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Abstract

Inverse modelling method named Maximum likelihood Ensemble Filter (MLEF) was used to estimate gridded surface CO fluxes

using continuous, flask and Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) data for the years

2009-2011. Here, MLEF coupled with Parametric Chemistry Transport Model (PCTM) driven by Modern-Era Retrospective

analysis for Research and Applications, Version 2 (MERRA2) weather data has been used. Flux estimation was done by solving

separate multiplicative biases for photosynthesis, respiration, and air-sea gas exchange fluxes. Hourly land fluxes derived from

Simple Biosphere-version 3 (SiB3) model, Takahashi ocean fluxes and Brenkert fossil fuel emissions were used as the prior

fluxes. The inversion was carried out by assimilating hourly CO observations, According to this study, North America showed

about 60-80% uncertainty reduction while the Asian and European regions showed moderate results with 50-60% uncertainty

reduction. Most other land and oceanic regions showed less than 30% uncertainty reduction. The results were mainly compared

with well-known CarbonTracker and some parallel inversion studies by considering long-term averages of the estimated fluxes

for the TransCom regions. Boreal North America, Temperate North America and Australia showed similar annual averages

in each case. Tropical Asia and Europe showed comparable results with all other studies except for the CarbonTracker. The

biases were poorly constrained in the regions having few measurement sites like South America, Africa and Eurasian Temperate

which showed completely different result with other studies.
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Key Points: 17 

 Densely observed regions showed comparable results with CarbonTracker (CT2017) 18 

and other similar studies.   19 

 MLEF seems to perform well with high dimensional CO2 observation vectors such as 20 

satellite and aircraft measurements. 21 

 CO2 fluxes were poorly recovered in the regions having few measurement sites.  22 

 23 
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Abstract 26 

Inverse modelling method named Maximum likelihood Ensemble Filter (MLEF) was used to 27 

estimate gridded surface CO2 fluxes using continuous, flask and Comprehensive Observation 28 

Network for TRace gases by AIrLiner (CONTRAIL) data for the years 2009-2011. Here, 29 

MLEF coupled with Parametric Chemistry Transport Model (PCTM) driven by Modern-Era 30 

Retrospective analysis for Research and Applications, Version 2 (MERRA2) weather data has 31 

been used. Flux estimation was done by solving separate multiplicative biases for 32 

photosynthesis, respiration, and air-sea gas exchange fluxes. Hourly land fluxes derived from 33 

Simple Biosphere-version 3 (SiB3) model, Takahashi ocean fluxes and Brenkert fossil fuel 34 

emissions were used as the prior fluxes. The inversion was carried out by assimilating hourly 35 

CO2 observations, According to this study, North America showed about 60-80% uncertainty 36 

reduction while the Asian and European regions showed moderate results with 50-60% 37 

uncertainty reduction. Most other land and oceanic regions showed less than 30% uncertainty 38 

reduction. The results were mainly compared with well-known CarbonTracker and some 39 

parallel inversion studies by considering long-term averages of the estimated fluxes for the 40 

TransCom regions. Boreal North America, Temperate North America and Australia showed 41 

similar annual averages in each case. Tropical Asia and Europe showed comparable results 42 

with all other studies except for the CarbonTracker. The biases were poorly constrained in the 43 

regions having few measurement sites like South America, Africa and Eurasian Temperate 44 

which showed completely different result with other studies. 45 

 46 

1 Introduction 47 

Carbon is an essential component for all life on earth and atmospheric carbon exists mainly as 48 

the carbon dioxide (CO2) gas. It is the single largest contributor to the global warming among 49 

well-mixed greenhouse gases. The rapid increasing patterns in atmospheric CO2 concentration 50 

may lead to significant global climatic changes in the coming years. CO2 concentration in the 51 

atmosphere has shown a significant increase by 30% since 1950 (Al-Ghussain, 2018) which is 52 

mainly due to the increasing human activities after industrial revolution. According to Le Quere 53 

et al. (2018), fossil fuel combustion, cement production and gas flaring are the main sources of 54 

CO2. In order to make policy decisions on CO2 emissions, there are several gatherings and 55 

agreements among different countries and they need the knowledge of regional and country 56 

level carbon fluxes to make policies on carbon emission. As a result, research on global carbon 57 

cycle using different approaches to identify the spatiotemporal distribution of carbon sources 58 

and sinks has become popular topic among researchers in the field. 59 

 60 

Top-down atmospheric inversions and bottom-up biosphere models are the two main 61 

fundamentally different approaches used in estimating carbon fluxes. Bottom-up biosphere 62 

models typically simulate the atmosphere-terrestrial biosphere exchange based on the 63 

understanding of complex exchange processes such as photosynthesis, respiration, 64 

decomposition, land-use change emissions, fire emissions, etc. Another approach to estimate 65 

biospheric CO2 fluxes is the “top-down” estimation technique which uses the inverse modelling 66 

method. This method estimate net CO2 flux by the assimilating atmospheric CO2 measurements 67 

from global network using a transport model, with the prior information such as net land flux, 68 

net ocean flux, fire emissions, and fossil fuel emissions. In literature, many studies were carried 69 

out to infer regional sources and sinks by using inverse methods (Baker et al., 2006; Basu et 70 

al., 2014; Bruhwiler et al., 2005; Gurney et al., 2002; Jiang et al., 2013; Kim et al., 2014; Kim 71 

et al., 2017; Lokupitiya et al., 2008; Michalak et al., 2004; Patra et al., 2012; Peters et al., 2005; 72 

Peylin et al., 2013; Piao, et al., 2009, 2013; Rödenbeck et al., 2003; Saeki et al., 2013; Tans et 73 
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al., 1990). But still they need more advanced knowledge on statistics and mathematics while 74 

obtaining the accurate estimates.  75 

 76 

Many researchers have discussed the advantages and disadvantages in both methods. 77 

According to Chatterjee et al. (2012), in top-down approach the estimated fluxes are mainly 78 

based on atmospheric CO2 concentrations and it does not get the knowledge on biogeochemical 79 

processes associated with the carbon cycle as it is possible by the bottom-up approaches. And 80 

this may be a disadvantage of the method. Kondo et al. (2019) has highlighted potential 81 

difficulties faced by CO2 budget assessment methods based on above two approaches and 82 

suggested several ways to obtain more robust estimates. According to the used top-down 83 

atmospheric inverse models and biosphere models in their study, it was found that there were 84 

no optimal combination of models of atmospheric inversions and biosphere models that are 85 

capable of producing consistent budget estimates for all global regions. They have identified 86 

that one reason for this variability is as the possibility of some modelling issues such as 87 

differences in prior fluxes, model resolution, size of the control vector, data assimilation 88 

window length, the rate of transporting CO2 concentrations from a source region to 89 

neighbouring regions through atmospheric transport model and the transport model errors. 90 

Other than above reasons, variations in the measurement error covariance matrix and the prior 91 

flux and its error covariance matrix also affect considerable differences in CO2 flux 92 

measurements (Sajeev et al., 2019). According to Kondo et al. (2019), the next main reason is 93 

the dipole effect in the design of inversion systems. It was also mentioned in their study that 94 

the poor representation of some processes such as forest regrowth, crop land harvesting and 95 

management, wood harvesting and degradation in the biosphere models may greatly affect the 96 

regional budget estimates while using the bottom-up approach. 97 

 98 

Earlier, atmospheric CO2 measurements are mainly collected by in-situ measurement sites, 99 

ships and aircrafts. Top-down inverse modelling based on Bayesian synthesis or batch mode 100 

inversion is the most commonly used approach to estimate CO2 sources and sinks. However, 101 

limited number of CO2 measurements makes the inverse problem both under-determined and 102 

ill-posed (Chatterjee, 2012). Although, the large region inversions were developed (Gurney et 103 

al., 2002) to over-come this problem, it may lead to aggregation errors (Kaminski et al., 2001). 104 

The surface sites measurements have high precision and they are mostly located in remote areas 105 

with limited spatial coverage. In order to get accurate estimates in inverse modelling, the spatial 106 

and temporal characteristics provided by the observed CO2 measurements are highly important 107 

while running the transport model. The densely observed CO2 observation network is more 108 

important in accurately estimating the surface carbon sources and sinks at finer grid scale in 109 

atmospheric inversions. The existing observation network is partially compensated by newly 110 

available satellite observations and increasingly by aircraft measurements (Niwa et al., 2012). 111 

Compared to research aircrafts, passenger aircraft CO2 measurements can be done at a much 112 

lower cost and could cover large areas (Jiang et al., 2014) and  those  are collected under two 113 

projects namely, the Civil Aircraft for the Regular Investigation of the atmosphere Based on 114 

an Instrument Container (CARIBIC) and Comprehensive Observation Network for Trace gases 115 

by Airliner (CONTRAIL) since 2005 (Machida et al., 2008; Matsueda et al., 2008) which 116 

provide a large coverage of in situ CO2 data ranging over various latitudes, longitudes, and 117 

altitudes. According to Niwa et al. (2011) vertical CO2 profiles measured by aircrafts provide 118 

new constraints on surface flux estimation. The Greenhouse Gases Observing Satellite 119 

(GOSAT) in January 2009 and the Orbiting Carbon Observatory-2 (OCO-2) satellite in 2014 120 

was launched by National Aeronautics and Space Administration (NASA), Atmospheric CO2 121 

observations from space (ACOS) project to capture the CO2 global distribution at a finer spatial 122 

and temporal resolution. The CO2 measurements collected under various platforms (eg. surface 123 
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measurements, CONTRAIL and satellites CO2 measurements) need the help of statistical 124 

analysis to accurately estimate the global carbon fluxes in more finer spatial-temporal 125 

resolution in inverse modelling. This large amount of atmospheric CO2 measurements require 126 

advanced data assimilation methods to obtain improved estimates at finer scales in inverse 127 

modelling (Chatterjee, 2012). In order to address the increasing computational challenges in 128 

atmospheric inverse modelling an alternative assimilation techniques for the batch inversions 129 

such as Ensemble Kalman Filter (EnKF) (Chatterjee et al., 2012; Feng et al., 2009; Kang et al., 130 

2011;  Kim et al., 2014; Miyazaki et al., 2011; Peters et al., 2005, 2007), variational methods 131 

(Baker et al., 2006; Basu et al., 2013) and hybrid approaches such as Maximum Likelihood 132 

Ensemble Filter (MLEF; Lokupitiya et al., 2008; Zupanski et al., 2007) have been used by the 133 

carbon research community to estimate carbon fluxes. 134 

 135 

Although the literature is rich on inverse modelling studies using flask and continuous 136 

measurements, only few studies have focused on CO2 flux estimation using CONTRAIL CO2 137 

measurements with advanced data assimilation methods. Bayesian synthesis inversion has been 138 

applied in carbon flux estimation with newly available CONTRAIL CO2 data in many studies 139 

(Jiang et al., 2014; Niwa et al., 2012).  Niwa et al. (2012) has performed an inversion study 140 

using CONTRAIL measurements in addition to the surface measurement data set 141 

(GLOBALEVIEW-CO2). They have estimated regional monthly surface fluxes using the 142 

Bayesian synthesis approach for the period 2006-2008 using the Nonhydrostatic Icosahedral 143 

Atmosphere Model-based Transport Model and 64% of error reduction were obtained for 144 

tropical Asia regions. Jiang et al. (2014) also used Bayesian synthesis approach with TM5 145 

transport model to obtain flux estimates for China using CONTRAIL observations during 146 

2002-2008. The results of the study showed that carbon sink in China has increased due to the 147 

effect of adding new CONTRAIL CO2 data and it has decreased the carbon sink in South and 148 

Southeast Asia. There are few number of studies used ensemble data assimilation method and 149 

obtained satisfactory results (Miyasaki et al., 2011, Zhang et al., 2014) with CONTRAIL CO2 150 

measurements in carbon flux estimation. An inverse modelling system based on CarbonTracker 151 

frame work was used by Zhang et al. (2014) to estimate the carbon flux for Asia by introducing 152 

CONTRAIL CO2 measurements and shown that adding CONTRAIL CO2 can reduce the 153 

uncertainty by 11% over the Asian region. Patra et al. (2011) conducted an inversion using 154 

CARIBIC data with GLOBALVIEW-CO2 for year 2008 and simulated CO2 were evaluated 155 

with CONTRAIL CO2 measurements. In this study, TDI64 time-dependent inverse model and 156 

ACTM forward transport simulations were used for the flux estimation. During 2008, it was 157 

identified that the net CO2 uptake of 0.37 ± 0.20 Pg C yr-1 by the South Asian region. Miyazaki 158 

et al. (2011) has developed an advanced 4-D data assimilation system based on (Ensemble 159 

Kalman Filter) EnKF with a 3 day assimilation window to estimate surface CO2 fluxes at model 160 

grid point using three types of atmospheric measurements such as GOSAT, CONTRAIL and 161 

ground surface. According to the results of this study, a large flux error reductions in the 162 

continental areas of the northern extra tropics were occurred due to surface network data and 163 

GOSAT contributed to a large error reduction over North and South America, South Africa, 164 

and Temperate and Boreal Asia. And the large error reduction over Europe and Tropical and 165 

Temperate Asia were due to CONTRAIL data.  166 

  167 

As described above, only a handful of studies have been done in the past on global scale CO2 168 

fluxes.  In the current study, we estimate the global scale carbon fluxes for years 2009-2011 by 169 

using an ensemble-based data assimilation system known as MLEF (Lokupitiya et al., 2008; 170 

Zupanski, 2005; Zupanski et al., 2007). The method have been tested for existing flask and in-171 

situ CO2 observations using a pseudodata experiment by Lokupitiya et al. (2008). MLEF is an 172 

ensemble based data assimilation method based on maximum likelihood and Ensemble data 173 
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assimilation and it has the capability of handling large observational vectors. Not like in 174 

variational data assimilation method (Baker et al., 2006, Chevallier et al., 2005) it can be used 175 

with non-linear observation operators and no need to calculate model adjoints (i.e. calculation 176 

of backward-in-time transport). Fixed-lag Kalman smoother introduced by Bruhwiler et al. 177 

(2005), steps through the observations sequentially, avoids the difficulties of using large 178 

observation vectors in batch mode method. But pre-calculation of observation operators is 179 

much expensive when assimilating hourly large observation vectors (Lokupitiya et al., 2008). 180 

The optimal solution obtained using other ensemble data assimilation methods is a minimum 181 

variance solution but MLEF gives an optimal solution based on maximum likelihood solution. 182 

Since, MLEF algorithm is based on maximum likelihood estimation the additional calculation 183 

required for the iterative minimization can be negligible, compared to the cost of ensemble 184 

forecast and Hessian preconditioning calculations (Zupanski, 2005). This property provides a 185 

grate advantage for data assimilation problems with large observation vectors like CONTRAIL 186 

CO2 data. Serial processing of observations is not used in covariance localization under MLEF 187 

method. Like other ensemble data assimilation methods, MLEF uses ensembles in calculating 188 

error covariance matrix and these ensembles efficiently calculate Hessian preconditioning and 189 

the gradient of the cost function. Multiple process capability of parallel computing is used in 190 

order to optimize the MLEF performance in realistic applications and this significantly reduced 191 

the computational cost (Zupanski, 2005). When comparing with computational cost, both 192 

variational and ensemble methods are similar. But the great advantage of the ensemble method 193 

is that it is more efficient in parallel computing environment (Lokupitiya et al., 2008). This 194 

study is the first time, the MLEF algorithm is used in the inverse modelling approach with 195 

CONTRAIL CO2 measurements. 196 

  197 

In this study, MLEF algorithm was developed to assimilate CONTRAIL measurements. We 198 

have previously tested this assimilation system in a pseudodata experiment by considering the 199 

in-situ CO2 measurement network and CONTRAIL observations (Perera et al., 2017). We 200 

obtained satisfactory results for the densely observed regions such as North America, Europe 201 

and Asia.  This paper presents the first application of the MLEF method to recover fluxes by 202 

using the actual CO2 measurements from flasks, continuous sites and CONTRAIL. The 203 

optimized CO2 fluxes by assimilating the actual flask, continuous and CONTRAIL CO2 204 

measurements were obtained for the years from 2009 to 2011. We compared our results with 205 

those of CarbonTracker (Peters et al., 2005, 2007, CT2017 release at 206 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2017/). 207 

 208 

The paper is organized as follows. Method is described in Section 2. MLEF data assimilation 209 

method and observation vector used for the data assimilation are discussed here. In section 3, 210 

we present and compare our results with pervious findings. Finally, section 4 provides the 211 

concluding remarks and future directions. 212 

 213 

2 Materials and Methods 214 

2.1 MLEF 215 

 216 

The MLEF has been developed by combining ideas from variational methods, iterated Kalman 217 

filters, and the ensemble transform Kalman filter (Lokupitiya et al., 2008; Zupanski, 2005). 218 

Unlike other ensemble-based methods, the MLEF incorporates iterative minimization of a non-219 

linear cost function with advanced Hessian preconditioning, which makes it more robust for 220 

non-linear processes. The method is based on maximum likelihood (rather than minimum 221 
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variance) estimation and thus the optimal solution is given by the mode (rather than the mean) 222 

of the posterior distribution. Hence the MLEF can produce robust estimates even when the flux 223 

distribution deviates from the Gaussian assumption, as shown in Zupanski et al. (2007).  224 

 225 

2.2 Atmospheric Transport Model 226 

 227 

Inverse modeling for carbon fluxes requires a transport model to simulate 3-D CO2 228 

concentrations, from which we sample the CO2 at the locations (i.e. for a specific latitude, 229 

longitude and elevation) and times of the observations. This serves as the observation operator 230 

in the data assimilation scheme. The observation operator performs the necessary interpolations 231 

and transformations from the state variable to the observation space.  232 

 233 

In this study, we used the Parameterized Chemistry Transport Model (PCTM) (Kawa et al., 234 

2004) driven by weather data from the MERRA2 meteorological fields based on the Goddard 235 

Earth Observation System Model, version 2, by the NASA Global Modeling and Assimilation 236 

Office (GAMO). The PCTM model has been used in CO2 assimilation studies as an observation 237 

operator by Lokupitiya et al. (2008) and Zupanski (2005) and showed reasonable results with 238 

continuous and flask CO2 measurements. Perera et al. (2017) compared the model results with 239 

CONTRAIL measurements in addition to the existing flask and continuous measurements and 240 

showed similar results for the carbon flux estimation in densely observed areas.  241 

 242 

All the data collections from MERRA2 are provided on the same horizontal grid which has 243 

576 points in the longitudinal direction and 361 points in the latitudinal direction, 244 

corresponding to a resolution of 0.625°×0.5°. In MERRA2 the variables are provided on 245 

vertical grid with 72 model layers or the 73 edges, in the altitude range of 0-50 km. The weather 246 

data files (three-hourly time-averaged files) contain averages over time intervals centered and 247 

time stamped at 01:30 GMT, 04:30 GMT, and 07:30 GMT (Bosilovich et al., 2016). 248 

 249 

In this study, the PCTM was run at 2.5° longitude by 2.0° latitude horizontal resolution with 250 

25 vertical levels, in the altitude range of 0-22 km. The model integration time step was chosen 251 

as 15 minutes. The resolution of the wind and diagonals, which are derived from MERRA2 252 

weather product, have been regridded to coarser 2.5°×2.0° resolution. 253 

 254 

2.3 Data Assimilation scheme 255 

2.3.1 Mathematical formulation of the carbon flux 256 

We estimated multiplicative biases in photosynthesis, respiration, and air-sea gas exchange 257 

using our data assimilation system. Variations of the surface flux of CO2 can be mathematically 258 

represented across each of our assimilation windows as follows:  259 

                               (1) 260 

 261 

where, F- carbon flux, RESP is the ecosystem respiration, GPP is the gross primary 262 

productivity, Ocean represents air-sea gas exchange of CO2, and FF represents emissions due 263 

to fossil fuel combustion; x and y denote the spatial coordinates and t represents the time. The 264 

β’s represent multiplicative biases of the grid-scale component fluxes which are assumed to 265 

persist for longer periods of time than the fluxes themselves (Lokupitiya et al., 2008; Schuh et 266 

al., 2010; Zupanski et al., 2007). Equation (1) represents the optimization for a given data 267 
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assimilation cycle. Here we do not include the time (t) variable for β’s because they are 268 

assumed to be constant within the data assimilation cycle. Hourly land fluxes (RESP and GPP) 269 

are derived at each grid cell from the Simple Biosphere-version 3 (SiB3) model (Baker et al., 270 

2003). Ocean fluxes are from Takahashi et al. (2002) and fossil fuel (FF) emissions from 271 

Brenkert (1998). Mean annual FF emissions of 1998 were linearly scaled for the years 2009, 272 

2010 and 2011 to produce the FF maps. We did not include biomass burning in our priors; 273 

hence the impact from biomass burning is embedded in the other flux estimates. Biases are 274 

solved for at a coarser 2.5° longitude by 2° latitude spatial resolution, whereas fluxes and 275 

transport are gridded at 2.5° longitude by 2° latitude spatial resolution. At the coastlines, grid 276 

boxes are assigned to either land or ocean based on the percentage of coverage. The coarser 277 

grid for biases is chosen to reduce the number of unknowns in the problem.  278 

 279 

Here we solve for monthly variations of biases in GPP, RESP, and Ocean fluxes (βGPP, βRESP, 280 

βOcean) and for the purpose of this paper, we assume that βFF = 0. Trial values for the different 281 

ensemble runs at every model grid cell in each of these three flux components are selected from 282 

a distribution to construct a global map of the β’s for each ensemble member. These maps of 283 

β’s are then multiplied by the flux computed from the forward model at each model time step 284 

that the transport operator (PCTM) is applied and then sampled to yield an ensemble of CO2 285 

mixing ratio time series at each observation station associated with each candidate map. An 286 

eight-week time series of hourly observations is thereby constructed for each ensemble 287 

member, after which time optimal values of the biases are estimated for each grid cell by 288 

comparison to the real observations.  289 

 290 

Simulated variations of GPP(x,y,t) and RESP(x,y,t) due to diurnal, synoptic, and seasonal 291 

variations are explicitly represented using mechanistic models, and spatially resolved 292 

multiplicative biases are separately estimated for each component flux. Sub-daily variations in 293 

the simulated component fluxes RESP and GPP are primarily controlled by the weather 294 

(especially changes in radiation due to clouds and the diurnal cycle of solar forcing), whereas 295 

seasonal changes are derived from phenological calculations parameterized from satellite 296 

imagery. Fine scale spatial variations are driven by changes in vegetation cover, soil texture, 297 

and soil moisture. A persistent bias in photosynthesis might result (for example) from 298 

underestimation of available nitrogen, forest management, or agricultural land-use, whereas a 299 

persistent bias in respiration might result from overestimation of soil carbon or coarse woody 300 

debris. In any case, it is reasonable to assume that the biases βRESP and βGPP vary more slowly 301 

than the fluxes themselves.     302 

 303 

2.3.2 Data assimilation window 304 

 305 

Size of the data assimilation window represents how far back in time we expect to be able to 306 

locate a given flux signal from available measurements (CT2017 release at 307 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2017/). In this study, an 8-week data 308 

assimilation window is used for the estimation of the β’s, and each 8-week window overlaps 309 

the previous window by 4 weeks.  310 

 311 

  312 

2.3.3 Initial guess of the biases and propagation of the error covariance matrix 313 

 314 

The data assimilation process has been started from the unbiased case (i.e. βs = 0).  Prior 315 

uncertainty for land components (GPP/RESP) and ocean are prescribed as 20% and 10%, 316 

respectively, at the first data assimilation cycle at the starting time. Here, these are applied 317 
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separately to the gross fluxes, not for the net difference (i.e. GPP – RESP) between them.   318 

Large prior uncertainties may allow more freedom for the biases to move. The use of such 319 

priors needs dense observation network in order to find an optimal solution. Smaller prior 320 

uncertainties may lead biases to get stuck in a wrong solution. The choice of prior uncertainties 321 

is arbitrary. Ocean biases are allowed very minor changes. Therefore the results can be well 322 

interpreted only for well-observed land regions and cannot make quantitative flux estimates for 323 

other land regions or the oceans.  324 

 325 

In MLEF, for each subsequent cycle, prior and the covariance of the biases have to be defined. 326 

That is, we define the center value for the estimate and its variability by an analysis covariance 327 

matrix from the previous cycle to condition the distribution from which candidate βs are 328 

selected at each grid cell for each ensemble member of the next cycle. In MLEF, the average 329 

of posterior from previous cycle and prescribed values from the initial cycle is considered as 330 

the prior. Hence, according to our assumption, the average of the previous analysis state and 331 

the forecast state in the initial cycle becomes the prior state for the next cycle. Similarly, the 332 

uncertainty of the biases, which is the covariance matrix of the biases also needed to be defined. 333 

In the case of unreasonably smaller values of the error covariance, the perturbations used to 334 

generate each ensemble member would become very small and the βs could converge to 335 

incorrect values. To avoid this problem, the covariance matrix is “inflated” in each new cycle.  336 

In MLEF, covariance inflation was done by applying a higher weight (= 0.9) for the initial 337 

covariance as given in Equation (2).  338 
 339 

Prior covariance for the current cycle = (0.1 × analyzed covariance from previous cycle) +  340 

                                       (0.9 × initial covariance)                                       (2) 341 
 342 

In the case of an under-determined problem, an optimal solution can only be reached when the 343 

ensemble size is very large. However, larger ensemble sizes involve high computational cost.  344 

Hence smoothing and localization schemes have been applied to alleviate the problems of 345 

sparse sampling. Covariance smoothing is introduced only in the first data assimilation cycle 346 

according to an exponential decay function (Lokupitiya et al., 2008; Michalak et al, 2004; 347 

Peters et al., 2005; Rödenbeck et al., 2003). In this study, we chose to smooth the prescribed 348 

covariance in the initial assimilation cycle with an e-folding length of 800 km over the land 349 

points and 1600 km over the ocean points.   350 

 351 

Subsequently, we introduced a localization scheme, which is sensitive to dynamical changes 352 

in the posterior (analysis) and prior (forecast) uncertainties (Lokupitiya et al., 2008; Zupanski 353 

et al., 2007). To define the “distance” for covariance localization, we employed the ratio r 354 

between the prior (σPrior) and the posterior (σPosterior) uncertainty of the current cycle defined as 355 

r = σPrior/ σPosterior. The greater values of the ratio represent the areas with the greater influence 356 

from the observations. We set the influence regions based on the distribution of the ratio r. We 357 

restricted adjustments to model biases to the 40% of land points and 10% of ocean points best 358 

constrained by the observations, based on the upper tail values of the ratio probability 359 

distribution. This choice selects the densely observed regions. Only these selected regions are 360 

allowed to change from the prior mean. The forward model is run with the revised biases to 361 

produce the 3-D CO2 fields for the next assimilation cycle. CarbonTracker uses a localization 362 

scheme based on the correlation coefficient between the parameter deviations and the 363 

observation deviations. Cut-off values are selected according to the two-tailed student’s T-test, 364 

at 95% significance level (Peters et al., 2007). 365 

 366 

 367 

 368 
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2.3.4 Ensemble size 369 

 370 

In order to determine the adequate ensemble size, Lokupitiya et al. (2008) and Zupanski et al. 371 

(2007) used an information measure referred to as Degrees of Freedom for Signal (DFS).  372 

Given the number of observations and the ensemble size, DFS being a positive integer indicates 373 

whether the selected ensemble size was appropriate (Lokupitiya et al., 2008). In this study, we 374 

used 90 ensemble members for the data assimilation. 375 

 376 

2.4 CO2 observation network used for data assimilation 377 

 378 

We assimilated flasks and continuous observations obtained from the existing observation 379 

networks (see Figure 1 and Table 1) and CONTRIAL CO2 measurements (see Figure 9) for the 380 

years from 2009 to 2011. Flask and continuous observations are collected near the surface. The 381 

temporal variation in the vertical structure is still relatively limited through these observations. 382 

This may result an incomplete view of the three-dimensional temporal variation of atmospheric 383 

CO2. However, research aircraft measurements can provide vertical and horizontal 384 

distributions of CO2 with sufficient precision to validate transport models, as well as being 385 

useful in providing an increased level of constraint in carbon flux estimates by inverse 386 

modelling (Sawa et al., 2012).. 387 

 388 

Table 1. Continuous and Flask CO2 measurement sites used in this study 389 

 390 
Site Name Latitude Longitude Elevation Observation error 

    2009 2010 2011 

Air samples collected in glass flasks       
 Alert, Nunavut, Canada (ALT) 82.45 -62.51 0 3.39 3.18  5.16 

Amsterdam Island, France (AMS) -37.95 77.53 0 2.00 2.00 2.00 

Ascension Island, United Kingdom (ASC) -7.97 -14.40 0 2.89 2.35 2.25 

Assekrem, Algeria (ASK) 23.26 5.63 2710 2.24 2.55 2.87 

St. Croix, Virgin Islands, United States (AVI) 17.75 -64.75 0 2.00 2.00 2.00 

Terceira Island, Azores, Portugal (AZR) 38.77 -27.38 0 1.85 1.49 3.87 

Baltic Sea, Poland (BAL) 55.35 17.22 0 9.64 9.85 6.66 

Baring Head Station, New Zealand (BHD) -41.41 174.87 0 2.57 2.54 2.51 

Bukit Kototabang, Indonesia (BKT) -0.20 100.32 0 6.28 6.27 4.36 

St. Davids Head, Bermuda, United Kingdom (BME) 32.37 -64.65 0 4.51 2.28 2.00 

Tudor Hill, Bermuda, United Kingdom (BMW) 32.26 -64.88 0 3.42 3.63 3.99 

Barrow Atmospheric Baseline Observatory, United States (BRW) 71.32 -156.61 0 4.51 4.43 5.88 

Black Sea, Constanta, Romania (BSC) 44.18 28.66 0 15.87 15.39 15.85 

Cold Bay, Alaska, United States (CBA) 55.21 -162.72 0 3.39 3.73 5.28 

Cape Grim, Tasmania, Australia (CGO) -40.68 144.69 0 2.86 2.83 2.66 

Christmas Island, Republic of Kiribati (CHR) 1.70 -157.15 0 1.57 1.52 1.72 

Cape Meares, Oregon, United States (CMO) 45.48 -123.97 0 2.00 2.00 2.00 

Crozet Island, France (CRZ) -46.43 51.85 0 2.94 2.83 3.34 

Easter Island, Chile (EIC) -27.15 -109.45 0 2.79 2.78 2.69 

Mariana Islands,Guam (GMI) 13.39 144.66 0 1.72 2.11 2.22 

Dwejra Point, Gozo, Malta (GOZ) 36.05 14.89 0 2.00 2.00 2.00 

Halley Station, Antarctica, United Kingdom (HBA) -75.61 -26.21 0 8.83 8.61 9.30 

Hohenpeissenberg, Germany (HPB) 47.80 11.02 0 9.47 10.00 10.06 

Hegyhatsal, Hungary (HUN) 46.95 16.65 0 11.31 10.12 13.30 

Storhofdi, Vestmannaeyjar, Iceland (ICE) 63.40 -20.29 0 3.04 2.00 2.00 

Izana, Tenerife, Canary Islands, Spain (IZO) 28.30 -16.48 2373 2.20 2.38 3.03 

Kaashidhoo, Republic of Maldives (KCO) 4.97 73.47 0 2.00 2.00 2.00 

Key Biscayne, Florida, United States (KEY) 25.67 -80.20 0 2.95 3.13 3.22 

Cape Kumukahi, Hawaii, United States (KUM) 19.52 -154.82 0 2.16 2.65 3.39 

Sary Taukum, Kazakhstan (KZD) 44.08 76.87 0 7.80 2.00 2.00 

Plateau Assy, Kazakhstan (KZM) 43.25 77.88 2519 5.36 2.00 2.00 

Lampedusa, Italy (LMP) 35.52 12.62 0 3.66 3.54 4.46 

Mace Head, County Galway, Ireland (MHD) 53.33 -9.90 0 3.74 3.91 4.63 

Sand Island, Midway, United States (MID) 28.21 -177.38 0 2.57 3.02 4.12 

Mt. Kenya, Kenya (MKN) -0.06 37.30 3644 3.12 3.63 2.28 
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Table 1. (Continued)     
  

Mauna Loa, Hawaii, United States (MLO) 19.54 -155.58 3397 1.91 2.37 2.26 

Niwot Ridge, Colorado, United States (NWR) 40.05 -105.58 3523 3.40 3.73 4.51 

Olympic Peninsula, Washington, United States (OPW) 48.30 -124.63 0 2.00 2.00 2.00 

Pallas-Sammaltunturi, GAW Station, Finland (PAL) 67.97 24.12 0 8.04 6.46 6.94 

Palmer Station, Antarctica, United States (PSA) -64.92 -64.00 0 7.35 7.61 7.69 

Point Arena, California, United States (PTA) 38.95 -123.73 0 5.91 6.37 7.75 

Ragged Point, Barbados (RPB) 13.17 -59.43 0 2.20 2.49 2.97 

Mahe Island, Seychelles (SEY) -4.68 55.53 0 1.68 1.31 1.74 

Southern Great Plains, Oklahoma, United States (SGP) 36.80 -97.50 0 13.82 10.24 8.68 

Shemya Island, Alaska, United States (SHM) 52.72 174.10 0 3.53 3.73 6.07 

Tutuila, American Samoa (SMO) -14.25 -170.56 0 1.31 0.88 1.10 

South Pole, Antarctica, United States (SPO) -89.98 -24.80 0 10.96 12.23 12.31 

Ocean Station Charlie, United States (STC) 54.00 -35.00 0 2.00 2.00 2.00 

Ocean Station M, Norway (STM) 66.00 2.00 0 4.63 2.00 2.00 

Summit, Greenland (SUM) 72.60 -38.42 3209 2.93 2.79 5.01 

Syowa Station, Antarctica, Japan (SYO) -69.00 39.58 0 4.04 3.87 3.91 

Tae-ahn Peninsula, Republic of Korea (TAP) 36.73 126.13 0 5.82 5.94 6.69 

Trinidad Head, California, United States (THD) 41.05 -124.15 0 4.68 5.12 6.67 

Wendover, Utah, United States (UTA) 39.90 -113.72 0 4.44 4.49 3.70 

Ulaan Uul, Mongolia (UUM) 44.45 111.10 0 3.61 3.54 5.48 

Weizmann Institute of Science at the Arava Institute, Ketura, 
Israel (WIS) 30.86 34.78 0 3.60 

 
3.41 

 
5.26 

Mt. Waliguan, Peoples Republic of China (WLG) 36.29 100.90 0 3.31 3.28 3.87 

Ny-Alesund, Svalbard, Norway and Sweden (ZEP) 78.90 11.89 0 3.68  3.43 5.44 

Continuous In-situ CO2 analyzer from Towers.       
Argyle, Maine, United States (AMT) 45.03 -68.68 107 10.48 9.59 9.25 

lef011 - Park Falls, Wisconsin, United States (LEF) 45.94 -90.27 11 9.36 2.00 2.00 

lef030 45.94 -90.27 30 11.10 8.08 10.30 

lef076 45.94 -90.27 76 7.59 2.00 2.00 

lef122 45.94 -90.27 122 8.17 6.89 9.43 

lef244 45.94 -90.27 244 4.90 2.00 2.00 

lef396 45.94 -90.27 396 6.93 6.45 8.89 

wkt009 - Moody, Texas, United States (WKT) 31.32 -97.33 9 2.00 2.00 2.00 

wkt030 31.32 -97.33 30 8.15 7.90 6.77 

wkt061 31.32 -97.33 61 2.00 2.00 2.00 

wkt122 31.32 -97.33 122 6.77 6.90 6.35 

wkt244 31.32 -97.33 244 2.00 2.00 2.00 

wkt457 31.32 -97.33 457 4.96 5.56 5.39 

In-situ co2 hourly averages       
Mauna Loa, Hawaii, United States (MLO) 19.54 -155.58 3397 1.97 2.37 2.23 

Barrow Atmospheric Baseline Observatory, United States (BRW) 71.32 -156.61 11 4.49 4.17 5.95 

Anmyeon-do, Republic of Korea (AMY) 36.54 126.33 46 8.50 8.19 8.01 

Candle Lake, Canada (CDL) 53.99 -105.12 600 5.34 5.55 2.00 

Chibougamau, Canada (CHM) 49.69 -74.34 393 4.75 4.78 6.37 

Cape Point, South Africa (CPT) -34.35 18.49 230 2.96 2.72 2.86 

Fraserdale, Canada (FSD) 49.86 -81.57 210 5.96 6.00 7.19 

Izaña (Tenerife), Spain (IZO) 28.31 -16.50 2373 2.18 2.36 3.13 

Mace Head, Ireland (MHD) 53.33 -9.90 5 5.43 5.43 6.48 

Neuglobsow, Germany (NGL) 53.14 13.03 62 14.46 15.73 16.62 

Ryori, Japan (RYO)  39.03 141.82 260 7.82 8.92 7.09 

Schauinsland, Germany (SSL) 47.90 7.92 1205 6.94 7.79 6.74 

Yonagunijima, Japan (YON) 24.47 123.01 30 4.73 5.33 5.46 

Zeppelin Mountain (Ny Ålesund), Norway (ZEP) 78.91 11.89 475 3.92 3.49 5.20 

 391 

  392 
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 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

Figure 1. A map of the continuous and flask stations used in this study except CONTRAIL. 406 

Open circles depict continuous measurement sites (see Table 1). Crosses identify flask-407 

sampling locations that are part of the NOAA-ESRL network (GLOBALVIEW-CO2). 408 

 409 

 410 

 411 

2.4.1 In-situ CO2 measurements 412 

 413 

Flask and in-situ CO2 observations used in this study were taken mainly from two observation 414 

networks, GLOBALVIEW-CO2 and WDCGG (World Data Centre for Greenhouse Gases). 415 

GLOBALVIEW-CO2 is a product of the Corporative Atmospheric Data Integration Project 416 

coordinated and maintained by NOAA ESRL (National Oceanic and Atmospheric 417 

Administration, Earth System Research Laboratory). NOAA provides high-quality CO2 418 

measurements collected from multiple institutions (https://www.esrl.noaa.gov/). WDCGG is a 419 

World Data Centre (WDC) operated by the Japan Meteorological Agency (JMA) under the 420 

Global Atmosphere Watch (GAW) programme of the World Meteorological Organization 421 

(WMO). It collects, archives and distributes data provided by contributors on greenhouse gases 422 

such as CO2, CH4, CFC, N2O and related gases such as CO in the atmosphere and elsewhere 423 

(https://gaw.kishou.go.jp/). In this study, the observation vector consists of 58 surface flask 424 

observations sites collected on weekly basis and 27 continuous sites that are measuring in-situ 425 

at different vertical levels on the hourly basis in addition to the CONTRAIL data.  426 

  427 

In this study, the diurnal cycle at continuous sites were filtered according to the local 428 

meteorology. Low-elevation sites (LEF, WKT, MHD) were used during mid-day only (11 to 429 

16 hours local time) because well-developed boundary-layer mixing is better simulated in the 430 

transport model than stable nocturnal conditions or morning and evening transitions.  431 

Mountaintop sites (MLO, IZO and SSL) were used at night (0-4 hours local time), because 432 

subsiding mid-tropospheric air at night better represents model conditions than upslope 433 

conditions during the day. Impact from each observation site varies according to how well 434 

transport model captures the observations at the site. These differences in the transport 435 

represent the diagonal elements of the observation error covariance matrix.   436 

 437 

We computed average model-data mismatch error at each site as the observation error, by 438 

running transport model (PCTM) separately for the years 2009-2011 (Table 1).  Observation 439 

errors at the multi-level observation stations such as LEF and WKT vary according to the height 440 

of the measurement levels. When compared with other continuous sites, station NGL shows 441 

the highest observation error for each year (Figure 2). Errors at the flask stations vary between 442 
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the minimum and the maximum values of 1.31 ppm - 15.87 ppm, 0.88 ppm – 15.39 ppm and 443 

1.1 ppm – 15.85 ppm for the years 2009, 2010, and 2011, respectively (Figure 3). 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 
 458 

Figure 2. Variation of the observation errors for Continuous stations for the years 2009-2011. 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

Figure 3. Variation of the observation errors for Flask stations for the years 2009-2011. 473 

 474 

 475 

2.4.2 CONTRAIL CO2 measurements 476 

 477 

In order to achieve a better global view of the three-dimensional variations in CO2 478 

measurements, CONTRAIL measurements were also used in this study. Five “JAL” air planes 479 

on regular commercial service measure CO2 continuously during each flight. In addition to the 480 

vertical profiles of CO2 during ascent and descent, horizontal measurements are obtained along 481 

the flight path. The aircraft measurements cover a substantial geographical region, with a wide 482 

longitudinal coverage (0°E–115°W) in mid-latitudes to high latitudes in Northern Hemisphere. 483 

The CONTRAIL observation extends in the north-south direction, along the various JAL 484 

flights between Japan, Australia and Southeast Asia. This observation provides regional 485 

vertical/upper atmospheric CO2 data over extensive areas in the Eurasian continent, Tropical 486 

region and the Southern Hemisphere where the number of surface stations are limited 487 

(http://www.cger.nies.go.jp/contrail/index.html access: 01 August 2019).  The flights cover the 488 

area 30S- 50N and 60-160E (Figure 9). Model data mismatch errors for CONTRAIL locations 489 

are shown in Figure 4.  490 

 491 

  492 

 493 
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 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

Figure 4. Variation of the observation errors for CONTRAIL locations for the years 2009-507 

2011. 508 

 509 

 510 

2.5 Model comparison with Carbon Tracker 511 

 512 

We compared our results with CarbonTracker (CT2017), another ensemble-based data 513 

assimilation system (Peters et al., 2005, 2007, CT2017 release at 514 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2017/), which has been developed 515 

based on the fixed-lag Kalman smoother (Bruhwiler et al., 2005) and ensemble square root 516 

filter (Whitaker & Hamill, 2002). CT2017 uses multiple in-situ observation networks and prior 517 

models to optimize weekly fluxes over 126 land “ecoregions” and 30 ocean regions (Peters et 518 

al., 2007; https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2017_doc.php, last acces:16 519 

August 2019). CT2017 uses TM5 transport model which connects the surface fluxes to 520 

atmospheric CO2 mole fractions. The model uses measurements of air samples collected at 254 521 

sites around the world by 55 laboratories and assimilates hourly average CO2 concentrations. 522 

CT2017 uses two biosphere models, which provide first-guess terrestrial fluxes. CASA 523 

(Carnegie-Ames Stanford Approach) calculates global carbon fluxes using input from weather 524 

models to drive biophysical processes, and satellite observed Normalized Difference 525 

Vegetation Index (NDVI) to track plant phenology. Global Fire Emissions Database Version 526 

4.1 (GFEDv4) is used as one of the fire modules to estimate biomass burning, and 527 

climatological estimates of CO2 partial pressure in surface waters (pCO2) from Takahashi et 528 

al. (2002) is used as the first-guess of air-sea flux. In CT2017, observed-minus-forecasted mole 529 

fraction that exceeds 3 times the prescribed model-data mismatch has been considered as an 530 

indicator that the modeling framework fails. The scaling factors λ are estimated independently 531 

for each week and optimization region using a moving overlapping assimilation window. 532 

CarbonTracker solves for fluxes by considering multiplicative scaling factors (biases) in NEE 533 

and air-sea gas exchange. CarbonTracker uses 150 ensemble members in their flux estimation.  534 

 535 

3 Results and Discussion 536 

This section is organized as three parts: performance of the transport model in simulating the 537 

CO2 concentrations, characteristics of the optimized CO2 fluxes (biosphere and ocean) using 538 

MLEF for the years 2009-2011 and comparison of the MLEF results with other studies mainly 539 

over the North America, Europe, Asia and Australia. 540 

 541 
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3.1 Evaluation of the transport model simulation 542 

 543 

We checked the performance of PCTM model by comparing model simulated CO2 with the 544 

observed CO2 at observation network used in this study which consists of flask, continuous and 545 

CONTRAIL measurements. After a three-year spin-up from years 2006-2008, CO2 at 546 

observation stations were sampled for years 2009-2011.  For the comparison with actual CO2 547 

measurements, a global constant off-set values have been added at each observation station. 548 

Figure 5 shows a comparison between PCTM simulated CO2 and the actual CO2 measurements 549 

at the continuous sites AMT, BRW and FSD for the years from 2009 to 2011.  550 

 551 

 552 

 553 

 554 

 555 

 556 

  557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

Figure 5. Observed hourly CO2 concentrations (in blue) and simulated CO2 (in red) from 569 

PCTM for years from 2009 – 2011 at stations FSD (Fraserdale, Canada), AMT 570 

(Argyle, Maine, United States) and BRW (Barrow Atmospheric Baseline 571 

Observatory, United States). 572 

 573 

Observation error for each observation site is calculated by averaging the difference between 574 

observed values (actual CO2) and the PCTM simulated CO2 values throughout the year. 575 

Observation errors for the flask and continuous sites for the years 2009-2011 are given in Table 576 

1. Figures 2 and 3 summarize the variation of the observation errors (actual – simulated) from 577 

2009-2011 for each continuous site and flask station. According to the above results, site 578 

“NGL” in Germany shows the highest observation error in each year. When compared with all 579 

other sites, “MLO”, “CPT”, “IZO” and “ZEP” show relatively low observation errors. For the 580 

flask stations, observation errors vary from 0.88 ppm to 16.0 ppm. Variation of the observation 581 

errors for the CONTRAIL locations are shown in Figure 4. Observation errors of CONTRAIL 582 

locations show considerably small values than flask and continuous stations. The average and 583 

uncertainty of the observation errors are 2.04 ± 0.43 ppm, 2.56 ± 0.71 ppm and 2.81 ± 0.36 584 

ppm for the years 2009, 2010, and 2011, respectively. According to above results, simulated 585 

CO2 using PCTM shows good agreement with the flask and continuous measurements as well 586 

as the CONTRAIL measurements. 587 

 588 

 589 

 590 

 591 
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3.2 Forward model comparisons 592 

 593 

We used forward model comparisons to test the quality of the data assimilation. Figure 6 shows 594 

observed daily mean CO2 concentrations along with the daily mean recovered and prior CO2 595 

concentrations obtained from optimized (posterior) fluxes and prior fluxes at North American 596 

stations (Argyle, Maine, United States (AMT), Barrow Atmospheric Baseline Observatory, 597 

United States (BRW), Chibougamau, Canada (CHM)) and several stations in Asian region 598 

(Ryori, Japan (RYO), Anmyeon-do, Republic of Korea (AMY) and Yonagunijima, Japan 599 

(YON)) for the years 2009 to 2011.  600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 
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 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

Figure 6. Daily time series plots of CO2 concentrations from posterior fluxes (in red) and prior 632 

fluxes (in black) compared to observations (in blue) for years 2009 – 2011 at Yonagunijima, 633 

Japan (YON), Ryori, Japan (RYO), Anmyeon-do, Republic of Korea (AMY), Argyle, Maine, 634 

United States (AMT), Chibougamau, Canada (CHM) and Anmyeon-do, Republic of Korea 635 

(AMY) 636 

 637 

 638 

 639 

 640 
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Table 2. Root Mean Square Error (RMSE) with respect to the prior and the posterior at 641 

continuous sites for 2009 to 2011 Units: parts per million by volume (ppmv) 642 
 643 

Station Latitude 

(deg) 

Longitude 

(deg) 

Elevation 

(m) 

2009 2010 2011 

    RMSE 

Prior 

RMSE 

Posterior 

Difference RMSE 

Prior 

RMSE 

Posterior 

Difference RMSE 

Prior 

RMSE 

Posterior 

Difference 

AMT 45.03 -68.68 107 9.18 9.82 -0.64 7.66 8.34 -0.68 8.69 9.02 -0.33 

LEF011 45.94 -90.27 11 5.93 4.28 1.65  - * - - - 

LEF030 45.94 -90.27 30 8.61 11.8 -3.19 7.16 9.19 -2.03 9.73 11.53 -1.80 

LEF076 45.94 -90.27 76 5.40 3.92 1.48 - - - - - - 

LEF122 45.94 -90.27 122 7.89 10.93 -3.04 6.78 8.63 -1.85 9.34 10.89 -1.55 

LEF244 45.94 -90.27 244 4.51 3.49 1.02 - - - - - - 

LEF396 45.94 -90.27 396 7.71 10.59 -2.88 6.49 8.01 -1.52 8.93 10.10 -1.17 

WKT009 31.32 -97.33 9 - - - - - - - - - 

WKT030 31.32 -97.33 30 4.99 5.52 -0.53 5.94 6.31 -0.37 5.85 5.37 0.48 

WKT061 31.32 -97.33 61 - - - - - - - - - 

WKT122 31.32 -97.33 122 4.75 5.19 -0.44 5.74 5.91 -0.17 5.77 5.18 0.59 

WKT244 31.32 -97.33 244 - - - - - - - - - 

WKT457 31.32 -97.33 457 4.07 4.61 -0.54 5.21 5.41 -0.20 5.15 4.63 0.52 

MLO 19.54 -155.58 3397 1.56 2.27 -0.71 2.33 2.63 -0.30 2.22 2.74 -0.52 

BRW 71.32 -156.61 11 4.12 6.37 -2.25 3.95 5.10 -1.15 5.92 5.37 0.55 

AMY 36.54 126.33 46 10.02 9.33 0.69 9.48 8.39 1.09 8.80 7.91 0.89 

CDL 53.99 -105.12 600 4.96 6.53 -1.57 5.42 5.68 -0.26 - - - 

CHM 49.69 -74.34 393 4.59 4.57 0.02 4.58 5.44 -0.86 6.17 4.08 2.09 

CPT -34.55 18.49 230 3.07 3.72 -0.65 2.64 4.56 -1.92 2.74 4.81 -2.07 

FSD 49.86 -81.57 210 5.19 8.66 -3.47 5.76 7.43 -1.67 7.31 7.56 -0.25 

IZO 28.31 -16.50 2373 1.98 3.12 -1.14 2.34 3.53 -1.19 3.11 3.44 -0.33 

MHD 53.33 -9.90 5 - - - 5.11 5.78 -0.67 6.34 6.70 -0.36 

NGL 53.14 15.03 62 11.89 15.73 -3.84 14.94 14.53 0.41 15.98 17.71 -1.73 

RYO 39.03 141.82 260 6.03 5.45 0.58 8.41 7.23 1.18 6.75 5.86 0.89 

SSL 47.90 7.92 1205 5.74 6.05 -0.31 7.83 7.88 -0.05 6.34 6.03 0.31 

YON 24.47 123.01 30 3.98 3.60 0.38 5.15 3.61 1.54 5.35 3.98 1.37 

ZEP 78.91 11.89 475 4.14 5.99 -1.85 3.45 4.29 -0.84 5.19 4.59 0.60 

 644 

 645 

Recovered CO2 from posterior fluxes for these sites show good agreement with the actual CO2 646 

concentrations. Table 2 summarizes the Root Mean Square Errors (RMSE) with respect to the 647 

prior and the posterior for all the continuous sites used for the inversion. Among the prior 648 

RMSE for continuous stations, station “NGL” in Europe shows the largest average prior RMSE 649 

with 13.15 ± 1.29 ppm per year. This indicates a poor representation of the prior fluxes and/or 650 

deficiencies in the transport in that station. Very large observation errors in the station “NGL” 651 

under Section 3.1 confirms this result. Inclusion of these stations may have a significant impact 652 

on the overall solution. Posterior CO2 concentrations at Asian stations like “RYO”, “YON” 653 

and “AMY”, show better agreement with observed CO2 concentrations. This may be due to the 654 

effect of the CONTRAIL CO2 measurements in the observation vector (Figure 6). Patra et al. 655 

(2008) has analyzed the synoptic-scale variability in the model simulations and observations 656 

for several approaches. This study concluded that the differences of the transport model 657 

performances  depend on the horizontal and vertical characteristics of the sampling locations 658 

corresponding to each model and those are fairly independent of the size of the observed 659 

variability at the sites. In this study, it was identified that site “LEF”, which records CO2 at 660 

several vertical layers up to about 400m, has considerably overestimated the magnitude of 661 

synoptic variations at lower levels for the period of 2002-2003. Correlations between observed 662 

and modeled CO2 time series were also calculated and it was found that the correlation 663 

coefficient is greater than 0.3 at most stations.   664 

 665 

 666 

 667 

 668 

 669 

 670 
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Year 2009              Year 2010 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

Year 2011 681 

 682 

 683 

 684 

 685 

 686 

 687 

Figure 7. Variation of CONTAIL CO2 observations with relevant altitude (m). 688 

  689 

Figure 7 shows the variation of the observed CONTRAIL CO2 values with flight altitude. 690 

CONTRAIL CO2 shows a higher variability at lower altitudes for each year. Niwa et al. (2012) 691 

also used four vertical bins as 575-625, 475-525, 375-425, 225-275 hPa because some 692 

measurements at lower altitudes (in boundary layer) are polluted by local polluted air from 693 

major cities where airports are commonly situated. They did not use the measurements below 694 

625 hPa in order to get more accurate estimates. In this study, CONTRAIL CO2 locations in 695 

between the altitudes from 4000m to 11000m are used for the data assimilation. The 696 

performance of MLEF method on estimating CONTRAIL aircraft data were also measured by 697 

calculating the RMSE values considering estimated posterior CO2 and observed CO2 values 698 

under four different height levels (i.e. 4000-5201, 5201-7074, 7074-8322 and 8322-11000 m). 699 

The RMSE values are given in Table 3.  700 

 701 

Table 3. Root Mean Square Error (RMSE) with respect to the posterior CONTRAIL CO2 702 

measurements for 2009 to 2011 Units: parts per million by volume (ppmv) 703 
 704 

 Year 2009 

Altitude in meters Pressure level Number of observations RMSE (ppm) 

2912 – 5202 m 350 - 625 hPa 2292 2.62 

5202 – 7075 m 625 - 850 hPa 3869 2.39 

7075 – 8323 m 850 - 1000 hPa 2696 2.23 

8323 – 11000 m 1000 - 1325 hPa 9434 2.31 
 705 
 706 

 Year 2010 

Altitude in meters Pressure level Number of observations RMSE (ppm) 

2912 – 5202 m 350 - 625 hPa 2128 3.11 

5202 – 7075 m 625 - 850 hPa 3629 3.02 

7075 – 8323 m 850 - 1000 hPa 2492 3.04 

8323 – 11000 m 1000 - 1325 hPa 9668 3.14 
 707 
 708 

 Yesr 2011 

Altitude in meters Pressure level Number of observations RMSE (ppm) 

2912 – 5202 m 350 - 625 hPa 2034 3.76 

5202 – 7075 m 625 - 850 hPa 3359 3.74 

7075 – 8323 m 850 - 1000 hPa 2313 3.64 

8323 – 11000 m 1000 - 1325 hPa 8984 3.32 
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According to Table 3, the locations in low altitudes show relatively high RMSE values than 709 

other levels. Figure 8 shows the difference between the observed and predicted CO2 710 

concentrations for the CONTRAIL locations under the selected altitude levels from 2009-2011. 711 

The errors are symmetrically distributed for each height level for the years 2009 and 2010 712 

except for year 2011.   713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

Figure 8. Distribution of the difference between observed CO2 and recovered CO2 under four 727 

vertical bins for years 2009 to 2011. 728 

 729 

 730 

3.3 Chi-square test statistic 731 

 732 

The quality of the data assimilation process was tested using several measures. Another 733 

measure is the 𝜒2 statistic which evaluates the innovation (observed minus forecast 734 

observation) covariance matrix (Zupanski, 2005). Under the Gaussian assumption and for a 735 

linear observation operator, this statistic should be equal to one for statistical consistency, 736 

which suggests that the posterior uncertainty is consistent with the quality of the fit to the data. 737 

In reality, however, it is not exactly equal to one due to statistically small samples (i.e. relatively 738 

few observations per cycle). In this study, average 𝜒 2 for the three years approximately equals 739 

0.46 ± 0.12, 0.41 ± 0.08 and 0.42 ± 0.17 which indicates that the errors are moderately 740 

consistent.  741 

 742 

3.4 Uncertainty reduction 743 

 744 

Figure 9 shows the average uncertainty reduction with respect to the prescribed prior 745 

uncertainty at the initial cycle. The uncertainty reduction is calculated as a percentage value as 746 

given in equation (3). 747 

 748 
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Uncertainty reduction =  
𝜎𝑝𝑟𝑖𝑜𝑟−𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝜎𝑝𝑟𝑖𝑜𝑟
× 100,                                                                           (3) 749 

 750 

where 𝜎𝑝𝑟𝑖𝑜𝑟 and 𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 are the prior uncertainty at the initial cycle and the posterior 751 

uncertainty, respectively. 752 

 753 

(a) year 2009 754 

  755 

(b) year 2010 756 

  757 

(c ) year 2011 758 

 759 

Figure 9. Stations map with CONTRAIL locations and mean annual percentage uncertainty 760 

reduction for the years (a) 2009, (b) 2010 and (c) 2011.  761 

 762 

 763 

 764 

 765 
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According to Figures 1 and 9 the densely observed North American region show a good 766 

constraint (about 60-80% uncertainty reduction) on flux estimates for 2009 and 60-70% 767 

reduction for 2010 and 2011. European region shows 50-60% uncertainty reduction for 2009 768 

and 40-50% reduction for 2010 and 2011. The East Asia and Southeast Asia region show about 769 

50 to 60 percent uncertainty reduction for 2009 and 30-50% reduction for 2010 and 2011. The 770 

lower uncertainty reduction in Asian region for the years 2010 and 2011 may be due to the 771 

effect of relatively high observation errors of CONTRAIL measurements in year 2010 and 772 

2011 than the year 2009 (Figure 8). The recovery of the ocean fluxes is poor due to the weak 773 

signal from the ocean flux that is observed at the stations. Ocean fluxes are an order of 774 

magnitude weaker than those on land, so the land fluxes dominate the signal (especially due to 775 

the large number of observations from continuous stations) at atmospheric observation sites on 776 

the 8-week time scale. Ocean biases are given less prior uncertainty compared to the land, 777 

which limits the uncertainty reduction in ocean fluxes. Note that we do not claim that the ocean 778 

fluxes given by the priors are correct, rather that the atmospheric observations provide 779 

insufficient constraint for our assimilation scheme to provide improved estimates at the grid 780 

scale. 781 

 782 

In each assimilation cycle, grid boxes that are strongly influenced by the observation network 783 

are selected according to the localization scheme and allowed to change β from the prior. Hence 784 

the posterior fluxes from sparsely observed areas are mainly dominated by the priors. 785 

Currently, grid boxes, which are selected according to the localization scheme, are equally 786 

weighted.  787 

 788 

The posterior land flux uncertainties have contributions from the variances of the GPP and 789 

respiration biases and their cross-covariance (see Equation 4, Lokupitiya et al., 2008). 790 

 791 

𝑉𝑎𝑟(𝐹) = 𝑅𝐸𝑆𝑃2𝑉𝑎𝑟(𝛽𝑅𝐸𝑆𝑃) + 𝐺𝑃𝑃2𝑉𝑎𝑟(𝛽𝐺𝑃𝑃) − 2 × 𝑅𝐸𝑆𝑃 × 𝐺𝑃𝑃 × 𝐶𝑜𝑣(𝛽𝑅𝐸𝑆𝑃, 𝛽𝐺𝑃𝑃)       792 

(4) 793 

 794 

We have assumed that the observation error covariance matrix (R) is diagonal, which means 795 

that the observation stations are far enough from each other so that the correlations among their 796 

errors are negligible (off-diagonal elements of R are zero). Inclusion of these off-diagonal 797 

covariance terms in the observation errors would produce a result that was closer to the prior 798 

(neutral carbon balance).  In this study, we split the net contribution into two component fluxes, 799 

GPP and respiration. This method allows the recovery of flux patterns with a loose prior and 800 

potentially facilitates identification of each component’s contribution to the NEE, which can 801 

help explain the underlying biogeochemical processes.   802 

 803 

3.5 Comparison of optimized carbon fluxes with CT2017 fluxes 804 

 805 

Fluxes optimized by MLEF are compared with the CT2017 (The version of the CarbonTraker 806 

used in this study is based on the CarbonTracker 2017 release) fluxes for the globe. The stations 807 

maps of CO2 observation vector under the two inversion methods, MLEF and CT2017 for the 808 

period 2009-2011 are given in Figure 10. In Figure 11, left panel and the right panel show the 809 

posterior land fluxes (NEE) obtained from MLEF and CarbonTracker method (CT2017) for 810 

the years 2009-2011 respectively. CatbonTracker flux maps were created using the 811 

downloaded optimized fluxes in monthly averages from NOAA site 812 

(http://aftp.cmdl.noaa.gov/). The regions such as Tropical Asia, Temperate Eurasia, Australia, 813 

Europe, Boreal North America and Temperate North America were considered for the 814 

comparison due to considerable amount of observations over the region. TransCom regions in 815 
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southern hemisphere (SH) like South America and Africa were not considered for the 816 

comparison due to very low representation of the CO2 observation vector over these regions.  817 

 818 

    819 

Station map for MLEF                                                                               Station map for CT2017 820 

year 2009 821 

 822 
Open circles – continuous sites 823 
Crosses – flask sampling sites 824 
Dark squares – CONTRAIL tracks 825 

 826 

 827 

year 2010 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

  839 

 840 

 841 

year 2011 842 
 843 
 844 
 845 

 846 

 847 

 848 

 849 

 850 

 851 

    852 
            853 

 854 

 855 

Figure 10. Stations map for MLEF (Left panel) and CT2017 (Right panel) 856 

 857 

 858 

 859 
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(a) MLEF - 2009             CT - 2009 860 

  861 

 862 

       (b) MLEF- 2010                                                                    CT - 2010 863 
    864 

 865 

 866 

       (c )  MLEF - 2011 CT - 2011 867 
                               868 

 869 
 870 
 871 
 872 
  873 

      874 

Figure 11. Recovered Mean Annual NEE by MLEF (Left panel) and CT (CT2017) (Right 875 

panel) for the year (a) 2009, (b) 2010 and (c) 2011 respectively. Units: gC m-2 yr-1.  876 

 877 

 878 

 879 

 880 

 881 
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According to Figure 11, spatial patterns of the estimated terrestrial biosphere fluxes for the 882 

TransCom regions show quite different results. The CO2 observation vector used for the two 883 

inversion methods are different. This may be the reason for different spatial patterns in some 884 

regions (Figure 11). Optimized biosphere fluxes form MLEF and CarbonTracker and the prior 885 

used are summarized in Table 4 and Figure 12.  886 

 887 

Table 4. Optimized surface CO2 fluxes and their one-sigma uncertainties (PgCyr-1) for the 888 

selected TransCom regions from 2009 to 2011using MLEF and CT2017 method 889 
 890 

Region 2009 2010 2011 

MLEF CT MLEF CT MLEF CT 

Boreal N. 

 America 

-0.004 ± 0.16 -0.30 ± 0.76 -0.427 ± 0.26 -0.37 ± 0.9 -0.27 ± 0.11 -0.62 ± 0.87 

Temperate N.  

America 

-0.476 ± 0.23 -0.50 ± 0.53 -0.296 ± 0.27 -0.3 ± 0.36 -0.045 ± 0.073 -0.05 ± 0.4 

Tropical Asia 0.148 ± 0.29 -0.07 ± 0.37 0.44 ± 0.24 -0.02 ± 0.36 0.609 ± 0.146 0.07 ± 0.29 

Australia -0.142 ± 0.18  -0.04 ± 0.3 -0.002 ± 0.097 -0.01 0± 0.41 0.033 ± 0.047 -0.04 ± 0.33 

Eurasian 

Temperate 

0.570 ± 0.38 -0.07 ± 0.37 0.227 ± 0.17 -0.62 ± 1.55 0.096 ± 0.10 -0.97 ± 1.67 

Europe -0.036 ± 0.33 0.37 ± 1.77 -0.662 ± 0.35 0.08 ± 2.12 -0.576 ± 0.194 -0.17 ± 1.89 

Land Total 5.648  -3.33 ± 4.19 0.741 4.55±4.03 -1.169  -4.91±3.97 

Ocean Total -1.430  -3.13 ± 1.45 -1.448 -2.26±1.40 -1.511 -2.80±1.07 

 891 
 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 
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 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

Figure 12. Mean annual NEE with 1-σ error bars aggregated to TransCom regions; Boreal 954 

North America, Temperate North America, Europe, Tropical Asia, Eurasian Temperate and 955 

Australia, estimated by MLEF and CarbonTracker (a) for 2009, (b) for 2010 and (c) for 2011. 956 

Units: GtC/year. 957 

 958 

 959 

Spatial distribution of the mean annual CO2 land fluxes derived from MLEF over North 960 

American region and several parts of the Asian region, like South Asia and Southeast Asia 961 

show good agreement with the CarbonTracker fluxes. South Asian region seems to be carbon 962 
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neutral for year 2011 and the observed carbon source pattern under CarbonTracker for year 963 

2009 was also well captured by our model (Figure 11). Boreal North America and Temperate 964 

North America are highly rich in surface flask and continuous CO2 measurement sites and those 965 

are carbon sinks with MLEF results, for the years from 2009-2011. This result shows good 966 

agreement with the CarbonTracker fluxes (Figure 11, 12). MLEF fluxes show that the Tropical 967 

Asia is a carbon source. But it is a weak sink for the years 2009 and 2010 and is a source for 968 

year 2011 under the CarbonTracker results. In our study, the selected CONTRAIL aircraft 969 

tracks mainly cover the regions of South Asia, Southeast Asia, East Asia and Australia (Figure 970 

10). But, those regions are poorly represented in flask and continuous CO2 measurement sites 971 

(see Figure 1). In CT2017, optimized fluxes for the above regions have the effect of densely 972 

available flask and continuous sampling sites than what we have used in MLEF method. This 973 

may be the reason for the difference between the optimized flux in Tropical Asia. 974 

 975 

In Eurasian Temperate region, our optimized land fluxes for the period 2009-2011 (on average 976 

it is +0.53 PgCyr-1) is different from CarbonTracker results (Figure 12) which shows it as a 977 

carbon sink. The reason for this difference may be the impact of the atmospheric CO2 978 

observation network we used. There are several flask and continuous observation sites covering 979 

the East Asia in CT2017 (Figure 10) than MLEF. In this study, Europe is a carbon sink for the 980 

years 2009-2011. According to CarbonTracker results it is a carbon source for the years 2009 981 

and 2010 and a carbon sink for year 2011 (Figure 11). This difference may due to the effect of 982 

densely observed surface continuous CO2 sites used in CT2017 rather than MLEF data 983 

assimilation (Figure 10). 984 

 985 

MLEF solves for biases at the grid-scale and does not impose any prior spatial patterns into the 986 

fluxes (recall that the prior annual NEE in SiB is identically zero at every grid cell). Biomass 987 

emissions are not included in SiB priors. However, CarbonTracker solves for fluxes by 988 

prescribing spatial patterns according to eco-regions (Peters et al., 2005; 2007). The large basis 989 

regions used in CarbonTracker is beneficial in recovering fluxes over sparsely sampled regions; 990 

however, it restricts changes to the prescribed spatial flux patterns even in densely observed 991 

areas. However, the spatial distribution of the mean annual fluxes over North America, 992 

Australia and several regions in Asia derived from the MLEF and CarbonTracker show similar 993 

results when aggregated into large (TransCom) regions. 994 

 995 

 996 

3.6 Comparison of optimized carbon fluxes with other studies 997 

  998 

Comparison of the MLEF optimized CO2 fluxes with other inverse modelling methods for the 999 

selected TransCom regions are summarized in Figure 13. MLEF results are mainly compared 1000 

with the results of CT2017, Kim et al. (2017), Peylin et al. (2013) and Zhang et al. (2014) by 1001 

considering the time period and the CO2 observation network used for the optimization. Zhang 1002 

et al. (2014) used CarbonTracker data assimilation method with surface and CONTRAIL 1003 

measurements to obtain optimized fluxes for the years 2006-2010. Peylin et al. (2013) also 1004 

used CarbonTracker method using flask and continuous CO2 observations and obtained 1005 

optimized carbon fluxes for TransCom regions for the years 2006-2010. The optimized fluxes 1006 

by Peylin et al. (2013) were obtained from the online supplement (available online at 1007 

http://www.biogeosciences.net/10/ 6699/2013/bg-10-6699-2013-supplement.pdf). Kim et al. 1008 

(2017) also used CarbonTracker method to estimate carbon fluxes for the TransCom regions 1009 

using Siberian observations during the years 2002-2009. In the next step, the spatial distribution 1010 

of the optimized CO2 fluxes in South Asian (which includes the countries Bangladesh, Bhutan, 1011 

India, Nepal, Pakistan and Sri Lanka) region was compared with MLEF results considering 1012 
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several studies in the literature (Patra et al., 2013,  Jiang et al., 2014, and Thompson et al., 1013 

2016). Finally, the MLEF results obtained by assimilating surface and CONTRAIL CO2 1014 

observations are compared with the results of inverse modelling studies which used surface 1015 

and Greenhouse Gases Observing Satellite (GOSAT) total column CO2 (XCO2) observations 1016 

for their flux inversion. 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

Figure 13. Comparison of optimized surface CO2 fluxes (GtC yr-1) from MLEF with other 1023 

studies 1024 
aBiomass burning emissions are included into the land fluxes 1025 

 1026 

 1027 

Optimized carbon fluxes in other studies are summarized with MLEF optimized land fluxes 1028 

and are given in Figure 13 (Note: In Zhang et al. (2014) and Peylin et al. (2013), the  optimized 1029 

fluxes include land and fire emissions). The average annual recovered fluxes from MLEF for 1030 

Boreal North America (-0.234 PgCyr-1), Temperate North America (-0.27 PgCyr-1), Australia 1031 

(-0.037 PgCyr-1) and Europe (-0.42 PgCyr-1) during the period from 2006-2010 (carbon sinks) 1032 

are more comparable with the estimated fluxes in other selected studies.  1033 
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According to Zhang et al. (2014), mean terrestrial carbon uptake in Asia is -1.56 (= land fluxes 1034 

+ fire emissions) PgCyr-1 which was further partitioned into -1.02 PgCyr-1 carbon sink in Boreal 1035 

Eurasia and -0.68 PgCyr-1 carbon sink in Temperate Eurasia and a +0.15 PgCyr-1 CO2 source 1036 

in Tropical Asia. Zhang et al. (2014) shows that posterior land flux for the Tropical Asia is -1037 

0.17 ± 0.28 PgCyr-1 from 2006-2010. According to the MLEF results, Tropical Asia is a carbon 1038 

source (+0.399 PgCyr-1) from 2009-2011. Other than that, CT2017 also shows a weak sink (-1039 

0.0067 PgCyr-1) for this region. The number of CONTRAIL-JAL aircraft tracks used in our 1040 

study (from year 2009–2011) shows more coverage than the CONTRAIL used in Zhang et al. 1041 

(2014) over Tropical Asian region (see Figure 10 and Figure1. (b) in Zhang et al., 2014). This 1042 

may be the reason for this difference in Tropical Asian flux estimates. MLEF results show that 1043 

the Eurasian Temperate is a carbon source (+0.63 PgCyr-1) and this results is not compatible 1044 

with other studies. The discrepancy between the results in Temperate Eurasia may be due to 1045 

the CO2 observation network used. Zhang et al. (2014), has more coverage of CONTRAIL 1046 

observations over Boreal Eurasia to Europe (Figure1. (b) in Zhang et al., 2014) rather than the 1047 

CONTRAIL CO2 we used in our study. The CO2 observation network used by Peylin et al. 1048 

(2013) is the same as the CarbonTracker and it has more coverage of flask and continuous sites 1049 

in Boreal and Temperate Eurasian regions. These observation networks reveal an insufficient 1050 

observation coverage in this region and it may have an effect on the estimated land fluxes in 1051 

Eurasian Temperate region. Finally, as an overall result, it can be said that the MLEF results 1052 

with surface and CONTRAIL CO2 observations show reasonable estimates for the selected 1053 

TransCom regions when compared with the results of the studies discussed above. 1054 

 1055 

Patra et al. (2013) has presented the net carbon budget for the South Asia for the period 1990-1056 

2009. Based on the atmospheric CO2 inversions, it was found that net biospheric CO2 flux in 1057 

South Asia was a sink (-104 ± 150TgC yr-1) during the period of 2007-2008. Jiang et al. (2014) 1058 

estimated terrestrial CO2 flux in China during 2002-2008 using an atmospheric inversion 1059 

method with passenger aircraft-based CO2 measurements over Eurasia. The results showed that 1060 

with the addition of CONRATL CO2 data, it increased the carbon sink in China from -1061 

0.16±0.19 to -0.29±0.18 PgCyr-1 while decreasing the carbon sink in Southeast and South Asia 1062 

by -0.68±0.34 to -0.28±0.32 and -0.35±0.30 to -0.11±0.30 PgCyr-1,  respectively. Thompson et 1063 

al. (2016) assessed the carbon budget of Asia under seven atmospheric CO2 inversions focusing 1064 

East, South and Southeast Asian regions. According to the results from the inversion ensemble, 1065 

Thompson et al. (2016) found that the land biosphere in South Asia was close to being carbon 1066 

neutral with a flux of -0.05 (-0.18 to 0.03) PgC per year for the period 1996-2012. The surface 1067 

carbon flux for South Asian region was not quantified in this study. But, the spatial distribution 1068 

of the MLEF carbon flux in South Asian region shows more compatible results with the 1069 

CT2017 results (Figure 11) and other selected studies.   1070 

 1071 

Saeki et al. (2013) conducted an inverse modelling analysis to estimate the surface carbon flux 1072 

using column-averaged dry air mole fractions of CO2 observed by the GOSAT (which started 1073 

to record observations from year 2009) and ground based data from June 2009 to October 2010. 1074 

The results showed that the annual total sink for the South Asian region (June 2009-May 2010) 1075 

was 0.23 PgC yr-1 from NOAA data inversion, while NOAA plus GOSAT gave a stronger sink 1076 

of 0.48 PgC yr-1. GOSAT XCO2 contains information about the free and upper troposphere like 1077 

CONTRAIL CO2 measurements (Basu et al., 2014). Basu et al. (2014), estimated CO2 flux 1078 

over Tropical Asia in 2009, 2010 and 2011 using RemoTec v2.11 retrievals of GOSAT XCO2 1079 

and surface measurements of CO2, using four-dimensional variational (4DVAR) atmospheric 1080 

inversion using the atmospheric tracer transport model TM5. According to the surface CO2 1081 

flux per 3 month time window obtained (Basu et al., 2014-Figure 2), Tropical Asia seems to 1082 

be a source from GOSAT estimates. This results is more compatible with MLEF result for 1083 
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Tropical Asia which is a carbon source (Figure 12). According to Basu et al. (2014), this 1084 

increased source estimate is consistent with CONTRAIL measurements. Basu et al. (2013), 1085 

optimized global source-sink estimates using surface and GOSAT CO2 data from 1st September 1086 

2009 to 1st September 2010 and the results can be compared with MLEF results with surface 1087 

and CONTRAIL observations. According to Basu et al. (2013), North American prior source 1088 

(0.4 ± 0.5 PgC) converted to a posterior sink (0.4 ± 0.20 PgC) using surface data and this sink 1089 

was strengthened by 1.0 ± 1.0 PgC using surface and GOSAT data. Prior source (0.3 ± 0.40 1090 

PgC) of the Europe, converted to a sink (0.3 ± 0.30 PgC) by surface data and with addition of 1091 

GOSAT strengthened the sink by 1.3 ±0.20 PgC. Eurasian temperate region is a sink (0.1 ±0.20 1092 

PgC) with surface data and it was a source (0.3 ±0.20 PgC) with both measurements. Prior 1093 

source (0.3 ±0.7 PgC) for the tropics is increased by surface data to 0.5 ±0.4 PgC and it was 1094 

further increased to 2.1 ±0.20 PgC by adding GOSAT. Estimated posterior for North America, 1095 

Europe and Eurasian Temperate with surface and GOSAT data in Basu et al. (2013) are 1096 

comparable with the posterior fluxes estimated using surface and CONTRAIL data using 1097 

MLEF (Figure 12). 1098 

4 Conclusions 1099 

This paper presents the first application of the MLEF method to assimilate existing flasks, 1100 

continuous observations and CONTRAIL measurements. Previously, this assimilation system 1101 

was tested with a pseudo-data experiment, which showed satisfactory results over the densely 1102 

observed areas (Lokupitiya et al., 2008; Perera et al., 2017). In this study, flux estimation is 1103 

done by separating NEE into GPP and respiration components and hence is potentially useful 1104 

in identifying the driving forces of the carbon sinks. Currently, however, the daytime 1105 

atmospheric CO2 observations that we assimilate cannot be adequately separated into these two 1106 

components. Nighttime CO2 observations contain information about respiration, but the 1107 

transport models poorly represent the nighttime values.  In order to separate these components, 1108 

additional constraints could be added to the model, such as carbonyl sulfide as a tracer of GPP 1109 

(Lokupitiya et al., 2008).  1110 

 1111 

In this paper, we have given flux estimates for densely observed North America, Europe and 1112 

Asia, where we expect the observation network to provide additional constraints for years 1113 

2009-2011. A comparison of the results with another similar technique, CarbonTracker 1114 

(CT2017), shows good agreement at large (TransCom) regional scale. However, spatial 1115 

patterns are quite different, which seem to be dominated by the differences in prior 1116 

assumptions, especially the hard constraint of ecosystem classification used to scale net fluxes 1117 

in CarbonTracker. The grid scale inversion setup that we considered here can produce 1118 

satisfactory annual mean flux estimates over the densely observed regions. However, the 1119 

recovered fluxes at grid scale over sparsely sampled regions are not reliable. The method 1120 

recovers fluxes in North America, Asia and Europe with less uncertainty. North America shows 1121 

about 60-80% uncertainty reduction. Moderate results are obtained over the Asian and 1122 

European region with about 50-60% uncertainty reduction. Most other land and oceanic regions 1123 

show less than 30% uncertainty reduction. Recovery from the oceanic regions has high 1124 

uncertainties because currently available atmospheric observations poorly constrain the weaker 1125 

oceanic fluxes.  1126 

 1127 

MLEF results with surface and CONTRAIL CO2 observation network are more similar with 1128 

other studies which used surface observations, surface plus CONTRAIL observations, surface 1129 

plus Siberian observations and surface plus GOSAT observations in the CO2 observation 1130 

vector. Optimized fluxes in Temperate North America, Boreal North America, Australia, 1131 

Europe and Tropical Asia are comparable with optimized fluxes with other studies. However, 1132 
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we found several discrepancies in the spatial distribution of the optimized fluxes and estimated 1133 

flux for some TransCom regions. In flux inversions, the optimized fluxes mainly depend on 1134 

several factors such as prior guess, transport model used, CO2 observation network, etc. These 1135 

may be the main reasons for the above incompatibilities.  1136 

 1137 

The main conclusion that can be drawn from this study is that grid scale inversions can produce 1138 

satisfactory regional results when aggregated into larger regions, given the regions are densely 1139 

observed in space and time. Fluxes in more sparsely observed regions in southern hemisphere 1140 

like Africa and South America were poorly recovered from the MLEF method. The 1141 

decomposition of net terrestrial fluxes into gross fluxes driven by well understood fast 1142 

processes and the focus of statistical power from the observations on the poorly understood 1143 

slow biogeochemistry allow the regional flux estimation from current networks without the 1144 

need for hard constraints in the form of ecosystem maps or assumed covariance structures used 1145 

in previous studies.  1146 

 1147 

MLEF performs well with high dimensional observation vectors and does not require 1148 

computationally intensive sequential assimilation schemes. Hence, it is more suitable for 1149 

assimilation of satellite retrievals. As networks of continuous observing sites, aircraft sampling, 1150 

and satellite observing systems will emerge in the coming years, this framework can be easily 1151 

extensible to those much larger data vectors. In a future paper, this assimilation system will be 1152 

used to assimilate satellite observations from GOSAT and/or OCO2 projects. 1153 
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Figure 1. A map of the continuous and flask stations used in this study except CONTRAIL. 1436 

Open circles depict continuous measurement sites (see Table 1). Crosses identify flask-1437 

sampling locations that are part of the NOAA-ESRL network (GLOBALVIEW-CO2). 1438 

 1439 

Figure 2. Variation of the observation errors for Continuous stations for the years 2009-2011. 1440 

 1441 

Figure 3. Variation of the observation errors for Flask stations for the years 2009-2011. 1442 

 1443 

Figure 4. Variation of the observation errors for CONTRAIL locations for the years 2009-1444 

2011. 1445 

 1446 

Figure 5. Observed hourly CO2 concentrations (in blue) and simulated CO2 (in red) from 1447 

PCTM for years from 2009 – 2011 at stations FSD (Fraserdale, Canada), AMT (Argyle, Maine, 1448 

United States) and BRW (Barrow Atmospheric Baseline Observatory, United States). 1449 

 1450 

Figure 6. Daily time series plots of CO2 concentrations from posterior fluxes (in red) and prior 1451 

fluxes (in black) compared to observations (in blue) for years 2009 – 2011 at Yonagunijima, 1452 

Japan (YON), Ryori, Japan (RYO), Anmyeon-do, Republic of Korea (AMY), Argyle, Maine, 1453 

United States (AMT), Chibougamau, Canada (CHM) and Anmyeon-do, Republic of Korea 1454 

(AMY) 1455 

 1456 

Figure 7. Variation of CONTAIL CO2 observations with relevant altitude (m). 1457 

 1458 

Figure 8. Distribution of the difference between observed CO2 and recovered CO2 under four 1459 

vertical bins for years 2009 to 2011. 1460 

 1461 

Figure 9. Stations map with CONTRAIL locations and mean annual percentage uncertainty 1462 

reduction for the years (a) 2009, (b) 2010 and (c) 2011.  1463 

 1464 

Figure 10. Stations map for MLEF (Left panel) and CT2017 (Right panel) 1465 

 1466 

Figure 11. Recovered Mean Annual NEE by MLEF (Left panel) and CT (CT2017) (Right 1467 

panel) for the year (a) 2009, (b) 2010 and (c) 2011 respectively. Units: gC m-2 yr-1.  1468 

 1469 

Figure 12. Mean annual NEE with 1-σ error bars aggregated to TransCom regions; Boreal 1470 

North America, Temperate North America, Europe, Tropical Asia, Eurasian Temperate and 1471 

Australia, estimated by MLEF and CarbonTracker (a) for 2009, (b) for 2010 and (c) for 2011. 1472 

Units: GtC/year. 1473 

 1474 

Figure 13. Comparison of optimized surface CO2 fluxes (GtC yr-1) from MLEF with other 1475 

studies 1476 
aBiomass burning emissions are included into the land fluxes 1477 
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Table 1. Continuous and Flask CO2 measurement sites used in this study 1478 

Table 2. Root Mean Square Error (RMSE) with respect to the prior and the posterior at 1479 

continuous sites for 2009 to 2011 Units: parts per million by volume (ppmv) 1480 

Table 3. Root Mean Square Error (RMSE) with respect to the posterior CONTRAIL CO2 1481 

measurements for 2009 to 2011 Units: parts per million by volume (ppmv) 1482 

Table 4. Optimized surface CO2 fluxes and their one-sigma uncertainties (PgCyr-1) for the 1483 

selected TransCom regions from 2009 to 2011using MLEF and CT2017 method 1484 


