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Abstract

Soil moisture is important for sub-seasonal and seasonal climate prediction. However, biases and uncertainties of soil moisture in

climate models affect the accuracy of climate prediction. Here we evaluate biases in climate model soil moisture across different

time scales in the frequency domain. Based on our findings, compared to observations, soil moisture variability in the models is

found to be underestimated at frequencies smaller than the seasonal time scale and overestimated at frequencies larger than the

seasonal time scale. In addition, for the total effect of evapotranspiration and precipitation variability on soil moisture, models

also underestimate frequencies smaller than the seasonal time scale and overestimate frequencies larger than it. Furthermore,

no matter which factor (evapotranspiration or precipitation) is most affecting soil moisture, models underestimate its effect on

soil moisture in the corresponding frequency range. Finally, at a global scale, biases in climate models can be related to the

mean climate and not to soil properties. This study provides new insights into climate models deficiencies, and contributes to

a better understanding of soil moisture and climate.
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Key Points: 

 17 climate models in CMIP5 are used to evaluate the temporal behavior of surface soil 

moisture compared to the observations. 

 Models underestimate frequencies smaller than the seasonal time scale and overestimate 

frequencies larger than it. 

 At a global scale, model biases are more closely related to climate than to soil types. 
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Abstract 

Soil moisture is important for sub-seasonal and seasonal climate prediction. However, biases and 

uncertainties of soil moisture in climate models affect the accuracy of climate prediction. Here 

we evaluate biases in climate model soil moisture across different time scales in the frequency 

domain. Based on our findings, compared to observations, soil moisture variability in the models 

is found to be underestimated at frequencies smaller than the seasonal time scale and 

overestimated at frequencies larger than the seasonal time scale. In addition, for the total effect of 

evapotranspiration and precipitation variability on soil moisture, models also underestimate 

frequencies smaller than the seasonal time scale and overestimate frequencies larger than it. 

Furthermore, no matter which factor (evapotranspiration or precipitation) is most affecting soil 

moisture, models underestimate its effect on soil moisture in the corresponding frequency range. 

Finally, at a global scale, biases in climate models can be related to the mean climate and not to 

soil properties. This study provides new insights into climate models deficiencies, and 

contributes to a better understanding of soil moisture and climate. 

Plain Language Summary 

Soil moisture is important for climate prediction at subseasonal to seasonal time scales. It is 

closely related to processes between the atmosphere and the land surface, such as 

evapotranspiration and precipitation. However, the deficiencies in climate models on soil 

moisture lead to incorrect predictions. In this study, we found that (1) models underestimate soil 

moisture variability on weekly to seasonal time scales and overestimate it on seasonal to annual 

time scales, (2) soil moisture has a closer relationship with precipitation on weekly to seasonal 

time scales and has a closer relationship with evapotranspiration on seasonal to annual time 

scales, but models underestimate these relationships on weekly to annual time scales, and (3) the 

deficiencies in these climate models are more closely related to mean soil moisture than soil 

properties (i.e., sand & clay content). Our study provides a new understanding and assessment of 

climate models based on soil moisture variability. 

1 Introduction 

Even though soil moisture only constitutes a small part of the total water on the Earth, it has been 

regarded as one of the most important factors in the Earth system. Because of its special role at 

the boundary between the land surface and atmosphere, soil moisture plays an important role in 

land-atmosphere interactions and climate-change projections (Koster et al., 2004; Seneviratne et 

al., 2010). It is critical for the hydrologic cycle as soil moisture impacts the ecosystem 

(D’Odorico et al., 2003), agriculture (Botter et al., 2007), and the terrestrial carbon cycle (Green 

et al., 2019). 

It is therefore important to understand the variability of soil moisture and its relationship to 

atmospheric processes over different time scales. Most previous studies used the autocorrelation 

of the soil moisture time series to investigate this topic. First, soil moisture variability was 

modeled as a first-order Markov process forced by a random precipitation series (i.e., white 

noise) and an exponential damping term related to evapotranspiration losses (Delworth and 

Manabe, 1988). Based on this model, the authors first proposed that a red noise process can 

reasonably govern the temporal variability of soil moisture, and the e-folding autocorrelation 

time scale of a red noise process can be used to quantify soil moisture variability (Delworth and 

Manabe, 1988). However, since there are some important limitations in this Markovian 

framework (Koster and Suarez, 2001), following studies tried to improve the understanding of 
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soil moisture variability. To solve the problem about the possibility of seasonal variations as well 

as the possible ignored persistence in forcing, a more complete framework and a revised version 

(Seneviratne and Koster, 2012) based on a comprehensive soil moisture autocorrelation equation 

was proposed to further analyze soil moisture memory (Koster and Suarez, 2001). The integral 

time scale based on autocorrelation function was also used as another memory metric in the 

study of soil moisture variability (Ghannam et al., 2016; Katul et al., 2007). In addition, the 

temporal spectrum of soil moisture was analyzed to evaluate evapotranspiration and precipitation 

variability on soil moisture spectra on various time scales (Katul et al., 2007; Nakai et al., 2014). 

These methods are based on models where soil moisture treated as a red noise process. To solve 

the deficiencies of this model when applying it to models and observations with finer resolutions, 

a new study replaced the e-folding time scale of the red noise model with two new parameters, 

thus dividing soil moisture memory into short-term and long-term components (McColl et 

al., 2019). 

Even though soil moisture variability has received increasing interests in recent years, 

applications on short-term and seasonal prediction are still relatively open (Seneviratne et al., 

2010). Satellite remote sensing (Berg and Sheffield, 2018) now provide global observations of 

soil moisture, including the Soil Moisture Ocean Salinity (SMOS) mission (Kerr et al., 2010), 

and the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010). These can be 

used to better explain land-atmosphere interactions over different spatiotemporal scales (Guillod 

et al., 2015; Tuttle and Salvucci, 2016) and its feedbacks (McColl et al., 2019). Indeed, since the 

physical processes involved into land-atmosphere interface are complex (Berg and Sheffield, 

2018), climate models still exhibit too many biases in soil moisture memory across different time 

scales (Katul et al., 2007; Koster and Suarez, 2001; Nakai et al., 2014; Seneviratne et al., 

2006; Seneviratne and Koster, 2012). 

Based on this, this study performs a comparative analysis between climate models from CMIP5 

and soil moisture observations to highlight deficiencies in modeled soil moisture across time 

scales. The soil moisture used in this study is surface soil moisture (SSM). Although root zone 

soil moisture (RZSM) has stronger control on hydrological fluxes such as evapotranspiration, 

several studies have demonstrated that SSM is well correlated with RZSM (Akbar et 

al., 2018; Ford et al., 2014). In this way, SSM can be regarded as a proxy for RZSM under most 

conditions, especially on weekly to annual time scales (McColl et al., 2019). This study 

highlights model deficiencies using: 1) SSM variability; 2) the effect of evapotranspiration (ET) 

and precipitation (P) variability on SSM in the frequency domain. Results are divided into three 

frequency ranges, which represent 1) weekly to monthly time scales, 2) monthly to seasonal time 

scales, and 3) seasonal to annual time scales, to show the deficiencies in the models over 

different time scales. 

2 Data 

2.1 Model data 

The fifth phase of the Climate Model Intercomparison Project (CMIP5), as in earlier CMIP 

phases, was proposed to integrate a set of experiments that offer state-of-the-art multimodel 

perspective to improve our knowledge on climate change and climate variability (Taylor et al., 

2012). In this study, the daily output of 17 CMIP5 models from the historical simulation is used. 

To characterize SSM variability as well as the effect of ET and P variability on SSM (i.e., 

atmospheric water loss and supply), we analyze the output of SSM (top 10cm; variable mrsos in 

https://journals-ametsoc-org.ezproxy.cul.columbia.edu/doi/10.1175/JHM-D-12-0111.1
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the CMIP5 archive), ET (hfls), and P (pr). We use only one ensemble member – “r1i1p1” (where 

r for realization, i for initialization, and p for physics,) – when more than one member is 

available. The models are selected based on the availability of daily output data required for the 

spectral analysis. Table S1 in the supplemental material lists all models used in this study as well 

as their corresponding centers, forcings, spatial resolution, and temporal coverage. 

2.2 Observation data 

Observation data needs to be compared with model data to determine the biases in climate 

models. In this study, SMAP (Entekhabi et al., 2010), GLEAM (Miralles et al., 2011a; Miralles 

et al., 2011b), and ERA5 (Copernicus Climate Change Service (C3S), 2017) are used as the 

observation dataset for SSM, ET, and P, respectively. To make sure that the data is consistent, 

we use datasets with the same temporal coverage, spanning 1 April 2015 to 31 March 2018. In 

the final part of this study, we also analyze the relationship between model biases and global soil 

properties using Global Soil Dataset for use in Earth System Models (GSDE) (Shangguan et al., 

2014) as the corresponding dataset. 

2.2.1 SMAP soil moisture data 

The Level 3 products from the NASA Soil Moisture Active Passive (SMAP) mission is used as 

the reference observation of SSM in this study. The NASA SMAP satellite was launched in 

January 2015 and measured SSM (i.e., moisture in the top ~5 cm of the soil column) globally 

every 2~3 days (Entekhabi et al., 2010). Originally, SMAP included an active L-band radar and a 

passive L-band radiometer planning to provide soil moisture observations at 3 km and 36 km 

spatial resolution, respectively, to get 9 km soil moisture product based on both of them. 

However, due to an instrument anomaly, the radar stopped working in July 2015. On the other 

hand, the radiometer continues to provide observation for SSM. We use three years of 6:00 a.m. 

descending half-orbit passes, version 5 L3 SMAP passive soil moisture retrievals (O’Neill et al., 

2018). The reason to use morning observations rather than evening observations is that the air, 

vegetation, and near-surface soil are assumed to be in thermal equilibrium in the early morning 

hours for the radiometer soil moisture algorithm; thus, there is less degradation in the retrievals 

than at 6:00 p.m. ascending half-orbit passes. Here, the level 3 product is made using 

geophysical parameters derived from Level 1 and 2 products, and be spatiotemporally re-

sampled to the global cylindrical EASE-Grid 2.0 (Brodzik et al., 2012). In this projection, 

regardless of longitude and latitude, each grid cell has a nominal size of approximately 36×36 

km
2
, and the dimensions of all global data arrays are 406 rows and 964 columns. 

Comparison between SMAP and in situ SSM observations demonstrate that SMAP is meeting its 

performance target considering the difference between the lateral and vertical support of the 

satellite and in situ soil moisture observations (Chan et al., 2016; Shellito et al., 2016; Colliander 

et al., 2017). In addition, when comparing to other soil moisture satellites, SMAP had the highest 

accuracy (Chen et al., 2018). 

2.2.2 GLEAM evapotranspiration data 

The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms that separately 

estimate all components of ET (Miralles et al., 2011a; Miralles et al., 2011b). GLEAM is a global 

model primarily driven by satellite-based remotely sensed observations. The core of the GLEAM 

model uses the modified Priestley-Taylor equation (Priestley and Taylor, 1972), which calculates 
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daily potential Ep based on observations of surface air temperature and surface net radiation. 

This method quantifies ET based on remotely sensed observation. Although being sensitive to 

uncertainties in its forcing and ancillary data (Hsu et al., 2017), and not error-free compared to in 

situ observations (Yang et al., 2017), GLEAM has been commonly used in studies of the global 

hydrological cycle (Greve et al., 2014; Jasechko et al., 2013; Zhang et al., 2016). A detailed 

description of GLEAM can be obtained in previous studies (Miralles et al., 2011a; Miralles et al., 

2011b; Martens et al., 2016, 2017). 

In this study, we use three years of GLEAM 3.3a, which is a global dataset spanning the 39-year 

period 1980–2018, derived based on reanalysis radiation and air temperature, a combination of 

gauge-based, reanalysis, and satellite-based precipitation, as well as satellite-based vegetation 

optical depth (Miralles et al., 2011a; Martens et al., 2017). The dataset is provided on a 

0.25°×0.25° latitude-longitude grid with a temporal resolution of one day. 

2.2.3 ERA5 precipitation data 

ERA5 is the fifth generation reanalysis of ECMWF (European Centre for Medium-Range 

Weather Forecasts). This reanalysis is achieved by data assimilation, which combines weather 

forecasts with observations in an optimal way every few hours to produce the best estimate of the 

state of the atmosphere. In this way, ERA5 is a combination of model data and observations into 

a globally complete and consistent dataset. 

In this study, we use three years of hourly “total precipitation” estimates of variables on single 

levels as the observation of precipitation (Copernicus Climate Change Service (C3S), 2017). 

This dataset has a spatial resolution of 0.25°×0.25° for the atmosphere, spanning the period from 

1979 to present with hourly temporal resolution. 

2.2.4 GSDE soil data 

The Global Soil Dataset for use in Earth System Models (GSDE) is a dataset that provides soil 

information including 11 types of general soil information for soil profiles and 34 soil properties 

for eight depths (Shangguan et al., 2014). In this study, we only use two main soil properties – 

sand and clay contents, to find their relationships with biases in the models. 

The data in the GSDE dataset has two different resolutions, i.e., 30 seconds (~1km) and 5 

minutes (~10km). In this study, we use the second one. In addition, all soil properties are 

separated into eight layers with different depths. Since we mainly focus on surface soil moisture, 

here only the first two layers (0-0.045 and 0.045-0.091m) of sand and clay contents are used, and 

we take the average of them for further analysis. 

3 Materials and Methods 

3.1 Data preprocessing and preparation 

In this study, both observation and model data need to be preprocessed. For SMAP data, small 

gaps because of instrument maneuvers, data downlink anomalies, and data quality screening, can 

cause poor data quality as well as missing data. Therefore, SMAP values that do not range in the 

valid range from 0.02 to 0.5 are removed. In addition, since SMAP does not perform global 

observations every day, and because of missing data, the SSM for each pixel is temporally 

discontinuous. Therefore, the missing values are filled to solve this data discontinuity. Firstly, we 

used a moving median with a window of length 10 to fill the missing data. We tried different 

window sizes up to 80 but found no major differences. For the filled results, we replaced values 
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less than 0.02 by 0.02, and larger than 0.5 by 0.5, to make sure that all SSM data were in a valid 

range. 

For model data, since the time series of soil moisture span decades or even centuries, there might 

be trends for some regions. We remove these trends using linear regression from the data to 

focus the analysis on the sub-annual and annual fluctuations of the soil moisture itself. Here, for 

SSM of all models, we subtract an optimal (least squares) fitted linear regression so that the 

trended data has a mean value of zero. 

3.2 Normalized variability of SSM, ET and P 

Normalized variability of SSM (𝑆𝑆𝑀𝑛), ET (𝐸𝑇𝑛), and P (𝑃𝑛) for both models and observations 

are used for comparative analysis between them. Here, we explain our strategy with 𝑆𝑆𝑀𝑛 as an 

example; the processes for 𝐸𝑇𝑛 and 𝑃𝑛 are similar. 

The method to get 𝑆𝑆𝑀𝑛 for models and observation are the same. It is based on the fast Fourier 

transform (FFT), which is a faster algorithm of the discrete Fourier transform (DFT). 

First, we use FFT to get the spectrum of SSM. Since all datasets used are at a temporal resolution 

of one day, the corresponding sampling frequency (𝑓𝑠) is one day
-1

, and the sampling numbers 

(𝑁) is the number of days for each dataset. In the frequency domain, the length of the spectrum is 

𝑁 2⁄ + 1 and the largest frequency is 𝐹𝑠 2⁄ . In addition, since the spectrum is symmetric, only 

half of it is used, as (0: 𝑁/2) ∗ 𝑓𝑠/𝑁. 

Then we get the energy spectrum of SSM based on its amplitude spectrum as 𝐸𝑆𝑆𝑀(ω) =
|𝐹𝑆𝑆𝑀(𝜔)|

2. In this study, we restrict our analysis to weekly to yearly time scale. Since gap 

filling and instrumental noise of SMAP data (section 3.1) may introduce day-to-day variability as 

noise in the observation, while this noise usually does not exist in model data since models are 

smoother than observations, we remove the power spectrum below seven days (i.e. frequency 

above 1/7) to make model data and observation data more comparable by smoothing the 

observation data. For 𝐸𝑆𝑆𝑀(ω) with 1/N ~ 1/365 day
-1

, unlike modeling data with multi-decade 

records, the temporal coverage of the observation data in this study is only three years. This 

temporal coverage is too small to make reasonable analysis on inter-annual time scales and thus 

we omit the lowest frequencies. 

Next, we separate 𝐸𝑆𝑆𝑀(ω) into three frequency ranges: 1/30 ~ 1/7, 1/90 ~ 1/30, 1/365 ~ 1/90 

day
-1

. They represent the temporal variability of SSM at weekly to monthly time scales, monthly 

to seasonal time scales, and seasonal to annual time scales, respectively. Dividing the spectral 

energy of 𝐸𝑆𝑆𝑀(ω) in each frequency range by the total spectral energy of 𝐸𝑆𝑆𝑀(ω) for all three 

frequency ranges, the ratio of the spectral energy for each frequency range is: 

 

𝑆𝑆𝑀𝑛𝑖 =
∑ |𝑆𝑆𝑀𝑖(𝜔𝑗)|

2
𝑗

∑ ∑ |𝑆𝑆𝑀𝑖(𝜔𝑗)|
2

𝑗
3
𝑖=1

 (1) 

where 𝑆𝑆𝑀𝑖(𝜔𝑗) is the amplitude value of SSM spectrum for jth frequency in ith frequency 

range, and 𝑆𝑆𝑀𝑛𝑖 is the normalized variability of SSM in ith frequency range with a range from 

zero to one. According to the Parseval theorem, the spectral energy of SSM in the time domain 

and the frequency domain are equivalent. 𝐸𝑇𝑛 and 𝑃𝑛 for both models and observations are also 

obtained based on the same method. 

3.3 Effect of ET and P on SSM variability 

Both ET and P control the SSM variability, ET decreases SSM while P increases it. Here we 
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want to find the effects of ET and P variability on SSM spectra over different time scales. 

In the time domain, based on an assumed linear time-invariant system, the relationship between 

SSM and ET time series data as well as SSM and P time series data can be characterized by the 

relative impact of ET and P, respectively on the SSM variability as: 

 𝑠𝑠𝑚𝑒𝑡(𝑡) = 𝑒𝑡(𝑡) ⊗ ℎ𝑠𝑒(𝑡) = ∫ 𝐸𝑇(𝑡 − 𝜏)
+∞

−∞

∗ ℎ𝑠𝑒(𝜏)𝑑𝜏 (2) 

 𝑠𝑠𝑚𝑝(𝑡) = 𝑝(𝑡) ⊗ ℎ𝑠𝑝(𝑡) = ∫ 𝑃(𝑡 − 𝜏)
+∞

−∞

∗ ℎ𝑠𝑝(𝜏)𝑑𝜏 (3) 

where 𝑠𝑠𝑚(𝑡), 𝑒𝑡(𝑡), and 𝑝(𝑡) are the time series of SSM, ET, and P, and ℎ𝑠𝑒(𝑡) and ℎ𝑠𝑝(𝑡) are 

transfer functions between SSM and ET as well as SSM and P. It is hard to capture these transfer 

functions in the time domain. However, the convolution theorem can be applied to these two 

processes to convert convolution operations in the time domain into multiplication in the 

frequency domain as: 

 𝑆𝑆𝑀(𝜔) = 𝐸𝑇(𝜔) ∙ 𝐻𝑆𝐸(𝜔) (4) 

 𝑆𝑆𝑀(𝜔) = 𝑃(𝜔) ∙ 𝐻𝑆𝑃(𝜔) (5) 

where 𝑆𝑆𝑀(𝜔), 𝐸𝑇(𝜔), and 𝑃(𝜔) are the amplitude spectrum of 𝑠𝑠𝑚(𝑡), 𝑒𝑡(𝑡), and 𝑝(𝑡), and 

𝐻𝑆𝐸(𝜔) and 𝐻𝑆𝑃(𝜔) are the Fourier transforms of ℎ𝑠𝑒(𝑡) and ℎ𝑠𝑝(𝑡). In terms of the energy 

spectrum, this reads as: 

 |𝑆𝑆𝑀(𝜔)|2 = |𝐸𝑇(𝜔)|2 ∙ |𝐻𝑆𝐸(𝜔)|
2 (6) 

 |𝑆𝑆𝑀(𝜔)|2 = |𝑃(𝜔)|2 ∙ |𝐻𝑆𝑃(𝜔)|
2 (7) 

Based on the two equations, the effects of ET and P variability on SSM spectra are related to 

|𝐻𝑆𝐸(𝜔)|
2 and |𝐻𝑆𝑃(𝜔)|

2, respectively. To capture these effects over different time scales, two 

ratios are calculated by: 

 
𝐻𝑆𝐸𝑛𝑖

=
𝑆𝑆𝑀𝑛𝑖
𝐸𝑇𝑛𝑖

 (8) 

 
𝐻𝑆𝑃𝑛𝑖

=
𝑆𝑆𝑀𝑛𝑖
𝑃𝑛𝑖

 (9) 

where 𝐻𝑆𝐸𝑛𝑖
 and 𝐻𝑆𝑃𝑛𝑖

 is the fraction of 𝑆𝑆𝑀𝑛  to 𝐸𝑇𝑛  and 𝑃𝑛  in the ith frequency range, 

respectively. However, it can be hard to define the dominant factor on SSM variability only 

based on these two ratios. So we first calculate the fraction of SSM variability to the sum of ET 

and P variability (i.e., demand and supply) and then calculate the fraction of ET variability to the 

sum of ET and P variability as: 

 
𝐻𝑆𝐸𝑃𝑛𝑖

=
𝑆𝑆𝑀𝑛𝑖
𝐸𝑇𝑛𝑖 + 𝑃𝑛𝑖

=
1

1
𝐻𝑆𝐸𝑛𝑖

+
1

𝐻𝑆𝑃𝑛𝑖

 
(10) 

 𝐻𝐸𝐸𝑃𝑛𝑖
=

𝐸𝑇𝑛𝑖
𝐸𝑇𝑛𝑖 + 𝑃𝑛𝑖

 (11) 

where 𝐻𝑆𝐸𝑃𝑛𝑖
 represents the total effect of ET and P variability on SSM, and 𝐻𝐸𝐸𝑃𝑛𝑖

 represents 

the proportion of ET variability to all effects on SSM by ET and P variability (i.e., the fraction of 

ET variability compared to that of precipitation). Thus, based on these two ratios, it is easier to 

determine the dominant factor on SSM dynamics in each frequency range. 
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3.4 Spectral slope of SSM, ET, and P 

The spectral slope exhibits characteristics of the soil moisture physical behavior. This factor can 

show how the variability of ET and P contribute to the spectrum of soil moisture (Katul et al., 

2007). First, all spectra are normalized by the variance of their respective temporal range to 

avoid the spectra from high variance regions overwhelm the spectra from low variance regions 

(Delworth and Manabe, 1988). Then, within each frequency range, we fit a linear regression for 

the slope of the energy of all frequencies based on the least-squares approach. In this way, each 

spatial point has three spectral slopes in the different frequency ranges, so they can be more 

easily compared. 

When considering SSM, ET, and P as power-law noise signals, the color of noise, which is 

referred to their energy spectrum, can be used to identify spectral slopes of the three variables. 

The analysis of colored noise has been studied for a long time. It was brought to attention by 

Steele, who suggested the color of terrestrial and marine noise should be different (Steele, 1985). 

A further study (David, 2004) performed an analysis of the variance spectra of long-term time 

series of environmental variables and made a specific conclusion on these colored noises. The 

color of the noise can be divided into several main types according to the slope of the power 

spectral density. In this study, we use six kinds of colored noise (violet, blue, white, pink, red, 

and black) to characterize the spectral slopes for SSM (𝑆𝑆𝑀  ), ET (𝐸𝑇  ), and P (𝑃  ). The 

corresponding spectral slope of violet, blue, white, pink, and red noise (or Brownian noise) is 2, 

1, 0 (the spectral density of white noise is flat), -1, and -2, respectively, and the spectral slope of 

black noise is smaller than -2. The smaller the slope of the spectrum in the frequency domain, the 

longer the memory of the time series signals for white, pink, red, and black noise. 

3.5 Bias between models and observations 

There are three kinds of biases between the models and observations that we are evaluating here: 

1) Biases in 𝑆𝑆𝑀𝑛𝑖; 2) Biases in 𝐻𝑆𝐸𝑃𝑛𝑖
 and 𝐻𝐸𝐸𝑃𝑛𝑖

; and 3) Biases in 𝑆𝑆𝑀  , 𝐸𝑇  , and 𝑃  . All 

three biases are calculated as the difference between models minus observation. In addition, the 

coefficient of variation across models is calculated to show the uncertainties across models. 

The spatial resolutions between models and observations, as well as between models and 

observations themselves, are all different. Therefore, the dataset for each model and the 

observations are re-gridded to the same spatial resolution. Here we use the spatial resolution of 

SMAP (36 km×36 km) as the reference and project all other datasets to this “standard” spatial 

resolution using a minimized distance: 

 D(𝑚,𝑚′) = arg𝑚𝑖𝑛 |(𝑚′𝑝 −𝑚𝑝) + (𝑚
′
𝑞 −𝑚𝑞)| (12) 

where D(𝑚,𝑚′) is the shortest distance between the non-SMAP pixel and the SMAP pixel, 𝑚 

and 𝑚′  are SMAP pixel and non-SMAP pixel, 𝑝  and 𝑞  are latitude and longitude to the 

corresponding pixel, respectively. In this way, all data have the same spatial resolution and then 

can be used to get the mean and the coefficient of variation of the results across all models. 

In addition, a significance test is performed on the averaged biases maps among models and 

depicted in the maps using stippling. The reason for that is some biases shown in averaged maps 

may only due to several models or even one model. These biases with less significance should 

not be considered. The significance here is defined as the ratio of the number of models with the 

same sign as average biases in each pixel to the number of total models. On the final map, 

stippling shows the regions that passed the significance test of 100% (17/17 model) and 80% 

(14/17 model), respectively. 
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4 Results 

This section shows the global map of 𝑆𝑆𝑀𝑛, 𝐸𝑇𝑛, and 𝑃𝑛, as well as the effect of 𝐸𝑇𝑛 and 𝑃𝑛 on 

𝑆𝑆𝑀𝑛 over different time scales based on the observations. In addition, results of models are 

compared with observations to find the deficiencies of models, and to find the relationship 

between models biases with the mean SSM and two soil properties. 

4.1 Observations 

Figure 1 shows the global distribution of 𝑆𝑆𝑀𝑛, 𝐸𝑇𝑛, and 𝑃𝑛 over different time scales. For SSM, 

the spectral energy concentrates more on the seasonal to annual time scale for most regions, 

while have the smallest proportion in the weekly to monthly time scales. This means that SSM 

variability is most important at seasonal time scales. 

For ET, the largest 𝐸𝑇𝑛 in the lowest frequency range means that ET variability is important at 

seasonal time scales. The spectral energy of ET concentrates at long time scales for most regions 

except in regions with a tropical wet climate. The reason is that ET has a large seasonal cycle in 

many regions driven by radiation or moisture limitation except in wet tropics where radiation and 

moisture variability is small. In this way, results in tropical wet regions, such as Amazon 

Rainforest, Africa’s Near Equator, Indonesia, and the Philippines, are the opposite. In these 

regions, most spectral energy concentrates on time scales shorter than monthly. This smaller 

variability in radiation variability is mainly due to that the variability of cloud weekly time scale 

(or longer) will cause a large variability of ET in short time scales (Anber et al., 2015). 

Moreover, this mechanism has the largest influence on regions near the equator because these 

regions receive more radiations than other regions all the time. Therefore, in these regions, ET 

variability is mostly located in the high-frequency range. In addition, ET in desert regions does 

not have a clear seasonal cycle as well due to the limitation of moisture. 

For P, 𝑃𝑛 shows different regional distribution over different time scales: it is larger on seasonal 

to annual time scales for most tropical regions where the seasonal cycle can be large, while larger 

on weekly to monthly time scales for other regions, especially in non-tropical regions. The 

reason is that, in tropical regions, especially regions with tropical wet and dry climate, although 

the changes in the temperature and the radiation across seasons are small, rainfall exhibits a 

strong seasonal cycle. So P in these regions shows strong seasonal variability. However, in 

tropical regions with a tropical very wet climate, such as the Democratic Republic of the Congo, 

Indonesia, and the Philippines, there is no such an apparent seasonal cycle because of the regular 

rainfall and constant temperatures in these regions. On the other hand, there is not an obvious 

rainy and dry season distinction for non-tropical regions. The occurrence of rainfall is typically 

more random over the whole year and close to a white noise signal at high frequencies (Katul et 

al., 2007; Nakai et al., 2014) (Figure 1). Therefore, P variability in non-tropical regions is almost 

all in the high-frequency variability, except in monsoonal regions of central America, Sahel, etc. 
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Figure 1. 𝑆𝑆𝑀𝑛  (Figure a-c), 𝐸𝑇𝑛  (Figure d-f), and 𝑃𝑛  (Figure g-i) over different time scales. The three 

columns from left to right represent results at weekly to monthly time scales, monthly to seasonal time scales, 

and seasonal to annual time scales. 𝑆𝑆𝑀𝑛, 𝐸𝑇𝑛, and 𝑃𝑛 represent the fraction of variability (also referred to as 

energy) in each frequency range to total variability for SSM, ET, and P, respectively. Grey parts in Figure a-c 

are regions with SSM less than 0.1. For 𝐸𝑇𝑛, and 𝑃𝑛, results of regions not shown in 𝑆𝑆𝑀𝑛 are removed (e.g., 

Antarctica), that is, maps of the three variables have totally the same spatial resolution and field vision. 

 

Although an apparent regional distribution can be found for both 𝐸𝑇𝑛  and 𝑃𝑛 , the 𝑆𝑆𝑀𝑛 

distribution is more diverse. Figure 2 shows the global distribution of 𝐻𝑆𝐸𝑃𝑛  and 𝐻𝐸𝐸𝑃𝑛  over 

different time scales. For shorter time scales (weekly to monthly), ET and P variability has little 

effect on SSM. Compare to P variability, the fluctuation of ET nearly has limited effects on SSM 

as ET is a slower process in part regulated by SM. For longer time scales, the effect of ET and P 

on SSM increases. At monthly to seasonal time scales where the total effect of ET and P on SSM 

reaches its largest magnitude, even though the proportion of ET variability becomes larger, P is 

still the dominant factor of SSM variability. For longer time scales (seasonal to annual), the total 

variability of ET and P decrease, but is still larger than it in the largest frequency range. 

However, in this frequency range, ET becomes the dominant factor. Therefore, P variability 

alone is no longer able to explain the SSM dynamics. Since 𝐻𝐸𝐸𝑃𝑛 represents the proportion of 

ET variability to the total variability of ET and P, similar to the results of 𝐸𝑇𝑛 shown in Figure 1, 

results of 𝐻𝐸𝐸𝑃𝑛 are opposite in tropical wet regions, where ET variability has more effect on 

SSM on shorter time scales (weekly to seasonal), and P becomes the dominant factor on longer 

time scales (seasonal to annual) due to seasonality in rainfall regimes. 
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Figure 2. 𝐻𝑆𝐸𝑃𝑛 (Figure a-c) and 𝐻𝐸𝐸𝑃𝑛 (Figure d-f) over different time scales. 𝐻𝑆𝐸𝑃𝑛 is the ratio of 𝑆𝑆𝑀𝑛 to 

the sum of 𝐸𝑇𝑛 and 𝑃𝑛, which represents the total effect of ET and P variability on SSM; 𝐻𝐸𝐸𝑃𝑛 is the ratio of 

𝐸𝑇𝑛 to the sum of 𝐸𝑇𝑛 and 𝑃𝑛, which represents the proportion of ET variability to all effects on SSM by ET 

and P. Grey parts are regions with SSM less than 0.1. The three columns from left to right represent results at 

weekly to monthly time scales, monthly to seasonal time scales, and seasonal to annual time scales. Values in 

each frequency range are normalized across the whole frequency range to have a span from zero to one. 

 

To further describe the ET and P effect on SSM variability, we first evaluate relationships 

between SSM spectra and ET spectra as well as P spectra. Figure 3 shows the global distribution 

of the spectral slopes of SSM, ET, P, and 𝐸𝑝 over different time scales expressed in terms of 

noise color. Within each frequency range, the smaller the spectral slope, the more spectral energy 

concentrates on longer time scales. 

There is a phase shift between SSM and P spectra in the two larger frequency ranges, especially 

on times above the monthly time scale. At weekly to monthly time scales, regions with the 

smaller spectral slope of P lead to SSM spectra decay more rapidly. In most regions where P is a 

white noise, SSM is a red noise in the corresponding regions, indicating longer memory induced 

by soil moisture (Salvucci and Entekhabi, 1994). On the other hand, in regions where P is a pink 

noise, like Central America, eastern and southern Africa, southern Asia, eastern and southern 

Brazil, and northern Australia, SSM is a black noise. A similar phase shift between SSM and P 

spectra can also be found for some regions at monthly to seasonal time scales, such as southern 

North America, southern and north-central Asia, and regions around the Mediterranean, but those 

are not as evident as for the largest frequency range since the effect of ET variability on SSM 

increases little in this frequency range. On seasonal to annual time scales, the dominant factor on 

SSM variability is ET rather than P, and there is no strong relationship between the P and SSM 

spectra. In addition, there is no phase shift between the ET and SSM spectra, even in the seasonal 

to annual time scales, where ET is the dominant factor on SSM variability. 

In previous studies, ET was shown to be related to the damping term of the SM spectra 

(Delworth and Manabe, 1988; Katul et al., 2007; Nakai et al., 2014) which modulates potential 

evaporation. The differences between the spectra of ET and 𝐸𝑝 are mainly due to the variability 

of soil moisture. 𝐸𝑝  is an estimate of the maximum evaporation rate according to different 

meteorological conditions (Delworth and Manabe, 1988). Therefore it is relatively random on 
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shorter time scales reflecting weather fluctuations as white or pink noise. However, ET, unlike 

𝐸𝑝, is closely related to soil moisture as it limits the supply of moisture to the atmosphere on 

longer time scales. So the SSM dynamics influence the ET spectrum – leading to a more red 

noise because SSM has a longer memory than 𝐸𝑝. This influence is especially more visible in dry 

regions. The reason is that, compared to SSM in dry regions, SSM in wet regions is mostly 

saturated and thus mostly track the variability of potential evaporation. So ET in wet regions will 

not be strongly affected by SSM variability. For longer time scales, both ET and 𝐸𝑝 show an 

obvious seasonal cycle that dominates the signal. 

 

 
Figure 3. Noise color of SSM (Figure a-c), ET (Figure d-f), P (Figure g-i), and potential evaporation (Figure j-

l) over different time scales. The colors in each figure represent the corresponding color of noise refers to the 

energy spectrum of SSM, ET, and P. Considering SSM, ET, and P as examples of power-law noise, their 

spectral densities vary as inverse frequency, more precisely are proportional to 1 𝑓 ⁄  (Bourke, 1998). In the 

legend, the number in parentheses followed by each color refers to the corresponding  , which is also the 
inverse number of the spectral slope. The spectral slope of violet noise, blue noise, white noise, pink noise, and 

red noise (or Brownian noise) is 2, 1, 0 (the spectral density of white noise is flat), -1, and -2, respectively, and 
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the spectral slope of black noise is smaller than -2. The three columns from left to right represent results at 

weekly to monthly time scales, monthly to seasonal time scales, and seasonal to annual time scales. 

4.2 Comparison between models and observations 

Figure 4a-c show the averaged biases for 𝑆𝑆𝑀𝑛  of models compared to the observation. A 

significance test is performed on these three maps and depicted using stippling. Here, the + 

stippling means the region passes a 100% significance test (i.e., all 17 models have the same sign 

of biases as the averaged value), and the dot stippling means the region passes an 80% 

significance test (i.e., 14 of the 17 models have the same sign as the averaged value). Therefore, 

we only focus on the regions with stippling. Based on these results, for most regions, the model 

biases are negative for the two higher frequency ranges, while they are positive for the lowest 

frequency range. Models underestimate SSM variability on weekly to seasonal time scales, while 

they overestimate it on seasonal to annual time scales. The largest biases appear in Eastern 

Europe, Central and Eastern North America, Central Asia, and regions near the equator. 

However, in a few other regions like India and southern Brazil, where the model biases are 

positive for the two higher frequency ranges while are negative for the lowest frequency range, 

the results are contrary to most regions. Since the mean of 𝑆𝑆𝑀𝑛 in each frequency range is 

different, the coefficient of variation is used here to see the degree of variation across all models 

(Figure 4d-f). These results show that the coefficient of variation is smaller at lower frequencies 

for most regions. Therefore, climate models have larger SSM uncertainties at shorter time scales 

(weekly to monthly) and smaller uncertainties at longer time scales (seasonal to annual). 

 

 
Figure 4. Model deficiencies of 𝑆𝑆𝑀𝑛 over different time scales. Figure (a-c) are averaged biases for 𝑆𝑆𝑀𝑛 of 

models compared to the observation, and figure (d-f) are the coefficient of variation of 𝑆𝑆𝑀𝑛  across all 

models. 𝑆𝑆𝑀𝑛  represents the intermodel spread in each frequency range to total variability for SSM. For 

Figure a-c, averaged biases of 𝑆𝑆𝑀𝑛 are calculated by model data minus observation data. For Figure d-f, the 

coefficient of variation of 𝑆𝑆𝑀𝑛 is calculated by the standard deviation of 𝑆𝑆𝑀𝑛 divided by the mean of 𝑆𝑆𝑀𝑛 

for each frequency range. Grey parts are regions with SSM less than 0.1. The three columns from left to right 

represent results at weekly to monthly time scales, monthly to seasonal time scales, and seasonal to annual 

time scales. For averaged biases of 𝑆𝑆𝑀𝑛  (Figure a-c), plus stippling means the region passes a 100% 

significance test, and dot stippling means the region passes an 80% significance test. 
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Based on the result shown in Figure 4, the biases and uncertainties in climate models are further 

analyzed with the mean SSM on a global scale. Figure S1 shows the global distribution of the 

normalized mean SSM based on SMAP data. From Figure 5a-c, for all three frequency ranges, 

the biases mainly concentrate in regions with larger mean SSM content (about 45% ~ 85%). 

Biases at weekly to annual time scales of SSM in these climate models mainly concentrate in 

wetter regions. This result is consistent with the result shown in Figure 6. From a latitude 

averaged perspective, larger biases of 𝑆𝑆𝑀𝑛 are seen in regions near the equator and mid-latitude 

regions in the northern and southern hemispheres, which have higher mean SSM values. On the 

other hand, models nearly have no 𝑆𝑆𝑀𝑛 biases in mid-latitude regions around 30º N and 30º S, 

where the mean SSM has lower values (Figure 6d). For uncertainties in these climate models, 

Figure 5d-c show that the coefficient of variation for SSM variability decreases as the frequency 

decreases. In addition, for all three frequency ranges, the coefficient of variation is higher in 

regions with intermediate mean SSM (about 40% ~ 60%) and smaller mean SSM (about 5% ~ 

15%), showing a different characteristic compared to the biases in the models. To sum up, when 

considering SSM intermodal spread, the frequency range with larger biases has smaller 

intermodal uncertainties and vice versa. Besides, climate models show the least deficiencies in 

regions with mean SSM from 15% to 40%, typical of semi-arid regions, such as central 

Argentina, southern Sahara Desert, regions near Tropic of Capricorn in Africa, southern India, 

and northern and eastern coasts of Australia. 

 

 
Figure 5. 𝑆𝑆𝑀𝑛 for models and the observation as a function of mean SSM for observation over different time 

scales. Figure 5a-c are averaged biases of 𝑆𝑆𝑀𝑛  between models and observations, and figure 5d-f are 

coefficient of variation of 𝑆𝑆𝑀𝑛 across all models. The three columns from left to right represent results at 

weekly to monthly time scales, monthly to seasonal time scales, and seasonal to annual time scales. SSM is 

separated into 20 bins of equal size (i.e., 0.05 for each bin), and the averaged biases and coefficient of variation 

of 𝑆𝑆𝑀𝑛 located in each bin (i.e., range of global mean SSM) were calculated, respectively. 
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Figure 6. Latitudinal average of 𝑆𝑆𝑀𝑛 for models and SMAP observations over different time scales. Black 

lines are results of observation, and red lines are results of the models. The first three rows from top to bottom 

(i.e. Figure a-c) represent results at weekly to monthly time scales, monthly to seasonal time scales, and 

seasonal to annual time scales, respectively. The average of 𝑆𝑆𝑀𝑛 for each latitude is calculated as the y value. 

Regions with SM less than 0.1 are removed. In addition, Figure d shows the mean of renormalized global 

mean SSM (in Figure 1) for each latitude. 

 

Similar to the averaged biases of 𝑆𝑆𝑀𝑛 (Figure 4a-c), for most regions, the models underestimate 

the total effect of ET and P variability on SSM at weekly to seasonal time scales while they 

overestimate it at seasonal to annual time scales (Figure 7a-c). In addition, the largest biases of 

models are on monthly to seasonal time scale range, and for each frequency range, in regions 

with larger biases similar to 𝑆𝑆𝑀𝑛. We already know that P variability dominates SSM dynamics 

at weekly to seasonal time scales while ET dominates it at seasonal to annual time scales (Figure 

2d-f), no matter which factor is dominant, models tend to underestimate its effect on SSM. For 

example, on weekly to monthly time scales where P is the dominant factor, models overestimate 

the proportion of ET variability to the total variability of ET and P. Thus, the P effect on SSM is 

underestimated by models. In addition, models show larger biases on 𝐻𝑆𝐸𝑃𝑛 than 𝐻𝐸𝐸𝑃𝑛 (Figure 

7), which means that models do relatively well at capturing the proportion of ET and P 

variability to their total variability, while they exhibit larger biases on the total effect of ET and P 

on SSM variability. 
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Figure 7. Averaged biases of 𝐻𝑆𝐸𝑃𝑛 (Figure a-c) and 𝐻𝐸𝐸𝑃𝑛 (Figure d-f) between models and the observation 

over different time scales. For each figure, averaged biases are calculated by model data minus observation 

data. Grey parts are regions with SSM less than 0.1. The three columns from left to right represent results at 

weekly to monthly time scales, monthly to seasonal time scales, and seasonal to annual time scales. For each 

figure, plus stippling means the region passes a 100% significance test, and dot stippling means the region 

passes an 80% significance test.                                                                                                                                                                                                                                                                         

 

Then, biases in 𝐻𝑆𝐸𝑃𝑛 and 𝐻𝐸𝐸𝑃𝑛 as a function of the global mean SSM are analyzed to see if 

there is any relationships between them (Figure 8). For 𝐻𝑆𝐸𝑃𝑛 , biases of models are mainly 

concentrated in regions with larger mean SSM (about 45% ~ 85%) across the frequency range. 

On the other hand, for 𝐻𝐸𝐸𝑃𝑛, models achieve their best performance in transition zones (regions 

where SSM approximate equals 0.4), while as mean SSM either increases or decreases, biases of 

models increase. Therefore, when considering ET and P intermodal spread effect on SSM, biases 

of models tend to be more apparent in wetter and drier regions where the SSM variability is 

dominated by strong seasonality. In addition, when further investigating the proportion of ET and 

P variability, drier regions (with SSM about 5% ~ 15%) also need to be considered for biases of 

the dominant factors. 
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Figure 8. Averaged biases of 𝐻𝑆𝐸𝑃𝑛  (Figure a - c) and 𝐻𝐸𝐸𝑃𝑛  (Figure d - f) between models and the 

observation with global mean SSM for observation in different time scales. The three columns from left to 

right represent results at weekly to monthly time scales, monthly to seasonal time scales, and seasonal to 

annual time scales, respectively. The method to make this figure is similar to Figure 5. 

 

In addition to the averaged biases of models compared to observations, the coefficients of 

variation of 𝐻𝑆𝐸𝑃𝑛 and 𝐻𝐸𝐸𝑃𝑛 across models are also investigated to understand the spread across 

models (Figure S2). For both 𝐻𝑆𝐸𝑃𝑛 and 𝐻𝐸𝐸𝑃𝑛, the intermodel spread is larger on shorter time 

scales (weekly to seasonal) than those on longer time scales (seasonal to annual), which means 

models have greater variance at weekly to seasonal time scales. Based on Figure 7 and Figure 

S2, it can be concluded that, for ET and P variability effect on SSM, models have larger spread at 

shorter time scales, where they underestimate the variability. On the other hand, at longer time 

scales, the overestimated biases are mostly similar across models, pointed towards a systematic 

deficiency of land surface models to represent long-term variability. 

So far, the biases in models were found to be tightly related to mean SSM content. Apart from 

that, it is also important to see whether these biases relate to the soil itself. Here, two of the main 

soil properties are used – sand and clay content – to evaluate this dependence. Figure S3 shows 

the global distribution of these two properties for the first two layers in the GSDE dataset. Here 

the mean for these two layers is used to see its relationship with model biases. No matter whether 

it is the biases of SSM variability or the effect of ET and P variability on SSM, the two soil 

properties do not impact the relationships (Figure S4 and S5). This means that it is not the soil 

itself that lead to biases of climate models found in this study, but this point rather to issues in the 

representation of other processes regulating soil moisture such as vegetation, which regulate the 

transpiration and long-term soil moisture response (Kennedy et al., 2019). For instance, plant 

water stress based on plant hydraulics has shown superior results when compared to typical 

water-stress responses (Kennedy et al., 2019), especially on seasonal time scales. 

Finally, biases of the spectral slopes 𝑆𝑆𝑀  , 𝐸𝑇  , and 𝑃   (Figure 9) shows that models have 

shorter memory than observations. Positive biases mean that models underestimate the memory 

in each frequency range and vice versa. For SSM, ET, and P, models underestimate their memory 
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for most regions with high significance, and this underestimation is largest in the lowest 

frequency range (seasonal to annual). This can again relate to difficulties in the representation of 

long-term transpiration and the dynamics of soil moisture. 

 

 
Figure 9. Averaged biases of spectral slope biases for 𝑆𝑆𝑀   (Figure a-c), 𝐸𝑇   (Figure d-f), and 𝑃   (Figure 

g-i) between models and the observation over different time scales. Grey parts in Figure a-c are regions with 

SSM less than 0.1. The three columns from left to right represent results at weekly to monthly time scales, 

monthly to seasonal time scales, and seasonal to annual time scales. For each figure, plus stippling means the 

region passes a 100% significance test, and dot stippling means the region passes an 80% significance test. 

5 Conclusions 

This research presents a comparative analysis between CMIP5 climate models and satellite 

observations of surface soil moisture variability at a global scale. It also investigates the effects 

of evapotranspiration and precipitation variability on soil moisture spectra over different time 

scales. Biases in models are found by comparing the results of models and observations, and 

uncertainties in models are found by comparing results across all models. By performing 

statistical analysis on model biases with the global distribution of mean SSM and soil properties, 

the relationships highlight some causes of the model deficiencies. 

Models underestimate SSM variability at the higher frequency range (weekly to seasonal) while 

they overestimate it in the lower frequency range (seasonal to annual). These biases concentrate 

in wetter regions (0.45 < normalized 𝑆𝑆𝑀̅̅ ̅̅ ̅̅  < 0.85). Models exhibit larger uncertainties at longer 

time scales (monthly to annual). In addition, the frequency range with larger biases in models 

will show smaller uncertainties. For each frequency range, intermodal spread in the bias is larger 

in regions of intermediate wetness. 

For ET and P variability effects on SSM (𝐻𝑆𝐸𝑃𝑛  and 𝐻𝐸𝐸𝑃𝑛), models underestimate the total 

effect of ET and P variability on SSM in the higher frequency range (weekly to seasonal) while 

they overestimate it in the lower frequency range (seasonal to annual). Furthermore, whether ET 

or P is the dominant factor of variability, models underestimate their effect on SSM variability. 
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For 𝐻𝑆𝐸𝑃𝑛, biases are more concentrated in wetter regions (normalized 𝑆𝑆𝑀̅̅ ̅̅ ̅̅  > 0.45); for 𝐻𝐸𝐸𝑃𝑛, 

biases are more concentrated in wetter regions (normalized 𝑆𝑆𝑀̅̅ ̅̅ ̅̅  > 0.45) and drier regions 

(normalized 𝑆𝑆𝑀̅̅ ̅̅ ̅̅  < 0.15). In addition, similar to 𝑆𝑆𝑀𝑛, models exhibit larger uncertainties as the 

frequency increases. For biases of 𝑆𝑆𝑀𝑛 , 𝐻𝑆𝐸𝑃𝑛  and 𝐻𝐸𝐸𝑃𝑛 , there is no clear relationship 

between biases of models and soil sand content nor clay content. Therefore, the biases in these 

climate models are more closely related to soil moisture mean value than to soil properties. For 

SSM, ET, and P spectral slope (𝑆𝑆𝑀  , 𝐸𝑇  , and 𝑃  ), models underestimate the memory of 

SSM, ET, and P for most regions, and this underestimation is most obvious in the lowest 

frequency range, i.e., at longer time scales (seasonal to annual). To summarize, our study 

identifies systematic metrics that can be used to assess model improvements of soil moisture 

variability. 
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