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Abstract

The accurate determination of the Field Line Resonance (FLR) frequency of a resonating geomagnetic field line is necessary to

remotely monitor the plasmaspheric mass density during geomagnetic storms and quiet times alike. Under certain assumptions

the plasmaspheric mass density at the equator is inversely proportional to the square of the FLR frequency. The most common

techniques to determine the FLR frequency from ground magnetometer measurements are the amplitude ratio and phase

difference techniques, both based on geomagnetic field observations at two latitudinally separated ground stations along the

same magnetic meridian. Previously developed automated techniques have used statistical methods to pinpoint the FLR

frequency using the amplitude ratio and phase difference calculations. We now introduce a physics-based automated technique,

using non-linear least square fitting of the ground magnetometer data to the analytical resonant wave equations, that reproduces

the wave characteristics on the ground, and from those determine the FLR frequency. One of the advantages of the new technique

is the estimation of physics-based errors of the FLR frequency, and as a result of the equatorial plasmaspheric mass density.

We present analytical results of the new technique, and test it using data from the Inner-Magnetospheric Array for Geospace

Science (iMAGS) ground magnetometer chain along the coast of Chile and the east coast of the United States. We compare

the results with the results of previously published statistical automated techniques.
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Abstract

The  accurate  determination  of  the  Field  Line  Resonance  (FLR)  frequency  of  a  resonating
geomagnetic field line is necessary to remotely monitor the plasmaspheric mass density during
geomagnetic storms and quiet times alike. Under certain assumptions the plasmaspheric mass
density at the equator is inversely proportional to the square of the FLR frequency. The most
common techniques to determine the FLR frequency from ground magnetometer measurements
are  the  amplitude  ratio  and  phase  difference  techniques,  both  based  on  geomagnetic  field
observations at two latitudinally separated ground stations along the same magnetic meridian.
Previously developed automated techniques have used statistical methods to pinpoint the FLR
frequency  using  the  amplitude  ratio  and phase  difference  calculations.  We now introduce  a
physics-based  automated  technique,  using  non-linear  least  square  fitting  of  the  ground
magnetometer  data  to  the  analytical  resonant  wave  equations,  that  reproduces  the  wave
characteristics  on  the  ground,  and  from  those  determine  the  FLR  frequency.  One  of  the
advantages of the new technique is the estimation of physics-based errors of the FLR frequency,
and as a result of the equatorial plasmaspheric mass density. We present analytical results of the
new technique, and test it using data from the Inner-Magnetospheric Array for Geospace Science
(iMAGS) ground magnetometer chain along the coast of Chile and the east coast of the United
States.  We compare the results  with the results  of previously published statistical  automated
techniques.

1 Introduction

The Earth’s plasmasphere is an important plasma region of the terrestrial magnetosphere-
ionosphere system, playing a significant role in the dynamics of the magnetosphere-ionosphere
coupling during quiet  and active periods alike  (Lemaire & Gringauz,  1998; Goldstein et  al.,
2004; Yizengaw & Moldwin, 2005; Kotova, 2007; Darrouzet et al., 2009; Masson et al., 2009;
Reinisch  et  al.,  2009;  Moldwin et  al.,  2016).  During magnetic  storms the mass  loading and
unloading  of  the  plasmasphere  is  an  integral  part  of  the  storm  process,  with  widespread
implications for a variety of processes in the magnetosphere and/or ionosphere (Sheeley et al.,
2001;  Yizengaw  et  al., 2005).   Earthward  looking  Extreme-UltraViolet  (EUV)  imagers  on
spacecraft high above the magnetic pole have yielded valuable information of the structure of the
plasmasphere in recent decades (e.g.,  Goldstein,  2006; Goldstein et  al.,  2003, and references
therein).

The  equatorial  plasmaspheric  mass  density,  ρeq, is  a  key  parameter  that  tracks  the
evolution of the plasmasphere during a magnetic storm or quiet periods. A simple, cost effective
technique that can measure ρeq at a specific L value (and provide large scale temporal coverage),
relies on the remote sensing of the plasmasphere using a pair of longitudinally aligned ground
magnetometers. This method is based on the relation between the wave period, T, of a resonating
magnetic  field  line  and  the  mass  density  along  this  field  line  (Dungey,  1954),  assuming
theoretically determined properties of wave amplitude and phase across the latitudinal spread of
the  resonating  bundle  of  fluxtubes.  The standing  waves  on a  closed  magnetic  field  line  are
referred  to  as  a  Field  Line  Resonance  (FLR).  FLR  frequencies  belong  to  the  Ultra-Low
Frequency (ULF) range, typically in the Pc5 frequency range (1-10 mHz) within the auroral
zone, and in the Pc3/4 range (7-100 mHz or periods of 10-150 s) within the sub-auroral and
plasmasphere regions.
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According to the Wentzel–Kramers–Brillouin (WKB) time of flight approximation in the
solution of the standing wave equation (Gul’yel’mi, 1967; Kitamura & Jacobs, 1968; Schulz,
1996; Menk et al., 1999; Denton & Gallagher, 2000, and references therein), the period of the
standing wave along a magnetic fluxtube is given by

T=
2
n∫

ds
V A

=
2
n∫

ds

B / (μo ρ )
1 /2

(1)

where n is the wave mode number, V A the Alfvén speed, s the distance along the magnetic field
line, B the magnetic field, ρ the mass density all along the field line, and μo the permeability of
free  space.  The mass  density  ρ along the  field  lines  is  usually  represented  as  a  power  law
decrease with radial distance R

ρ=ρeq( LRE

R )
m

(2 )

where R is the radial distance from the center of the Earth, L is the equatorial radial distance of a
fluxtube in Earth radii RE, and m is the power law index of the density decrease along the field
lines. Following Schultz (1996), and assuming a dipole magnetic field, equations (1) and (2)
yield the value of the equatorial plasmaspheric mass density as

ρeq=4.4794×10
7
(

3
sin ⁡(I L)

+
1
I M )

2

L8 f FLR
2 (3)

I L=cos
−1(√ 1L )(4)

IM=
(3 I L+L

−3 /2 ) (3 L+2 )sin ( I L)

8
(5)

where  f FLR is  the  FLR  frequency.  The  above  equations  show  that  knowledge  of  the  FLR
frequency can yield ρeq at the L value of the observing ground station.

Observations have shown that FLRs are present in the inner magnetosphere down to  L
values of 1.5 (Menk et al., 1994, 2000). For L values lower than that, most of the magnetic field
line lies within the dense ionosphere, and thus the ULF oscillations on that field line are strongly
damped. Many techniques have been developed to obtain the FLR frequency of the resonating
field lines (Baransky et al., 1985, 1990; Waters et al., 1991, 1994; Pilipenko & Fedorov, 1994;
Menk et al., 1999, 2000). In the current study we will use the amplitude ratio (AR), and cross-
phase or phase difference (CP or PD) techniques. Both techniques rely on measurements from
two adjacent ground stations, at approximately the same magnetic longitude, and separated by
less than 200 km in magnetic latitude.
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The techniques are described in detail in Boudouridis & Zesta (2007), and illustrated in
Figure 1. Briefly, assuming a latitudinally uniform distribution of resonating field lines according
to (1), the FLR frequency of the waves decreases as the field line length increases, therefore the
FLR frequency is decreasing with increasing latitude (Menk et al., 1994). At every latitude, the
wave amplitude exhibits a maximum at the FLR frequency of that field line (Figure 1, panel 1
from top), while the wave phase reverses, shifts by 180o (panel 2 from top) across the latitude of
the  resonance.  For  two  adjacent  in  latitude  magnetometer  stations,  the  ratio  of  their  wave
amplitudes (AR) has a transition through 1 (panel 3 from top), while the difference of their wave
phases  (PD)  demonstrates  a  maximum value  (panel  4  from top),  at  the  frequency half  way
between the  peak amplitude  frequencies  of  the  two stations.  Since  for  two stations  in  close

Figure 1. Illustrative plot of the AR and PD methodologies in determining the FLR frequency of the waves at the 
mid-point of a longitudinally aligned station pair. From top to bottom the four panels show the wave amplitude at 
the two stations, the wave phase, the amplitude ratio, and the phase difference.
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proximity to each other the frequency decreases almost linearly with increasing latitude, the mid-
point  frequency is the FLR frequency at the mid-point latitude between the stations.  The two
frequency values, one from AR and one from PD, yield two independent measurements of the
FLR  frequency  for  the  L value  of  the  mid-point  between  the  two  stations.  A  chain  of
longitudinally aligned magnetometers can thus observe the FLR frequency at a range of L values,
as many as the number of pairs of stations that can be formed between the existing stations of the
chain. As the Earth rotates the chain measures the latitudinal distribution of the FLR frequency at
all magnetic local times (MLTs), as long as there are waves present in the magnetosphere. This
ultimately yields the radial distribution of the equatorial plasmaspheric mass density (Chi et al.,
2013).
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2 Analytical FLR Determinations

The  two  FLR  detection  techniques  mentioned  above  have  been  automated,  using
statistical methods to pinpoint the FLR frequency (Berube et al., 2003; Boudouridis & Zesta,
2007). The first steps involve generation of the dynamic spectra of the magnetic observations
from the two stations, and calculation of the AR and PD for the station pair, for the frequency
range around resonances, typically the Pc3/4 ULF range for the plasmsphere. Subsequent steps
(detailed  in  Boudouridis  &  Zesta  (2007))  include  smoothing  of  the  AR  and  PD  in  two
dimensions (frequency vs time), and application of various statistical manipulations of the data,
such as the t-test to estimate a meaningful maximum of the PD, or time-constant ratio of the
average amplitude at two frequency ranges to estimate the transition through 1 of the AR, at the
desired time step through the data. The end result is two curves, one for AR and one for PD, of
derived FLR frequencies as a function of time during the period of ULF wave presence, typically
in the dayside magnetosphere (Boudouridis & Zesta, 2007, their figures 2 and 3).

The statistical methods used for the FLR frequency determination yield reasonably good
results whenever there is sufficient Pc3/4 ULF wave power present. This occurs mostly on the
dayside magnetosphere. Despite their success in pinpointing the FLR frequency in magnetometer
data from a pair of ground stations, the statistical techniques use ad hoc detection criteria that
lack the robustness of a physics-based technique. The analytical, physics-based technique that we
present in this paper uses the analytical standing wave equations to calculate the expected AR
and PD for the station pair, and then fit them to the data at the desired time resolution. At each
time step the transition through 1 of the AR, and the maximum of the PD can be calculated from
the resulting analytical curves, yielding the time evolution of the FLR frequency for the two FLR
determination  techniques.  The  additional  advantage  of  the  new  analytical  technique  is  the
estimation of physics-based errors of the FLR frequency and the equatorial plasmaspheric mass
density. 

2.1 ULF wave equations and AR/PD fitting

Following Kawano et al. (2002), the wave phase, Φlow, and amplitude, H low, of a standing
wave at the lower latitude station of the station pair, as a function of frequency, are given by

Φ low= tan
−1(

f −a1
a0 )(6)

H low=
b0

√1+ (f −b2 )
2

b1

(7)

where  f  is the wave frequency, and the parameters  [ai , b j] define the wave characteristics as
follows (refer to Figure 1):  a1 represends the phase reversal frequency,  a0 is a measure of the
phase reversal rate with frequency,  b2 represends the frequency of the peak amplitude,  b1 is a
measure  of  the  amplitude  change  rate  with  frequency,  and  b0 is  the  peak  wave  amplitude.
Similarly, the wave equations for the higher latitude station are given by

Φhigh=tan
−1(

f −a3
a2 )(8)
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H high=
b3

√1+ (f −b5 )
2

b4

(9)

The phase difference ΔΦ, and amplitude ratio H r, for the station pair are given, respectively, by
equations

ΔΦ=Φlow−Φhigh (10)

H r=
H low

H high

(11)
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This convention yields a maximum PD at the midpoint between stations, and a transition from
lower to higher than 1 value for the AR at the same location, since the frequency of the standing
waves decreases with increasing latitude as mentioned earlier  (Menk et al.,  1994).  With this
parameterization, equation (10) has 4 free parameters,  a i( i=0 ,… ,3), and equation (11) has 6
free parameters,  b i( i=0 ,…,5).  These free parameters  can be determined by non-linear  least
square fitting of the PD and AR data as a function of frequency at every step in time, using the
analytical equations (6)-(11). 
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Figure 2 demonstrates the application of the analytical technique to a station pair located
at  Puerto  Natales  (PNT)  and  Punta  Arenas  (PAC)  in  Southern  Chile.  Comparison  with  the
statistical results of  Boudouridis & Zesta (2007) are also shown in Figure 2. Panels 1 and 3 from
the top show the PD and AR of the pair for the time period 1300-1600 UT on 21 December 2003,
as a function of time and frequency, color coded with the scales on the right of each panel. These
are calculated from the gound magnetic field data observed at PNT and PAC. The horizontal
black lines in panels 1 and 3 denote the maximum PD and AR transition through 1, respectively,
determined with the statistical methods of Boudouridis & Zesta (2007) at 1-min intervals.
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Panels 2 and 4 from the top show the results of the non-linear least  square fitting of
equations (10) and (11) to the observed PD and AR, respectively, for one such 1-min interval,
1348-1349 UT, denoted by the vertical white lines in panels 1 and 3. The black lines in panels 2
and 4 are the corresponding measured PD and AR (from the color-coded displays of panels 1 and
3)  plotted  as  a  function  of  frequency  for  this  1-min  interval.  The  orange  lines  are  the
corresponding non-linear least square fits of the black curves with the functions of equations (10)
and (11). The red diamonds in the two panels mark the statistical PD maximum/AR transition
through 1 using the methodology of Boudouridis & Zesta (2007). The blue diamonds denote the
fitted PD maximum/AR transition through 1, using the new analytical technique. The vertical
dashed  lines  and  captions  on  the  right  of  the  panels,  of  the  same  colors,  show  the  FLR
frequencies determined with the two methods. The same procedure is applied for every minute of
the interval shown, 1300-1600 UT. This yields the analytical equivalent of the statistical FLR
frequency determinations (black horizontal lines) of panels 1 and 3. Figure 3, top panel, shows
the statistically and analytically determined FLRs for both the PD and AR techniques at 1-min

Figure 2. Analytical fit of wave PD and AR from two adjacent stations, FLR frequency determination (with estimated 
errors), and comparison with statistical determinations.
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intervals across the same time period as in Figure 2. We discuss these results in more detail
below. 

2.2 FLR errors

A further advantage of the new technique is the estimation of physics-based errors of the
FLR frequency,  which  can  yield  physics-based  errors  of  the  equatorial  plasmaspheric  mass
density. These are the result of error propagation from the fitting parameter errors. Considering
that the two stations are in close proximity, the change of FLR frequency with latitude between
them is approximately linear. Therefore, the resulting midpoint PD and AR FLR frequencies,
respectively, are given by the average of the corresponding fitted parameters that represent the
FLR frequencies in equations (6)-(9)

f PD=
a1+a3
2

(12)

f AR=
b2+b5
2

(13)

The fitting parameter errors,  Δai and  Δbi, are determined by the nonlinear least square fitting
technique. As a result, the respective errors, Δ f PD and Δ f AR, can be defined as

Δf PD=
Δa1+Δa3
2

(14)

Δf AR=
Δb2+Δb5

2
(15)

The  resulting  errors  are  shown as  blue  horizontal  bars  on  the  fitted  FLR frequencies  (blue
diamonds), on panels 2 and 4 from the top of Figure 2. (Note that the error of the PD technique
(panel 2) is present but not visible as it is very small). 

3 Plasmaspheric Mass Density

Once the FLR frequency is known, the plasmaspheric mass density can be calculated
through equations (3)-(5). Equation (3) also yields the error in ρeq as

Δ ρeq=
−2 ρeq Δ f

f
                                         (16)

where Δ f  is either Δf PD or Δf AR from equations (14) and (15), respectively. The results for the
interval 1300-1600 UT on 21 December 2003, and station pair PNT/PAC are shown in Figure 3.
The top panel shows the FLR frequencies, old statistical CP (red), old statistical AR (blue), new
fitted CP (black), and new fitted AR (orange). The bottom panel shows the corresponding mass
density determinations in amu/cc. The errors of the new technique are shown as vertical orange
bars for the AR method, and black bars for the CP method (barely visible in most instances). The
CP error is <1% while the AR error is in the range of 10-15%. Clearly the CP method has much
smaller errors. The corresponding mass density errors are 0.1-1% for the CP method, and 5-18%
for the AR method.
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4

Conclusions

In this work we described two physics-based, AR and PD, FLR frequency determination
techniques. At the heart of the new methods is the non-linear least square fitting of the AR and
PD data, as opposed to statistical manipulations of this data. The analytical approach introduces
physics-based errors of the FLR frequency, and of the equatorial plasmaspheric mass density.
The results show that these errors are much smaller for the PD technique compared to the AR
technique, both for the FLR frequency and the equatorial plasmaspheric mass density. 

The present approach can be further improved. Some future directions are the following: 
1. Introduction of criteria for the convergence or not of the non-linear least square fitting for the

two techniques, AR and PD, in order to eliminate erroneous results.
2. Use of criteria for the comparison of the AR and PD methods, in order to exclude frequencies

for which the two techniques yield very different results.

Figure 3. Application of the fit for 1300-1600 UT on 21 December 2003.
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3. The results of the analytical non-linear least square fitting technique depend on the initial
choice of the fit parameters a i and b i. This is especially true for the AR technique, but to a
lesser extent for the PD technique as well. Currently these parameters are chosen manually at
the beginning of the automated procedure, and are applied at every minute of the entire test
interval. Instead, these parameters can be selected interactively, different at every minute of
the test interval, in an effort to minimize the errors of the fit, and thus the errors of the FLR
frequency and equatorial plasmaspheric mass density.

4. Use of a more realistic magnetic field model, such as the Tsyganenko T01 model (Berube et
al., 2006).
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