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Abstract

Gridded dropsonde analyses are made using data from the OTREC (Organization of Tropical East Pacific Convection) and

PREDICT (Pre-Depression Investigation of Cloud-Systems in the Tropics) projects to characterize the mesoscale properties of

tropical oceanic convection in terms of selected thermodynamic parameters computable from the explicit grids of large-scale

models. In particular, column relative humidity, low to mid-tropospheric moist convective instability, and convective inhibition

correlate with moisture convergence, while sea surface temperature is related to the top-heaviness of mass flux profiles and the

integrated entropy divergence. Local (as opposed to global) surface heat and moisture fluxes and convective available potential

energy have little relation to these quantities. These results provide useful constraints for cumulus parameterizations.
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Key Points:7

• Observations of emergent properties of convection from the OTREC and PRE-8

DICT field programs are reported.9

• Column relative humidity, low to mid-tropospheric moist convective instability,10

and convective inhibition govern moisture convergence.11

• Top-heavy mass flux profiles and moist entropy divergence increase with increas-12

ing sea surface temperature.13
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Abstract14

Gridded dropsonde analyses are made using data from the OTREC (Organization of Trop-15

ical East Pacific Convection) and PREDICT (Pre-Depression Investigation of Cloud-Systems16

in the Tropics) projects to characterize the mesoscale properties of tropical oceanic con-17

vection in terms of selected thermodynamic parameters computable from the explicit grids18

of large-scale models. In particular, column relative humidity, low to mid-tropospheric19

moist convective instability, and convective inhibition correlate with moisture conver-20

gence, while sea surface temperature is related to the top-heaviness of mass flux profiles21

and the integrated entropy divergence. Local (as opposed to global) surface heat and mois-22

ture fluxes and convective available potential energy have little relation to these quan-23

tities. These results provide useful constraints for cumulus parameterizations.24

Plain Language Summary25

Observations of the atmosphere from two field programs over tropical oceans are26

used to determine the characteristics of rain-producing clouds in these regions. In par-27

ticular we are interested in what types of temperature and humidity profiles in the at-28

mosphere promote rainfall and which types suppress it. This information is useful in de-29

signing and testing of treatments of clouds and rain in global weather and climate mod-30

els. As a result of this research, we present a set of recommendations to modelers involved31

in this work.32

1 Introduction33

Representing deep convection in global weather and climate models with sufficient34

fidelity is a problem that has eluded solution for many decades. This lack of progress is35

a significant impediment to extending long-range weather forecasts beyond their current36

limits and is one of the main sources of uncertainty in climate models.37

Traditional parameterizations of convection in global models fall into two broad38

categories. Reductionist schemes attempt to build on our knowledge of the fundamen-39

tal elements that are thought to work together to form ensembles of convection, e.g., plumes,40

thermals, cold pools, etc. More empirical schemes try to infer emergent properties of such41

ensembles that are less dependent on our knowledge of such nuts and bolts.42

Most reductionist schemes focus on the representation of convective updrafts as plumes,43

with some quasi-equilibrium principle controlling the number and size distributions of44

updrafts. Other aspects of convection such as downdrafts and stratiform rain areas are45

often treated in an ad hoc fashion. An early and enduring example of such a “mass flux”46

scheme is that of Arakawa and Schubert [1974] (see also Arakawa [2004]). There are many47

derivatives of this scheme. In the original version, updrafts are represented by a spec-48

trum of plumes, with the strength of each plume size governed by an equilibrium between49

the plume-specific consumption of conditional instability and its generation by non-convective50

processes. Only in Cheng and Arakawa [1997] were downdrafts added to the original Arakawa-51

Schubert scheme. The effects of stratiform rain areas, which contribute significantly to52

the precipitation total [Zipser, 1969; Zipser, 1977; Houze and Cheng, 1981; Houze, 1989;53

Houze, 2004], are generally ignored.54

The convective adjustment schemes of Manabe et al. [1965], Betts [1986], Betts and55

Miller [1986], Betts and Miller [1993], Raymond [2007] etc., are empirical convective pa-56

rameterizations and are based on the hypothesis that the main effects of deep convec-57

tion can be represented via mixing in response to moist convective instability, with the58

additional proviso that condensed water resulting from the mixing is precipitated out.59

Though currently not much used for various reasons, some of these models produce re-60

markably good simulations of the global circulation and the Madden-Julian oscillation61
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(MJO), given their simplicity [Hayashi and Golder, 1997a; Hayashi and Golder, 1997b;62

Raymond, 2001; Raymond and Fuchs, 2009].63

The advance in computing power has opened new opportunities in the area of cu-64

mulus parameterization. Of particular interest is the use of a small cloud-resolving model65

in each global model grid box in place of a conventional cumulus parameterization [Grabowski,66

2001; Grabowski, 2003; Khairoutdinov and Randall, 2001; Khairoutdinov et al., 2005]. By67

themselves, these superparameterized models are too computationally intensive to be run68

routinely for long periods or at high spatial resolution. However as Benedict and Ran-69

dall [2009] have shown, a superparameterized model is capable of reproducing the MJO70

with better fidelity than virtually all models with reductionist convective parameteri-71

zations.72

In a more indirect approach, Rasp et al. [2018] used data from a global aquaplanet73

model employing a superparameterization of convection to train a deep neural network74

to produce heating and moistening profiles in each grid box that are consistent with the75

outputs of the embedded convective models. The trained neural network works with the76

global model to produce results that are very close to those of the original superparam-77

eterized model at a much lower computational cost. Computations driven by the neu-78

ral network with boundary conditions that deviate from the training regime also are close79

to superparameterized calculations as long as the calculations don’t go outside the phase80

space of the original training data set.81

Recent observations of deep tropical convection using grids of dropsondes deployed82

from high altitude [Elsberry and Harr, 2008; Montgomery et al., 2012; Braun et al., 2016;83

Fuchs-Stone et al., 2020] provide an additional opportunity to improve convective pa-84

rameterizations. Though incapable of revealing the structure of individual convective cells,85

such observations can be used to document the mesoscale structure of convective ensem-86

bles along with budgets of heat, moisture, and momentum. The environment of convec-87

tion can also be documented, thus in principle providing all the information needed to88

understand how convective ensembles interact with their environment. Recent studies89

of this kind include Raymond et al. [2011], Gjorgjievska and Raymond [2014], and Juračić90

and Raymond [2016].91

In this paper we present a framework for using observations of the type described92

above to test thermodynamic parameterizations of convection for use in large-scale mod-93

els. We base these results on a comparative study of two very different field programs,94

PREDICT2010 (Pre-Depression Investigation of Cloud-Systems in the Tropics; Mont-95

gomery et al. [2012]) and OTREC2019 (Organization of Tropical East Pacific Convec-96

tion; Fuchs-Stone et al. [2020]). The former studied convection in cloud systems with97

potential to develop into tropical cyclones in the Western Atlantic and Caribbean, while98

the latter examined convection in the East Pacific Intertropical Convergence Zone (ITCZ)99

as well as the Pacific coastal region of Colombia and the far Southwest Caribbean. PRE-100

DICT experienced generally higher sea surface temperatures (SSTs) than OTREC as well101

as stronger vorticities due to higher latitudes and the prevalence of tropical cyclone pre-102

cursors.103

Though the results from OTREC and PREDICT differ in detail, they share the104

main features, namely that three parameters promote larger values of vertically integrated105

moisture convergence and hence mean rainfall. These are larger saturation fraction (a106

kind of column-integrated relative humidity), smaller but non-negative instability index107

(low to mid-tropospheric moist convective instability), and smaller deep convective in-108

hibition (ascending parcel consists of a mixture of air from the lowest kilometer). Fur-109

thermore, higher SSTs result in more top-heavy mass flux profiles and larger vertically110

integrated moist entropy divergence. Local (as opposed to broad area) surface heat and111

moisture fluxes and convective available potential energy are less important. These emer-112
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gent properties of convection are likely to be useful in the development and testing of113

cumulus parameterizations.114

Section 2 introduces the theoretical background. Analysis methods used on OTREC115

and PREDICT data are documented in section 3 while section 4 presents the results of116

these analyses. Section 5 discusses lessons learned for cumulus parameterizations and117

conclusions are presented in section 6.118

2 Theoretical basis119

All global models have at least two thermodynamic equations, one for the mois-120

ture and another for the energy or moist entropy. Different models define different com-121

binations of variables, but they are ultimately equivalent.122

2.1 Fundamental relationships123

We present equations for these two variables in geometrical height coordinates. The124

precise water variable is the total cloud water, or water vapor plus advected condensate125

mixing ratio, rt. The specific moist entropy, including ice processes, is represented by126

s, which is defined by Raymond [2013] as127

s = (Cp + rCpv + rlCl + riCi) ln(T/TF )−128

Rd ln(pd/pR)− rRv ln(pv/eSF ) + (1)129

Lr − LF ri
TF

130

where Cp and Cpv are the specific heats of dry air and water vapor at constant pressure,131

Cl, and Ci are the specific heats of liquid water and ice, and Rd and Rv are the gas con-132

stants for dry air and water vapor. The quantity T is the temperature, pd and pv are133

the partial pressures of dry air and water vapor, r is the water vapor mixing ratio, and134

rl and ri are the mixing ratios of liquid water and ice. The constants are the freezing135

point of water TF , a constant reference pressure pR = 105 Pa, the saturation vapor pres-136

sure at freezing for water vapor eSF , the latent heat of condensation at freezing L, and137

the latent heat of freezing LF . This expression assumes that ri = 0 for T > TF and138

rl = 0 for T < TF .139

The total cloud water equation in flux form is140

∂ρrt
∂t

+∇ · (ρvrt) +
∂

∂z
(ρwrt + Ft) = −ρP (2)141

where ρ is the air density, ∇ is the horizontal gradient operator, (v, w) are the horizon-142

tal and vertical components of air velocity, Ft is the vertical eddy flux of rt, including143

surface evaporation at z = 0, Fts, and P the specific conversion rate of cloud water to144

precipitation. The entropy obeys a similar equation145

∂ρs

∂t
+∇ · (ρvs) +

∂

∂z
(ρws+ Fs) = ρR/T (3)146

where Fs is the eddy flux of moist entropy with surface value Fss, T is the temperature,147

and R is the specific radiative heating rate (generally negative). Several approximations148

are made in (2) and (3). In particular, horizontal eddy fluxes are ignored, as is the ir-149

reversible generation of entropy. They are also incomplete in that models for the pre-150

cipitation and radiation terms are needed, as is a means of estimating surface fluxes Fts151

and Fss. In addition, the anelastic mass continuity equation152

∇ · (ρv) +
∂ρw

∂z
= 0 (4)153

is needed.154
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Considerable information can be extracted from vertical integrals, represented by155

square brackets [ ], of these equations. Assuming that w = 0 at the surface and the up-156

per bound of the integral, (2) can be written157

[ρP ] = −∇ · [ρvrt] + Fts −
∂[ρrt]

∂t
. (5)158

If the time derivative can be ignored, this expresses the well-known result that the pre-159

cipitation rate equals the vertically integrated moisture convergence plus the surface evap-160

oration rate. The time dependence is generally important, but in statistical averages it161

may be possible to neglect this term.162

A similar analysis of (3) yields163

∂[ρs]

∂t
= −∇ · [ρvs] + [ρR/T ] + Fss. (6)164

Thus, in principle the time tendency of the column-integrated moist entropy can be com-165

puted. Juračić and Raymond [2016] found this measure to be useful in predicting the166

tendency of a tropical cyclone to intensify or decay.167

An estimate for the time tendency of column cloud water may be extracted on the168

basis of three assumptions. First we use an approximate form of the moist entropy (1)169

that ignores liquid and ice condensate as well as all but the last term involving the va-170

por mixing ratio171

s ≈ Cp ln(T/TF )−Rd ln(p/pR) +
Lr

TF
(7)172

= sd +
Lr

TF
173

where p = pd + pv is the total pressure and sd = Cp ln(θ/TF ) is the specific dry en-174

tropy, with θ being the potential temperature. Second, we assume that the weak tem-175

perature gradient approximation holds, so that the θ profile doesn’t change much with176

time. Third, we assume that r ≈ rt. Under these assumptions, we infer that177

∂[ρrt]

∂t
≈ TF

L

∂[ρs]

∂t
(8)178

[Raymond, 2000]. Combining (5) - (8) results in an estimate for the instantaneous pre-179

cipitation rate180

[ρP ] ≈ Fts +
TF
L

(∇ · [ρvsd]− [ρR/T ]− Fss). (9)181

This does not depend on a time tendency, which is difficult to measure. Negative val-182

ues produced by this equation simply indicate that the rainfall rate is zero. In this case183

∇ · [ρvsd] = [ρR/T ] + Fss − LFts/TF (no rain). (10)184

Over tropical oceans the Bowen ratio is usually small, which means that TFFss ≈ LFts,185

which further simplifies (9) and (10).186

Surface fluxes are estimated using a bulk flux formula. For a variable χ, the sur-187

face flux is defined by188

Fχs = ρsCdUeff (χss − χs) (11)189

where ρs is the surface density, Cd = 0.002 is the assumed drag coefficient. Ueff = (u2s+190

v2s+W 2)1/2 is the effective surface wind with (us, vs) being the actual surface wind and191

W = 3 m s−1 being a gustiness factor. χs is the surface value of the variable in ques-192

tion and χss is the associated sea surface value. For the thermodynamic variables, χss193

is the saturated value at the sea surface temperature and pressure. For wind, χss = 0.194
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The vertically integrated radiative heating ρR plays a similarly small role in these bud-195

gets. Since we have no measurements of this quantity, we simply take TF [ρR/T ] = −200196

W m−2.197

Finally, using elementary thermodynamics, we define an approximate convective198

available potential energy (CAPE) by199

CAPE =

∫
(s∗p − s∗env)dT (12)200

where s∗p and s∗env are respectively the saturated moist entropy of an ascending parcel201

and of the environment. The integral is over positive values of the integrand and s∗p equals202

the mean moist entropy in the lowest kilometer of the environment.203

2.2 Gross moist stability204

A central concept in the study of tropical convection is the gross moist stability205

(GMS). The GMS was introduced by Neelin and Held [1987], who developed a model206

that relates low-level convergence over tropical oceans to the SST. They assume that the207

moist static energy in the upper troposphere is approximately equal to the dry static en-208

ergy there, due to the low value of saturation mixing ratio at upper levels. In the steady209

state, the difference ∆m between the moist static energy in the upper and lower tropo-210

sphere times the upper level divergence ∇·v (which is assumed to equal the low-level211

convergence) must equal the net transfer rate of moist static energy Fnet into the atmo-212

sphere from surface and tropopause turbulent and radiative fluxes, which implies that213

∇ · v =
Fnet
∆m

. (13)214

They denote ∆m the gross moist stability. They further assume that the upper tropo-215

spheric moist static energy is invariant due to the lack of significant free tropospheric216

horizontal temperature gradients in the tropics, while the lower tropospheric moist static217

energy increases with SST. As a result, the convergence-divergence doublet in the tro-218

posphere, and hence the precipitation rate, increases nonlinearly with SST as ∆m be-219

comes smaller, in broad agreement with observed climatology.220

The GMS of Neelin and Held [1987] is defined in terms of a two-level model. A con-221

ceptually similar form applicable to a continuous vertical coordinate is222

GMS ≡ TF∇ · [ρvs]
−L∇ · [ρvrt]

=
entropy divergence

moisture convergence
(14)223

[Raymond et al., 2009]. The constants TF and L give the numerator and denominator224

the units energy per unit area per unit time, making the GMS dimensionless. The terms225

“entropy convergence” and “moisture divergence”, as used subsequently, include these226

constants.227

Using the above definition of GMS, Raymond [2000] generalized the results of Neelin228

and Held [1987] to the time-dependent case with an analysis similar to that in section229

2.1. If the numerator and denominator of the GMS associated with convection can some-230

how be specified in terms of environmental parameters, then the ideas of Neelin and Held231

[1987] and Raymond [2000] become powerful tools for predicting the amount of convec-232

tion and the precipitation rate.233

2.3 Convective evolution in the GMS plane234

Convective systems of all sizes and types over tropical oceans tend to evolve through235

a life cycle in similar ways. As Masunaga and L’Ecuyer [2014], Inoue and Back [2015],236

and Inoue and Back [2017] have shown, this life cycle can be represented concisely as237
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Figure 1. Schematic of GMS plane with the trajectory of a convective life cycle.

a trajectory in the so-called “GMS plane”. The horizontal axis of this plane is the column-238

integrated divergence of dry static energy, or almost equivalently, the column-integrated239

moisture convergence, −L∇·[ρvrt]. The vertical axis is the integrated divergence of moist240

static energy or moist entropy TF∇ · [ρvs].241

Figure 1 shows a schematic of the GMS plane. Convection starts at the red dot on242

the left and follows the counter-clockwise trajectory defined by the blue line, ending up243

again at the red dot. The slope of the line from the origin to some point on the trajec-244

tory defines the GMS of the system at that point [Raymond et al., 2009].245

As a system evolves, it moves from negative values of GMS through increasingly246

positive values. As Masunaga and L’Ecuyer [2014] and Inoue and Back [2015] show, the247

system moistens and rainfall increases up to a critical point and then dries with decreas-248

ing rainfall. The slope of the line from the origin through this point is called the “crit-249

ical GMS” by Inoue and Back [2015]. Masunaga and L’Ecuyer [2014] and Inoue and Back250

[2015] show that the growing phase of convection is associated with bottom-heavy ver-251

tical mass flux profiles, which gradually evolve to top-heavy profiles as the convection252

peaks and begins to decay. This picture is reminiscent of deep convection in the Asian253

winter monsoon, as documented by Churchill and Houze [1984] and many other stud-254

ies.255

Much work on tropical convection has been focused on squall lines, which are prop-256

agating mesoscale systems where the evolution from growing to decaying convection ap-257

pears to be spatial rather than temporal in a co-moving reference frame [Zipser, 1977;258

Houze, 1997; Churchill and Houze, 1984; Houze, 2004]. However, even in these systems,259

the evolution of individual convective cells typically looks more temporal than spatial260

in the earth’s reference frame.261

2.4 Correlates to strong convection262

A great deal of work has gone into documenting the structure and evolution of trop-263

ical, oceanic convection. Historically, much less effort has been applied to uncovering the264

factors that control the prevalence and strength of such convection. However, this has265

begun to change in recent years.266

An important factor known to be associated with tropical oceanic convection is the267

column relative humidity or saturation fraction, defined as268

SF =

∫
rdp

/∫
r∗dp (15)269
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where the integrals are of pressure over the troposphere, r is mixing ratio, and r∗ is the270

saturation mixing ratio [Sherwood, 1999; Bretherton et al., 2004; Raymond et al., 2007;271

Neelin et al., 2009]. Saturation fraction is also thought to be significant in the dynam-272

ics of intraseasonal oscillations [Raymond and Fuchs, 2009; Sobel and Maloney, 2012; So-273

bel and Maloney, 2013; Kim and Co-Authors, 2014; Adames and Kim, 2016; Fuchs and274

Raymond, 2017].275

Early tropical meteorologists understood that the strongest convection and rain-276

fall in the tropics were accompanied by low values of the CAPE [Ramage, 1971]. Though277

this is an association not implying causality, the obvious interpretation is that the con-278

vection is causing the decrease in CAPE as it “uses it up”. To a certain extent this stands279

up to critical scrutiny, as convective downdrafts decrease the moist entropy of the bound-280

ary layer, thus reducing CAPE. However, on slightly longer time scales, this modifica-281

tion of the boundary layer is countered by surface heat fluxes, which tend to restore the282

boundary layer to its initial state, typically in less than a day [Raymond, 1995]. The other283

component to CAPE is the buoyancy profile in the free troposphere, which can be re-284

duced by subsidence induced by the convection itself. However, such buoyancy anoma-285

lies also rapidly dissipate as the buoyancy is spread over a large area by gravity waves286

[Bretherton and Smolarkiewicz, 1989; Mapes, 1993]. More permanent changes in CAPE287

can only be effected by some mechanism that causes more durable changes in the atmo-288

spheric temperature profile.289

CAPE as normally defined may not be the best measure of the effect of tropospheric290

buoyancy on convection. Kuang [2008] finds that a “lower tropospheric CAPE” defined291

as the difference between the boundary layer moist static energy and the saturated moist292

static energy in the lower half of the troposphere is a more pertinent parameter. In par-293

ticular, a quasi-equilibrium process exists in which just enough convection is generated294

to keep this parameter close to a certain value. In addition, for convection to penetrate295

above the mid-troposphere, the mid-tropospheric relative humidity must be sufficiently296

high according to Kuang [2008].297

Raymond et al. [2011] introduced an “instability index” (II) which is related to the298

lower tropospheric CAPE of Kuang [2008]. This is defined by299

II = s∗lo − s∗hi (16)300

where s∗lo and s∗hi are respectively the saturated moist entropy averaged over 1-3 km and301

5-7 km. (It differs from the lower tropospheric CAPE in that the boundary layer entropy302

is not used, only the saturated entropy just above the boundary layer.) Average rain-303

fall tends to be more intense for smaller, but non-negative values of II [Raymond and304

Sessions, 2007; Raymond et al., 2014; Sessions et al., 2015; Sentić et al. 2015; Raymond305

and Flores, 2016; Raymond and Kilroy, 2019]. This result at first appears to be counter-306

intuitive. However, modeling and observation show that smaller II is associated with con-307

centration of mass convergence in a thinner layer near the surface where the mixing ra-308

tio tends to be higher. Because of this, a given mass convergence results in stronger mois-309

ture convergence and hence more rainfall. Raymond and Sessions [2007] demonstrated310

that the strengthening of precipitation by low values of II is an effect independent of the311

enhancement of precipitation by increased saturation fraction. Note that the instabil-312

ity index is purely a function of the atmospheric temperature profile since it depends only313

on temperature and pressure.314

A third parameter of interest is a measure of the convective inhibition. The usual315

measure takes air from a thin surface layer, typically the subcloud layer, and computes316

the work required to lift such air to the level of free convection. On the hypothesis that317

deep convection over tropical oceans draws its updraft from a deeper layer, we define a318

deep convective inhibition index319

DCIN = s∗th − sbl (17)320
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where the mean moist entropy of the rising air sbl is the average moist entropy in the321

lowest kilometer and the threshold entropy s∗th is the saturated moist entropy in a thresh-322

old layer, typically taken to be in the 1.5−2 km range [Raymond et al., 2003; Raymond,323

2017; Raymond and Kilroy, 2019].324

Models of boundary layer forcing of convection by SST gradients [Lindzen and Nigam,325

1987; Battisti et al., 1999; Stevens et al., 2002; Back and Bretherton, 2009] produce re-326

gions of convergence and divergence that are thought to be related to the formation or327

suppression of convection. Since the vertical velocities associated with this convergence328

are unlikely to directly affect deep convection, this lifting presumably acts via the result-329

ing destabilization of the lower troposphere which reduces the convective inhibition. This330

mechanism is therefore likely to be captured by the DCIN parameter.331

Tropical oceanic convection has been found to increase with increasing surface la-332

tent heat fluxes in observations [Raymond, 1995; Maloney and Esbensen, 2003; Maloney333

and Sobel, 2004; Raymond et al., 2006] and in models [Maloney and Esbensen, 2005; Ray-334

mond and Sessions, 2007; Raymond and Flores, 2016]. This mechanism is thought to be335

central to the dynamics of tropical cyclones [Emanuel, 1986; Emanuel, 1995] and intrasea-336

sonal oscillations [Emanuel, 1987; Neelin et al., 1987; Raymond, 2001; Araligidad and Mal-337

oney, 2008; Raymond and Fuchs, 2009; Fuchs and Raymond, 2017; Shi et al., 2018; Khairout-338

dinov and Emanuel, 2018]. It is also a key element in the original model of Neelin and339

Held [1987], described above.340

In the current analysis, we find that surface heat and moisture fluxes local to an341

atmospheric column do not correlate well with the characteristics of the convection in342

the column. This is probably because local fluxes contribute only weakly to vertically343

integrated budgets on the time scale of convective cells. The observed impact of these344

fluxes must therefore come from their cumulative effect on the thermodynamic profiles345

over long fetches [Raymond, 1995; Emanuel, 1995].346

Though not strictly an atmospheric parameter, the SST will be shown to have an347

effect on convection outside of its role in determining surface thermodynamic fluxes.348

2.5 The question of causality349

Convection interacts with its environment in multiple ways with many feedbacks350

that make the assignment of causality difficult. However, if the time scale for the evo-351

lution of a potentially predictive parameter that is correlated in some way with convec-352

tion is significantly longer than the time scale of a convective cell, then that parameter353

may be considered to be at least a partial “cause” of convection.354

Raymond et al. [2015] indicated that the instability index may fall into this cat-355

egory, at least at higher latitudes or in tropical storms, where rotational effects rapidly356

neutralize unbalanced temperature perturbations induced directly by convective flows.357

In this case, the temperature pattern, and hence the pattern of instability index, is on358

the average in thermal wind balance with the vorticity pattern and evolves with changes359

in the absolute vorticity field. The vorticity evolves on the time scale of the inverse of360

the horizontal divergence, whereas the relaxation to balance occurs on the time scale of361

the inverse of absolute vorticity. Thus, the flow remains close to balance if the absolute362

vorticity is much greater in magnitude than the divergence. In this case, the instabil-363

ity index is governed by the vorticity pattern, and therefore evolves on a time scale longer364

than that of the convection itself. The instability index can therefore be said to partially365

“control” the convection on convective time scales. This mechanism clearly prevails in366

tropical cyclones [Gjorgjievska and Raymond, 2014; Raymond et al., 2014; Raymond and367

Kilroy, 2019].368
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Model of Moisture Quasi-Equilibrium (MQE)

too dry

too moist
just right

Figure 2. Illustration of moisture quasi-equilibrium. The cloud on the left dissipates due to

excessive buoyancy loss from evaporation of condensate, moistening the atmosphere. The cloud

on the right’s buoyancy is less constrained by evaporation and produces excessive rain, which

dries the atmosphere. In both, the atmosphere is driven toward the intermediate case, where the

humidity is “just right”. The blue arrows indicate the flow of moisture to or from the environ-

ment in the respective clouds.

Even at low latitudes where the Coriolis parameter is small, a temperature anomaly369

will tend to disperse over large areas due to the action of gravity waves. However, un-370

like the situation at higher latitudes, where the absolute vorticity provides an upper bound371

on the relaxation time for this process, the relaxation time increases in inverse propor-372

tion to the vertical scale of the temperature anomaly when the absolute vorticity is zero373

and the “relax to balance” process of higher latitudes becomes more complex near the374

equator.375

Raymond et al. [2011], Gjorgjievska and Raymond [2014], and Raymond et al. [2014]376

showed that an inverse relationship exists between instability index and saturation frac-377

tion in tropical cyclone precursors. This “moisture quasi-equilibrium” (MQE) was re-378

produced in a cloud-resolving model using the weak temperature gradient approxima-379

tion [Raymond and Flores, 2016] and in a high resolution model of tropical cyclogene-380

sis [Raymond and Kilroy, 2019]. The reason for this correlation was revealed by Singh381

and O’Gorman [2013], who found that it results from the observed tendency of tropi-382

cal oceanic updrafts to exist in a state of near-zero buoyancy. This leads to the inverse383

relationship between low to mid-tropospheric moisture and CAPE, or more accurately,384

the lower tropospheric version of CAPE [Kuang, 2008]. As noted above, the latter quan-385

tity is closely related to instability index.386

Figure 2 helps clarify this phenomenon. If the environment is too dry, as on the387

left, a convective cell fails due to the mixing of dry air into the updraft, which evapo-388

rates condensate resulting in negative buoyancy. Such “sacrificial convection” moistens389

the environment. On the other hand, if the environment is very moist, as on the right,390

mixing in environmental air has much less effect on the updraft, allowing positive buoy-391

ancy to be maintained. In this case, the cell continues to ascend, producing precipita-392

tion and drying of the environment. As cells continue to form, the environmental humid-393

ity moves toward a critical value at which point convective entrainment produces nearly394

neutral buoyancy and MQE prevails, as in the center of figure 2. The equilibrium state395

is moist for weak convective instability and dry for strong instability, explaining the in-396

verse relationship between instability (or instability index) and moisture (or saturation397

fraction).398
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As Raymond [2000] showed, movement toward moisture quasi-equilibrium is very399

rapid for strong convection, but very slow for weak convection. In the latter case, MQE400

is typically not reached and the actual saturation fraction is then less than the equilib-401

rium value. In other words, in the weak convective case moisture quasi-equilibrium be-402

comes an inequality. However, for strong convection, the saturation fraction is closely403

correlated with the instability index.404

Physically, convective inhibition should be a powerful mechanism for suppressing405

convection, particularly over tropical oceans where the strong forcing that can occur over406

land is missing. In the absence of other mechanisms, boundary layer depletion by con-407

vective downdrafts with a corresponding increase in inhibition, followed by regeneration408

of the boundary layer by surface heat fluxes and a decrease in convective inhibition has409

long been known to be an effective control on convection [Zipser, 1969]. Raymond [1995]410

and Emanuel [1995] quantified this process.411

Thayer-Calder and Randall [2015] found in numerical modeling that the subcloud412

layer’s moist entropy was controlled more by dry entrainment than by convective down-413

drafts, suggesting that consideration the entropy budget in a deeper layer would be more414

appropriate. Independent evidence [Kingsmill and Houze, 1999; Raymond et al., 2003;415

Raymond et al., 2006] supports the idea that deep convective updrafts are supplied by416

a significantly deeper layer, which led to the above definition of DCIN.417

The cycling of boundary layer entropy associated with downdrafts and surface fluxes418

adds a strong random element to the formation and decay of convection. However, the419

above-mentioned boundary layer models driven by SST gradients have the potential to420

impose some order on this randomness. A key assumption of these models is that the421

pressure distribution above the boundary layer is horizontally uniform, so that the pres-422

sure in the boundary layer is governed hydrostatically by the temperature there, and hence423

the temperature of the sea surface. Simple balance models can approximately predict424

the distribution of boundary layer winds and the associated convergence. However, as425

Raymond et al. [2006] showed, this assumption is sometimes violated to an extent that426

it produces boundary layer flows which differ significantly from the flows predicted by427

the simple theory.428

3 Data and methods429

Dropsonde data were used from OTREC [UCAR et al., 2019] and PREDICT (https://430

doi.org/10.5065/D6R78CD4). Both projects deployed grids of dropsondes over tropi-431

cal oceans from high altitude (≈ 13 km) with spacings of order 1◦ in latitude and lon-432

gitude in OTREC and 1.5◦ to 2◦ in PREDICT. Since the dropsonde spacing in PRE-433

DICT was slightly greater than in OTREC, the results from the former are somewhat434

more smoothed than for the latter.435

The projects differed in their study regions and target selection algorithms. OTREC436

covered the East Pacific in an ITCZ-crossing pattern southwest of Costa Rica, the Colom-437

bian Pacific coastal region, and the far SW Caribbean in fixed patterns that were repeated438

at random intervals in order to avoid selection bias [Fuchs-Stone et al., 2020]. PREDICT439

sought out regions in the Caribbean and Western Atlantic with pre-existing vorticity patches440

that were thought to have potential to grow into tropical cyclones.441

The dropsonde data were ingested by the three-dimensional variational analysis scheme442

(3DVar) of López-Carrillo and Raymond [2011] to produce 0.25◦×0.25◦ cartesian grids443

over a convex polygon covering the region in which dropsondes were deployed. No back-444

ground fields from global analyses were ingested in order to avoid incorporating possi-445

bly spurious analysis results. As a consequence, fields outside of the polygon were set446

to a bad data value. The vertical domain of the analysis stretches from the surface to447

16 km with a 200 m vertical resolution.448
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Figure 3. Map of the OTREC operational area along with the NOAA AVHRR SST averaged

over the project period. The blue boxes represent the regions in which dropsondes were deployed.

The 3DVar scheme minimizes a cost function with various terms. Scalar analyses449

include terms forcing adherence to actual dropsonde values plus sufficient horizontal smooth-450

ing to make smooth interpolations between dropsondes. Smoothing in the vertical is min-451

imal. Wind analyses contain similar terms plus strong adherence to mass continuity and452

zero vertical wind at the surface and 16 km. Vertical winds and mass fluxes result from453

this application of mass continuity. Actual analysis values above 13 km are not trust-454

worthy since dropsonde data only exist below this elevation.455

Unlike previous uses of this 3DVar scheme [Raymond and López-Carrillo, 2011; Ray-456

mond et al., 2011; Gjorgjievska and Raymond, 2014; Juračić and Raymond, 2016], in-457

dividual 0.25◦×0.25◦ columns were analyzed and the results composited in various ways.458

This avoids the selection bias inherent in earlier applications of the method in which av-459

erages over selected regions were used. Defining the boundaries of “interesting” regions460

is always a point of contention.461

Figure 3 shows the OTREC operational area and the three boxes in which drop-462

sondes were deployed. Boxes B1a and B1b were combined into a single box consisting463

of B1a extended to the north across Panama and into the Caribbean late in the project.464

Also shown is the daily NOAA/PSL AVHRR SST (https://www.ncei.noaa.gov/data/465

sea-surface-temperature-optimum-interpolation/access/avhrr-only/) averaged466

over the period of the project. Data from all 22 missions were incorporated into our anal-467

ysis. (One special mission in conjunction with a NOAA Hurricane Research Division flight468

deployed sondes near (−92◦, 11◦). Data from this mission are included in our analysis.)469

Figure 4 shows a similar map for the area covered by the PREDICT project. Twenty-470

three of the 26 PREDICT missions with the G-V were used (RF01, RF21, RF23 omit-471

ted), though some missions had higher quality dropsonde grids than others. The 3 omit-472

ted missions had either very poor dropsonde grids or bad data. As in figure 3, an aver-473

age of the AVHRR SST was taken over the project period. Note that SST gradients were474

much weaker in the PREDICT region than in OTREC. The yellow dots, which show a475

randomly selected sample of the 0.25◦×0.25◦ columns used in the analysis, are presented476

to give a sense of the areas covered.477
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Figure 5. Mean entropy soundings sorted by SST from PREDICT (red) and OTREC (blue).

Overlap between SSTs between the two projects occurred mainly in the range 28-29.5 C. In each

sounding the left curve is the moist entropy and the right curve is the saturated moist entropy.

The thin black lines indicate the moist entropy of a parcel with entropy equal to the average in

the 0-1 km layer.

4 Results478

4.1 Environmental conditions479

We first examine the mean temperature and moisture profiles in the two projects,480

sorted into three SST ranges in figure 5. Soundings in the 28-29.5 C range are very sim-481

ilar in the OTREC and PREDICT cases. The temperature soundings above 4 km (as482

represented by the saturated moist entropy) are similar for all SST ranges as well. How-483

ever, there are differences in relative humidity over the three ranges (as represented by484

the difference between entropy and saturated moist entropy curves), with moister air oc-485

curring in the 29.5-31 C range. The main differences occur below 4 km, with an inver-486

sion in the 1-3 km range that decreases with increasing SST. The surface values of moist487

and saturated moist entropy in the 26.5-28 C range are significantly less than those oc-488
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Figure 6. Frequency of occurrence of saturation fraction-instability index pairs for the

OTREC (left) and PREDICT (right) cases. Yellow regions have the highest frequency of oc-

currence while blue regions have the lowest. Frequency is not normalized so the contour interval

is not meaningful.

curring at higher SSTs and the low to mid-tropospheric relative humidity is lower in the489

28-29.5 C range than in the other SST ranges.490

Figure 6 shows the frequency of occurrence of saturation fraction-instability index491

pairs for OTREC and PREDICT. This figure shows that the inverse relationship between492

the two variables characteristic of MQE holds for both the OTREC and PREDICT cases.493

It also shows that the most common values of saturation fraction in both cases are in494

the range 0.7-0.9. Ranges for instability index in the two cases differ somewhat, with 5-495

30 J K−1 kg−1 being common for OTREC and 10-40 J K−1 kg−1 for PREDICT.496

Previous work on tropical cyclone precursors [Raymond et al., 2011; Gjorgjievska497

and Raymond, 2014; Raymond et al., 2014] found an inverse correlation between mid-498

level vorticity and instability index. This results from relaxation of the temperature field499

to a balanced thermal wind state in a pre-cyclone mid-level vortex [Raymond, 2012], which500

produces a warm anomaly above the vortex and a cool anomaly below. This combina-501

tion reduces the instability index. Figure 7 shows the frequency of occurrence of insta-502

bility index vs. 3-5 km relative vorticity for OTREC and PREDICT. The inverse cor-503

relation between vorticity and instability index is clearly visible in the PREDICT case,504

with larger values of the vorticity associated with smaller values of the instability index.505

However, the correlation is absent from the OTREC data. Recall that PREDICT focused506

on tropical cyclone precursors, which may explain why there are larger vorticity values507

for this case.508

4.2 Moisture convergence, entropy divergence, and mass fluxes509

We now examine how the vertically integrated moisture convergence relates to the510

four atmospheric parameters discussed in section 2.4, instability index, saturation frac-511

tion, surface thermodynamic fluxes, and deep convective inhibition, plus the SST. Mois-512

ture convergence is highly correlated with precipitation as (5) indicates.513
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Figure 7. As in figure 6 except for 3-5 km relative vorticity-instability index pairs.

Moisture convergence OTREC PREDICT

II 0.077 0.116
SF 0.144 0.065
DCIN 0.108 0.041
EFLUX 0.007 0.018
SST 0.007 0.009
CAPE 0.002 0.012

Table 1. Fraction of variance explained in regressions of moisture convergence against instabil-

ity index (II), saturation fraction (SF), deep convective inhibition (DCIN), surface moist entropy

flux (EFLUX), sea surface temperature (SST), and convective available potential energy (CAPE).
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Figure 8. Average moisture convergence as a function of instability index and saturation frac-

tion for OTREC (left) and PREDICT (right). The red boxes indicate areas of strongest moisture

convergence. The contour interval is 0.5 kW m−2.

As a preliminary filter to determine which of these parameters to consider further,514

table 1 shows the fraction of variance explained in regressions of the moisture conver-515

gence onto each parameter. Only instability index, saturation fraction, and deep con-516

vective inhibition exhibit fractions exceeding 10% for one project or the other. The sur-517

face moist entropy flux and the SST show 2% or less of explained variance, so the effects518

of these two parameters on moisture convergence are neglected.519

The fractions explained by the three surviving variables differ markedly between520

OTREC and PREDICT. For OTREC, saturation fraction exhibits the strongest corre-521

lation, while instability index dominates for PREDICT. Deep convective inhibition is more522

important than instability index for OTREC, while the reverse is true for PREDICT.523

It is noteworthy that the fractions of variance explained by all three parameters524

are small, indicating either that unexplored variables exist or that the chaotic behavior525

of convection plays a large role in the variance of moisture convergence. Since each 0.25◦×526

0.25◦ column is treated independently of the others, correlation effects between columns527

are not considered, which may be an additional factor in reducing the fraction of vari-528

ance explained. However, similar calculations on real world data averaged over convec-529

tive disturbances lead to similar results [Raymond and Flores, 2016]. The values of ex-530

plained variance are robust to subsetting the data in the two projects, so the differences531

seen between OTREC and PREDICT are likely to be real.532

Figure 8 shows the average over each project of positive-only moisture convergence533

for OTREC and PREDICT as a function of instability index and saturation fraction.534

In both cases the largest average moisture convergence occurs for very high values of sat-535

uration fraction (≈ 0.9) and low values of instability index (5-15 J K−1 kg−1 for OTREC536

and 5-20 J K−1 kg−1 for PREDICT). For comparison purposes, 2 kW m−2 is equiva-537

lent to about 70 mm day−1 of precipitation.538
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Figure 9. Average value of deep convective inhibition as a function of instability index and

saturation fraction for OTREC (left) and PREDICT (right). The contour interval is 5 J K−1

kg−1 and the heavy contour is −5 J K−1 kg−1. The red boxes show regions of large moisture

convergence as in figure 8.

Entropy divergence OTREC PREDICT

II 0.012 0.039
SF 0.001 0.001
DCIN 0.084 0.020
EFLUX 0.048 0.011
SST 0.025 0.000
CAPE 0.008 0.000

Table 2. As in table 1 except fraction of explained variance for entropy divergence.

Figure 9 shows the average value of deep convective inhibition as a function of in-539

stability index and saturation fraction. Values of DCIN < 5 J K−1 kg−1 are widespread.540

DCIN < −5 J K−1 kg−1 is mostly limited to the regions of large average moisture con-541

vergence for OTREC, as illustrated in figure 8. However, these low DCIN values are dis-542

tributed somewhat more broadly in PREDICT.543

Table 2 shows the fraction of variance explained for the entropy divergence regressed544

against the same set of variables used in table 1. Generally, these variables explain a smaller545

fraction of the variance in entropy divergence than in moisture convergence. In partic-546

ular, instability index and saturation fraction, which play an important role in the vari-547

ance of moisture convergence, exhibit almost no correlation with entropy divergence. Only548

deep convective inhibition explains more than 5% and only in OTREC.549

The mass flux profile of deep convection is related to both the moisture convergence550

and the entropy divergence. We characterize the vertical mass flux profile by average val-551

ues in the 3-5 km and 7-9 km layers, MFLUXLO and MFLUXHI, and define the differ-552
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Figure 10. As in figure 6 except MFLUXLO-rainfall rate pairs. Negative rainfall rates are

unphysical and result from uncompensated subsidence and drying.

ence between these mass fluxes by553

MFLUXDIF = MFLUXHI - MFLUXLO. (18)554

Positive values of MFLUXDIF thus correspond to top-heavy mass flux profiles while neg-555

ative values represent bottom-heavy profiles.556

Figure 10 plots the rainfall rate for OTREC and PREDICT, computed using (9),557

vs. MFLUXLO, showing that the two are closely correlated in both cases. This is ex-558

pected since the vertical mass flux is driven by the latent heat release associated with559

precipitation. In these calculations, radiative heating is arbitrarily set to −200 W m−2.560

It is noteworthy that maximum rainfall rates in PREDICT are significantly greater than561

in OTREC. This most likely reflects the inclusion of measurements from intensifying trop-562

ical cyclone precursors in PREDICT.563

Based on limited data (including case studies from PREDICT), Raymond et al. [2015]564

found that the upper bound on MFLUXDIF exhibits a strong dependence on SST. The565

left panel of figure 11, which combines data from OTREC and PREDICT, provides ad-566

ditional support for this hypothesis. For SST = 26 C, MFLUXDIF ≤ 0.01 kg m−2 s−1,567

while for SST = 30 C, MFLUXDIF ≤ 0.06 kg m−2 s−1.568

Arguments made by Back and Bretherton [2006], Raymond et al. [2009], Inoue and569

Back [2015], and others suggest that moist static energy (or moist entropy) divergence570

should be positive for top-heavy convective mass flux profiles and negative for bottom-571

heavy profiles and therefore should present a similar picture when plotted against SST.572

The right panel of figure 11 verifies this. Thus, low SSTs result in bottom-heavy mass573

fluxes and entropy convergence, while high SSTs allow but do not guarantee top-heavy574

profiles and entropy divergence.575

The reason for the broad ranges of MFLUXDIF and entropy divergence seen in fig-576

ure 11 for high SSTs as well as the small fractions of explained variance in table 2 may577

lie with the work of Masunaga and L’Ecuyer [2014], Inoue and Back [2015] and Inoue578

and Back [2017]. As explained in section 2.2, they find that convective systems over warm579

tropical oceans undergo a life cycle of initial entropy (or moist static energy) convergence580
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Figure 11. As in figure 6 except for MFLUXDIF-SST (left) and entropy divergence-SST

(right) pairs for the combined OTREC and PREDICT data sets.
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Figure 12. As in figure 6 except for CAPE-moisture convergence pairs.

followed by entropy divergence during decay. Thus, a broad distribution of entropy di-581

vergence (and MFLUXDIF) is to be expected for high SST.582

4.3 Convective available potential energy583

Tables 1 and 2 show that the fractions of variance in moisture convergence and en-584

tropy divergence explained by CAPE are negligible for both OTREC and PREDICT.585

This point is reinforced by the frequency of occurrence plot of CAPE-moisture conver-586

gence pairs shown in figure 12; there is no discernible relationship between the two as587

long as CAPE is positive. Similar null results hold for entropy divergence (not shown).588

There is a correlation between CAPE and SST for OTREC (not shown), which is to be589

expected, given the strong latitudinal gradient in boundary layer moist entropy associ-590

ated with the SST gradient. Such a correlation does not occur for PREDICT, because591

–19–



manuscript submitted to JAMES

the very low SSTs of the East Pacific equatorial region do not exist in the PREDICT592

domain.593

4.4 Differences between OTREC and PREDICT convection594

Differences in convection between OTREC and PREDICT are likely to arise from595

two sources, the stronger vorticity and the generally higher SSTs in PREDICT. Larger596

vorticity alters the relationship between heating and warming, and thus the development597

of temperature anomalies that are responsible for changes in the instability index. This598

is likely to alter the feedback between evaporation of stratiform precipitation and the599

effect on subsequent convection. Deep convective inhibition is likely more important in600

OTREC due to the lower SSTs and stronger SST gradients in comparison with PRE-601

DICT.602

However, OTREC and PREDICT share many characteristics. In particular, con-603

vection in both areas appears to be sensitive to values of saturation fraction and insta-604

bility index, with the strongest convection occurring for large saturation fraction and small605

instability index. The inverse relationship between these two parameters exists in both606

regions. Deep convective inhibition is important in both cases, though more so in OTREC.607

In both OTREC and PREDICT, local surface moisture and moist entropy fluxes appear608

to have little direct influence. The well-documented effects of these fluxes on convection609

in many situations are therefore likely to be non-local, manifesting themselves via mod-610

ification of thermodynamic profiles by surface fluxes over an extended fetch. Finally, CAPE611

is related neither to moisture convergence nor entropy divergence in either project.612

5 Lessons for cumulus parameterization613

The above results impose certain constraints on convective parameterizations. The614

inclusion of data from both OTREC and PREDICT, with their very different regimes,615

suggests broad applicability of these results to tropical oceans. Some elements in the fol-616

lowing list are already well known, others less so.617

1. It is well established that mean precipitation increases rapidly with increasing sat-618

uration fraction above values of ≈ 0.7 [Bretherton et al., 2004; Neelin et al., 2009;619

Kim and Co-Authors, 2014]. This behavior is reproduced in our observations. How-620

ever, the ability of parameterizations to reproduce this sensitivity is not a given,621

as shown by Derbyshire et al. [2004].622

2. Less well known is the strong sensitivity of rainfall to the low to mid-tropospheric623

moist convective instability, represented here by the instability index. The factors624

controlling instability index in OTREC and PREDICT are likely to differ some-625

what due to the generally weak vorticity at low latitudes. However, the effect of626

instability index on convection is similar between the two regions, namely, small627

but positive values of instability index result in the heaviest average precipitation.628

3. Saturation fraction and instability index are broadly anti-correlated, with small629

instability index being associated with large saturation fraction. We call this re-630

lationship “moisture quasi-equilibrium” (MQE) and it is enforced by the behav-631

ior of convection, which drives the saturation fraction toward a set point which632

is larger for smaller instability index. In weak convective cases the adjustment time633

for saturation fraction is large and actual saturation fraction values are often smaller634

than the set point. This behavior should be reproduced by cumulus parameter-635

izations.636

4. It is perhaps no surprise that convective inhibition is a significant control param-637

eter for deep convection. However, evaluating the buoyancy of a parcel with prop-638

erties averaged over a rather deep layer is important in its calculation, since ob-639

servations suggest that deep convective updrafts draw on air from well above the640
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subcloud layer. We define the “deep convective inhibition” (DCIN) with this caveat641

in mind.642

5. CAPE is often used to trigger convection in cumulus parameterizations. Tables643

1 and 2 as well as figure 12 strongly suggest that CAPE is not an appropriate trig-644

ger for convection in such parameterizations, except possibly as a threshold indi-645

cator for conditional instability. However, a combination of positive instability in-646

dex and negative deep convective inhibition may serve equally well in this role.647

6. Given the apparent importance of surface heat and moisture fluxes seen in numer-648

ous studies in the generation of deep convection, it may be surprising that the ef-649

fect of local surface fluxes on convection is generally small. However, this appar-650

ent paradox is likely resolved by the realization that the effects of surface fluxes651

are only manifested by the accumulated changes they make in the temperature652

and humidity soundings, which are significant only over long fetches.653

7. Rainfall is tightly correlated with the 3-5 km vertical mass flux. This is no sur-654

prise given that most atmospheric moisture is concentrated in the lowest few kilo-655

meters. More interesting is the effect of high SST on the production of top-heavy656

vertical mass flux profiles and entropy divergence. This doesn’t always occur, but657

may be limited to late in the life cycle of convective systems in high-SST environ-658

ments.659

8. All of the above results come from averaging over broad probability distributions.660

The breadth of these distributions may simply indicate that we have insufficient661

data to narrow them, or that we haven’t yet extracted all of the relevant control662

parameters. However, it is also possible that their breadth simply reflects the chaotic663

nature of atmospheric convection. Whatever the cause, this suggests the impor-664

tance of implementing stochastic variability in the construction of cumulus param-665

eterizations.666

6 Conclusions667

This paper uses gridded dropsonde analyses from two field programs over tropi-668

cal oceans, Organization of Tropical East Pacific Convection (OTREC2019) and Pre-Depression669

Investigation of Cloud-Systems in the Tropics (PREDICT2010) to characterize those fac-670

tors in tropical oceanic convection pertinent to convective parameterizations. OTREC671

studied ITCZ convection in the near-equatorial waters of the far East Pacific and South-672

west Caribbean while PREDICT focused on convection in convective clusters over the673

tropical Atlantic and Caribbean that were judged to be candidates for tropical cycloge-674

nesis. PREDICT thus studied regions with higher SSTs and larger values of planetary675

and relative vorticity than OTREC.676

We have purposely avoided filtering our results through the lens of existing the-677

oretical models of convection, e.g., plumes, thermals, stratiform vs. convective rain, cold678

pools, etc. In this way we strive to extract the “emergent properties” of convection on679

the mesoscale as observed in the real world.680

The effect of various thermodynamic parameters on factors important to cumulus681

parameterizations are studied. These include the saturation fraction (a kind of column682

relative humidity), the instability index (a measure of low to mid-tropospheric moist con-683

vective instability), the deep convective inhibition (a convective inhibition index focused684

on the lifting of parcels from a deep layer adjacent to the surface), and the SST. Local685

surface heat and moisture fluxes have little direct effect. All of these parameters can be686

derived from explicitly computed fields in large-scale models.687

The main results arising from this study are that the strongest moisture conver-688

gence, and hence the heaviest mean precipitation, occur for large values of saturation689

fraction and small values of both instability index and deep convective inhibition. The690

main effect of high sea surface temperatures is to increase the probability of convection691
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with strong entropy divergence and top-heavy mass flux profiles. These results impose692

significant constraints on the allowable behavior of cumulus parameterizations.693

As with most measurements of convective properties in the field, they come with694

a large overlay of “noise”, which represents some combination of insufficient data, incom-695

plete understanding (e.g., the role of wind shear), and the natural variability of convec-696

tion. For this reason, most results are expressed in terms of probability distributions,697

which facilitate the computation of not only mean values but also distribution widths,698

which may be useful in the calibration of stochastic cumulus parameterizations.699

Notable for its lack of effect on moisture convergence and entropy divergence is the700

CAPE. It follows that the widespread use of CAPE as a convective trigger in cumulus701

parameterizations needs to be reconsidered.702
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López-Carrillo, C. and D. J. Raymond (2011). Retrieval of three-dimensional wind fields813

from Doppler radar data using an efficient two-step approach. Atmos. Meas. Tech.,814

4, 2717-2733.815

Maloney, E. D. and S. K. Esbensen (2003). The amplification of east Pacific Madden-816

Julian oscillation convection and wind anomalies during June-November. J. Cli-817

mate, 16, 3482-3497.818

Maloney, E. D. and S. K. Esbensen (2005). A modeling study of summertime east Pa-819

cific wind-induced ocean-atmosphere exchange in the intraseasonal oscillation. J.820

Climate, 18, 568-584.821

Maloney, E. D. and A. H. Sobel (2004). Surface fluxes and ocean coupling in the trop-822

ical intraseasonal oscillation. J. Climate, 17, 4368-4386.823

Manabe, S., J. Smagorinsky and R. F. Strickler (1965). Simulated climatology of a gen-824

eral circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769-798.825

Mapes, B. E. (1993). Gregarious tropical convection. J. Atmos. Sci., 50, 2026-2037.826

Masunaga, H. and T. S. L’Ecuyer (2014). A mechanism of tropical convection inferred827

from observed variability in the moist static energy budget. J. Atmos. Sci., 71,828

3747-3766.829

Montgomery, M. T., C. Davis, T. Dunkerton, Z. Wang, C. Velden, R. Torn, S. J. Ma-830

jumdar, F. Zhang, R. K. Smith, L. Bosart, M. M. Bell, J. S. Haase, A. Heyms-831

field, J. Jensen, T. Campos and M. A. Boothe (2012). The pre-depression inves-832

tigation of cloud systems in the tropics (PREDICT) experiment. Bull. Am. Me-833

teor. Soc., 93, 153-172.834

Neelin, J. D., I. M. Held and K. H. Cook (1987). Evaporation-wind feedback and low-835

frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341-2348.836

Neelin, J. D., O. Peters and K. Hales (2009). The transition to strong convection. J.837

Atmos. Sci., 66, 2367-2384.838

Neelin, J. D. and I. M. Held (1987). Modeling tropical convergence based on the moist839

static energy budget. Mon. Wea. Rev., 115, 3-12.840

Ramage, C. S. (1971). Monsoon meteorology. Academic Press, New York, 296 pp.841

Rasp, S., M. S. Pritchard and P. Gentine (2018). Deep learning to represent subgrid842

processes in climate models. Proceedings of the National Academy of Science, 115843

(39), 9684-9689, doi:10.1073/pnas.1810286115.844

Raymond, D. J. (1995). Regulation of moist convection over the west Pacific warm pool.845

J. Atmos. Sci., 52, 3945-3959.846

–24–



manuscript submitted to JAMES

Raymond, D. J. (2000). Thermodynamic control of tropical rainfall. Quart. J. Roy.847

Meteor. Soc., 126, 889-898.848

Raymond, D. J. (2001). A new model of the Madden-Julian oscillation. J. Atmos. Sci.,849

58, 2807-2819.850

Raymond, D. J. (2007). Testing a cumulus parametrization with a cumulus ensemble851

model in weak-temperature-gradient mode. Quart. J. Roy. Meteor. Soc., 133, 1073-852

1085.853

Raymond, D. J. (2012). Balanced thermal structure of an intensifying tropical cyclone.854

Tellus, 64, 19181, doi:org/10.3402/tellusa.v64i0.19181.855

Raymond, D. J. (2013). Sources and sinks of entropy in the atmosphere. J. Adv. Model.856

Earth Syst., 5, 755-763, doi:10.1002/jame.20050.857

Raymond, D. J. (2017). Convection in the east Pacific intertropical convergence zone.858

Geophys. Res. Lett., 44, 562-568, doi:10.1002/2016GL071554.859

Raymond, D. J., G. B. Raga, C. S. Bretherton, J. Molinari, C. López-Carrillo and Ž.860
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