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Abstract

Hydroclimatic flood generating processes, such as excess rain, short rain, long rain, snowmelt and rain-on-snow, underpin

our understanding of flood behaviour. Knowledge about flood generating processes helps to improve modelling decisions, flood

frequency analysis, estimation of climate change impact on floods, etc. Yet, not much is known about how climate and catchment

attributes influence the distribution of flood generating processes. With this study we aim to offer a comprehensive and

structured approach to close this knowledge gap. We employ a large sample approach (671 catchment in the conterminous United

States) and test attribute influence on flood processes with two complementary approaches: firstly, a data-based approach which

compares attribute probability distributions of different flood processes, and secondly, a random forest model in combination with

an interpretable machine learning approach (accumulated local effects). This machine learning technique is new to hydrology,

and it overcomes a significant obstacle in many statistical methods, the confounding effect of correlated catchment attributes.

As expected, we find climate attributes (fraction of snow, aridity, precipitation seasonality and mean precipitation) to be most

influential on flood process distribution. However, attribute influence varies both with process and climate type. We also find

that flood processes can be predicted for ungauged catchments with relatively high accuracy (R2 between 0.45 and 0.9). The

implication of these findings is that flood processes should be taken into account for future climate change impact studies, as

impact will vary between processes.
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Abstract12

Hydroclimatic flood generating processes, such as excess rain, short rain, long rain, snowmelt13

and rain-on-snow, underpin our understanding of flood behaviour. Knowledge about flood14

generating processes helps to improve modelling decisions, flood frequency analysis, es-15

timation of climate change impact on floods, etc. Yet, not much is known about how cli-16

mate and catchment attributes influence the distribution of flood generating processes.17

With this study we aim to offer a comprehensive and structured approach to close this18

knowledge gap. We employ a large sample approach (671 catchment in the conterminous19

United States) and test attribute influence on flood processes with two complementary20

approaches: firstly, a data-based approach which compares attribute probability distri-21

butions of different flood processes, and secondly, a random forest model in combination22

with an interpretable machine learning approach (accumulated local effects). This ma-23

chine learning technique is new to hydrology, and it overcomes a significant obstacle in24

many statistical methods, the confounding effect of correlated catchment attributes. As25

expected, we find climate attributes (fraction of snow, aridity, precipitation seasonality26

and mean precipitation) to be most influential on flood process distribution. However,27

attribute influence varies both with process and climate type. We also find that flood28

processes can be predicted for ungauged catchments with relatively high accuracy (R229

between 0.45 and 0.9). The implication of these findings is that flood processes should30

be taken into account for future climate change impact studies, as impact will vary be-31

tween processes.32

1 Introduction33

Flood processes influence flood behaviour (Gaál et al., 2012; Fischer et al., 2016;34

Keller et al., 2018; Merz & Blöschl, 2005; Tarasova et al., 2019). Possible hydroclimatic35

flood processes include excess rain, short rain, long rain, snowmelt and rain-on-snow. The36

need to classify these processes has long been recognised and several studies have devel-37

oped flood classification approaches (e.g. Berghuijs et al., 2016, 2019; Blöschl et al., 2017;38

Diezig & Weingartner, 2007; Merz & Blöschl, 2003; Sikorska et al., 2015; Stein et al., 2019;39

Tarasova et al., 2020). However, very few of those studies look into how catchment and40

climate characteristics influence flood generating processes (Merz & Blöschl, 2003; Stein41

et al., 2019).42

Being able to predict which flood generating processes might occur in a catchment43

is relevant for many applications. For hydrological model development it is important44

to know which process representations must be included (Clark et al., 2016); for model45

evaluation it can help to evaluate model outputs in the sense of getting the right results46

for the right reasons (Kirchner, 2006). Moreover, knowing which catchment character-47

istics are relevant for processes in various areas might improve the choice of donor catch-48

ments for predictions in ungauged catchments through regionalization (Rosbjerg et al.,49

2013). Furthermore, climate change can drive changes in flood process, which may af-50

fect flood magnitude (Blöschl et al., 2017, 2019). Knowing the temporal and spatial dis-51

tribution of processes can potentially inform or explain changes in flood characteristics.52

Based on existing literature we can formulate several hypotheses regarding which53

climate and catchment attributes we expect to influence the mix of flood generating pro-54

cesses. In the following section we will describe the studies that inform the hypotheses55

which are summarised in Table 1.56

1.1 Flood hypotheses - What do we expect?57

Deciding which processes in a catchment generate flood events depends on two fac-58

tors: the availability of the flood producing input, and how the catchment stores and trans-59
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mits water. Here we briefly outline some of the impacts of climate and catchment at-60

tributes on flood generation.61

Climate and Weather: The availability of the input is dependent both on cli-62

mate and weather. Precipitation and temperature distribution influence snowpack ac-63

cumulation. Locations with winter precipitation and winter temperatures continuously64

below zero during the winter months can accumulate a snowpack that will not melt un-65

til the spring or summer. Sudden increases in temperature (Ward, 1978) or the melt-66

ing of the snowpack through precipitation creates either snowmelt or rain/snow floods.67

In catchments with winter temperatures fluctuating around freezing, rain/snow events68

can also occur during the winter. Southern Germany for example often experiences floods69

in late December caused by combinations of rain and snow (Sui & Koehler, 2001).70

For floods generated by short rain, long rain or excess rainfall, the availability of71

input is dependent on rainfall and evapotranspiration distribution. As the name implies72

short rainfall floods occur after short intense periods of rainfall that exceed infiltration73

capacity or quickly saturated the catchment (Merz & Blöschl, 2003). Arid regions can74

be more prone to this type of flood since convective thunderstorms are a common pre-75

cipitation input. The distinction between excess rainfall and long rainfall is based on an-76

tecedent conditions (Stein et al., 2019) and therefore dependent on precipitation versus77

evapotranspiration seasonality. The seasonality is out of phase if precipitation maximum78

is in the winter (summer) with an evapotranspiration maximum in the summer (winter).79

This means precipitation maximum falls into a time where drying of the soil is minimum80

leading to saturated conditions. This increases the chances of excess rainfall floods. With81

in phase seasonality, precipitation maximum and evapotranspiration maximum aligns,82

leading to drier conditions. Heavy multi-day rainfall is needed to saturated catchment83

storage before runoff is increasing.84

In catchments with only one input type, for example under continuously saturated85

conditions with no snow, flood generating process is independent of catchment charac-86

teristics. Catchment characteristics might influence flood characteristics but not gener-87

ating process. However, in catchments that receive various inputs, the catchment stor-88

age and transmission behaviour will heavily influence which process generates the high-89

est flows. Catchment attributes that increase runoff influence flood magnitude. Attributes90

that influence time of concentration can equally be deciding between processes. A short91

time of concentration means an immediate reaction to precipitation input. This would92

make short rainfall more likely than long rainfall (Blöschl et al., 2013). However, a short93

time of concentration can also be reached through prior saturation of the catchment (Acreman94

& Holden, 2013; Ward, 1978). If this is necessary, it will mean the catchment is more95

prone to excess rainfall floods.96

Snowmelt and the interaction of rainfall and snowmelt is dependent on snowpack97

conditions. These depend both on climate conditions as well as weather conditions dur-98

ing snowpack accumulation and melting season. Rainfall retention capacity of a catch-99

ment varies depending on the snowpack conditions (Singh et al., 1998). This influences100

reaction of the snow pack to rainfall, thus increasing or decreasing the chance of a rain-101

on-snow flood. This kind of flood is strongly dependent both on antecedent condition102

of the snowpack and the rainfall producing weather system (Marks et al., 1998, 2001;103

Musselman et al., 2018; Sui & Koehler, 2001)104

Slope: The influence of slope varies between different flood processes. Chang et105

al. (2014) find steep catchments transport meltwater more quickly to the stream espe-106

cially in combination with thin soils. Yet, in steep catchments melting conditions are reached107

gradually along the elevation gradient, as temperature varies with elevation. For catch-108

ments in the plains there is little or no temperature gradient and melting conditions are109

reached simultaneously over the whole area. This can cause large snowmelt flood peaks110

(Ward, 1978). In regard to rainfall induced floods, slope can influence transit time, with111
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steeper catchments transporting water more quickly to the outlet (Tetzlaff et al., 2009).112

Subsequently, Tetzlaff et al. (2009) found transit times in flatter terrain in temperate re-113

gions to be longer. However, this was only the case in areas with permeable soils. Slope114

can also be an influential attribute as a proxy for soil thickness, where steeper slopes can115

also have thinner soils and therefore less storage and quicker transmission (Pitlick, 1994).116

Additionally, catchments with steeper slope might be more prone to flash floods, where117

increased erosion promotes efficient drainage systems. These in turn are going to con-118

tribute to flash floods (Gaál et al., 2012; Weingartner et al., 2003). Despite these find-119

ings, in a global flood frequency study Smith et al. (2015) did not find slope to be a good120

predictor for the shape of the flood frequency curve. Similarly, Pitlick (1994) demonstrate121

that flood magnitude does not vary with catchment slope in their study region. The ef-122

fect of slope on processes is therefore still under debate.123

Area: Smith et al. (2015) find area to be a good predictor for flood magnitude in124

a flood frequency approach. It is important to note, though, that this performance varies125

with climate. In arid regions, area alone was not a good predictor. This was confirmed126

by Tooth (2000) who find rainfall variability has a stronger effect on flood magnitude.127

Short rainfall events might be more common in smaller catchments due to two ef-128

fects. Firstly, area affects time of concentration with smaller catchments having a shorter129

time of concentration. Secondly, small catchments can be covered in its entirety by high130

intensity convective storms. A larger catchment might only be partially covered with rain-131

fall amounts too small to cause a flood (Weingartner et al., 2003). For very large catch-132

ments Ward (1978) mention that snowmelt is the most likely flood producing process133

as it is the only input that can occur across the whole large area at the same time. In134

arid regions, area has been found to be less influential for flood magnitude, as rainfall135

variability has a stronger effect (Tooth, 2000). Pitlick (1994) similarly found no increase136

flash flood potential for larger catchments.137

Shape: Catchment shape influences flood peak shape (Ward, 1978). In a round138

catchment with simultaneous input everywhere the flood waves from different parts of139

the catchment will overlap at the outlet with high peak flows as a result. This effect will140

be strongest when storm duration is the same as catchment time of concentration (Viglione141

& Blöschl, 2009; Blöschl et al., 2013). There are exceptions though. Elongated catch-142

ments can receive very high peak flow if a storm cells moves along the catchment toward143

the outlet. Again the flood waves will overlap and cause high peak flow.144

Soils: Soils in addition to geology and topography contribute to storage capacity145

of a catchment. A high storage capacity requires larger input volumes before runoff oc-146

curs (Merz & Blöschl, 2003). Once storage capacity is exceeded floods can reach larger147

magnitudes which is visible as a step-change in the flood frequency curve (Rogger et al.,148

2012). Wood et al. (1990) found that soil properties are most relevant for floods of small149

magnitude while rainfall properties are more relevant for larger magnitude floods. Wet-150

lands similarly contribute to the storage capacity of a catchment. A wetland’s effect on151

downstream flood characteristics depends largely on the saturation state. Once saturated152

most rainfall contributes immediately to runoff (Acreman & Holden, 2013; Bullock &153

Acreman, 2003; McCartney et al., 1998). Catchments with larger storage capacity would154

therefore be more likely to flood after wet antecedent conditions (excess rainfall floods).155

Elevation: Merz and Blöschl (2003) found that in Austria flood process and time156

of occurrence changes with elevation. The change agrees with availability of input, e.g.157

flash floods occur only in the summer months and snowmelt floods in the spring. The158

higher the elevation the later in the spring snowmelt floods occur. Elevation is directly159

related to temperature and precipitation.160

Geology: Geology shapes topography. The way the drainage network will form161

depends on geology as well as climate, vegetation and soils. Large subsurface storage damp-162
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ens flood response. This leads to less erosion and more soil development thus again in-163

creasing storage (Rosbjerg et al., 2013).164

Vegetation: The influence of vegetation, in particular forest vegetation, deforesta-165

tion and reforestation, has been discussed in depth in the literature. While some large166

scale studies find forests to have an effect on magnitude and frequency (Bradshaw et al.,167

2007), other based on extensive literature research, disagree (Bruijnzeel, 2004; Calder168

& Aylward, 2006). Some of this disagreement is due to scale, with smaller catchments169

and smaller flood magnitude more influenced by vegetation (Calder & Aylward, 2006;170

van Dijk et al., 2009). In regard to flood processes, snowmelt floods have been shown171

to be influenced by coniferous trees, which intercept snowfall and increase sublimation172

rates (Storck et al., 2002). We can hypothesise that vegetation decreases quick runoff173

since it both increases surface roughness as well as soil infiltration capacity(Lull & Rein-174

hart, 1972) . The effect of land-use on floods is stronger in smaller catchments (Calder175

& Aylward, 2006) and for smaller flood magnitudes (van Dijk et al., 2009). Vegetation176

is an important influence on runoff behaviour in semi-arid and arid regions as it increases177

infiltration capacity (Osterkamp & Friedman, 2000; Shafer et al., 2007).178

1.2 Aims and Objectives179

The brief review above demonstrates that the majority of studies do not in fact eval-180

uate the influence of catchment characteristics on flood generating processes but only181

on other flood characteristics (runoff, magnitude, duration...). We can only infer hypothe-182

ses for the effect on flood generating processes, as we have done in Table 1, while a com-183

prehensive, data-based, comparative study to test the influence of catchment character-184

istics on flood generating processes is still missing. To this end, the aim of this study is185

to evaluate which assumptions and prior findings hold true when tested on a large sam-186

ple of catchments across several climates. We hypothesise that climate attributes will187

be very influential, especially the seasonal availability of flood producing input and sat-188

uration conditions. Catchment attributes that influence the storage behaviour of the catch-189

ment will likely have an effect as well (Merz & Blöschl, 2009).190

We have previously developed and tested the first global event-based flood clas-191

sification methodology (Stein et al., 2019). In this study we use that methodology to clas-192

sify flood generating processes for a large sample of catchments across several climates.193

We then explore the influence of catchment attributes on generating processes. Finding194

influential attributes in correlated datasets is challenging, as the correlation among at-195

tributes might obscure findings (Dormann et al., 2013). We therefore use two approaches196

that complement each other and allow interpretation despite collinearity. The first is a197

data based approach that evaluates the influence of each attribute individually. The sec-198

ond approach uses a random forest model and an interpretable machine learning method199

(called accumulated local affects (Apley & Zhu, 2016)) which is unbiased toward corre-200

lated predictors (Molnar et al., 2018). This is, to our knowledge, the first application of201

accumulated local effects in a hydrological study.202

2 Methodology203

In order to understand the influence of catchment and climate attributes on flood204

generating processes, we propose the following steps. We will use the CAMELS dataset205

(Catchment Attributes and MEteorology for Large-sample Studies) (Section 2.1) by Newman206

et al. (2015) and Addor et al. (2017). We first classify flood generating processes of flood207

events using a recent methodology (Stein et al., 2019) (Section 2.2). Then, for three dis-208

tinct climate groups (Section 2.3) the influence of catchment attributes is determined209

using both a data-based approach (probability density comparison, Section 2.4.1) and210

a machine learning approach (Accumulated Local Effects applied to random forest mod-211

els, Sections 2.4.2 and 2.4.3).212
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2.1 Data213

We used the publicly available CAMELS dataset which combines hydro-climatological214

data (Newman et al., 2015) with catchment attributes (Addor et al., 2017) for 671 catch-215

ments in the contiguous United States. The daily data covers a time period from 1980216

to 2014. Newman et al. (2015) selected these catchments specifically to have minimal217

human influence. The majority are therefore small headwater catchments. For the flood218

event classification daily observed streamflow data and Daymet meteorological forcing219

data (precipitation, temperature) were used. For the soil moisture routine (Stein et al.,220

2019) available water capacity of the soil is a necessary variable. We used data from the221

Gridded National Soil Survey Geographic (gNATSGO) Database for the Conterminous222

United States (Soil Survey Staff, 2019), because this parameter is not available in CAMELS.223

Newman et al. (2015) provide daily actual evapotranspiration values from the Sacramento224

Soil Moisture Accounting Model. Addor et al. (2017) extended the CAMELS dataset225

by Newman et al. (2015) to include catchment attributes in six thematic groups: topog-226

raphy, climate, soil, vegetation, geology and streamflow indices. These combine contin-227

uous and categorical attributes. Examples of continuous attributes are mean annual pre-228

cipitation or fraction of the catchment covered by forest. Categorical attributes include,229

for example, dominant land cover and geologic class. Detailed descriptions and defini-230

tions for each attribute can be found in Tables 1-6 in Addor et al. (2017). We addition-231

ally calculated catchment shape as represented by the elongation ratio Schumm (1956).232

A value closer to 1 indicates a round catchment, a value closer to zero a long catchment.233

2.2 Flood process classification234

Flood events were identified using a peaks-over-threshold approach. It identifies235

the highest independent streamflow peaks in the time series. The number of peaks varies236

depending on the threshold which can be set to find a certain number of peaks per year.237

The R function ”findPeaks” from the package ”quantmod” (Ryan & Ulrich, 2019) was238

used to identify all peak streamflow days. Only independent flood peaks are kept for fur-239

ther analysis. For any flood peak identified by ”quantmod” to be independent from an-240

other, the time difference between both peaks has to be larger than the mean rising time241

calculated from 5 ’clean hydrographs’ (Cunnane, 1979), which we take here as the 5 high-242

est peaks with a large time difference to the previous peak. An additional independence243

criterion is that a trough between two peaks needs to be less than 2/3 of the first peak244

(Cunnane, 1979). Two subsets of peaks with different magnitudes were identified: One245

with an average of one event per year (larger peaks) and one with an average of three246

(smaller peaks) events per year to compare if a difference in magnitude has an effect. We247

include this option because several studies indicate that land use or storage capacity are248

more influential for floods of smaller magnitude (Rogger et al., 2012; van Dijk et al., 2009;249

Wood et al., 1990). If there are more events than the threshold, the smallest peak events250

are removed.251

We classified the identified flood events in each catchment into one of five hydro-252

climatological generating processes (Stein et al., 2019): excess rainfall, short rainfall, long253

rainfall, snowmelt and a combination of rain and snowmelt. A decision tree evaluates254

hydro-climatic conditions in a 7-day time period before any flood event. It uses the date255

of the flood event and hydroclimatological input data, as well as soil moisture and snowmelt256

estimates obtained from a simple lumped model routine run at a daily time step (Stein257

et al., 2019). Critical temperature for snowfall and melt was set to 1◦ C (Jennings et al.,258

2018). The thresholds of the tree are based on the hydro-climatological time series of each259

catchment. This methodology allows us to classify a large sample of flood events across260

various climatic regions without prior knowledge about dominant flood generating pro-261

cesses for each catchment. The tree is structured to first evaluate if snowmelt and rain-262

fall occur simultaneously. This would be classified as rain/snow floods. In a next step263

it checks if snowmelt was higher than the threshold, which would indicate a snowmelt264
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flood event. Then, if neither was the case, soil moisture state in combination with higher265

than mean weekly rainfall is evaluated to determine if the flood event was an excess rain-266

fall flood. If that was not the case it evaluates whether the thresholds for long rainfall267

and then short rainfall are crossed. If no process could be identified, the class ”other”268

will be assigned. Events classified as other will not be considered in this analysis. For269

an in-depth description and evaluation of this methodology please refer to Stein et al.270

(2019).271

2.3 Climate type definition272

Climatic catchment attributes are influential on catchment flow behaviour (Addor273

et al., 2018; Berghuijs et al., 2014; Jehn et al., 2020; Knoben et al., 2018). In regard to274

flood process distribution Berghuijs et al. (2016) note the influence of aridity on distri-275

bution of excess rainfall and short/long rainfall floods. Based on availability of gener-276

ating processes, there will be very few or no snowmelt or rain/snow floods in catchments277

with small or zero fraction of precipitation falling as snow. Since the importance of the-278

ses two attributes, aridity and fraction of snow, is already known we can split the dataset279

into different climate types to evaluate the interaction of these attributes with others.280

We want to determine whether the importance of other catchment attributes varies be-281

tween the different climate types. The CAMELS data is well suited to answer this as the282

catchments lie within various different climatic regions. Based on two climatic indices283

from the CAMELS dataset (Addor et al., 2017) the catchments were separated into three284

different groups: wet, dry, and snow influenced catchments. Wet catchments were de-285

fined as catchments with an aridity index < 1. Potential evapotranspiration in those catch-286

ments is lower than precipitation (i.e. energy-limited catchments). Dry catchment have287

an aridity index > 1 respectively with mean potential evapotranspiration larger than mean288

precipitation (i.e. water-limited catchments). All catchments with a fraction of precip-289

itation falling as snow higher than 20 % were designated as snow catchments, regard-290

less of their aridity. The flood process classification shows that his thresholds delivers291

largely similar numbers of catchments for all climate types while grouping catchments292

with snowmelt flood contributions together (see Figure 5a). The distribution of catch-293

ments for each climate type is depicted in Figure 1.294
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Figure 1. a: Classification of 671 CAMELS catchments into three climate types wet, dry

and snow based on aridity and fraction of snow. Climate type thresholds are indicated through

dashed lines. Aridity and fraction of snow taken from Addor et al. (2017). b: Spatial distribution

of the three climate types for the CAMELS catchments.
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2.4 Attribute influence estimation295

We employ two methods to evaluate which attributes influence the flood process296

distribution. Both methods are described in detail further below. The distribution com-297

parison (Section 2.4.1) draws its results directly from the data. A single attribute’s in-298

fluence on each flood-generating process is directly evaluated. However, the method strug-299

gles with unequal sample sizes, which is the case particularly in the ”wet” climate type.300

The second approach compares importance between different attributes using a random301

forest model (Section 2.4.2) to which we apply an interpretable machine learning method302

(Section 2.4.3). This method, called accumulated local effects, is not biased towards collinear-303

ity in the data and less susceptible to differences in sample size. However, its reliabil-304

ity depends on the performance of the model to which it is applied (random forest model305

in our case).306

The first approach depicts the influence of a single attribute on the different flood307

processes within catchments. It allows a comparison of influence between different pro-308

cesses and climates. In contrast, the second approach compares the influence of all at-309

tributes on the spatial distribution of a single process. This then allows us to compare310

the influence between attributes, but only for a single process.311

2.4.1 Probability distribution comparison312

We first evaluate the influence of each continuous attribute on each flood gener-313

ating process. We stratify this analysis by climate type (Section 2.3) because it is plau-314

sible that the influence of attributes varies with environmental setting. For this we ap-315

ply a comparative hydrology approach (Falkenmark et al., 1989; Gaál et al., 2012). To316

assess the influence of one attribute on one process we compare two attribute distribu-317

tions with each other sampled across all catchments within one climate type. Each catch-318

ment can contribute the same attribute multiple times depending on the number of events.319

We compare the empirical cumulative distribution function (ecdf) of the attribute, sam-320

pled from all catchments with events of that process, with the ecdf associated with all321

events (independent of process). If the two distributions differ, we infer that this attribute322

influences the occurrence of that process (Gaál et al., 2012; Merz et al., 2006; Pianosi323

& Wagener, 2015). E.g. say a catchment had 15 excess rain events and the mean annual324

rainfall attribute in that catchment were 400 mm per year. Then this catchment would325

contribute the value 400 mm 15 times to the specific process distribution. Whereas, the326

next catchment has 10 excess rainfall events and a mean annual rainfall of 350 mm per327

year. It would contribute the value 350 mm 10 times to the same distribution. Similar328

methods have been applied by Merz et al. (2006) to study runoff coefficients and by Gaál329

et al. (2012) to evaluate flood duration.330

To make the distributions comparable, all attribute values are normalised (min-331

max-normalisation). To summarise the divergence between the two distribution func-332

tions, we calculate the mean difference between 100 values along the ecdf curve for each333

process and the curve for all events. The resulting value may be either positive or neg-334

ative. Figure 2c illustrates that a negative (positive) value indicates an increased occur-335

rence of the process for smaller (larger) values of the attribute. Figure 2d displays how336

the mean difference between each process curve and the full range curve translates into337

a single metric. We use cumulative density functions instead of probability density func-338

tions as they can be calculate without any prior parameter assumptions (Pianosi & Wa-339

gener, 2015).340

We chose this approach over a correlation based analysis since a simple correlation341

analysis would only be able to determine linear relationships between attribute and flood342

process. The comparison of ecdf curves instead is able to indicate both linear and non-343

linear relationships by taking into account variations across the whole attribute space.344

Although rank correlation would be able to give similar results as the curve summary345
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statistics, the comparison over the whole curve additionally allows a visual interpreta-346

tion of influential attribute ranges (supplemental information).347

A drawback of this approach is that the distribution functions are sensitive to un-348

equal sample size and to small samples (e.g. the overall number of snowmelt and rain/snow349

flood events in dry catchments is small). If one sample is much larger than the others,350

it dominates the comparison distribution (e.g. there are much more excess rainfall events351

in wet catchments than any other process). A small sample size may lead to a possibly352

inaccurate approximation of the real distribution function (an example in Figure 2b is353

the distribution of snowmelt events in dry catchments). For this reason more weight should354

be given to distributions based on a larger sample size. In Figure 2d this is taken into355

account by adjusting the point size according to the sample size. Another limitation is356

that only continuous variables can be analysed in this way. Lastly, a limitation of the357

applied summary statistic is that attributes that reverse their influence (i.e., the ecdf curves358

cross one another) would be summarised to zero. We visually checked all curves and there359

is only one case (influence of mean annual precipitation on rain/snow floods in ”snow”360

climate) where this occurs.361
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Figure 2. Example figure to explain distribution comparison and difference between distribu-

tion value. a: empirical distribution functions of normalised mean annual rainfall for each flood

generating process compared to all events (black). b: empirical distribution functions of nor-

malised mean annual potential evapotranspiration for each flood generating process compared to

all events (black). c: Example distribution differences - the coloured space indicates the difference

between the long rainfall events and all events (red, difference between distributions is negative)

and difference between excess rainfall events and all events (blue, difference between distributions

is positive). d: Summary statistic - Mean difference between distribution value for both example

attributes. Colour indicates the direction and strength of difference. The number of events that

contribute to a distribution is indicated through point size.

2.4.2 Random forests362

A random forest is a machine learning model approach, where an algorithm cre-363

ates and combines multiple regression trees (Breiman, 2001) . Addor et al. (2018) use364

a random forest model to predict hydrologic signatures in space, using the CAMELS dataset.365

They list the benefits of random forest models as allowing multiple predictors, being able366

to incorporate nonlinear relationships, flexibility, a reduced risk of data overfitting com-367

pared to individual regression trees, interpretability, and computational efficiency.368
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We use a random forest model in two ways: (1) As a model that we can interpret369

using interpretable machine learning; and (2) to predict flood process distributions from370

catchment characteristics. The latter can demonstrate both that catchment attributes371

influence process distribution, and that it is possible to predict flood process distribu-372

tion in ungauged catchments. Prediction accuracy is evaluated using 10-fold cross-validation373

(see e.g. Addor et al., 2018). Random forest models tend to overfit on training data and374

cross validation gives a better evaluation of prediction accuracy than performance eval-375

uation based on training data (Dormann et al., 2013). Therefore, the dataset is split into376

ten equal-sized samples. Ten random forest models are trained with nine parts of the377

data and evaluated on the respective tenth part. This way prediction accuracy can be378

evaluated for all catchments.379

2.4.3 Accumulated local effects applied to random forest380

To interpret a random forest model, Addor et al. (2018) refer to the possibility of381

determining the influence of an attribute on the outcome through variable importance382

(the increase in error when a predictor is shuffled). However, this metric is unsuitable383

for datasets with correlated features (Toloşi & Lengauer, 2011; Degenhardt et al., 2019;384

Dormann et al., 2013) such as the CAMELS dataset. Jehn et al. (2020) demonstrate high385

correlations between various attributes of the CAMELS dataset. An alternative to vari-386

able importance are interpretable machine learning approaches. One method that is par-387

ticularly suitable to give an unbiased result despite collinearity, are accumulated local388

effects plots (Apley & Zhu, 2016). Accumulated local effects (ALE) plots improve the389

application of more commonly used partial dependence plots (Anchang et al., 2020; Fried-390

man, 2001; Molnar, 2019). After a model was fit to the data, ALE plots evaluate the change391

in model prediction over a small interval of an input variable. Interval size is determined392

by quantiles in the distribution (Molnar, 2019). For all observed data points in that in-393

terval, differences in prediction between the interval boundaries are calculated. This way394

the change in the variable of interest (local effect) is recorded, disregarding any effect395

correlation with other variables might have. The local effects for each boundary are ac-396

cumulated into a curve and centred around zero. Example accumulated local effects curves397

are displayed in Figure 3a (black lines) for mean precipitation, mean potential evapo-398

transpiration and water fraction in the soil. Any divergence from zero reveals an influ-399

ence of the attribute on the prediction outcome. Blue bars in Figure 3a indicate the di-400

vergence which is taken as influence. For an in depth explanation of ALE plots we re-401

fer the reader to Apley and Zhu (2016).402

Accumulated local effects are a relatively new method. They have proven their ap-403

plicability in several fields, for example in ecology (e.g. Anchang et al., 2020; Brown et404

al., 2020). One limitation is that accumulated local effects evaluate the reaction of a model405

to changes in an attribute. Results are not directly based on data. It can therefore be406

assumed that accumulated local effects calculated on a model with low performance will407

yield less reliable results. We recognise but were unable to quantify this limitation when408

interpreting the results. Another limitation is that ALE plots do not give reliable results409

in attribute ranges with scarce data (Molnar, 2019). Interval size over which the accu-410

mulated local effects is calculated is not regular but instead is based on an equal num-411

ber of observations per interval. In unevenly distributed data this can lead to large in-412

terval sizes. In the CAMELS dataset that is the case for the attributes fraction of top413

1.5 m considered water (Water Fraction) and organic (Organic Fraction) as well as car-414

bonated rocks fraction (Carbonate rocks fraction). Figure 3 demonstrates how the un-415

evenly distributed fraction of water in the soil data (Figure 3b) translates into only two416

intervals, one a zero and one at 10 (Figure 3a, blue bars).417

To summarise the influence an attribute has into one number (instead of a curve),418

we calculate the mean absolute values of the accumulated local effects (bars in Figure419

3a). This value is comparable between attributes of the same model, but not between420

–11–



manuscript submitted to Water Resources Research

different models. Therefore the summarised values are normalised (min-max-normalisation)421

for comparability. In the example given mean evapotranspiration would rank as most422

influential with a value of 0.93, followed by mean precipitation at 0.84. Due to the un-423

even distribution water fraction would still have a relatively high importance at 0.78.424

Although random forest models and accumulated local effects can interpret cat-425

egorical variables, we decided to not include them. This way the two methods analyse426

the same catchment attributes. The random forest model has been implemented using427

the ’randomForest’ package in R (Liaw & Wiener, 2002) and the accumulated local ef-428

fects were calculated using the package ’iml’ (Molnar et al., 2018).429
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Figure 3. Example figure accumulated local effects plot and its limitation. a: Accumulated

local effects plot for predictions of snowmelt floods in wet climate catchments. The dashed line is

the zero line. Blue bars indicate interval locations identified by the ALE algorithm. Their diver-

gence from zero is calculated and the mean is taken as a summary value. b: Data distribution for

each of the example attributes.

3 Results430

3.1 Event classification431

Figure 4 illustrates the contribution for each flood generating process in each catch-432

ment. Excess rainfall floods are most common in the eastern and north-western United433

States. Short rainfall floods occur most often in the western United States. Snowmelt434

floods are most common in the western-central United States where the Rocky Moun-435

tains are. In the north-eastern United States rain/snow floods are common. Long rain-436

fall floods are most common in the great plains area in the central US. Out of all (61,764)437

identified flood events the majority of events are excess rainfall floods (Figure 5b). In438

wet climates excess rainfall floods occur in every catchment (Figure 5a). In drier regions439

short and long rainfall events are more common, with fewer or no events classified as ex-440

cess rainfall. The combination of rainfall and snowmelt rarely occurs, but several snowmelt441

floods were identified. Catchments with the climate type snow accordingly classify more442

events as snowmelt and rainfall/snowmelt. Several catchments with large percentages443
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of snowmelt floods also classify large contributions from short rainfall/long rainfall events444

(Figure 5a).445
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Figure 4. Contribution in percent for each flood generating process across the CAMELS

catchment dataset. Flood events are defined as peak-over-threshold with an average of 3 events

per year.

3.2 Distribution comparison446

The distribution of each catchment attribute for each process was compared with447

the distribution of each attribute across all processes. The more different the distribu-448

tion the more influential an attribute is for that specific process. This difference is mea-449

sured by taking the difference between the empirical distribution functions for the spe-450

cific process and across all events. The results are detailed in Figure 6a. The plotted em-451

pirical distributions functions are shown in the supplement (see Figures S3-S7).452

From the distribution comparison (Figure 6a, read by row) we learn that in wet453

catchments (P>PET) catchment and climate attributes influence the mix of flood pro-454

cesses only marginally. Attribute distribution does not differ widely between the differ-455

ent processes. Excess rainfall is only slightly influenced by precipitation seasonality and456

mean precipitation. The other processes see a minor influence by further climate attributes.457

The only noticeable exception is the positive influence of difference in green vegetation458

fraction on snowmelt. We can therefore conclude that, of the attributes we have consid-459

ered, only the two attributes, aridity and fraction of snow, that created the climate type460

influence the distribution of processes. This is confirmed by the difference in distribu-461

tions between the three climate types demonstrated by Figure 5a.462

In drier catchments the difference in attribute distributions are stronger. Excess463

rainfall floods increase with higher precipitation and potential evapotranspiration and464

decrease with precipitation seasonality, e.g. with a precipitation maximum in the sum-465

mer. Increased vegetation (fraction of forest, green vegetation fraction and leaf area in-466

dex) similarly increase contribution from excess rainfall floods and decrease other occur-467

rences of other processes. Snowmelt floods most decrease with increasing potential evap-468

otranspiration and increase with seasonality indicated both by precipitation seasonal-469

ity and difference in green vegetation fraction.470

The strongest differences in distribution can be seen in snowy catchments. Eleva-471

tion decreases excess rainfall floods and rainfall/snowmelt floods and increases short rain-472

fall/long rainfall and snowmelt floods. Several climatic attributes have a strong effect473

as well. Vegetation attributes have the strongest effect in Figure 6a in snow-dominated474
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Figure 5. a: Contribution in percent for each flood generating process across the CAMELS

catchment dataset shown per catchment. Flood events are defined as peak-over-threshold with

an average of 3 events per year. The gap in the snow climate type is due to all flood events in

that catchment being classified as ’other’ (see Stein et al. (2019)). Catchments are sorted by their

catchment ID (Addor et al., 2017) which approximates spatial proximity and an ordering from

East to West. b: Overview of number of events.

catchments. Similarly to drier climates we can see with increasing vegetation an increase475

in excess rainfall and rainfall/snowmelt floods and a decrease in short rain/long rain and476

snowmelt floods. The same methodology applied to larger floods (peaks-over-threshold477

with one event per year) yields similar results (see Figure S2 in the supplement).478

3.3 Attribute influence using accumulated local effects479

The summarised accumulated local affects (sALE) are shown in Figure 6b. In con-480

trast to Figure 6a the values here are standardised for each process/climate. Values are481

not comparable between processes but between attributes for each process (i.e. read the482

figure by column). Therefore, for each process it can be assessed how the ranking of at-483

tributes changes between climates.484

Precipitation seasonality and fraction of snow are ranked influential on excess rain-485

fall floods in wet climates. The process contribution from excess rainfall is influenced by486

fraction of snow, since more rainfall/snowmelt floods decrease the contribution by ex-487

cess rainfall (see Figure 5a). In dry climates aridity and mean annual precipitation are488

important as well as precipitation seasonality. Fraction of snow is here less prominent.489

Climatic attributes in snow-influenced catchments on the other hand do not influence490

contribution of excess rainfall floods. Instead, elevation is the most relevant attribute491

for the spatial distribution of excess rainfall floods.492

The distribution of short rainfall floods is not well predicted in wet catchments (R2
493

0.45, Figure 7). Any conclusion here are therefore less reliable. However, in dry catch-494
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ments aridity is most dominant for predicting this type of event, whereas in snow-dominated495

catchments elevation is dominant.496

This is in contrast to long rainfall floods. While aridity is influential in wet climatic497

conditions, in dry climates precipitation seasonality and mean annual rainfall are more498

influential than aridity. In snow-dominated climates elevation is similarly important.499

The spatial distribution of snowmelt induced flood events under wet climatic con-500

ditions is influenced by several catchment attributes. Mostly climate attributes such as501

fraction of snow and mean annual precipitation and potential evapotranspiration, but502

the difference in green vegetation fraction influences prediction as well. Water fraction,503

which refers to the top 1.5 m of soil marked as water in the soil database (STATSGO)504

(Addor et al., 2017), shows as relevant as well, although this will be due to skewness of505

the data. In a dry climate only fraction of snow is influential and in snow-dominated catch-506

ments elevation and fraction of snow dominate.507

The contribution of events caused by a combination of rainfall and snowmelt seems508

to be differently influenced by catchment attributes than sole snowmelt events. In wet509

and dry climate catchment fraction of snow is the most important attribute. However,510

in snow-dominated catchments average duration of dry periods seems to be most influ-511

ential.512

3.4 Predictions in space using random forest513

Random forest was used as an unsupervised learning model to predict the distri-514

bution of each flood generating process and for each climate. The results of a ten-fold515

cross validation are presented in Figure 7. It demonstrates that prediction accuracy varies516

with process and climate. For all processes, higher observed contributions are slightly517

underestimated and low ones slightly overrated. For all processes there are few outliers.518

Most occur in snow-dominated catchments. From Figure 7b we can see that prediction519

accuracy using all attributes is lowest for short rainfall events in wet climates (R2 0.45)520

and highest for excess rainfall in snowy climate (R2 0.92). Except for rainfall/snowmelt521

floods, prediction accuracy is always lowest in dry climates.522

4 Discussion523

4.1 Influential catchment attributes524

A combined interpretation of the two methods takes the direction of influence (pos-525

itive/negative) from the distribution comparison in Figure 6a. The accumulated local526

effects (Figure 6b) then confirm if that attribute is influential in comparison to other at-527

tributes. In addition to that a comparison between climates is possible using the distri-528

bution comparison (Figure 6a) as well. We interpret the combined results in regard to529

the hypotheses formulated in Section 1.1 and Table 1.530

In dry catchments (P<PET) precipitation seasonality has a slight negative influ-531

ence on excess rainfall floods. Higher precipitation seasonality values indicate a precip-532

itation peak in summer/warm season and lower a peak in winter/cold season (Addor et533

al., 2017; Woods, 2009). In catchments with a precipitation peak in winter we therefore534

see more excess rainfall floods. The colder temperatures prohibit the drying out of soils535

during peak rainfall leading to saturated conditions. Archer (1981) found for the humid536

catchments in Great Britain, that soil moisture deficits in the summer prevent flooding537

despite rainfall events with high intensity. Instead, flooding is more common in the win-538

ter, when soils are saturated. We can conclude that in catchments where precipitation539

peak coincides with lower temperatures (and thus lower evaporation), excess rainfall floods540

would be even more likely. The effect of precipitation seasonality on excess rainfall floods541

can be seen for wet and particularly for dry catchments. This is confirmed by the ac-542
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Figure 6. Attribute influence on process distribution. A: Mean difference between the em-

pirical distribution function (ECDF) of the attributes for a single process and for all events. The

larger the absolute value the more different the two ECDF’s. Size of points give an overview of

how many events contributed to the distribution. Colour indicates the direction of influence.

Blue values point at a decrease of the process for smaller values of the attribute. Red values at

an increase for smaller values of the attribute. Horizontal breaks point at different groups of

catchment characteristics. B: Summarised accumulated local effects. For each climate type and

flood process the accumulated local effects for all attributes were calculated. The point colour

shows the mean absolute values for each accumulated local effects curve. Higher values indicate

increased importance. Values were normalised for each climate/process to enable comparability

between climates/processes. Point sizes represent cross-validation R2 prediction accuracy for the

random forest model.

cumulated local effects. Although influence in the distribution comparison is minor, ALE543

confirms that it is strongest in comparison with the other attributes. In snow catchments544

precipitation seasonality is less influential. In these places, a precipitation peak in win-545

ter will instead contribute towards snowpack (Woods, 2009) and not cause floods imme-546

diately.547

Catchments in snow dominated climate (more than 20 % of precipitation falling548

as snow) show the strongest influence of catchment attributes on process distribution.549

Despite both methods pointing to an influence of elevation as an attribute, it is difficult550

to distinguish elevation from various other catchment attributes (Dingman, 1981; Merz551

& Blöschl, 2009), some of which are not included in the analysis. All high elevation catch-552

ments in the conterminous United States are located in the Rocky Mountains, Sierra Nevadas553

and in the Appalachian Mountains. Mountainous catchments are steeper, have a higher554

fraction of bare soils, are smaller, receive more precipitation and due to a temperature555

gradient have a higher fraction of snow (Wohl, 2013). Elevation thus affects various as-556

pects of flow behaviour (Dingman, 1981). We can therefore not conclusively decide if el-557

evation is influential because it mimics a combination of attributes (fraction of snow, slope,558

catchment area...) or if it is a proxy for attributes that are either not measured at all559

(drainage density, infiltration capacity), or measured with a high uncertainty (soil char-560

–16–
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Figure 7. Random forest cross-validation results. For each climate type and flood processes a

separate random forest was trained and validated through cross-validation. a: Validation results

in comparison to the observed classification. A black line indicates the perfect fit. b: R-Squared

between cross-validation and observed values.

acteristics). The interaction between attributes is outside the scope of this paper (with561

an exception for aridity and fraction of snow which define the different climate types).562

Therefore, we can only take elevation as a proxy for mountainous catchments, indicat-563

ing that in mountainous catchments flood generating processes are more likely to be short564

rainfall floods and snowmelt than excess rainfall.565

If and how forest and vegetation in general affect flood characteristics is widely de-566

bated (Bradshaw et al., 2007; Bruijnzeel, 2004; Calder & Aylward, 2006) and varies for567

different processes (Table 1). However, several studies showed that runoff processes can568

be influenced by land use especially in arid/semi-arid and snow-influenced areas (Lull569

& Reinhart, 1972; Osterkamp & Friedman, 2000; Pariente, 2002; Storck et al., 2002; Shafer570

et al., 2007; Zhang et al., 2011). The results from the distribution comparison agree with571

findings in the literature. The comparison shows a stronger influence of vegetation on572

excess rainfall floods (positive) and short/long rain floods (negative) with increasing veg-573

etation compared to wet catchments. Shafer et al. (2007) notes for desert areas that veg-574

etation increases infiltration capacity of the soil. Additionally, in arid to semi-arid ar-575

eas in Israel shrubs will locally increase soil water retention (Pariente, 2002), this will576

reduce quick runoff leading to less short rain floods. Zhang et al. (2011) describe for the577

sub-humid east Qinghai–Tibet Plateau that forest vegetation in comparison to shrubs578

increase water retention of the soil. (Merz & Blöschl, 2003) describe for Austria, that579

an increased water retention requires larger rainfall amounts or previous saturation to580

cause flood sized runoff events. This explains why vegetation that increases water reten-581

tion increases excess rainfall floods (and decreases short rainfall/long rainfall floods).582

However, the distribution comparison approach is sensitive to correlated attributes.583

Figure S1 in the supplemental material reveals that vegetation attributes are correlated584

to climate attributes. The correlation is strongest for snow dominated catchments. The585

effect we are seeing could therefore just be due to correlation and only climate not veg-586

etation attributes influence flood process distribution. Yet, the accumulated local effects587

approach which is unbiased to correlated features, sees a minor influence of vegetation588

as well. So does vegetation play a role or not? The answer is, while vegetation attributes589
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do have some influence on flood processes, the influence is small if compared to climate590

attributes (which is the result the accumulated local effects show). This has been noted591

for other flow behaviour as well. Jehn et al. (2020) cluster the CAMELS catchments by592

hydrological signature. They notice that clustering is most strongly shaped by climate593

but that vegetation and soil information play a role as well. Similar conclusions have been594

reached by Berghuijs et al. (2014) for similarity in a seasonal water balance. Based on595

their experience it stands to reason that in study areas with very similar climate, veg-596

etation will determine mix of flood generating processes.597

In contrast to vegetation we did not find the topographic attributes area, slope and598

shape to be influential. This contrast with previous studies (Table 1). An explanation599

for that is that topographic attributes like slope and area influence flood magnitude (Jehn600

et al., 2020), but not necessarily flood processes. Additionally, the size of CAMELS catch-601

ments might not be large enough for area to have an effect particularly on snowmelt floods,602

which are more prevalent in very large catchments (Ward, 1978).603

4.2 Predictions in space using random forest604

In addition to evaluating attribute influence, we were able to show that a random605

forest model is able to predict the spatial distribution of each flood generating process.606

The accuracy of the prediction varies between climates, especially in a wet climate, sev-607

eral processes are not as well predicted. A possible explanation might be that with ex-608

cess rainfall being the most common process in these regions, any other processes can609

be related less to catchment or climate attributes and more to extreme weather events.610

Stein et al. (2019) highlighted that in the southeastern United States, several catchments611

have a different flood generating process for the most extreme flood event in the time612

series. These single event contributions from different processes are difficult for a ran-613

dom forest model to predict based on stationary input attributes. Therefore, while the614

overarching prediction accuracy might be high, the possible uncertainty of extreme flood615

generating processes should be kept in mind.616

4.3 Limitations617

We recognise that environmental data is prone to uncertainties. Especially soil data618

relies on uncertain interpolation of point measurements over space and depth Addor et619

al. (2017); Merz and Blöschl (2009); D. A. Miller et al. (1998). This uncertainty might620

be a possible explanation for having found little influence of soil attributes on flood pro-621

cesses, despite the influence of soil on storage capacity (Section 1.1, Table 1). Similar622

uncertainties can be found in large scale geology data sets, especially since the CAMELS623

dataset uses information from global geology datasets (Addor et al., 2017). The evalu-624

ated attributes were all taken from the CAMELS dataset (Addor et al., 2017) as a con-625

solidated source. Further studies might want to take additional and non-stationary catch-626

ment attributes into account. Possible suggestions for additional stationary attributes627

are drainage density, wetland area, slope aspect and urbanised areas. Possible sugges-628

tions for non-stationary attributes are: forest cover, leaf area index, green vegetation frac-629

tion, annual precipitation and annual fraction of snow. Furthermore, the dataset includes630

mostly small headwater catchments. It is possible that the conclusions might change if631

larger catchments are taken into account (FAO, 2002).632

5 Conclusion633

We employed a data-based approach (comparing empirical distribution functions)634

and an interpretable machine learning approach (random forest model combined with635

accumulated local effects) to evaluate which catchment characteristics influence flood gen-636

erating processes. This is the first application of accumulated local effects in a hydro-637
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logical study. We were able to demonstrate that the two approaches complemented each638

other. The combined interpretation of both results allowed us to detect limitations and639

advantages of each method. This resulted in a more complete picture. With an increas-640

ing use of machine learning approaches in hydrology we recommend that the hydrologic641

community make use of interpretable machine learning approaches to improve the trans-642

ferability of results.643

In regard to flood generating processes we found that climatic attributes, such as644

fraction of snow, aridity, precipitation seasonality and mean precipitation have the strongest645

influence within the catchment and within space. In comparison, vegetation plays a mi-646

nor role. This confirmed previous findings that flow behaviour across climates is most647

strongly influenced by climate attributes. In snow influenced catchments, elevation as648

a proxy for one or more attributes is influential in predicting flood processes across space.649

Neither of the methods we used found soil and geologic attributes to be influential. This650

might be due to limitations in data quality or attribute selection for both groups.651

With the available catchment attribute information the mix of flood generating pro-652

cesses can be predicted with relatively high accuracy. A prediction of processes for un-653

gauged catchments is therefore possible, although climate dependent uncertainties should654

be taken into account.655

Further studies are necessary to evaluate the implication of these findings in regard656

to changes in climate and land use. Changes in flood magnitude and frequency have been657

observed, yet direction and magnitude of the trends are not homogeneous (Blöschl et al.,658

2019; Gudmundsson et al., 2019; Mallakpour & Villarini, 2015; Sharma et al., 2018; Wasko659

& Nathan, 2019). The results of this study can give an indication why: not all flood pro-660

cesses are influenced by the same climate attributes and the influence varies between dif-661

ferent climates.662
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Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., & Savenije, H. H. G. (2013).721

Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and722

Scales. doi: 10.1017/CBO9781139235761723

Bradshaw, C. J., Sodhi, N. S., Peh, K. S., & Brook, B. W. (2007, 11). Global724

evidence that deforestation amplifies flood risk and severity in the devel-725

oping world. Global Change Biology , 13 (11), 2379–2395. Retrieved from726

http://doi.wiley.com/10.1111/j.1365-2486.2007.01446.x doi:727

10.1111/j.1365-2486.2007.01446.x728

Breiman, L. (2001, 10). Random forests. Machine Learning , 45 (1), 5–32. doi: 10729

.1023/A:1010933404324730

Brown, S. C., Wells, K., Roy-Dufresne, E., Campbell, S., Cooke, B., Cox, T., &731

Fordham, D. A. (2020, 1). Models of spatiotemporal variation in rabbit732

abundance reveal management hotspots for an invasive species. Ecological733

Applications, eap.2083. Retrieved from https://onlinelibrary.wiley.com/734

doi/abs/10.1002/eap.2083 doi: 10.1002/eap.2083735

Bruijnzeel, L. A. (2004, 9). Hydrological functions of tropical forests: Not seeing the736

soil for the trees? In Agriculture, ecosystems and environment (Vol. 104, pp.737

185–228). Elsevier. doi: 10.1016/j.agee.2004.01.015738

Bullock, A., & Acreman, M. (2003). The role of wetlands in the hydrological cy-739

cle. Hydrology and Earth System Sciences, 7 (3), 358–389. Retrieved from740

http://www.hydrol-earth-syst-sci.net/7/358/2003/ doi: 10.5194/hess-7741

–20–



manuscript submitted to Water Resources Research

-358-2003742

Calder, I. R., & Aylward, B. (2006, 3). Forest and Floods. Water International ,743

31 (1), 87–99. Retrieved from http://www.tandfonline.com/doi/abs/744

10.1080/02508060608691918 doi: 10.1080/02508060608691918745

Chang, H., Johnson, G., Hinkley, T., & Jung, I.-W. (2014, 4). Spatial analysis of746

annual runoff ratios and their variability across the contiguous U.S. Journal of747

Hydrology , 511 , 387–402. Retrieved from https://www.sciencedirect.com/748

science/article/pii/S0022169414000882#b0255 doi: 10.1016/J.JHYDROL749

.2014.01.066750

Clark, M. P., Schaefli, B., Schymanski, S. J., Samaniego, L., Luce, C., Jackson,751

B. M., . . . Ceola, S. (2016, 3). Improving the theoretical underpinnings of752

process-based hydrologic models. Water Resources Research, 52 (3), 2350–753

2365. Retrieved from http://doi.wiley.com/10.1002/2015WR017910 doi:754

10.1002/2015WR017910755

Costa, J. E. (1987, 9). Hydraulics and basin morphometry of the largest flash floods756

in the conterminous United States. Journal of Hydrology , 93 (3-4), 313–338.757

Retrieved from https://www.sciencedirect.com/science/article/pii/758

0022169487901028 doi: 10.1016/0022-1694(87)90102-8759

Cunnane, C. (1979, 4). A note on the Poisson assumption in partial duration series760

models. Water Resources Research, 15 (2), 489–494. Retrieved from http://761

doi.wiley.com/10.1029/WR015i002p00489 doi: 10.1029/WR015i002p00489762

Degenhardt, F., Seifert, S., & Szymczak, S. (2019, 3). Evaluation of variable selec-763

tion methods for random forests and omics data sets. Briefings in Bioinfor-764

matics, 20 (2), 492–503. Retrieved from https://academic.oup.com/bib/765

article/20/2/492/4554516 doi: 10.1093/bib/bbx124766

Diezig, R., & Weingartner, R. (2007). Hochwasserprozesstypen in der Schweiz.767

Wasser und Abfall , 4 (1), 18–26. Retrieved from https://boris.unibe.ch/768

id/eprint/25512769

Dingman, S. L. (1981, 12). Elevation: a major influence on the hydrology770

of New Hampshire and Vermont, USA / L’altitude exerce une influence771

importante sur l’hydrologie du New Hampshire et du Vermont, Etats-772

Unis. Hydrological Sciences Bulletin, 26 (4), 399–413. Retrieved from773

http://www.tandfonline.com/doi/abs/10.1080/02626668109490904 doi:774

10.1080/02626668109490904775

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., . . . Laut-776
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Merz, R., Blöschl, G., & Parajka, J. (2006, 12). Spatio-temporal variability of868

event runoff coefficients. Journal of Hydrology , 331 (3-4), 591–604. Re-869

trieved from https://www.sciencedirect.com/science/article/pii/870

S0022169406003192 doi: 10.1016/J.JHYDROL.2006.06.008871

Miller, D. (1964). Interception processes during snow storms (Tech. Rep.). Res.872

Paper PSW-RP-18. Berkeley, CA: Pacific Southwest Forest & Range Experi-873

ment.874

Miller, D. A., White, R. A., Miller, D. A., & White, R. A. (1998, 1). A Con-875

terminous United States Multilayer Soil Characteristics Dataset for Re-876

gional Climate and Hydrology Modeling. Earth Interactions, 2 (2), 1–877

26. Retrieved from http://journals.ametsoc.org/doi/abs/10.1175/878

1087-3562%281998%29002%3C0001%3AACUSMS%3E2.3.CO%3B2 doi: 10.1175/879

1087-3562(1998)002〈0001:ACUSMS〉2.3.CO;2880

Molnar, C. (2019). Interpretable machine learning. Retrieved from https://881

books.google.com/books?hl=en&lr=&id=jBm3DwAAQBAJ&oi=fnd&pg=PP1&dq=882

interpretable+machine+learning&ots=EfzQ rKIT-&sig=HqoVfuKmuG8EwFf883

vqEL-ZXZB5I884

Molnar, C., Bischl, B., & Casalicchio, G. (2018). iml: An R package for Inter-885

pretable Machine Learning. JOSS , 3 (26), 786. Retrieved from http://886

joss.theoj.org/papers/10.21105/joss.00786 doi: 10.21105/joss.00786887

Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu, C., . . .888

Rasmussen, R. (2018, 9). Projected increases and shifts in rain-on-snow flood889

risk over western North America (Vol. 8) (No. 9). Nature Publishing Group.890

doi: 10.1038/s41558-018-0236-4891

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., . . .892

Duan, Q. (2015). Development of a large-sample watershed-scale hydromete-893

orological data set for the contiguous USA: data set characteristics and assess-894

ment of regional variability in hydrologic model performance. Hydrol. Earth895

Syst. Sci , 19 , 209–223. Retrieved from www.hydrol-earth-syst-sci.net/19/896

209/2015/ doi: 10.5194/hess-19-209-2015897

O’Connor, J. E., & Costa, J. E. (2004, 1). Spatial distribution of the largest rainfall-898

runoff floods from basins between 2.6 and 26,000 km2 in the United States899

and Puerto Rico. Water Resources Research, 40 (1). Retrieved from http://900

doi.wiley.com/10.1029/2003WR002247 doi: 10.1029/2003WR002247901

Osterkamp, W. R., & Friedman, J. M. (2000, 11). The disparity between ex-902

treme rainfall events and rare floods - with emphasis on the semi-arid903

American West. Hydrological Processes, 14 (16-17), 2817–2829. Re-904

trieved from http://doi.wiley.com/10.1002/1099-1085%28200011/905

12%2914%3A16/17%3C2817%3A%3AAID-HYP121%3E3.0.CO%3B2-B doi:906

–23–



manuscript submitted to Water Resources Research

10.1002/1099-1085(200011/12)14:16/17〈2817::AID-HYP121〉3.0.CO;2-B907

Pariente, S. (2002). Spatial patterns of soil moisture as affected by shrubs, in dif-908

ferent climatic conditions. Environmental Monitoring and Assessment , 73 (3),909

237–251. doi: 10.1023/A:1013119405441910

Pianosi, F., & Wagener, T. (2015, 5). A simple and efficient method for global911

sensitivity analysis based on cumulative distribution functions. Environmental912

Modelling & Software, 67 , 1–11. Retrieved from https://www.sciencedirect913

.com/science/article/pii/S1364815215000237 doi: 10.1016/J.ENVSOFT914

.2015.01.004915

Pitlick, J. (1994). Relation between peak flows, precipitation, and physiography for916

five mountainous regions in the western USA. Journal of Hydrology . doi: 10917

.1016/0022-1694(94)90055-8918

Rogger, M., Pirkl, H., Viglione, A., Komma, J., Kohl, B., Kirnbauer, R., . . . Blöschl,919
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