage anisotropy: γ=0, γ=0.5, and γ=1, which correspond to fully 

isotropic, evenly mixed isotropic/anisotropic, and fully anisotropic damage, respectively. Each 

simulation eventually results in tabular calving, at which point we end the simulation. We report 

results for the 2-D vertically-integrated maximum principal damage. 

Initial damage accumulation: For all simulations, damage accumulation is minimal for interior 

grounded ice, where velocities and stresses are low due to basal friction. Downstream portions of

the ice tongue also accumulate minimal damage, as strain-rates and stresses are low. Therefore, 
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we only report results near the grounding line, where damage is greatest. Figure 2 shows the 

early evolution of the principal damage field ⟨ D1 ⟩ for the fully anisotropic case at (a) 0.06 years 

and (b) 0.2 years. At 0.06 years, relatively strong damage accumulates along the ice shelf 

margins as expected, where  stresses are large. However, the dominant damage accumulation 

occurs at x1 520 km, where rifts initiate from the lateral boundaries of domain as indicated 

where ⟨ D1 ⟩=Dmax=0.9. These rifts quickly propagate to the grounded lateral protrusions, where 

they are temporarily slowed. This rifting largely develops under strong uniaxial tension, and 

consequently, nearly identical damage patterns develop at similar rates for all values of γ tested 

(see Supplementary Figures S1a and S2a for the isotropic and mixed isotropic/anisotropic cases, 

respectively). Note that the lateral boundaries of the domain (x2=0 km and x2=80 km) can be 

considered symmetry boundaries because the normal velocities are set to zero, so that the rifts 

can be considered to have initiated from the center of small ice shelves. While rifts typically 

initiate at grounded margins, rift initiation from the center of ice shelves has occurred, for 

example, at Pine Island Glacier (Jeong et al., 2016). 

The configuration in Figure 2a is maintained until the grounded lateral protrusions 

weaken and thin enough to allow the rifts to propagate through ~0.1 years later, at which point 

these regions also unground. The rifts propagate upstream following the elevated damage that 

previously developed along the ice shelf margins, as shown in Figure 2b at 0.2 years. As in 

Figure 2a, rifts for the lower-anisotropy cases also propagate into a similar configuration, but 

now the rates of propagation are faster for lesser anisotropy. A comparable rift configuration 

develops in the fully-isotropic case by ~0.12 years and in the mixed isotropic/anisotropic case by

~0.18 years (Figures S1b and S2b).

28

 80

40

0

80

40

0
400 460 520 640580

a

b

0.0

0.2

0.4

0.6

0.8
0.9

 
x1 (km)

x 2
 (

km
)

Figure 2. Maximum principal damage field for the fully anisotropic () 
creep damage simulation at (a) 0.06 years and (b) 0.2 years. Material 
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Tabular calving: The rifting pattern in Figure 2b represents the final configuration before rifts 

propagate laterally across the domain to result in tabular calving. It is also the last configuration 

in which the spatial distribution of damage is similar for all values of γ. Figure 3 gives the final 

depth-averaged principal damage field ⟨ D1 ⟩ at calving. For the isotropic case (Figure 3a), the 

original rifts branch so that two points of calving occur; one branch originating from the 

upstream point of rifting reached in Figure S1b, and the other originating from a downstream 

position lateral to where the rift initiated at x1 ~ 520 km. This second branch also partially 

develops for the γ=0.5 case. However, for both the mixed isotropic/anisotropic (Figure 3b) and 

fully-anisotropic (Figure 3c) cases, calving ultimately stems from the further upstream location. 

Higher levels of anisotropy yield sharper and more arcuate rifts that are more 

characteristic of real ice shelves, and qualitatively, appear more “brittle” than results under lower
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anisotropy, which appear more “ductile”. Higher anisotropy is also associated with slower rates 

of rift propagation, where the fully-anisotropic case calves after 0.486 years versus 0.165 years 

for the isotropic case. However, we emphasize that it is the anisotropy, not the speed of 

propagation, that allows the sharper rift and additional features to be captured. Rerunning the 

isotropic damage simulation with the damage rate factor B* that is 4 times smaller allows 

isotropic damage to evolve at a similar rate to the anisotropic case, but the damage pattern 

remains essentially unchanged. Similarly, lowering δ 2 so that less damage accumulates each time

step has negligible effect. Lastly, we note that our choice of Dcr=¿ 0.8 was arbitrary, and 

effectively eliminating the rupture criterion by setting Dcr = Dmax still allows the same rift 

patterns to develop, but with a smoother transition in damage between ruptured and unruptured 

ice (not shown). However, the jump in damage induced by setting Dcr lower than Dmax yields 

more visually-distinct rifting, and is likely physically justified because highly-damaged shelf ice 

may experience vertical shear stresses not accounted for in the SSA (Bassis & Ma, 2015) that 

could contribute to full-thickness brittle rupture.

Interestingly, the anisotropy strongly impacted rift behavior despite our simple scheme of

representing rifts by setting all damage components of failed material points to Dmax. As the rift 

is represented by isotropic damage under our current treatment, it is the sub-critical damage that 

is controlling the rift path. The damage trajectories in Figure 1 show a clear arcuate pattern on 

the ice shelf that spans the lateral grounded margins, where the commonly observed pattern of 

en-échelon crevassing is reproduced. Rift propagation more closely follows these trajectories 

with higher levels of damage anisotropy. 

Sensitivity to nonlocal damage length scale: The choice of the nonlocal length, lc, is important in

determining the computational cost of simulations, because a larger lc allows larger element sizes
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to be used without grid bias. Ideally, lc should be three or four times the element size to 

guarantee that mesh dependence is alleviated. However, using lc = 1km, which is twice the 

element size, appears to be sufficient in the above simulations; doubling lc to 2 km and rerunning

the fully-anisotropic case yields a similar rift path and time to calving (Figure 4a) as the 1 km 

case (Figure 3c). To further confirm that grid dependence is alleviated, we rerun this lc = 2 km 

fully-anisotropic case with 1 km grid resolution. Again, a similar rift path and time to calving is 

realized (Figure 4b). The largest difference between simulations using lc = 2 km and lc = 1 km is 

that the latter produces rifts that penetrate slightly further upstream, as indicated by the stars in 

Figure 4. The insensitivity of the model response to the exact value of lc is encouraging given our

crude estimate of the size of the fracture process zone, which could theoretically vary in shape 

and size according to stress and damage. Alternative nonlocal integral formulations are available 

modify the nonlocal zone according to these variables (e.g. Giry, 2011), but the observed 

insensitivity to lc likely obviates the need for these more complex nonlocal schemes. 

Effect of temperature gradient: Our final test with the creep damage model highlights how 

vertically-varying temperature can influence damage evolution. In this test, we assign a linear 
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Figure 4. Maximum principal creep damage field at calving for fully anisotropic case ( when 
using a nonlocal length scale  = 2 km and (a) 0.5 km versus (b) 1 km grid resolution. 
Alleviation of grid dependence is evident in the similarity of damage patterns between the 
two simulations, as well as the comparable times to calving of (a) 0.493 and (b) 0.510 years. 
These rift patterns and calving times are also similar to those in Figure 3c, which uses a 0.5 
km grid and  = 1 km. The most apparent difference is that rifting in the the  = 1 km case 
penetrates slightly farther upstream, as marked by the stars.
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Figure 5. Maximum principal damage field at calving for fully anisotropic  ( creep 
damage when using the linear temperature profile and  = 1 km. 
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vertical temperature profile for each material point, where the ice base temperature is set to −2

˚C, and the surface temperature is set to the value that yields the same depth-averaged rate factor,

B, from the isothermal case (approximately −¿16.7˚C). To allow direct comparison with Figure 

3c, we set lc=1 km. The maximum principal damage field at calving corresponding to this 

temperature profile is given in Figure 5. Due to the warmer basal temperature, basal crevasses 

only propagate in the most stressed regions and the overall damage field is reduced outside of the

rift. This reduced basal calving is likely more consistent with reality, where basal crevasses 

should only initiate from the center of the shelf under very high stresses. More commonly, 

flexural stresses, such as those experienced at the grounding line, are required to initiate basal 

crevasses (Logan et al., 2013), which we discuss further in Section 5. The ease with which 

temperature effects can be accounted for is an advantage of the GIMPM-SSA creep damage 

model. Conversely, the zero-stress model employed in the next two sets of experiments is 

formulated under the assumption of an isothermal ice shelf, and therefore always overestimates 

the spatial extent of basal crevassing. 

4.3. Zero-stress damage simulations

The zero-stress criterion (Nye, 1957), states that closely-spaced field of crevasses 

propagate to depths where the net longitudinal maximum principal Cauchy stress becomes zero. 

A previous study defined a zero-stress damage variable as the ratio of the combined depths of 

surface and basal crevasses to the ice thickness (Sun et al., 2017). This previous study only 

considered isotropic damage, but here, we extend the zero-stress damage variable to anisotropic 

form as a 2nd order tensor, D̂. We detail the anisotropic zero-stress damage model and its 

implementation in Supplementary Material S.2. To summarize, the zero-stress model calculates 

3-D stresses using a similar effective pressure as Equations (15)-(17) used in the creep damage 
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model, and ignoring the water pressure term for surface crevasses. However, the zero-stress 

damage model is formulated in terms of applied stress and under the assumption that crevasses 

are closely-spaced and in equilibrium with the stress field, where deviatoric stresses are 

considered depth-invariant here. Conversely, the creep damage model is updated in rate form 

according to depth-varying effective deviatoric stresses and a parameterized pressure, both of 

which are sensitive to depth-varying temperature and damage. Put simply, the zero-stress model 

parameterizes crevasse depths only, while the creep damage function is a dynamic 

parameterization of the actual fracture process at each depth. A vertical damage profile for a 

column of ice according to the zero-stress model resembles a step function, with maximum 

damage at depths where crevasses have propagated and zero damage elsewhere. Conversely, a 

typical vertical profile using creep damage exhibits sub-critical damage accumulation, because 

creep damage parameterizes the progressive accumulation of microcracks.
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Here, we test the zero-stress damage model on the MISMIP+ domain to demonstrate the 

impact of these differences in comparison to the creep damage results from Section 4.2. We run 

two experiments with the zero-stress damage model, where each experiment tests the model in 

both fully-isotropic and fully-anisotropic form. Note that we ignore mass balance entirely for 

both ice flow and its influence on damage until Section 4.4 when we test the modification 

proposed by Bassis and Ma (2015). 

In the first experiment, we run the zero-stress damage model as given for 30 years to 

show that the zero-stress assumptions alone are insufficient to initiate rifting. No critical rupture 

scheme is enforced. Note that in isotropic form, this test has been performed previously on a 

longer timescale using the MISMIP+ geometry with the finite volume ice flow model BISICLES

(Sun et al., 2017). The isotropic zero-stress damage results near the grounding line are shown in 

Figure 6 at (a) 0 years, (b) 16 years, and (c) 30 years. At the first time step, damage immediately 

grows to D̂ 0.33 near the grounding line and D̂ 0.5 at the center of the ice shelf. With the 

34

 80

40

0

80

40

0
400 460 520 640580

a

b

0.0

0.2

0.4

0.6

0.8
0.9

 80

40

0

c

x1 (km)

x 2
 (

km
)

Figure 6. Isotropic zero-stress damage field at (a) 0 years, (b) 16 years, and (c) 30 years. The 
black tracer particle highlights the highly-advective flow regime. The white dotted line 
indicates the grounding line.
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Figure 7. Fully anisotropic zero-stress maximum principal damage field at (a) 0 years, (b) 16 
years, and (c) 30 years. The black tracer particle highlights the highly-advective flow regime.
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exception of rifting, the zero-stress and creep damage models generally agree concerning the 

spatial distribution of heavily versus weakly damaged areas. As was the case for creep damage, 

grounded ice experiences relatively little damage, as the effective pressure is dominated by the 

contribution from ice overburden pressure. Nearly ruptured ice immediately develops between 

the narrow strip of grounded ice at approximately x1  520 km and the lateral boundaries (x2=¿ 0 

and x2=¿ 80 km). However, this region does not develop into a sharp rift that propagates across 

the shelf to result in a calving event. Over time, the zero-stress damage field mostly evolves from

its initial configuration through advection, as evident following the black tracer particle in 

Figures 6a and 6b, which advects beyond the domain in Figure 6c. As expected, the damage field

has a strong impact on the grounding line position (white dotted line) by decreasing buttressing 

to initiate grounding line retreat. This grounding line migration is reflected in the damage field, 

as ice that is nearing floatation quickly accumulates relatively heavy damage in comparison to 

upstream grounded ice. The corresponding anisotropic zero-stress damage results are given in 

Figure 7, which yield lesser damage values everywhere compared to the isotropic case given that

damage accumulation is restricted to a single plane. Like the isotropic case, damage evolution is 

largely dictated by advection, though relatively less advection occurs over the 30-year 

simulation, as indicated by the black tracer particle, because the lesser damage results in smaller 

velocities. While some material points eventually rupture by the end of the simulation, they do 

not result in tabular calving, even if the simulation is continued for several more decades. In 

agreement with Sun et al. (2017) none of the above zero-stress simulations resulted in calving. 

We can conclude that the novelties of our approach, namely using a tensorial damage variable 

and implementing the model within the GIMPM-SSA framework, are simply not enough to 

cause calving with the zero-stress model in the MISMIP+ experiment.  
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In the second zero-stress damage experiment, we rerun the MISMIP+ experiment, but 

encourage rifting to initiate by setting critical damage values of D̂cr=0.7 and D̂cr=0.6 for 

isotropic and anisotropic damage, respectively. The critical rupture criterion is enforced after 

each combined zero-stress damage and SSA solution. At the first time step, rupture occurs near 
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Figure 8. Isotropic zero-stress damage field at calving when using  = 0.7 for a grid resolution 
of (a) 0.5 km versus (b) 1 km. Grid dependence is most apparent in the vastly different times 
to calving of (a) 0.553 years versus (b) 1.607 years.
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Figure 9. Fully anisotropic zero-stress maximum principal damage field at calving when 
using  = 0.6 for a grid resolution of (a) 0.5 km versus (b) 1 km. The rifts propagate nearly 
instantly, with times to calving of (a) 5.73 hours and (b) 5.99 hours. The rift paths show 
clear grid dependence, as shown in detail (c) for the 1 km case.
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the shear margins where ⟨ D̂1 ⟩> D̂cr, and the resulting high stresses allow rifts to propagate across 

the domain to calve tabular icebergs. The final maximum principal zero-stress damage fields are 

given in Figures 8 and 9 for the isotropic and anisotropic cases, respectively. While both cases 

produce rifts in the same general area as the creep damage experiments, this experiment exposes 

several numerical and physical issues associated with zero-stress models that limit their general 

applicability for representing tabular calving. The primary numerical difficulty with this 

approach is that the zero-stress model is inherently a local damage model, and is therefore 

subject to grid dependence. Figures 8a and 9a use a 0.5 km grid resolution whereas Figures 8b 

and 9b use a 1 km grid resolution. Grid dependence in the isotropic case is only slightly apparent

in the spatial damage field, but has a strong influence on the time to calving; the 0.5 km 

resolution grid results in calving in 0.553 years versus 1.607 years for the 1 km resolution grid. 

Stronger grid dependence is observed in the spatial damage field for the anisotropic case. The 

differing grid resolution results in different rift paths, where damage clearly localizes to single 

grid cells, as shown in detail for the 1 km resolution case in Figure 9c. 

In general, using the zero-stress damage model to simulate rift propagation is problematic

due to the assumption that crevasse depths are in equilibrium with the stress field instead of 

using a rate-based parameterization of fracture as in the creep damage model. The rate-based 

parameterization allows more precise tuning of the rates of damage accumulation and rift 

propagation by varying the parameter B¿ in the creep damage evolution function (9). 

Furthermore, creep damage will preferentially accumulate faster wherever the magnitudes of the 

Hayhurst stress, χ , and previous damage are greatest. Conversely, the zero-stress damage rate 

cannot be controlled, which was particularly problematic during the anisotropic critical rupture 

test, where calving occurred in under 6 hours for both grid resolutions. The corresponding 

timestep sizes were as small as fractions of a second in an attempt to keep dDmax less than 0.075 
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according to the time-stepping scheme, a restriction that was not always satisfied. In practice, 

such miniscule time steps are only sustainable for modeling nearly-instantaneous calving. 

Therefore, a lack of tuning controls can be added to the many issues associated with using zero-

stress damage for Antarctic ice shelves, along with the potential physical-inconsistencies 

concerning assumptions on crevasse spacing and vertically-invariant deviatoric stresses, as well 

as grid-dependence due to the local damage formulation. Based on these studies, we conclude 

that the zero-stress damage model is not well suited for parametrizing ice shelf fracture, except 

where crevasses are closely spaced and damage is small enough that localization and full-

thickness rifting do not occur. Under the assumption that vertical temperature profiles are 

isothermal, the zero-stress model will typically overestimate basal crevasses. Furthermore, rifts 

are poorly represented in the zero-stress model, if they are initiated at all.

4.4. Simulations using the modification for necking and mass balance

A drawback of both the creep and zero-stress damage models as tested above is that they do not 

account for the potential impact that processes associated with necking and mass balance may 

have on damage evolution. In Supplementary Material S.3, we explain how these processes 

influence crevasse depths, and we describe an expression that modifies large-scale damage to 

account for these processes (Bassis & Ma, 2015). In this section, we implement this expression 

within the zero-stress damage model, noting that implementation within the creep damage model

is much more complex and is beyond the scope of this paper. By comparing the results from this 

modified zero-stress damage model to those of the previous unmodified version, we can analyze 

how necking and mass balance processes impact damage. Thus, we can determine the settings in 

which our creep damage model is applicable in its current form without accounting for these 

processes, and then propose how a combined approach between damage models may be 
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formulated for more generalized applications. 

We perform two experiments with the modified zero-stress model. Both experiments 
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Figure 10. Isotropic zero-stress damage field, as modified to include necking, at (a) 16 
years, and (b) 30 years. The initial field at 0 years is identical to Figure 6a.
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Figure 11. Fully anisotropic zero-stress maximum principal damage field, as modified to 
include necking, at (a) 16 years, and (b) 30 years. The initial field at 0 years is identical to 
Figure 7a. 
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Figure 12. Isotropic zero-stress damage field, as modified to include necking and 5 m a-1 basal 
melting for floating ice, at (a) 16 years, and (b) 30 years. The initial field at 0 years is identical to 
Figure 6a. 
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Figure 13. Fully-anisotropic zero-stress maximum principal damage field, as modified to 
include necking and 5 m a-1 basal melting for floating ice, at (a) 16 years, and (b) 30 years. The 
initial field at 0 years is identical to Figure 7a.
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resemble the first experiment from the previous section, where the damage model is activated 

and the MISMIP+ model is run forward in isotropic and anisotropic form for 30 years. For the 

first experiment, we set mass balance to zero, so that when the modified and unmodified zero-

stress damage results are compared, the role of necking processes alone are revealed. The results 

for the necking-only experiment are shown in Figures 10 and 11 for the isotropic and anisotropic 

cases, respectively. The first timestep is not shown because it is the same as the unmodified case 

(Figure 6a). Like the unmodified case, the necking model gives high values of damage near the 

margins, where the greatest damage is concentrated at x1  520 km. These areas are associated 

with high stresses and S0<1, so that necking accelerates the rate of damage accumulation, though

rifts still do not propagate across the center of the shelf. However, the rifting in the modified 

isotropic case develops into much sharper patterns than in the unmodified isotropic case, which 

is not only due to the accelerated damage accumulation in these areas, but also due to healing in 

the immediate surrounding areas (S0>1). Elevated damage values in these areas are also 

observable in the anisotropic modified case, relative to the anisotropic unmodified case. As 

predicted in Bassis and Ma (2015), the necking expression only yields additional damage 

accumulation along these areas of elevated shear, with healing dominating the response 

elsewhere. However, upon healing, most regions of the domain quickly re-damage towards their 

previous values. For example, the ice tongue part of the domain is largely under uniaxial tension,

which in the isotropic case, yields the expected values of D̂ ≈0.5 and S0≈2. Any healing from 

the necking model is immediately countered by new zero-stress damage accumulation during the

next computational cycle. However, at the location where the ice tongue in the unmodified case 

inherits heavy damage from upstream along the lateral bounds (Figures 6b and 6c), healing is 

observed in the modified case that is maintained over time (Figure 10). In the anisotropic case 

(Figure 11), sustained healing is more apparent along the shear margins of the ice shelf. 
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For the modified zero-stress second experiment, we test the impact of assigning a basal 

melt rate. We rerun the first experiment with a basal melting rate of 5 m a-1, which is taken as 

constant throughout the floating ice domain, for simplicity. The isotropic and anisotropic results 

are given in Figures 12 and 13, respectively, and we note that setting a greater or lesser basal 

melting rate yields similar patterns. For the isotropic case, the damage field at 16 years (Figure 

12a) is very similar to the necking-only case (Figure 10b) everywhere except near the lateral 

bounds of the floating domain, because basal melting is not strong enough to offset the effect of 

healing. The opposite affect occurs near the lateral bounds of the floating domain, and maximum

damage is quickly realized. By the end of the simulation (Figure 12b), the ice shelf has thinned 

enough that melting begins to dominate over healing for more interior sections of the ice tongue. 

The same response is observed in the anisotropic case (Figure 13), except that at the interior 

sections of the ice tongue, melt-induced damage slightly overtakes healing earlier in the 

simulation than the isotropic case. Healing is this area is lower for the anisotropic case than the 

isotropic case, because damage, and therefore strain-rates, are lower. 

5. Discussion

The experiments from Section 4.4 indicate that necking and mass balance may play significant 

roles in modulating damage on decadal timescales, so that these processes should be 

implemented within the creep damage model if it is to be applied on long timescales. Such an 

approach will be the subject of future research, and would require carefully modifying the 3-D 

damage field to reflect the modified value of vertically-integrated damage calculated according 

to necking and mass balance. This process could include adjusting the vertical coordinates and 

local damage values of each layer, as well as the addition or subtraction of layers. Based on our 

previous comparison between creep damage and zero-stress damage, we would expect a 
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combined creep-damage/necking model to behave somewhat differently than the combined zero-

stress damage/necking model. While incorporating necking effects simply sharpened the zero-

stress damage field in regions of elevated stress, this sharpened damage could develop into 

rifting with the creep damage model that would otherwise not occur. Similarly, targeted basal 

melting could also trigger additional rifting. However, we emphasize that necking and mass 

balance effect should not be always be necessary to initiate rifts. Encouragingly, the creep 

damage model can initiate realistic rifting without these additional effects (Section 4.2), though 

we acknowledge that given the idealized setting, it is difficult to determine whether or not this 

rifting should actually occur. Potentially, necking could play a more apparent role in small scale 

calving at the ice front; qualitatively, the configuration of fully-damaged material points in the 

isotropic modified zero stress simulation (Figure 10b) resembles the sawtooth pattern of calving 

sometimes observed at the lateral sides of long ice tongues (e.g. Erebus ice tongue). 

The major advantage of combining the Bassis and Ma (2005) model with creep damage 

concerns healing. Basal crevasses are typically initiated near the grounding line or perturbations 

such as ice rises, and can heal heavily as they advect downstream, due to both necking and 

marine ice formation. Healing of upstream damage has been inferred, for example, on Larsen C 

Ice Shelf (Borstad et al., 2013). Healing in the modified zero-stress experiments was probably 

underestimated; most healing was immediately offset by new damage because the zero-stress 

model assumes crevasse depths are in equilibrium with the stress field, and zero-stress deviatoric

stresses were assumed depth-invariant here so that basal crevassing was likely overestimated. 

However, creep damage is rate-based and can incorporate 3-D temperature and stresses. As seen 

in Figure 5, when lower basal temperatures are accounted for, basal crevasses do not 

spontaneously propagate in low stress regions at the interior of the ice shelf. Therefore, when 

using a combined creep-damage/necking model with mass balance effects, damage associated 
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with deep basal crevasses that were initiated from high stress regions upstream could become 

completely healed in low stress regions downstream. However, the success of capturing this 

behavior is reliant on proper initiation of the damage field corresponding to upstream basal 

crevasses. In the case that basal crevasses initiate from flexural stresses at the grounding line, 

special treatment is required to initiate the corresponding damage because such stresses are not 

captured in the SSA. The simplest approach may be to assign a 3-D damage distribution 

according to crevasse depths calculated with the SSA zero-stress approximation. However, this 

approach would be strictly a rough approximation, as for example, the zero-stress model was 

found to significantly underestimate basal crevasse depths near the grounding line on Larsen C 

Ice Shelf where flexural stresses are large (Luckman et al., 2012). These authors found better 

agreement with observations (within 10-20%) when using a linear elastic fracture mechanics 

approach, though this approach also did not explicitly account for flexural stresses and may not 

be accurate in all cases. An approach for approximating basal crevasse depth at the grounding 

line that does account for flexure involves using a thin elastic beam approximation, combined 

with a mode I brittle failure criterion (Logan et al., 2012), but this model is only applicable 

where strain rates are low. The most accurate way of capturing flexural stresses may be to 

transition to a full-Stokes model near the grounding line, though this approach is extremely 

computationally expensive in 3-D. Linear elastic fracture mechanics has been used to obtain 

reasonable basal crevasse heights in a 2-D full-Stokes setting (Yu et al., 2017), or the creep 

damage model could potentially be applied. 

One of the most significant advancements made with the creep damage framework 

presented here is in modeling the initiation and propagation of rifts using damage. While it is 

encouraging that our simple isotropic rift treatment cleanly propagates rifts, our ongoing research

efforts are aimed at enabling a more accurate physical depiction of rift dynamics. Ideally, wide 
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rifts that open into the ocean should be implemented as a discontinuity, with a Neumann 

boundary condition assigned along the flanks similar to the ice front boundary condition, but 

which also includes the opposing pressure of ice mélange within the rift (Larour et al., 2014). 

Using material point methods, this boundary condition could potentially be applied directly on 

material points in a similar manner to how water pressure has been incorporated into full-Stokes 

creep damage simulations (Duddu et al., 2020). Alternatively, it could be applied along line 

segments that are introduced to track cracks, and which can advect with flow (Nairn, 2003). 

Once a discontinuous boundary treatment is implemented, behavior of ruptured material points 

can be further modified to account for the strength of mélange between flanks, 

tension/compression asymmetry, and lateral friction or faulting between flanks. 

6. Conclusion

Mechanical weakening and fracture of large-scale ice shelves may be modeled using an SSA 

parameterization for nonlocal, anisotropic creep damage. Unlike previous crevasse depth-

tracking damage approaches, creep damage parameterizes the fracture process itself, and is 

therefore better suited for capturing dynamic processes such as rifting. Furthermore, creep 

damage is treated in 3-D, which allows damage interaction with other 3-D variables, such as 

temperature and density. The numerical framework that we built to support the creep damage 

model is formulated on the material point method, which allows accurate and efficient advection 

of the 3-D damage field. In contrast, if the model was implemented within a traditional Eulerian 

framework, advection algorithms would be computationally inefficient, and introduce numerical 

diffusion error that would compromise the accuracy of damage evolution. By testing the creep 

damage model on an idealized marine ice sheet, we conclude that large scale damage of ice 

should be treated as highly anisotropic. Anisotropic creep damage yields sharper, more arcuate 
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rifting and crevasse patterns that are more consistent with observations. In addition, anisotropic 

nonlocal damage is more thermodynamically consistent with the fracture physics (Pralong et al., 

2006). Our experiments further show that deep crevassing, rifting, and tabular calving may occur

using creep damage without the inclusion of necking or mass-balance processes. Testing a 

modified form of the zero-stress damage model that include these processes (Bassis & Ma, 2015)

does not capture rifting that results in calving. Therefore, we conclude that the failure of zero-

stress damage approaches to capture rifting does not occur due to the absence of these processes, 

but because the zero-stress model does not properly parameterize the fracture process and suffers

from numerical issues related to its local formulation and assumption of equilibrium with the 

stress field. Future research should consider combining the necking/mass-balance and creep 

damage models for an ideal representation of ice-shelf fracture on decadal timescales. Ongoing 

research will also focus on verification of the damage parameters, application to real ice shelves, 

and improved representation of rifting. 
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In Section S.1 of this supporting information, the early MISMIP+ creep damage accumulation 
for isotropic (𝛾 = 0) and mixed isotropic/anisotropic creep damage (𝛾 = 0.5) are reported at 
similar levels of rift  propagation as given for fully anisotropic creep damage (𝛾 = 1) in Figure 2 
of the main text.  Further description and implementation details of the SSA zero-stress 
damage model (Sun et al., 2017)  and the necking and mass balance modification (Bassis & Ma, 
2015) are given in Sections S.2 and S.3, respectively
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Figure S1. Damage field for the isotropic (𝜸 = 𝟎) creep damage simulation at 

(a) 0.06 years and (b) 0.12 years. Material points with 𝑫ഥ = 𝑫ഥ𝐦𝐚𝐱 = 𝟎. 𝟗 

correspond to rifts. 
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Figure S2. Maximum principal damage field for the mixed isotropic/anisotropic 

(𝜸 = 𝟎.5) creep damage simulation at (a) 0.06 years and (b) 0.18 years. Material 

points with ۃ𝑫ഥ𝟏ۄ = 𝑫ഥ𝐦𝐚𝐱 = 𝟎. 𝟗 correspond to rifts. 
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S.2 Description of zero-stress damage model 

In the zero-stress criterion, closely-spaced crevasses are assumed to propagate to the depth at 

which the net longitudinal maximum principal Cauchy stress is zero (Nye, 1957). The net 

Cauchy stress at depth is parameterized as 

𝜎𝑖𝑗(𝑧) =  𝜎𝑖𝑗
D(𝑧) − 𝑝eff(𝑧)𝛿𝑖𝑗 , (S1) 

where 𝑝eff(𝑧) takes the same form as within the creep damage model from Equations (14)-(16). 

We disregard the water pressure term for surface crevasses and assume dry surface conditions. A 

zero-stress isotropic damage variable was previously defined for SSA models as the ratio of the 

combined depths of surface and basal crevasses to the ice thickness (Sun et al., 2017), and here, 

we extend this damage variable to anisotropic form as a 2nd order tensor, 𝑫̂. To our knowledge, 

all other SSA applications of the zero-stress model have solely focused on obtaining plausible 

estimates of crevasse depths (Pollard et al., 2015; Bassis & Walker, 2012; Bassis & Ma, 2015), 

rather than also applying the crevasse depths as a damage variable that influences the stress 

solution. Zero-stress crevasse depths are assumed to be in equilibrium with the stress field, and 

given the interdependence between damage and stress, the zero-stress damage solution must 

therefore be computed simultaneously with the SSA solution. This coupled solution is facilitated 

by assuming deviatoric stresses are depth-invariant, which allows an analytical solution for 

crevasse depths (Nick et al., 2010). We adopt this assumption for simplicity, as did the previous 

SSA zero-stress damage study (Sun et al., 2017). However, assuming depth-invariant deviatoric 

stresses is only justified only if crevasses are closely-spaced so that the stress singularity at 

crevasse tips is dissipated (Weertman, 1977), and if vertical ice columns are isothermal.  
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We emphasize that the zero-stress approximation is likely more accurate when applied to 

outlet glaciers in Greenland (e.g. Nick et al., 2010; Todd & Christofferson, 2014) than when 

applied to ice shelves, where the assumptions of closely-spaced crevasses in equilibrium with the 

stress field and crevasse evolution based on only tensile stresses are less valid. Ice shelf basal 

crevasses tend to be widely-spaced and may experience mixed-mode fracture (McGrath et al., 

2012; Luckman et al., 2012). Furthermore, assuming an isothermal ice shelf may not be an 

accurate approximation, as seawater temperatures at the ice shelf base greatly exceed surface air 

temperatures. However, a vertically-varying temperature profile would induce vertically-varying 

deviatoric stresses, so that a more complex iterative scheme would be required here solve the 

coupled SSA/zero-stress damage problem.  

We restrict our zero-stress damage tests to the fully-isotropic and fully-anisotropic cases. 

For full-anisotropy, the initial damage accumulation for the zero stress model occurs on a single 

plane aligned normal to the maximum principal stress of the undamaged configuration, as in the 

creep damage model. This plane subsequently rotates over time according to spin, as in Equation 

(8). However, unlike creep damage, anisotropic zero-stress damage accumulation must be 

restricted to this plane at subsequent time steps, and evolves according to the stresses normal to 

the plane because the zero-stress criterion assumes crevasses open in accordance with tensile 

(Mode I) fracture. Rifting is incorporated with the same 2-D critical damage rupture scheme 

from the creep damage model. To facilitate comparison between the zero-stress and creep 

damage models, we adopt the same adaptive time-stepping scheme used for the creep damage 

simulations, but defining dD̅̅̅̅
max = max(𝐷̂ 

𝑚+1 − 𝐷̂ 
𝑚  ) and eliminating the condition to restart 

the damage solution if dD̅̅̅̅
max > 0.075 because damage is solved implicitly. 
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S.3 Description of damage modification for necking and mass balance 

Necking describes the process in which basal crevasses widen under tension and the resulting 

feedback on crevasse evolution, where depending on strain-rates and crevasse-geometry, the 

ratio of crevasse penetration to ice thickness (i.e. damage) will either increase or decrease over 

time (Bassis & Ma, 2015). The ratio can increase due to greater thinning rates associated with the 

presence of crevasses. However, as crevasses grow, the local ice geometry simultaneously 

adjusts to hydrostatic equilibrium, and depressions fill with surrounding ice due to “gravitational 

restoring forces”. If the system is dominated by these gravitational forces rather than thinning, 

the ratio of crevasse penetration to ice thickness will decrease (i.e. healing). The ratio is further 

modulated by mass balance processes, such as melting and accumulation of snow or marine ice 

in crevasses. A previous study investigated this complex coupling of various processes, and an 

expression for large-scale ice flow was proposed using perturbation analysis that defines the rate 

at which damage is modulated according to necking and mass balance processes (Bassis & Ma, 

2015). This model can be employed in conjunction with a mechanical damage model that tracks 

crevasse depths, but has not yet been tested to our knowledge.  

 When used in conjunction with the zero-stress model, this large-scale damage 

modification takes the form: 

𝑑𝑫̂

𝑑𝑡
=  (𝑛∗(1 − 𝑆0)ۃ𝜀1̇ۄ +

𝑚̇

𝐻
) 𝑫̂ , (S2) 

 

where the first term in the parentheses describes the influence of necking on damage and the 

second term describes the influence of the melt rate, 𝑚̇. Within the necking term, parameter 𝑛∗ is 

an effective flow law exponent and 𝑆0 describes the ratio of gravitational restoring force to 
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tensile stress. Derivation of these terms is non-trivial, and we direct the reader to the original 

publication for a detailed explanation. The expression is only valid in the long wavelength limit, 

which corresponds to the following assumptions: crevasses are wide compared to the ice 

thickness, perturbations are assumed to relax immediately to hydrostatic equilibrium, and the 

melt rate in crevasses is equivalent to the large scale melt rate. We solve (S2) immediately after 

completion of the SSA solution, and add the damage increment to the zero-stress damage 

calculated during the SSA. 
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