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Abstract

The saturated hydraulic conductivity (Ksat) is a key soil hydraulic parameter for representing infiltration and drainage in Earth

system and land surface models. For large scale applications, Ksat is often estimated from pedotransfer functions (PTFs) based

on easy-to-measure soil properties like soil texture and bulk density. The reliance of PTFs on data from uniform arable lands and

omission of soil structure limits the applicability of texture-based predictions of Ksat in vegetated lands. A method to harness

technological advances in machine learning and availability of remotely sensed surrogate information to derive a new global Ksat

map at 1 km resolution using terrain, climate, vegetation, and soil covariates is proposed. For model training and testing, global

compilation of 6,814 georeferenced Ksat measurements from the literature across the globe were used. The accuracy assessment

results based on model cross-validations with re-fitting show a concordance correlation coefficient of 0.79 and root mean square

error of 0.72 (in log10Ksat given in cm/day). The generated maps of Ksat represent spatial patterns of the vegetation-induced

soil structure formation and clay mineralogy, more distinctly than previous global maps of Ksat such as computed with Rosetta 3

pedotransfer function. The validation of the model indicates that Ksat could be more accurately modeled using covariate-based

Geo Transfer Functions (CoGTFs) that harness spatially distributed surface and climate attributes, compared to pedotransfer

functions that rely only on soil information.
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Abstract19

The saturated hydraulic conductivity (Ksat) is a key soil hydraulic parameter for representing in-20

filtration and drainage in Earth system and land surface models. For large scale applications, Ksat21

is often estimated from pedotransfer functions (PTFs) based on easy-to-measure soil properties22

like soil texture and bulk density. The reliance of PTFs on data from uniform arable lands and23

omission of soil structure limits the applicability of texture-based predictions of Ksat in vege-24

tated lands. A method to harness technological advances in machine learning and availability of25

remotely sensed surrogate information to derive a new global Ksat map at 1–km resolution us-26

ing terrain, climate, vegetation, and soil covariates is proposed. For model training and testing,27

global compilation of 6,814 georeferenced Ksat measurements from the literature across the globe28

were used. The accuracy assessment results based on model cross-validations with re-fitting show29

a concordance correlation coefficient of 0.79 and root mean square error of 0.72 (in log10Ksat30

given in cm/day). The generated maps of Ksat represent spatial patterns of the vegetation-induced31

soil structure formation and clay mineralogy, more distinctly than previous global maps of Ksat32

such as computed with Rosetta 3 pedotransfer function. The validation of the model indicates33

that Ksat could be more accurately modeled using covariate-based Geo Transfer Functions (CoGTFs)34

that harness spatially distributed surface and climate attributes, compared to pedotransfer func-35

tions that rely only on soil information.36

Plain Language Summary37

The soil saturated hydraulic conductivity Ksat defines how fast water can infiltrate and per-38

colate through the soil. To model water flow at large scale, accurate maps of Ksat are needed. Usu-39

ally, Ksat is not measured directly but deduced from well known basic soil properties (soil tex-40

ture, packing density). But these estimates neglect the influence of vegetation and climate on for-41

mation of soil structures that control Ksat. To improve predictions of Ksat, we use a new spa-42

tially referenced Ksat data collection and apply Machine Learning to find correlations between43

Ksat and other properties (soil information, terrain, climate and vegetation). These correlations44

are then implemented at global scale using maps of all relevant properties (so called ‘covariates’45

that were measured by remote sensing). We called this new approach to predictive soil mapping46

the “Covariate-based Geotransfer functions” (CoGTF) to highlight the difference to other maps47

that neglect spatial correlation with soil formatting properties and are based only on soil infor-48

mation (so called “pedotransfer functions” or PTFs). We show that the new maps based on CoGTF49

perform better than approaches based on PTFs.50

1 Introduction51

The description of water, energy, and carbon fluxes between the land surface and the at-52

mosphere relies heavily on the availability of soil hydraulic data (Gutmann & Small, 2007; Fashi53

et al., 2016; Montzka et al., 2017). A prominent soil hydraulic property is the soil saturated hy-54

draulic conductivity (Ksat) that affects the partitioning of rainfall between runoff and infiltration55

(Zimmermann et al., 2013), and plays a critical role in a variety of hydrological and climatolog-56

ical applications (Gutmann & Small, 2007; Or, 2019; Fatichi et al., 2020). At global scale, maps57
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of soil hydraulic properties at ever increasing resolution are required for building Land Surface58

Models (LSMs) (Montzka et al., 2017).59

For large scale applications (regional and global), soil hydraulic parameters are often es-60

timated from easy-to-measure soil properties (e.g., texture, organic content, bulk density) by means61

of pedotransfer functions (PTFs) (Bouma, 1989; Santra & Das, 2008). PTFs are usually devel-62

oped for specific geographic regions thus only representing local conditions of soil forming pro-63

cesses (e.g. Tomasella & Hodnett, 1998; Wösten et al., 1999; Nemes et al., 2005; Saxton & Rawls,64

2006; Jorda et al., 2015; Khlosi et al., 2016). This hinders their transferability across large ge-65

ographical regions (Vereecken et al., 2016). In addition, PTFs generally ignore soil structure and66

pedogenic information and rely heavily on soil textural information (Fatichi et al., 2020), lim-67

iting their applicability in soils characterized by aggregation and formation of biopores. More-68

over, PTFs are generally defined as a function of clay content, without consideration of the ef-69

fect of different clay minerals on soil hydraulic properties (Hodnett & Tomasella, 2002). Dai et70

al. (2019) have recently produced 1–km resolution global maps of soil hydraulic properties (and71

thermal soil conductivity) using the median values of multiple PTFs to estimate Ksat. Likewise,72

Y. Zhang and Schaap (2017) have developed a global map of van Genuchten parameters and Ksat73

based on the Rosetta 3 PTF (an extension of Schaap et al., 2001), making use of three data sets74

from North America and Europe (i.e., Rawls et al., 1982; Ahuja et al., 1989) and UNSODA (Un-75

saturated Soil Hydraulic Database) as described in Leij et al. (1996) and Nemes et al. (2001) and76

employing Artificial Neural Network and bootstrap sampling.77

Maps produced by Dai et al. (2019) and Y. Zhang and Schaap (2017) are limited by the small78

number and unevenly distributed Ksat measurements (N = 1306) used for model training and79

large spatial gaps i.e. missing training points in tropics. Moreover, the training points used to pro-80

duce estimates of Ksat were usually dominated by particular land use and land cover, mainly col-81

lected in arable land. Furthermore, only a limited set of basic soil variables (i.e., bulk density and82

texture) was employed in the derivation of the Rosetta 3 map (Y. Zhang & Schaap, 2019), while83

several studies have shown that also other soil properties such as organic carbon, soil depth and84

pH may increase accuracy of PTFs (Wösten et al., 1999; Mayr & Jarvis, 1999; Tóth et al., 2015).85

The availability of highly resolved remote sensing (RS) and landscape covariates offer new op-86

portunities for injecting new and local information into the modeling of Ksat. Examples of the87

potential usefulness of such covariates are reported by Obi et al. (2014) that developed a PTF us-88

ing terrain attributes for many soil hydraulic properties; Sharma et al. (2006) combined PTFs with89

vegetation and topography indices; Jana and Mohanty (2011) showed that the introduction of to-90

pographic attributes (i.e., Digital Elevation Model, DEM) and information on vegetation (i.e., Leaf91

Area Index, LAI) along with in situ soil basic properties could improve predictions of soil hy-92

draulic properties.93

Many of the recent PTFs use Machine Learning (ML) algorithms to quantify the relations94

between hydraulic properties and various covariates (Schaap et al., 2001; Jana & Mohanty, 2011;95

Araya & Ghezzehei, 2019). In this paper, we hypothesize that Ksat predictions could be improved96

using a combination of soil variables and remote sensing covariate layers integrated by using ma-97

chine learning (ML) framework. We profit from the advancement in remote sensing techniques98

(providing spatial information on different ecological parameters with unprecedented resolution)99

to improve the predictions for soil hydraulic parameters and bridge the gap between site-specific100
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soil properties and landscape variability. We merge concepts of predictive soil mapping with a101

large data set of Ksat measurements and local information (soil, vegetation, climate) into covariate-102

based “Geo Transfer Functions” (CoGTFs) to generate global estimates of Ksat values (to high-103

light the impact of Geo-referencing soil properties and RS-covariates we use the term GTF and104

not PTF). We compare mapping accuracy using global and local/regional assessment including105

visual interpretation of produced spatial predictions. We show how this method (providing novel106

covariate-based maps of Ksat) could be used to overcome some of the limitations of traditional107

PTFs.108

Our specific objectives are:109

1. to improve accuracy and spatial detail of global Ksat maps by harnessing the state-of-the-110

art global remote sensing data products at 1 km spatial resolution,111

2. to generate global maps of Ksat at different soil depths (0, 30, 60 and 100 cm),112

3. to identify the key environmental variables explaining the spatial distribution of Ksat.113

We first describe the model training for Ksat mapping using a random forest ML algorithm,114

and then compare the results against maps generated with Rosetta 3 and the map shown in Dai115

et al. (2019). Note that for a detailed comparison of global maps, we focus on Rosetta 3 because116

the map in Dai et al. (2019) is heavily influenced by the application of a different soil textural117

map (see Supplementary Information file). Then, we validated the CoGTF map, Rosetta 3 map118

and the map of Dai et al. (2019) with independent dataset. We finally show the importance of us-119

ing RS covariates to capture spatial patterns and improve the accuracy of soil hydraulic proper-120

ties.121

2 MATERIALS AND METHODS122

2.1 Covariate-based Geo Transfer Functions (CoGTF) framework123

We propose here an integrated Predictive Soil Modeling (PSM) framework where soil vari-124

ables are combined with RS-based covariates using random forest method (Figure 1). We refer125

to this approach as the “Covariate-based Geo Transfer Functions” (CoGTF) framework and en-126

visage it as a combination of traditional PTF approach and purely data science approach where127

RS-based covariates are used to map patterns in soil properties. The CoGTF framework follows128

six principal steps:129

1. Prepare georeferenced dataset of response variable (Ksat),130

2. Overlay training points and covariates (including predictions of basic soil properties), and131

produce a regression matrix,132

3. Optimize the hyper-parameters in the random forest approach (mtry),133

4. Fit the random forest model,134

5. Evaluate the performance of the Ksat model,135

6. Produce spatial predictions of Ksat.136

A central hypothesis in this study is that spatial and climatic covariates could be harnessed137

to improve the global mapping of Ksat (Jana & Mohanty, 2011). The basis for such hypothesis138
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is the dominant role of climate, topography, and vegetation in soil formation and thus in shap-139

ing local hydraulic transport properties. For each location with Ksat measurement, the values of140

the remote sensing covariates were extracted together with modeled soil information from Open-141

LandMap.org. We implement the spatial predictions and the creation of Ksat maps in the R en-142

vironment (R Core Team, 2013) for statistical computing and provide code examples via the https://143

github.com/ETHZ-repositories/Ksat_mapping_2020/.144

Figure 1. Computational workflow used to generate the soil Ksat map. See text for more details about the

specific steps.

After extracting all covariates, a regression matrix was formed, and the best hyperparam-145

eter (mtry) was computed by five-fold cross-validation, using the R packages ’caret’ version 6.0-146

85 (Kuhn, 2012) and ’ranger’ version 0.12.1 (Wright & Ziegler, 2015). Then, log-transformed147

(log10) Ksat was modeled as a function of depth using random forest (RF) algorithm.148

2.2 Training point data149

Our first task was to enlarge the Ksat measurement database beyond the ≈1,300 values used150

to train Rosetta 3 by compiling available and georeferenced Ksat values from the literature. The151

Ksat values were log-transformed (log10Ksat) and cm/day was selected as a standardized unit.152

A detailed description of the data collection and processing is provided in Gupta et al. (2020).153

We managed to compile a total of 13,267 samples coming from 1,910 sites across the globe. Most154

training data are from the USA, followed by Europe, Asia, South America, Africa, and Australia155

as shown in Figure 2. The collected Ksat database (SoilKsatDB) includes both field (N = 4,460)156

and lab (N = 8,807) measurements.157

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

To limit the over-representation of Florida (mainly arable land not representative of soils158

with natural vegetation), we randomly selected approximately only 1% of the 6,532 Florida sam-159

ples, so that a total of 6,814 Ksat values were finally used for Ksat mapping. This resulted in ge-160

ographical balance between other national data sets (the effect of this selection of Florida data161

is discussed in Supplementary information file).162

Figure 2. Spatial distribution of measured Ksat values (6,814 samples in total) used to produce the global

Ksat map. Colors refer to laboratory (red) and field (blue) measurements. The map is presented in the Goode

equal-area homolosine projection. For more details and access to the Ksat data see Gupta et al. (2020).

2.3 Soil and environmental covariates163

As environmental and soil covariate layers for Ksat modeling at global scale, we used global164

maps of soil properties (sand, clay, and bulk density) and other 24 RS-based covariates available165

from https://openlandmap.org/. These were selected to represent ecological conditions es-166

sential in soil-forming processes according to Jenny (1994). The covariates can be divided into167

five groups:168

1. Climate-based covariates, including mean annual precipitation, temperature, temperature169

seasonality, maximum temperature of warmest month, minimum temperature of coldest170

month, precipitation of wettest month, precipitation of driest month (Chelsa products, Karger171

et al., 2017), cloud fraction (Wilson & Jetz, 2016), diffuse irradiation, direct irradiation,172

annual land surface temperature, monthly precipitation and its standard deviation (Brocca173

et al., 2019).174

2. Digital terrain model (DTM)-based covariates (Yamazaki et al., 2017), including land-175

scape metrics (such as slope, aspect, topographic wetness index) derived from SAGA GIS176

(Conrad et al., 2015) and landform classification and lithological maps.177

3. Surface reflectance-based covariates, including surface reflectance from Landsat and MODIS178

dataset for different wavelength bands (Hansen et al., 2013), snow probability (Buchhorn179

et al., 2017) and regularly flooded wetlands (Tootchi et al., 2019).180
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4. Vegetation-based covariate, represented by the annual fraction of absorbed photosynthet-181

ically active radiation (FAPAR), averaged over the 2014-2019 period.182

5. Basic soil properties, comprising sand, clay content and bulk density for different soil depths183

(matching the sampling depth of Ksat), which were obtained from OpenLandMap (Hengl184

et al., 2017). Soil depth is used as a covariate to model the change of Ksat with depth (the185

methodology to use depth as a covariate is described in Hengl & MacMillan, 2019).186

A detailed list and description of all the covariates is provided in Table S1 in the Supple-187

mentary Information (SI). All covariate maps were resampled to the standard grid at a spatial res-188

olution of 1 km covering latitudes between -62.0 and 87.37. We did not map Antarctica as this189

continent is dominantly covered with permanent ice and lacks training points.190

2.4 Evaluating the performance of Ksat predictive models191

The model-fitting results were evaluated using out of bag (OOB) error reported by the ranger192

package by default. A bootstrap sampling is used to construct each tree in the random forest and193

different bootstrap samples are used for each tree containing approximately 2/3 of the total ob-194

servations. The samples not used in the bootstrap samples are called out-of-bag (OOB) samples195

(sub-dataset) (Peters et al., 2007; Rad et al., 2014). The relative importance of the covariates was196

assessed by the increase in node purity. It is calculated using gini criterion from all the splits (in197

our case 200 splits) in the forest based on a particular variable (Breiman, 2001; Rodrigues & de la198

Riva, 2014).199

The performance of the Ksat model was evaluated using 5-fold cross-validation. This means200

that models were refitted 5 times using 80% of the data and the predictions for remaining 20%201

estimated using these models were compared with observations. The process was repeated three202

times to produce stable results. The final results are shown using hexbin plot with the LOWESS203

(Locally Weighted Scatterplot Smoothing) line to present the conditional bias of the Ksat val-204

ues. The accuracy of the cross-validation predictions was evaluated using bias (mean error), root205

mean square error (RMSE), coefficient of determination (R2) and concordance correlation co-206

efficient (CCC).207

Bias and RMSE are defined by:208

bias =
n

∑
i=1

(yi − ŷi)

n
(1)

RMSE =

√
n

∑
i=1

(ŷi − yi)2

n
(2)

where y and ŷ are observed and predicted values and n is the total number of cross-validation points.209

R2 is defined as:210

R2 =

[
1− SSE

SST

]
% (3)
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where SSE is the sum of squared errors between the cross-validation predictions ŷ and the mea-211

surements y, and SST is the total sum of squares (proportional to variance of measurements). A212

coefficient of determination equal to 1 indicates that variance of the prediction errors is equal to213

zero but the bias may differ from zero.214

In addition, Concordance Correlation Coefficient (CCC) (as measure of the agreement be-215

tween observed and predicted Ksat values) of cross validation (CV) (Lawrence & Lin, 1989) is216

given by:217

CCC =
2 ·ρ ·σŷ ·σy

σ2
ŷ +σ2

y +(µŷ −µy)2 (4)

where µŷ and µy are predicted and observed means, σŷ and σy are are predicted and ob-218

served variances and ρ is the Pearson correlation coefficient between predicted and observed val-219

ues. CCC is equal to 1 for perfect model.220

2.5 Comparision of accuracy of Ksat maps: CoGTF, Rosetta 3 and the map of Dai221

et al. (2019)222

The accuracy of the predictions of Ksat by the three approaches was evaluated with a sub-223

set of the Ksat database that was selected in the following way: First, the surface of the Earth was224

divided into blocks of 5 degrees as shown in Figure S1 in the SI. For fair comparison, Ksat mea-225

surements in blocks in North America or Europe were dropped because Rosetta 3 was mostly226

calibrated with data from these regions (2525 Ksat values were outside of these regions). Then227

we randomly selected blocks until about 20% of the remaining Ksat measurements had been cho-228

sen. These 508 Ksat measurements formed the test set for which predictions were extracted from229

the Rosetta 3 and the Dai et al. (2019) maps. CoGTF predictions of Ksat were computed for these230

508 test observations. The accuracy of the predictions by the three approaches was then evalu-231

ated with the same criteria as used for cross-validation.232

3 Results233

3.1 Model fitting and accuracy of modeled Ksat values234

The CoGTF model fitted the logarithms of the Ksat measurements reasonably well (out-235

of-bag RMSE = 0.73 (log10Ksat in cm/day) and R2 = 0.66). Figure 3 shows the list of most im-236

portant covariates for Ksat modelling. The x-axis displays the average increase in node purity.237

The higher the value, the more important is a covariate. Figure 3 shows that sand content was found238

the most important covariate followed by elevation (important for soil formation and water flow),239

clay content, and bulk density. Climate covariates are dominating after the fifth covariate.240

The results of the 5-fold cross-validation are presented in Figure 4a using hexbin density241

plots. For predictions of Ksat greater than equal to 10 cm/day the line of LOWESS falls onto the242

1:1-line, hence the predictions were conditionally unbiased here. A slight positive conditional243

bias is visible for predictions less than 10 cm/day where the LOWESS line is below the 1:1 line.244

CoGTF tended to overestimate small Ksat values, but this bias remains small. Hence, RF pre-245

dictions were both marginally and conditionally approximately unbiased. Cross-validation re-246
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Figure 3. Importance of the covariates for modeling Ksat by a random forest model. The x-axis displays

the average increase in node purity (the larger the value, the more important is a covariate). The 14 most im-

portant covariates are shown here: sand content, bulk density (BD), and clay content belong to soil covariates.

Elevation and topographic wetness index (TWI) are topography covariates. Temperature seasonality (TS),

precipitation of driest month (PDM), cloud fraction (CF), minimum temperature of coldest month (MTCM),

annual average land surface temperature (LST), maximum temperature of warmest month (MTWM), mean

annual temperature (AMT), and mean annual rainfall (AMR) belong to climate category. Shortwave infrared

(SWIR) Landsat-7 band is from the surface reflectance group.

sults show a reasonable overall model accuracy, with R2, CCC, and RMSE and bias equal to 0.66,247

0.79, 0.72, and 0.0039 (log10 of Ksat in cm/day for RMSE and bias), respectively. The obser-248

vations were also correlated with Rosetta 3 Ksat map (for this comparison, a total of 5,255 sam-249

ples from shallow soil depth were selected out of 6,814 to compare with Rosetta 3 map for top250

15 cm) as shown in Figure 4b. RMSE and CCC was observed 1.23 and 0.12 (log10 of Ksat in cm/day251

for RMSE), respectively.252

3.2 Global map of Ksat253

Global Ksat maps were produced for four soil depths (0, 30, 60, and 100 cm). Figure 5a254

shows the CoGTF map of Ksat at 0 cm soil depth, while results for other soil depths are provided255

in Figure S2 (SI). Ksat values in the top layer (0 cm depth) vary between 0.05 to 31,600 cm/day.256

High Ksat values were predicted for the equatorial belt and for parts of Russia and Canada, while257

low Ksat values were produced in East America, Europe and parts of Asia (mainly India and North-258

East part of China). In general, Ksat value decreased with depth, with the most significant reduc-259

tion observed in North America, South America, China, India, and Russia (see Figures S2-S3 in260

the SI). Figure 6 compares the probability distribution of the global Ksat map values with the dis-261

tribution of measured and fitted Ksat values for the 6,814 Ksat samples. Results show a more peaked262

distribution of global Ksat map compared to the measured and fitted Ksat at the sampling loca-263

tions. Both measured (red) and fitted log10 Ksat showed the same mean values of 1.64 with stan-264

dard deviations 1.25 and 1.01, respectively, whereas the mean and standard deviation of global265

map were observed 1.99 and 0.30 respectively.266
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Figure 4. Accuracy plots based on cross-validation: (a) correlation between observations and cross-

validation predictions of log10 Ksat based on CoGTF model, (b) correlation between observations (0-30 cm

soil depth) and Rosetta 3 predicted values from 0-15 cm map. The color codes the number of observations

in each hexagonal pixel. The solid black line is 1:1 line and the blue dashed line is LOWESS curve (locally

weighted scatterplot smoothing). The model accuracy of CoGTF was assessed using CCC (0.79) and RMSE

(0.72). The RMSE and CCC between observations and Rosetta 3 predicted Ksat values were observed 1.23

and 0.12, respectively. The unit of RMSE is log10 of Ksat in cm/day.

3.3 Comparison with Rosetta 3 global Ksat map267

The CoGTF Ksat map is compared with the Rosetta 3 map (Y. Zhang & Schaap, 2019) in268

Figure 5. Note that there are different models of Rosetta 3 according to the soil information used269

to build the neural network: H1w (information on soil textural class), H2w (sand, silt, and clay270

percentage), H3w (sand, silt, and clay percentage plus bulk density), H4w (same information as271

H3w plus water content at 330 cm suction), and H5w (same as H3w plus water content at 330272

cm and at 15,000 cm) (X. Zhang et al., 2019). As standard model H3w is often chosen (see map273

in Y. Zhang & Schaap, 2019) because information on water content at 330 cm and 15,000 cm is274

sparse at global scale compared to bulk density and soil texture information. For comparison with275

CoGTF, we chose H3w model as well.276

The main differences between the CoGTF map and Rosetta 3 are the low Ksat values pre-277

dicted by Rosetta 3 for tropical regions and the abrupt change in Rosetta 3 predictions in high278

latitude regions of Canada and Russia as a consequence of the strong sensitivity of Rosetta 3 pre-279

dictions on bulk density. In general, lower Ksat values were observed in the Rosetta 3 map com-280

pared to the CoGTF map for most regions worldwide except the northern regions (Canada and281

Russia), while regions with coarser soils such as Sahara and middle East showed higher Ksat val-282

ues in Rosetta 3. The lower values of Ksat in Rosetta 3 than the in CoGTF map is evident in Fig-283

ure 6a. Medians of the common logarithm of Ksat (unit cm/day) were equal to 1.62 and 2.00, re-284

spectively (Figure 6b).285
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Figure 5. Visual comparison between (a) CoGTF Ksat map, and (b) map based on Rosetta 3 PTF. Ksat

values predicted by Rosetta 3 were higher for sandy soils (Sahara) and in northern regions with smaller bulk

density. The scale of the maps was truncated at minimum and maximum values of 10 and 1000 cm/day to

show the significant variations in the maps

3.4 Validation of global Ksat maps286

Table 1 shows the results of the comparison of the accuracy of Ksat predictions for the CoGTF,287

Rosetta 3 and Dai et al. (2019) maps (see Figures S7 and S8 for the map of Dai et al., 2019, with288

CoGTF map). A total of 372 Ksat samples out of the validation dataset with 508 samples (we289

selected samples with soil depth 0-30 cm) were compared with measured Ksat values and RMSE290

values of 1.02, 1.29, and 1.15 were computed (log10 of Ksat in cm/day) for the CoGTF map, Rosetta291

3, and Dai et al. (2019) map, respectively. The RMSE illustrates that CoGTF map showed bet-292

ter performance than the other maps. However, RMSE of 1 also shows that the precision is lim-293

ited for CoGTF as well. The better performance of CoGTF is manifested in the much lower bias294

compared to the two other models.295
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Figure 6. Difference in probability density functions (PDF): (a) between global CoGTF map (yellow) and

Rosetta 3 (black) Ksat values at 0 cm depth, measured (red) and fitted (blue) Ksat values at the sampling sites,

(b) cumulative distribution functions for Rosetta 3 map (black) and CoGTF map (yellow) for soil depth 0 cm.

Table 1. Root mean square error (RMSE) and bias of predictions of log10(Ksat) (units cm/day) for test data.

A total of 372 Ksat sample points were selected to investigate the accuracy of Ksat predictions (0-30 cm soil

depth were used). The negative signs in bias demonstrate that all three models underestimated Ksat values.

The range shows the minimum and maximum values of 372 samples.

Models Samples used RMSE bias Extracted points range

CoGTF (0 -15 cm) 372 1.02 -0.19 0.85-2.60

Rosetta 3 (0 -15 cm) 372 1.29 -0.75 0.83-2.64

Dai et al. (2019) (0 -15 cm) 372 1.15 -0.51 0.68-2.30

4 Discussion296

4.1 Characteristics of the CoGTF global Ksat maps297

In this paper we have produced global estimates of Ksat by linking terrain, climate, veg-298

etation and soil spatial covariates to measured Ksat values, thus injecting local information usu-299

ally ignored by traditional PTFs. We refer to this approach as the Covariate-based Geo Trans-300

fer Functions (CoGTF) framework. The newly developed global CoGTF map of Ksat (Figure 5)301

shows high values in the Northern part of South America, the central part of Africa and South-302

east Asia (mainly Indonesia, Malaysia, Myanmar (Burma), Philippines, Singapore, and Thailand),303

most likely due to high rainfall, temperature, and vegetation. Our results shows (Figure 3) that304

rainfall, temperature and their variation are the most important climate covariates for the Ksat305

mapping (Shoji et al., 2006). This indicates that these climatic factors not only act as catalyst in306

soil chemical reactions but also determine the type and biomass of vegetation that is important307

for soil structure formation. This impact of vegetation on soil Ksat is in line with the research308
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by Niemeyer et al. (2014) who compared the leaf area index with Ksat and observed that high309

leaf area index increases the Ksat (with R-square = 0.33).310

The central part of India, eastern part of Australia, and parts of China showed low Ksat val-311

ues due to the presence of high clay content that reduces the soil permeability (see as well dis-312

cussion on role of clay mineral type in section 4.2). The west part of North America, middle east313

countries (Tibet, Iran, Turkey), and northern parts of Algeria have low Ksat values that may be314

related to high elevation, low rainfall, less vegetation and thus less structure formation processes.315

Many studies have recognized the indirect influence of elevation on soil proprieties (Leij et al.,316

2004; Carter & Ciolkosz, 1991). Similarly, different land-use (forest or pasture) directly impact317

Ksat. Chandler et al. (2018) showed that forests had larger soil hydraulic conductivity than pas-318

tures.319

Likewise, high values of Ksat up to around 100 to 300 cm/day are observed in desert re-320

gions such as Thar desert in India, northern and southern Africa, and central Australia, where dom-321

inating fractions of sand cause high water permeability. Similarly, Colombia and Peru showed322

high Ksat values due to high organic carbon content (Allison, 1973). Furthermore, high Ksat val-323

ues were observed in parts of Brazil that strongly decreased with depth. Similar results were re-324

ported by Belk et al. (2007). They conducted a study in the tropical forest of Brazil and measured325

the Ksat at various depths for different sites. The authors found that Ksat values at surface were326

mainly between 100 to 1000 cm/day and decreased with depth.327

4.2 Effect of clay type — active and inactive clay minerals328

Pedotransfer functions like Rosetta 3 and the ensemble of PTFs used in (Dai et al., 2019)329

to estimate soil hydraulic properties based on clay fraction and do not take into account the large330

differences in microstructure and hydration of different clay minerals. The remarkable spatial331

segregation in climatic regions of different clay minerals (see Ito & Wagai, 2017) and the differ-332

ent hydraulic properties of the clay minerals indicate that PTFs built for temperate regions with333

swelling clays cannot be applied for tropical regions with non-swelling clays (see Ottoni et al.,334

2018). In tropical soils, dense vegetation, and non-swelling (‘inactive’) kaolinite clay minerals335

result in higher conductivities (Hodnett & Tomasella, 2002) in contrast to PTFs that are trained336

with data from temperate soils with swelling (more ‘active’) clays. This is further discussed for337

estimates relevant to Brazil shown in Figure 7.338

In Figure 7, the CoGTF and Rosetta 3 Ksat maps are shown together with six covariates339

and clay mineral map. The Ksat values predicted with CoGTF are one order of magnitude higher340

than based on Rosetta 3. The difference stems from the dominant role of soil texture for Rosetta341

3 as illustrated with a black polygon in Figure 7: the polygon marks a region of high sand con-342

tent and low clay content that is manifested in relatively high values of Ksat for Rosetta 3, with343

values typical for temperate regions. For CoGTF, the conductivity in this ‘sand band’ is relatively344

low because other covariates and processes are more important. These lower values coincidence345

with low elevation. The important role of elevation in CoGTF is also manifested in the high Ksat346

values in the mountainous region in the south and the low Ksat values in the Amazon region. An-347

other reason for the lack of correlation between Ksat and texture for CoGTF in Brazil is the in-348

active clay mineral type (kaolinite) that does not limit Ksat the same way as in case of more ac-349
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Figure 7. Predicted Ksat values for Brazil (a), spatial patterns of the Rosetta 3 Ksat map in log10 cm/day

(b) and of the first four most important covariates (c-f, see Figure 3): sand fraction (%), elevation (meters

above sea level), bulk density (g/cm3) and clay fraction (%). Other covariates that are related to soil forma-

tion to link with Ksat are shown as well (g-i): mean annual rainfall (mm), Copernicus fraction of absorbed

photosynthetically active radiation (FAPAR, values in %) and kaolinite (in %) clay mineral. The region with

black polygon marks a region with high sand and low clay content that is expressed in Rosetta 3 as band of

relatively high Ksat values. In contrast to Rosetta 3, CoGTF is not dominated by soil texture but takes into

account covariates that are important for soil formation (here mainly the elevation).

tive clay in temperate regions. Precipitation and temperature are the main reasons for the strong350

chemical weathering of the rock and the formation of the non-swelling, kaolinite clay minerals351

(Montes et al., 2002). It is evident in Figure 7(g to i) that in the region with low rainfall and veg-352

etation kaolinite percentage is lower than other regions with high rainfall and vegetation.353
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In contrast to Brazil, India is a region with active (swelling) clay minerals. In contrast to354

the inactive kaolinite in Brazil, for the active clays in India, low Ksat values can be expected. Fig-355

ure S4a and S4i show the correlation between low Ksat values and high contents of smectite clay356

mineral. The low values of Ksat in central India directly relate to high clay content, low vege-357

tation biomass and low mean annual rainfall (see Figure S4 for covariates in SI). Figure S4b il-358

lustrates the Ksat values from Rosetta 3 for India. The patterns of high active clay fraction in In-359

dia is not captured by Rosetta 3 model. This might be the effect of considering only soil basic360

properties or using samples from only temperate region.361

4.3 Effects of information clustering — The Florida database example362

Out of 13,267 Ksat values, only 6,814 values were used for the Ksat mapping to avoid a363

distortion of the Ksat predictions by the many data from Florida. The dataset contained 6,532364

Ksat values from Florida but we used only 1% of these points for mapping. Figure S5a and S5b365

compares the map computed with all 13,267 Ksat measurements with the map trained on 6,814366

measurements. The difference between these maps (Figure S5c) showed a large impact on the367

sandy regions such as Sahara and center part of Africa and middle east with significantly higher368

Ksat values when all Florida points are included in the fitting. A similar effect was observed in369

parts of South America and Australia. On the other hand, the south of Africa and the higher north-370

ern latitudes showed higher Ksat values when only 1% of the Florida data was used.371

4.4 Improved model performance using remote sensing covariates372

As we described above, the RS (vegetation, topography, climatic) covariates could be used373

to harness the heterogeneity produced by these environmental variables as these factors shape374

clay activity and soil-forming processes that control saturated hydraulic conductivity (Ottoni et375

al., 2018; Hao et al., 2019). To investigate this effect of RS covariates in the predictions, we fit-376

ted the RF model only with soil properties or remote sensing covariates. The maps are shown in377

Figure S6a and S6b in the SI.378

Table 2. Root mean square error (RMSE) and coefficient of determination (R2) for different models.

Models RMSE R2 Total covariates Best mtry

CoGTF 0.72 0.66 28 6
Only soil covariates 0.75 0.63 4 2
Only RS covariates 0.73 0.65 24 16

Table 2 shows the RMSE and R2 using different models where we used only soil covari-379

ates, only remote sensing covariates, and the CoGTF model. Remote sensing (RMSE = 0.73; R2
380

= 0.65) predicted the Ksat better than only soil covariates (RMSE = 0.75; R2 = 0.63). Similarly,381

the CoGTF model showed lower RMSE (0.72) and higher R2 (0.66) than only RS covariate. Hence,382

consideration of RS covariates in predicting hydraulic properties could increase the accuracy of383

the predictions of soil hydraulic properties compared to a model that is based only on soil infor-384

mation.385
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4.5 Usage of the global CoGTF Ksat maps and future developments386

We observed that RMSE in the model validation for the CoGTF map was better than the387

other maps. However, RMSE with 1 (log10 Ksat in units of cm/day) also shows that the preci-388

sion of even the CoGTF map is not so good. On the other hand, the bias for CoGTF map was much389

better than for the other maps. Although, the predictions are not so accurate, it shows the one step390

ahead in terms of improvement in the predictions using distributed Ksat dataset and considera-391

tion of RS covariates.392

The global CoGTF maps can be used to extract the information of Ksat at different depths393

for local, regional, and global scale studies. On the local scale, these maps can be helpful in agro-394

nomic processes such as soil interpretation, water-plant relationships, and assessing soil suitabil-395

ity for agriculture. For regional and global scale, the maps could provide unique values to each396

pixel in watershed scale and Earth surface models and would enhance the heterogeneity and ac-397

curacy in the area. The maps could also be useful for the soil water management policies as guide-398

line to show where soil reclamation is required to reduce and enhance the hydraulic conductiv-399

ity.400

The actual CoGTF map has a resolution of 1 km. This resolution may be improved in the401

near future considering various initiatives to estimate soil and RS information with higher res-402

olution. But independent of improved resolutions, subgrid information on Ksat may be required403

for a catchment when specific information on soil texture or vegetation type is available. For such404

applications, we are actually developing a parametric model of CoGTF so that Ksat can be es-405

timated as a linear combination of most important covariates.406

5 Conclusions407

Soil saturated hydraulic conductivity is an important soil property for the parameterization408

of Earth system and land surface models. The major limitations of currently available maps are409

that (1) they are developed using a limited number of Ksat measurements mainly from temper-410

ate regions, (2) they are derived only from basic soil properties thus ignoring the effect of biologically-411

induced soil structure as well as clay mineralogy, and (3) they are not benefiting from the wealth412

of local remote sensing (RS) covariates. Therefore, we proposed a new global map of Ksat ob-413

tained by linking the measured Ksat values (6,814 samples) with 24 remote sensing covariates414

and 3 soil properties (sand content, clay content and bulk density) to add local information on415

vegetation, climate, and topography. The new map combines georeferenced information of soil416

properties and remote sensing covariates and is called covariate-based Geo Transfer Functions417

(CoGTF) map. We used the random forest machine-learning algorithm to fit the Ksat models and418

the performance was assessed using CCC and RMSE which was computed using 5 fold cross-419

validation. The CCC and RMSE (in log10 Ksat given in cm/day) were observed 0.79 and 0.72,420

respectively. The CoGTF global Ksat map was compared with the map calculated with the well421

known Rosetta 3 PTF and major differences between the two maps were found. Firstly, Ksat val-422

ues in Rosetta 3 were much lower for tropical regions compared to the CoGTF map. The trop-423

ical regions are expected to have rather high Ksat values due to intense soil formation processes424

and presence of more conductive clay minerals (kaolinite). The effects of active and inactive clay425

minerals on Ksat are captured in CoGTF map as formation of clay minerals are linked to precip-426
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itation, temperature and dense vegetation. Secondly, in CoGTF there is no abrupt change in Ksat427

as shown in Rosetta 3 map for the higher latitude regions such as Canada and Russia. This large428

contrast is related to a change in bulk density that is dominant in Rosetta 3. In CoGTF, RS co-429

variates pattern cover this contrast. Furthermore, the CoGTF map, Rosetta 3 map, and the map430

of Dai et al. (2019) were validated using test data that were not used to calibrate the models, and431

the result showed that the CoGTF map performed better than the other models. Consequently,432

we propose to transition from PTFs based only on soil texture and bulk density to spatial-association433

of climate and vegetation covariates ("GTFs") to estimate Ksat. The study provides a blueprint434

for how georeferenced covariates could be used within the machine learning framework to im-435

prove Ksat predictive mapping. Moreover, the resulting CoGTF global maps are readily updat-436

able as more information becomes available (covariates of measured Ksat).437
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Figure S1  Regionalization of global map for validation of CoGTF model. a) 5 degrees by 5 degrees 

grids plotted with positions of Ksat dataset (6,814 samples). A total of 168 grid cells contains the 

data points. b) 30 blocks of data were removed randomly (i.e 20% of 2,525 Ksat dataset) for 

validation. The 2,525 Ksat samples are a subset of the totally 6,814 samples because samples from 

Europe and North America were excluded (they were used to train Rosetta 3 model and could not 

be considered for model validation).  
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Figure S2 Ksat maps at different depths a) 0 cm b) 30 cm, b) 60 cm, c) 100 cm computed with 

CoGTF 
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Figure S3 Cumulative distribution function CDF for global maps of Ksat at different depths (0, 30, 

60 and 100 cm) computed with CoGTF. 
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Figure S4  Ksat values for India predicted with CoGTF (a), spatial patterns of the Rosetta 3 Ksat 

map b), and the first four most important covariates (c-f, see figure3 in the main text): sand fraction 

(%), elevation (meters above sea level), bulk density (g/cm3) and clay fraction (%). Other covariates 

important for soil formation liked with Ksat are shown as well (g-i): mean annual rainfall (mm), 

fraction of absorbed photosynthetically active radiation (FAPAR, values in %) and kaolinite (in %) 

clay mineral. 



 

 

6 

 

 
Figure S5 The difference between Ksat map including all Florida samples (a) and using only 1% 

of these Florida Ksat points (b) to build the CoGTF model. In the maps of differences (c), blue 

color represents higher values when all Florida points are included, yellow represents 

approximately the same value in both maps, and red shows locations with higher Ksat when only 

1% of Florida samples are included. The Florida cluster showed a large impact on the sandy regions 

such as Sahara and center part of Africa and middle east as it significantly increased the Ksat values. 

A similar effect was observed in parts of South America and Australia. On the other hand, south of 

Africa and higher Nothern latitude showed high Ksat values for map that includes 1% of Florida 

samples. 
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Figure S6 Ksat maps computed with Random Forest approach for soil depth of 0 cm. a) Only 24 

remote sensing covariates were used to build model and to compute the map. b) Only soil properties 

were used (sand content, clay content and bulk density). Note that high contrast in northern latitudes 

in Eurasia are controlled by changes in bulk density (a dominant pattern in Rosetta 3 map). 
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Figure S7 a) Ksat map at 0-5 cm depth from Dai et al. (2019) computed from an ensemble of 16 

pedotransfer functions. The map used soil information from Global Soil Dataset for Earth System 

Models (GSDE; Shangguan et al., 2017) and SoilGrids (Hengl et al., 2017). b) CoGTF Ksat map 

at 0 cm.   
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Figure S8 Difference in probability density functions (PDF) of Ksat values: (a) between global 

CoGTF map (yellow) and Dai et al. (2019) (black dotted line), measured (red) and fitted (blue) 

Ksat values at the sampling sites; (b) cumulative distribution functions for Dai et al. (2019)  map 

(black dotted line) and CoGTF map (yellow) for soil depth 0 cm.  
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Table S1 List of covariates used for creating the Ksat map 

 

S.

no 

 

List of  Covariates Source 

 Climate  
1 clm_annual mean 

temperaturebio1_m_1km_s0..0cm_1979-

2013_v1.0 

http://chelsa-

climate.org/bioclim/ 

 

(Karger et al., 2017) 2 clm_temperature seasonalitybio4_ m_1km_ 

s0..0cm_1979-2013_v1.0 

3 clm_max temperature of warmest 

monthbio5_m_1km_ s0..0cm_1979-2013_v1.0 

4 clm_min temperature of coldest monthbio6_ 

m_1km_ s0..0cm_1979-2013_v1.0 

5 clm_annual precipitationbio12_ 

m_1km_1979_2013_v1.0 

6 clm_precipitation of wettest monthbio13_ 

m_1km_1979_2013 

7 clm_precipitation of driest monthbio14_ 

m_1km_1979_2013 

8 clm_cloud.fraction_earthenv.modis.annual_m_1

km_s0..0cm_2000..2015_v1.0 

http://www.earthenv.org/cloud 

 

(Wilson & Jetz, 2016). 

9 clm_diffuse.irradiation_solar.atlas.kwhm2.100_

m_1km_s0..0cm_2016_v1 

 

https://globalsolaratlas.info/do

wnload/world 10 clm_direct.irradiation_solar.atlas.kwhm2.10_m

_1km_s0..0cm_2016_v1 

11 clm_lst_mod11a2.annual.day_m_1km_s0..0cm_

2000..2017_v1.0 

https://lpdaac.usgs.gov/product

s/mod11a2v006/ 

12 clm_lst_mod11a2.annual.day_sd_1km_s0..0cm

_2000..2017_v1.0 

13 clm_precipitation_sm2rain.annual_m_1km_s0..

0cm_2007..2018_v0.2 

https://zenodo.org/record/3405

563#.XlgdNTFKhaQ 

(Brocca et al., 2019) 

 Digital terrain model  

14 dtm_twi_merit.dem_m_1km_s0..0cm_2017_v1.

0 

https://zenodo.org/record/1447

210#.XllTejFKhaQ 

 

(Yamazaki et al., 2017) 
15 dtm_slope_merit.dem_m_1km_s0..0cm_2017_v

1.0 

16 dtm_aspect.cosine_merit.dem_m_1km_s0..0cm

_2018_v1.0 

17 dtm_elevation_merit.dem_m_1km_s0..0cm_20
17_v1.0 

18 dtm_lithology_usgs.ecotapestry.acid.plutonics_

p_1km_s0..0cm_2014_v1.0 

http://chelsa-climate.org/bioclim/
http://chelsa-climate.org/bioclim/
http://www.earthenv.org/cloud
https://globalsolaratlas.info/download/world
https://globalsolaratlas.info/download/world
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://zenodo.org/record/3405563#.XlgdNTFKhaQ
https://zenodo.org/record/3405563#.XlgdNTFKhaQ
https://zenodo.org/record/1447210#.XllTejFKhaQ
https://zenodo.org/record/1447210#.XllTejFKhaQ
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 Surface reflectance  

19 lcv_landsat.nir_wri.forestwatch_m_1km_s0..0c

m_2018_v1.2 

Hansen et al. (2013) 

 

 20 lcv_landsat.red_wri.forestwatch_m_1km_s0..0c

m_2018_v1.2 

21 lcv_landsat.swir2_wri.forestwatch_m_1km_s0..

0cm_2018_v1.2 

22 lcv_snow_probav.lc100_p_1km_s0..0cm_2017_

v1.0 

Tsendbazar et al. (2017) 

23 lcv_wetlands.regularly.flooded_upmc.wtd_p_1k

m_b0..200cm_2010..2015_v1.0 

https://doi.pangaea.de/10.1594/

PANGAEA.892657 

(Tootchi et al., 2019) 

 

 Vegetation covariates  

24 veg_fapar_proba.v.annnual_d_1km_s0..0cm_20

14..2019_v1.0 

https://land.copernicus.eu/glob

al/products/fapar 

 Predicted soil properties  

25 sol_clay.wfraction_usda.3a1a1a_m_1km_b0_10

_30_60_100_200cm_ 

1950..2017_v0.2 

 

 

 

https://www.openlandmap.org/ 

 

Hengl et al. (2017) 

26 sol_sand.wfraction_usda.3a1a1a_m_1km_ 

b0_10_30_60_100_200cm _1950..2017_v0.2 

27 sol_bulk_density.wfraction_usda.3a1a1a_m_1k

m_ b0_10_30_60_100_200cm 

_1950..2017_v0.2 
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