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Abstract

The effects of instrument noise on estimating the spectral attenuation rates of ocean waves in sea ice are explored using synthetic

observations in which the true attenuation rates are known explicitly. The spectral shape of the energy added by noise, relative

to the spectral shape of the true wave energy, is the critical aspect of the investigation. A negative bias in attenuation that

grows in frequency is found across a range of realistic parameters. This negative bias decreases the observed attenuation rates

at high frequencies, such that it can explain the rollover effect commonly reported in field studies of wave attenuation in sea ice.

The published results from four field experiments are evaluated in terms of the noise bias, and a spurious rollover (or flattening)

of attenuation is found in all cases. Remarkably, the wave heights are unaffected by the noise bias, because the noise bias occurs

at frequencies that contain only a small fraction of the total energy.
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Abstract18

The effects of instrument noise on estimating the spectral attenuation rates of ocean waves19

in sea ice are explored using synthetic observations in which the true attenuation rates20

are known explicitly. The spectral shape of the energy added by noise, relative to the21

spectral shape of the true wave energy, is the critical aspect of the investigation. A neg-22

ative bias in attenuation that grows in frequency is found across a range of realistic pa-23

rameters. This negative bias decreases the observed attenuation rates at high frequen-24

cies, such that it can explain the rollover effect commonly reported in field studies of wave25

attenuation in sea ice. The published results from five field experiments are evaluated26

in terms of the noise bias, and a spurious rollover (or flattening) of attenuation is found27

in all cases. Remarkably, the wave heights are unaffected by the noise bias, because the28

noise bias occurs at frequencies that contain only a small fraction of the total energy.29

Plain Language Summary30

Many previous studies have determined the rate at which ocean surface waves de-31

cay as they travel through sea ice. This work identifies a systematic bias in those results,32

using both published data and synthetic data to demonstrate the effect. The bias ad-33

dresses a long-running debate on the details of how waves decay in sea ice.34

1 Introduction35

Ocean surface wave attenuation in sea ice is an established phenomenon (Squire,36

2007, 2020) and has been extensively studied using field measurements of wave energy37

E as a function of frequency f . The attenuation of spectral wave energy E(f) is often38

expressed as an exponential decay with distance x, such that39

E(f, x) = E(f, 0)e−α(f)x. (1)

The attenuation rate α controls the reduction of wave energy from the incident waves40

in open water (x = 0) to some position within the sea ice. The attenuation rate is then41

a function of frequency, most commonly a power law,42

α(f) = af b, (2)

where a and b are constants determined for different ice types during previous studies.43

Meylan et al. (2018) provide a comprehensive review of the frequency dependence of α(f).44

Although α(f) is generally thought to increase with frequency f , many field ex-45

periments have suggested a “rollover” in which α(f) eventually decreases at the high-46

est frequencies. These are frequencies commonly referred to as the “tail” of the wave en-47

ergy spectrum. Wadhams (1975) first noted the rollover, and it was described more fully48

in the seminal work of Wadhams et al. (1988), who find a rollover in the spectral atten-49

uation rates across many experiments with varying ice types and wave conditions. The50

rollover is challenging to diagnose because most field observations simply provide the ra-51

tio of energy at different locations E(f, x1), E(f, x2) and not the actual loss of energy52

caused by the sea ice. Wadhams et al. (1988) describes two possible mechanisms that53

might cause the observed rollover, both of which essentially replace (or input) some of54

the wave energy at high frequencies: 1) input of addition wave energy by wind, and 2)55

nonlinear transfer of wave energy from lower frequencies to higher frequencies. Masson56

and LeBlond (1989) consider this further and suggest that winds can input considerable57

energy into waves in partial ice cover. The various field experiments in Wadhams et al.58

(1988) dataset report the rollover effect in a range of conditions, including very light winds59

and small waves with little likelihood of significant nonlinearity. The ubiquity of the rollover60

is difficult to explain by the two above mechanisms alone.61
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Recent work has explored both mechanisms suggested by Wadhams et al. (1988),62

including a more thorough framework for nonlinear transfers (Polnikov & Lavrenov, 2007)63

and testing wind input effects (Li et al., 2017; Rogers et al., 2016). Particularly, Li et64

al. (2017) provide a comprehensive treatment of wind input using modern field obser-65

vations and a spectral wave model. They conclude that wind input at high frequencies66

is sufficient to replace some of the wave energy attenuated at high-frequencies, such that67

reanalysis of the data no longer indicates a rollover in the spectral attenuation rates (though68

a rollover does appear without considering wind input).69

Here, we explore instrument noise as another possible explanation for the emer-70

gence of spurious rollovers in attenuation rates from field experiments. Assuming that71

the noise in the raw data are random errors with Gaussian statistics, the noise will con-72

tribute additional variance to the raw data, and this will elevate the spectral wave en-73

ergy densities E(f, x) determined from the raw data. In terms of variance, this bias in74

energy will always be positive, even though the actual errors are symmetric with zero-75

mean. According to the Bienayme theorem, the total variance (energy) will be the sum76

of the true variance from the wave signal and the variance from the noise, because there77

are no cross-terms from these uncorrelated signals. Following Parseval’s theorem, this78

variance is preserved in the calculation of frequency spectra, such that79

E(f, x) = Es(f, x) + En(f). (3)

The observed wave energy spectra E(f, x) is thus a sum of the energy in the wave sig-80

nal Es(f, x) and the variance added by instrument noise En(f). Although the assump-81

tion of Gaussian errors in the raw data would result in a constant “white” spectral shape82

for En(f), the effects of filters and other processing may produce an En(f) that is a strong83

function of frequency. This will be explored in the Methods section.84

Previous studies have been well-aware of instrument noise and typically applied cut-85

off levels below which E(f, x) observations are not used. However, the spectral shape of86

the noise energy En(f) and effects on inferred attenuation rarely have been considered.87

Most importantly, the value of En(f) will remain at the same level while Es(f, x) de-88

creases with x due to attenuation by sea ice, such that the relative amount of noise in-89

creases with distance. For example, Cheng et al. (2017) tried to avoid noise contamina-90

tion by using a constant cutoff of E(f, x) > 10−5 m2/Hz in processing data from the91

Arctic Sea State experiment (Thomson, Ackley, et al., 2018). This choice of noise floor92

is coincidentally the same as the cutoff in (Wadhams et al., 1988). Even though Cheng93

et al. (2017) did not observe a rollover, they did find a flattening of attenuation rate α94

at high frequencies and large distances, which they attributed to wind input. More crit-95

ically, Meylan et al. (2014) did not see a rollover in attenuation rates when analyzing Antarc-96

tic wave data with a constant cutoff level of E(f, x) > 10−2, yet Li et al. (2017) ana-97

lyzed the same data with a much lower cutoff and did see a strong rollover in attenu-98

ation rate. A notable exception is Sutherland et al. (2018), who treat spectral noise ex-99

plicitly and do not infer a rollover in attenuation.100

Here, we present a framework to understand the bias in attenuation caused by the101

spectral slope of energy from noise En(f) relative to the spectral slope of energy from102

the wave signal Es(f). We revisit five different field experiments from the literature to103

test assumptions about the shape of En(f) and look for empirical evidence in the ob-104

served energy spectra. We then create synthetic wave energy spectra with known spec-105

tral attenuation rates, and then explore the inferred attenuation rates after the variance106

from instrument noise is added to the synthetic spectra. The general parametric form107

of bias in attenuation is also derived. The discussion focuses on the spurious nature of108

previous ‘rollover’ results and presents recommendations for avoiding noise bias in us-109

ing field observations of wave spectra in ice. Except for a brief aside in the Discussion110

section regarding low frequencies, we focus entirely on the high frequency tail of the en-111

ergy spectra.112
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Table 1. Case studies and input parameters for spectral noise effects. True attenuation rates

are specified as αt(f) = afb.

Case Hs [m] a b Hn [m] r x [m]

CODA 2019 0.5 to 2.5 0.026 2.7 0.08 -4 0 to 6× 103

SeaState 2015 0.1 to 4.0 0.015 3.0 0.03 -4 0 to 100× 103

SIPEX 2012 0.1 to 6.0 0.005 2.0 0.03 -4 16 to 130× 103

STiMPI 2000 0.1 to 5.0 0.010 2.9 0.15 -4 10 to 80× 103

Greenland Sea 1978 0.5 to 1.5 0.020 3.6 0.01 0,-4 0 to 50× 103

2 Methods113

2.1 Specification of case studies114

Case studies are chosen to span a wide range of methodologies and published spec-115

tral attenuation rates. Not all of these cases reported a complete rollover in published116

attenuation rates; the intent is to show the full range of noise effects on attenuation es-117

timates. A realistic true attenuation rate αt(f) = af b is specified for each case study,118

and this is used to create synthetic (true) spectra to which noise is then added. Table 1119

summarizes the conditions and parameters for each case study, which are referred to by120

experiment name, rather than the publication(s) of those results.121

The first two case studies use observations from SWIFT buoys (Thomson, 2012),122

which use GPS velocities in onboard processing (Herbers et al., 2012) and accelerom-123

eter data in post-processing. The first case was collected in 2019 along the coast of Alaska124

in pancake ice as part of the Coastal Ocean Dynamics in the Arctic (CODA) program125

(Hosekova et al., 2020). The second case was collected in 2015 in the Beaufort Sea in pan-126

cake ice as part of the Arctic Sea State program (Rogers et al., 2016; Cheng et al., 2017;127

Thomson, Ackley, et al., 2018). The third case uses observations from custom buoys dur-128

ing SIPEX in the Antarctic Marginal Ice Zone (MIZ) in 2012, as described in Kohout129

et al. (2014, 2015). The fourth case uses observations from custom buoys during STiMPI130

in the Weddell Sea in pancake ice in 2000, as described in Doble et al. (2015). Finally,131

the Greenland Sea 16 Sep 1978 experiment from Wadhams et al. (1988) is used as a fifth132

case study.133

2.2 Spectral energy of the wave signal, Es(f)134

Ocean waves typically have an energy spectrum with a power law in the spectral135

tail (i.e., frequencies above the peak frequency fp) and the overall level can be described136

by the conventional definition of the significant wave height Hs,137

Es(f > fp, x) ∼ fq Hs = 4

√∫
Es(f)df. (4)

In open water, we expect the familiar shape q = −4 of the equilibrium tail (Phillips,138

1985; Thomson et al., 2013; Lenain & Melville, 2017). Figure 1 shows the energy spec-139

tra from observations in the four case studies, which are bin-averaged by Hs and pre-140

sented in logarithmic space to visualize the fq dependence. The q = −4 shape is clear141

for open water observations (which are the largest Hs bins) in the CODA 2019 and SeaSt-142

ate 2015 case studies. This q = −4 shape in the spectrum is related to a wave field with143

constant geometric steepness of the waves themselves, expressed as a spectrum of mean-144

square-slope mss(f) = Es(f)f4 that has a constant level in f (see Thomson et al. (2013)).145
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Figure 1. Wave spectra from actual field observations (not synthetic) during four case stud-

ies. Spectra are binned by wave height (see legend), and a dotted black line shows the estimated

noise energy following Eq. 5.

In sea ice, the spectral shape is typically observed to be much steeper (q < −4),146

which is consistent with largest Hs bins in the SIPEX 2012 and STiMPI 2000 case stud-147

ies (Figure 1). These experiments did not include wave observations in open water, so148

all wave spectra already have slopes q < −4. This high-frequency tail and the implied149

changes for wave steepness are the focus of the present study.150

Lacking access to the actual data, we cannot include the Greenland Sea 1978 spec-151

tra in Figure 1. We can, however, reconstruct the conditions using parametric spectra152

to match the incident energy levels in Wadhams et al. (1988)and proceed to explore the153

implications of the reported En(f) = 10−5 m2/Hz noise floor and the possibility of a154

frequency dependence in this noise.155

The ensemble average spectra in Figure 1 have non-stationary conditions, and thus156

are not valid determinations of the spectral shape of the wave energy. However, the spec-157

tral energy contributed from noise is independent of the wave signal and should have sta-158

tionarity over all conditions. Thus, Figure 1 includes robust ensembles of the noise spec-159

tra, which emerge as the dominant signal in the higher frequencies whenever the waves160

are small. More details follow.161
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Figure 2. Demonstration of (a) time series and (b) spectra of random noise (blue curves),

that is double-integrated without a filter (red curves) and double integrated with a high-pass

filter (yellow curves).

2.3 Spectral energy of noise, En(f)162

There is additional variance (energy) from noise En(f) in observed wave spectra,163

following Eq. 3. We assume energy from noise follows power law in the spectral tail (i.e.,164

frequencies above the peak frequency fp) and we scale the level with a noise height Hn165

(analogous to significant wave height):166

En(f > fp) ∼ fr, Hn = 4

√∫
En(f)df. (5)

The noise height Hn is thus four times the standard deviation of the Gaussian random167

noise embedded in the raw wave elevations. Note, again, that the effect of noise in the168

raw data is to increase the total variance, such that the noise height Hn is a bias in the169

true wave height Hs, not a symmetric error.170

The noise height Hn is used as a general characterization of the level of noise En(f),171

though wave elevations rarely are measured directly. The type of sensor used for the raw172

measurements and the subsequent processing to estimate wave elevations will control the173

frequency exponent r. The expected exponents are r = −4 for the double-integration174

of accelerometers, or r = −2 for the single-integration of GPS velocities, or r = 0 (white175

noise) from direct measurements of heave (such as from an altimeter or LIDAR). For ac-176

celerometers, each integration in time is equivalent to a factor f−1, and then the f−2
177

effect from double integration is squared to get f−4 when calculating energy (instead of178

amplitude).179

Figure 2 demonstrates the effects of integration and filtering on a synthetic signal180

that begins as a random noise time series. The double integration always causes a neg-181
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ative slope (r < 0) in the energy spectra of the noise, but the details of the shape are182

sensitive to filters applied during the double integration. Here, a simple RC filter is ap-183

plied to prevent the accumulation of errors in the double integration (see Eqs. 2 and 3184

in Thomson, Girton, et al. (2018)). This is the same filter for the SWIFT buoys in the185

CODA 2019 and SeaState 2015 studies. In other buoys, such filtering is often a black-186

box running onboard the motion sensor itself. High-pass filters often have dynamic (and187

nonlinear) responses, which makes it difficult to determine a universal noise contribu-188

tion to computed energy spectra. Still, we can expect a universal form En ∼ fr with189

r < 0 in the high-frequency tail. The low-frequency region is more challenging to de-190

termine a canonical form; those effects are largely beyond the scope of the present work.191

Figure 1 includes dotted lines for the spectral shape of energy from noise En(f)192

for each case study, with corresponding Hn values estimated from sensor specifications193

(or from collecting raw data on land with a stationary buoy). For each experiment, the194

wave spectra in Figure 1 show the clear effects of the noise energy as a change in the slope195

of the spectra at the higher frequencies of the smallest Hs bin. These shapes are con-196

sistent with accelerometer noise that begins as purely random (white) noise and becomes197

r = −4 with double integration in time (and filtering). This noise energy is always present198

in the energy spectra, but it only becomes noticeable when wave energy is small. Thus,199

when Hs is small, En(f) > Es(f) at the higher frequencies, even though Hn < Hs.200

Lacking observed estimate of En(f) for the Greenland Sea case (excluded from Fig-201

ure 1), we will apply the reported constant noise floor of En(f) = 10−5 m2/Hz and ex-202

plore both the implied noise shape r = 0, as well as the more likely r = −4. We use203

a Hn = 1 cm consistent with the implied total noise variance of the reported constant204

En(f). We note that the reported noise level (and equivalent Hn) from Wadhams et al.205

(1988) is rather optimistic, relative to the other experiments with modern instrumen-206

tation in Table 1, but we retain the reported value for consistency.207

As brief aside, we consider the alternate interpretation of the change in the slope208

of the E(f) tail for small Hs in Figure 1. Since the geometric (i.e., crest to trough) steep-209

ness of the waves is set by the fourth moment of the spectrum (Banner, 1990), a true210

change in the E(f) tail would require the highest frequency waves to become abruptly211

steeper. As there are no visual observations to support such an change in the crest-to-212

trough shape of the shortest waves, we reject this interpretation and proceed with in-213

terpreting the change in the slope of the E(f) tail when Hs is small as an indication of214

noise exceeding signal.215

The noise energy at low frequencies is not well-constrained, and the results that216

follow will be restricted to the high frequencies (f > fp) for which the roll-over of at-217

tenuation has been so commonly reported. The low frequencies likely are sensitive to fil-218

tering, as is hinted by the shifting inflection points for f < fp in the Sea State 2015 dataset219

for different bins of wave height.220

The additional energy from the instrument noise En(f) makes it impossible to mea-221

sure energy less than the dotted lines, so when the wave signal Es(f) becomes weak at222

high frequencies, the observed spectra E(f) converge to the dotted lines of En(f). When223

waves are larger, the noise energy is a negligible fraction of the total energy, and the ef-224

fects are not readily detected in the spectral shape. Although both CODA 2019 and SeaSt-225

ate 2015 use SWIFT buoys, the effective Hn is different between these experiments be-226

cause of different filters used to suppress low-frequency drift during the double integra-227

tion of accelerometer data. Although both the SeaState 2015 and SIPEX 2012 datasets228

have Hn = 3 cm, the spectral levels of En(f) are slightly different because the processed229

spectra have different resolution in frequency df (see Eq. 5). Although all of the exper-230

iments in Figure 1 use accelerometer measurements with an effective r = −4 shape in231

noise energy, it is important to note that other experiments may have different measure-232
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ments. One such example is Ardhuin et al. (2020), who use GPS velocities as the raw233

data and thus likely have noise energy with an r = −2 shape.234

2.4 Synthetic spectra235

In the synthetic tests that follow, the incident open-water wave spectra Es(f, x =236

0) are specified using Pierson–Moskowitz spectra for fully developed seas, following Alves237

et al. (2003). In open water, this q = −4 (Eq. 4) shape is known to persist even in the238

case of a pure swell without wind (Vincent et al., 2019), though the Pierson–Moskowitz239

spectra was developed for a pure wind sea. The synthetic wave spectra use a frequency240

range of 0.05 < f < 0.5 Hz and a resolution df = 0.01 Hz, which is similar to many241

modern wave buoys.242

A given incident wave spectrum E(f, 0) = Es(f, 0) + En(f), designed to match243

a given case study, is attenuated with distance x into the ice at regular intervals simi-244

lar to the measurements from that case study. This noise is not cumulative in x and is245

assumed independent of the wave signal; it is a specified additional spurious energy for246

each observation E(f, x). Using a specified (true) attenuation rate αt(f) with a frequency247

exponent b (Eq. 1), a true wave spectrum Es(f, x) at each distance is obtained. This true248

spectrum already includes the energy from noise En(f) added in the incident wave spec-249

trum at x = 0 (Eq. 4), but it does not include the energy from noise of the other mea-250

surement at position x. That noise energy is explicitly added to create total spectra, E(f, x),251

following Eq. 3. The key point is that the energy of the noise does not decay with dis-252

tance x, though the wave energy does, and each total spectrum has noise energy added253

independently. The noise energy added to the incident wave spectrum E(f, 0) likely has254

negligible effects, because the wave energy is generally much larger than the noise en-255

ergy in defining E(f, 0) at the ice edge. Farther into the ice, however, the noise energy256

in any particular measurement may be a much more significant fraction of the observed257

energy E(f, x), especially for the higher frequencies.258

2.5 Inferred attenuation rates from spectra with noise259

Using the synthetic spectra (with added noise), inferred attenuation rates are de-260

termined using Eq. 1 rearranged as261

α(f) = − 1

x2 − x1
ln

(
E(f, x2)

E(f, x1)

)
(6)

and least-squares fitting the synthetic E(f, x) at each frequency f using pairs of posi-262

tions x1, x2. Using x1 = 0 is most consistent with the definition in Eq. 1, however this263

is not always measured in field experiments and we instead use the more general case264

of fitting all x1, x2 pairs for which x2 > x1. There are several other options for fitting265

Eq. 1, though the choice of the fitting method is not important for the present study,266

given that true attenuation rates are known a priori. Inferred attenuation is then com-267

pared with the true attenuation that was specified in producing the synthetic results,268

especially in regards to frequency dependence. The overall frequency dependence b is in-269

ferred by least-squares fitting Eq. 2 with270

b =
ln f

ln(α(f))
(7)

from the peak frequency fp of the incident spectrum E(f, 0) to the max frequency ob-271

served f = 0.5 Hz. This inferred b is somewhat sensitive to the choice of frequency range272

for fitting, but it is only meant to show qualitative effects for values relevant to the case273

studies. Using frequencies f > fp centers the results on the tail of the wave energy spec-274

trum, where rollovers have been reported in previous studies.275
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3 Results276

The results begin with the general effect of the spurious variance (energy) added277

to observed wave energy spectra, followed by the case studies. The energy from noise278

causes substantial changes to the shape of the observed attenuation rates, in general, and279

for all the cases examined herein. The case studies provide both a practical sense of the280

problem, as well as an exploration of the parameter space that cannot be fully described281

by the assumptions in the general solution.282

3.1 Generalized effects of noise283

Combining Eqs. 1 and 3 gives the general form of the observed α(f) as a function284

of the true αt(f) and the ratio of noise energy En(f) to the true spectral energy of the285

wave signal Es(f),286

α(f) = αt(f)− 1

x
ln

(
1 +

En(f)

Es(f, x)

)
. (8)

Previous studies have applied a uniform cutoff in E(f, x) (with implied r = 0 in Eq. 5)287

and discarded any attenuation calculated for En(f)
Es(f,x)

> 1. The problem is that such a288

ratio is unlikely to be constant in frequency. Even for ratios of
E(fp)
Es(fp,x)

∼ 1, the abso-289

lute error in α(f) at any particular f may be small, but the error in the dependence on290

f may be severe (because the bias grows in f). In particular, if the spectral shapes of291

En(f), Es(f, x) diverge, the effects of noise energy will be a strong function of frequency.292

Assuming that Es(f, x) and En(f) are both power laws in f , the error in atten-293

uation grows with approximately ln(f). The specific rate comes from the ratio of the power294

laws, which is almost assured to be positive given that Es(f, x) will only steepen from295

an initial q = −4. (There are no known or proposed mechanisms for a natural wave en-296

ergy spectrum ever to have a slope less than f−4.) The noise spectra have at most a slope297

of r = −4 for accelerometer measurements, and less for other methods. Thus, wave en-298

ergy in sea ice will tend to decrease with frequency faster than the noise energy decreases299

with frequency, and a negative bias in attenuation that grows with frequency is almost300

assured.301

The general form of the bias in attenuation is controlled by the ratio302

En(f)

Es(f, x)
∼ fr−q, (9)

and thus for any q < r the negative bias in attenuation will grow in frequency. Figure 3303

illustrates the attenuation bias for Hn

Hs
= 0.05 at the peak frequency fp and various r−304

q combinations. Given the typical range of 10−5 < α(f) < 10−3, the errors for in Fig-305

ure 3 are significant. For any attenuation that grows in frequency (Eq. 2), the slope of306

Es(f, x) will become more and more negative in ice (i.e., q < −4) and thus for any rea-307

sonable range of noise shape (−4 < r < 0), the ratio will grow. Thus it is only for the308

rare case of a constant true attenuation (b = 0) that maintains q = −4 within the ice309

and noise shape of r = −4 that the bias in observed attenuation will be constant. In310

some conditions the growing bias may only be sufficient to flatten the observed atten-311

uation rates; in others, it will cause an apparent rollover in attenuation at high frequen-312

cies. This flattening is expected for the particular case of an open water E(f, x = 0)313

that is used for all attenuation calculations, since both exponents q, r will tend to −4.314

Another mechanism by which Es(f, x) could retain the f−4 shape for all x is through315

wind input, which is often discussed in relation to the spectral shape of wave attenua-316

tion in sea ice. If wind input in sea ice was analogous to the equilibrium concepts of Phillips317

(1985), then Es(f, x) ∼ f−4 could be maintained, even as the overall Es(f, x) was re-318

duced by an attenuation that was not constant in frequency. Even with wind input, f−4
319

remains a bound on the slope of the true wave spectra. Figure 3 shows that even in such320
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Figure 3. Bias in observed α(f) as a function of frequency for combined signal and noise ex-

ponents r − q. Example shown is for a distance of 10 km into the sea ice and a ratio of noise to

true wave heights Hn/Hs = 5%.

conditions, the negative bias in α(f) is likely to grow in frequency, and thus the shape321

of inferred α(f) will be altered.322

The spatial dependence 1
x in Eq. 8 is also worth noting, since it may cause severe323

bias at short distances even when the ratio En(f)
Es(f,x)

is small. Indeed, Li et al. (2017) note324

changes in the rollover period for different distances that may be related to the atten-325

uation bias changing with 1
x . Figure 3 uses a distance of x = 10 km, which is within326

the range of all field experiments discussed herein.327

The role of distance and the effect of true spectra Es(f, x) that steepen beyond q =328

−4 within ice are explored in the case studies that follow, using the parameters in Ta-329

ble 1. There are figures and descriptions for each case, following a standard format. Each330

case has some range of x and f for which the noise has a strong effect on the inferred331

α(f). However, the significant wave heights are rarely affected by the noise, even far within332

the ice. The practical result is that noise energy remains a small fraction of the total en-333

ergy for all cases, but it has significant effects on the spectral shape of inferred atten-334

uation. In summary, noise can affect Hs no more than the value of Hn, but noise can335

make the apparent α go all the way to zero at high frequencies.336
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Figure 4. Synthetic results for the Chukchi Sea CODA 2019 case study. (a) true wave energy

spectra (colors show distance into the ice). (b) observed wave energy spectra with noise added

(colors show distance into ice). (c) true attenuation rate (black dashed line) and observed atten-

uation rate (colors show distance into ice). (d) wave heights as a function of distance into the

ice that are specified as true (black dashed line) and observed (red circles). (e) exponent of fre-

quency power law in attenuation that is determined from observations (red circles) and specified

as true (black dashed line).

3.2 CODA 2019337

The Chukchi Sea CODA 2019 case study results are shown in Figure 4. Panel (a)338

shows true spectra that steepen with distance into the ice, and panel (b) shows observed339

spectra that begin to approach the r = −4 noise floor slope at the highest frequencies.340

In panel (c), the attenuation rates estimated from the observations (Eq. 6) have a neg-341

ative bias that flattens the frequency response away from the true attenuation. Thus the342

fitted exponent shown in panel (e) deviates from the true b = 2 with increasing distance343

into the ice. In panel (d), the observed wave heights agree well with the true wave heights.344

This case study is a best-case scenario, in which the negative bias in attenuation345

is small and limited to flattening α(f) at a few frequencies. This is because the noise is346

steep (r = −4) and the distances are short (0 < x < 6 km) such that the true energy347

spectra do not become much steeper than f−4.348
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Figure 5. Synthetic results for the Beaufort Sea State 2015 case study. Panels as in Figure 4.

3.3 Sea State 2015349

The Sea State 2015 case study results are shown in Figure 5. Panel (a) shows true350

spectra that steepen dramatically with the longer distances into the ice, and panel (b)351

shows observed spectra that clearly tend to the r = −4 noise floor slope at many fre-352

quencies. In panel (c), the attenuation rates estimated from the observations (Eq. 6) have353

a negative bias that flattens the frequency response away from the true attenuation (b =354

3). This trend is similar to the Cheng et al. (2017) results from analyzing the actual field355

data, in which a flattening of α(f) is evident for f > 0.3 Hz in their Figure 4. Cheng356

et al. (2017) attributed this flattening to wind input; here, we show that it is more likely357

caused by negative bias from spectral noise in the observations. In both the synthetic358

observations and the actual field observations, a full rollover in the observed α does not359

occur. The r = −4 shape of the noise is only sufficient to flatten α in frequency; a full360

rollover (decrease of α(f) in frequency) would require noise with a different shape (i.e.,361

r = −2 or r = 0). As the spurious flattening of α(f) expands in frequency, the fitted362

exponent b shown in panel (e) deviates from the true b = 2 with increasing distance363

into the ice. Despite the noticeable bias in α(f), the observed wave heights agree well364

with the true wave heights (Figure 5d).365
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3.4 SIPEX 2012366

The Antarctic MIZ 2012 case study results are shown in Figure 6. All of the ob-367

served spectra in panel (b) are effected by noise energy, even though the imposed noise368

height is only Hn = 3 cm. In panel (c), the observed attenuation rates have a clear rollover369

in frequency that is spurious relative to the b = 2 dependence of the true attenuation.370

Panel (e) shows severe bias in the fitted b because of the spurious rollover. The bias is371

so severe that it seems strange to even attempt fitting α = af b, yet this is retained as372

an illustration of the problem. These results are similar to the rollovers reported in (Li373

et al., 2017), though that study attributes the rollovers to wind input. Here, the noise374

bias causes a spurious rollover that shifts to lower frequencies at longer distances; that375

pattern is qualitatively consistent with rollover patterns reported in Li et al. (2017). In376

panel (d), the observed wave heights continue to agree well with the true wave heights,377

because Hn is small.378

We can repeat the approach of Meylan et al. (2014), who analyzed the actual field379

observations using a constant cutoff E(f) > 10−2 m2/Hz that is well above the imposed380

En(f) at any frequency. That applies a constraint En(f)
E(f,x) �

1
10 at all frequencies, as381

is shown by the faint horizontal line in panels (a) and (b) of Figure 6. With this new con-382

straint, the synthetic observations no longer have much rollover in observed attenuation383

rates (not shown). However, the cutoff creates severe limitations on the frequencies f384

that can be analyzed at any particular distance x. The higher frequencies (f > 0.15385

Hz) have energies below the cutoff at all x, and thus no attenuation values are calculated386

for those frequencies.387

3.5 STiMPI 2000388

The Weddell Sea STiMPI 2000 case study results are shown in Figure 7. The spec-389

ified noise energy clearly affects the observed spectra in panel (b), relative to the true390

spectra in panel (a). In panel (c), the noise bias causes spurious rollovers in the observed391

attenuation rates which are similar to the rollovers reported in the Li et al. (2017) anal-392

ysis of the actual field data. The fitted exponent shown in panel (e) rapidly deviates from393

the true b, because the noise bias is sufficient to cause the apparent rollover. For both394

of these cases addressed in Li et al. (2017), it may be that noise bias and wind input con-395

tribute together in producing apparent rollovers in attenuation rates. Again, in panel396

(d), the observed wave heights agree well with the true wave heights.397

3.6 Greenland Sea 1978398

The Greenland Sea 1978 case study results are shown in Figure 8 and 9. Two fig-399

ures are used for this case as a way to explore the effects of different noise shapes r =400

0 and r = −4, because actual shape is not known. For either, the noise is sufficient to401

cause spurious rollovers in the inferred attenuation. The effect is worse for r = 0, though402

either result is qualitatively consistent with the rollovers in Figure 5a of Wadhams et al.403

(1988). Again, there is almost no bias in the wave heights inferred in this case study.404

4 Discussion405

Results suggest that negative bias in attenuation rates at high frequencies is a com-406

mon issue for most field observations. Along with wind input and nonlinear mechanisms407

that may affect the high-frequency tail of ocean wave spectra, spurious energy from in-408

strument noise is an explanation for all of the rollovers in attenuation that have been409

reported in the literature.410

The following guidelines are recommended for future use of field observations in411

the estimation of spectral attenuation rates:412
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Figure 6. Synthetic results for the Antarctic SIPEX 2012 case study. Panels as in Figure 4.

The gray dotted line in (a) and (b) shows the cutoff used in Meylan et al. (2014), which avoided

spurious rollover in attenuation because it was well above the noise at all frequencies.

• Do not apply a constant cutoff in spectral wave energy, as this implies a flat noise413

spectrum (r = 0) that is unlikely for most observations.414

• Determine the spectral shape of the noise empirically, including any filters used415

in post-processing and the deployment specifics.416

• Consider the ratio En(f)/Es(f, x) as a function of frequency and location, and417

avoid calculations of attenuation for any observation with appreciable En(f)
E(f,x) .418

• Check for convergence of attenuation results applying minimum E(f) cutoffs as419

En(f)
E(f,x) → 0.420

The deployment specifics in the second point are particularly important, given the com-421

mon practice of placing wave measurement devices on ice floes. The hydrodynamic re-422

sponse of ice floes will depend on their dimensions and mass, such that they may have423

a damped response at high frequencies and the noise floor may be elevated relative to424

testing a device floating in open water. The frequencies affected can be estimated fol-425

lowing the methods of Thomson et al. (2015), who report on the analogous condition of426

a wave buoy with a dramatic increase in size resulting from biofouling.427

It is important to restate that the noise bias reported herein has a negligible ef-428

fect on the total energy (and thus wave heights). Bulk attenuation rates can be deter-429
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Figure 7. Synthetic results for the Weddell Sea STiMPI 2000 case study. Panels as in Fig-

ure 4.

mined robustly, even in the presence of noise. It is the spectral tail (high frequencies)430

in which much care is required.431

4.1 Noise effects at low frequencies432

Although the focus herein is on high frequencies, energy from noise also can bias433

attenuation results at low frequencies. As shown in Figure 1, the f−4 shape may per-434

sist at low frequencies, though the actual level may vary depending on filters applied to435

reduce drift in the raw accelerometer data. We thus include a brief investigation of low-436

frequency noise bias by recalculating the attenuation coefficients from SIPEX 2012, as437

published in Meylan et al. (2014).438

We note that the original data analysis in Meylan et al. (2014) was based on a fre-439

quency independent noise cut off (r = 0). In that analysis the noise floor was set suf-440

ficiently high to avoid the roll over; indeed no analysis was completed for any periods441

T < 6 s (or f > 0.15 Hz). Although sufficiently conservative to avoid spurious calcu-442

lations in the high-frequency tail, this cutoff had a secondary effect of removing measure-443

ments at low frequencies (long periods). An empirical determination of the noise energy444

at these frequencies is elusive and beyond the scope of this manuscript. Rather, we sim-445

ply explore the implications of different choices applying a noise cutoff at low frequen-446

cies. Figure 10 shows the sensitivity to the noise cutoff by comparing the median atten-447
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Figure 8. Synthetic results for the Greenland Sea 1978 case study, with spectral noise expo-

nent r = 0. Panels as in Figure 4.

uation with a fixed noise floor cutoff (r = 0, as used in Meylan et al. (2014)) and us-448

ing three different levels of noise floor cutoffs that are empirical power laws in frequency449

(r = −4).450

The left panel of Figure 10 show attenuation results with three different levels of451

f−4 cutoff applied. The right panels show the median attenuation as a function of pe-452

riod for the two of the three levels. The black curves are from the original analysis of453

Meylan et al. (2014), for comparison. The constant noise floor applied in original anal-454

ysis lowered the attenuation at short periods and raised it at long periods. The correct455

analysis is the lower right panel, and the blue line is the fit to the power law. This anal-456

ysis suggests a power law with b = 3 for the true attenuation, which is within the range457

of expected exponents (Meylan et al., 2018).458

Just as the negative bias in attenuation rate at high frequencies results from ex-459

ponents r − q > 0, the positive bias in attenuation rate at low frequencies is the con-460

sequence of r− q < 0. At these low frequencies, the noise energy En(f) is more steep461

than the signal energy Es(f), because the signal is outside of the equilibrium wind wave462

range. The general result is the same: the frequency dependence of the attenuation rates463

will be sensitive to the noise cutoff, even when the absolute error in the attenuation rates464

is small.465
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Figure 9. Synthetic results for the Greenland Sea 1978 case study, with spectral noise expo-

nent r = −4. Panels as in Figure 4.

5 Conclusions466

Instrument noise in wave measurements causes a bias in attenuation rates that man-467

ifests in spurious relations between frequency and attenuation rates. This is sufficient468

to explain the rollover in attenuation rates observed for several studies from a variety469

of different wave-ice buoys. A general form of the noise bias (Eq. 8) can be applied to470

avoid this issue in future analysis.471
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Figure 10. (a) Median low-frequency attenuation rates from SIPEX as a function of wave

period applying noise cutoffs of E(f)f−4 < 10−8 (green dots), E(f)f−4 < 10−7 (blue dots),

and E(f)f−4 < 10−6 (red dots) . (b) The median attenuation rates for E(f)f−4 < 10−8 (green

dots) , the median attenuation rates for E(f)f−4 < 10−6 (red dots) (which is the correct noise

floor shown in Figure 1) and the results from the previous analysis in (Meylan et al., 2014) (black

dots). The blue dotted line is the straight line fit to the red dots, α(f) ∼ f3.
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