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Abstract

High-resolution topographic data reveal that meandering river floodplains can contain complex floodplain-channel networks.

However, the influence of this topography on flood initiation and progression is unknown. In this study, we investigate how

floodplain-channel networks influence flooding processes in low-gradient river systems. To accomplish this, we conducted a

series of numerical modeling experiments using a two-dimensional (2-D) model built in Hydrologic Engineering Center’s River

Analysis System (HEC-RAS). First, we simulated floods using 2-D HEC-RAS on the East Fork White River near Seymour, IN,

USA, including the current, dense network of floodplain channels. Next, we simulated synthetic versions of this river system

where we varied the connectivity among floodplain channels, and also between the floodplain channels and river channel. We

found distinct differences in flooding patterns and flood hydraulics among model simulations. Numerical modeling experiments

showed that increasing floodplain channel connectivity caused increased spatial variability of wet and dry surfaces across the

floodplain, increased residence time of water on the floodplain, and increased floodwave attenuation. Results from this study

indicate that topographic connectivity on the floodplain challenges the classic notions of flooding initiation, and potentially

increases a floodplains ability to store matter.
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Key Points: 9 

 Well-connected floodplain channels promote increased spatial variability in flooding and 10 

changes how floodplains fill with water. 11 

 Floodplain channel connectivity influences flood hydraulics and floodwave propagation 12 

at low flooding discharges. 13 

 Intermediate connectivity among floodplain channels and the river channel maximizes 14 

lateral exchange and residence time of floodwaters. 15 

 Abstract 16 

High-resolution topographic data reveal that meandering river floodplains can 17 

contain complex floodplain-channel networks. However, the influence of this topography 18 

on flood initiation and progression is unknown. In this study, we investigate how 19 

floodplain-channel networks influence flooding processes in low-gradient river systems. 20 

To accomplish this, we conducted a series of numerical modeling experiments using a 21 

two-dimensional (2-D) model built in Hydrologic Engineering Center’s River Analysis 22 

System (HEC-RAS). First, we simulated floods using 2-D HEC-RAS on the East Fork 23 

White River near Seymour, IN, USA, including the current, dense network of floodplain 24 
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channels. Next, we simulated synthetic versions of this river system where we varied 25 

the connectivity among floodplain channels, and also between the floodplain channels 26 

and river channel. We found distinct differences in flooding patterns and flood hydraulics 27 

among model simulations. Numerical modeling experiments showed that increasing 28 

floodplain channel connectivity caused increased spatial variability of wet and dry 29 

surfaces across the floodplain, increased residence time of water on the floodplain, and 30 

increased floodwave attenuation. Results from this study indicate that topographic 31 

connectivity on the floodplain challenges the classic notions of flooding initiation, and 32 

potentially increases a floodplains ability to store matter. 33 

1.0 Introduction 34 

River floodplains are a key human habitat (Di Baldassarre et al., 2013) that 35 

provide rich, fertile soils for agriculture, and are among the most productive ecosystems 36 

on Earth (Tockner & Stanford, 2002). These ecosystems depend on surface-water 37 

connectivity between rivers and floodplains, which ultimately controls bioproductivity, 38 

biodiversity, and biogeochemical cycling in floodplains (Costanza et al., 1997; Malard et 39 

al., 2002). Surface-water connectivity refers to the exchange of water, and particulate 40 

matter between the river and floodplain (Junk et al., 1989; Mitsch & Gosselink, 2000; 41 

Tockner & Stanford, 2002; Walling, 1999). At timescales shorter than appreciable 42 

surface morphological change, surface-water connectivity is the result of a time-variable 43 

hydrograph that drives surface-water (Covino, 2017; Junk et al., 1989; Ward & Stanford, 44 

1995) and hyporheic exchange (Boulton, 2007; Roley et al., 2012; Stanford & Ward, 45 
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1993). The geomorphic surface, which is assumed to be static on timescales of 46 

individual events, controls the transfer of water, energy, and material between the river 47 

and floodplain, and can change in both time and space through natural and 48 

anthropogenic processes (Bracken & Croke, 2007; Poeppl et al., 2012) . While most 49 

studies have focused on how a fluctuating hydrograph influences surface-water 50 

connectivity (e.g., Wohl et al., 2019), we flip the perspective and focus on how different 51 

floodplain geomorphic surfaces influence surface-water connectivity for a given 52 

hydrologic condition. This perspective is important because it will help us understand 53 

the important geomorphic attributes that drive surface-water connectivity (Wohl et al., 54 

2019). 55 

Floodplain geomorphic surfaces have many kinds of topographic features that 56 

can be connected and linked together (commonly called “structural connectivity”; 57 

Wainwright et al., 2011; Wohl et al., 2019). We define here the concept of “topographic 58 

connectivity” as one type of structural connectivity that specifically refers to what aspect 59 

of the structure is controlling connectivity. One important way floodplains become 60 

topographically connected is through formation of channels on the floodplain surface 61 

that transport water and sediment and connect otherwise distant parts of the floodplain 62 

with the main channel (Czuba et al., 2019; Mertes et al., 1996; Rowland et al., 2009). 63 

These floodplain channels are more than just the remnants of the main channel from 64 

cutoffs or avulsions; instead they can be an integrated network of channels on the 65 

floodplain surface, similar to a drainage network (David et al., 2017; Fagan & Nanson, 66 

2004; Kupfer et al., 2015; Rak et al., 2016; Thayer & Ashmore, 2016; Trigg et al., 2012). 67 
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These networks form through headcutting (David et al., 2019) and create channels with 68 

morphologies and cross-sectional areas different from the main channel (David et al., 69 

2017; Fagan & Nanson, 2004; Trigg et al., 2012). Despite the increasing awareness of 70 

floodplain-channel networks, only a few studies have explored their influence on 71 

floodplain processes and surface-water connectivity (Czuba et al., 2019; Trigg et al., 72 

2012).  73 

Floodplain networks create a distinct scale of topographic connectivity that 74 

controls when and where flooding begins and which paths floodwaters will take (Czuba 75 

et al., 2019). In fact, these floodplain-channel networks allow water to enter the 76 

floodplain from the main channel well before all banks are overtopped. This 77 

phenomenon has been observed in floodplains of the Amazon River in Brazil (Rudorff et 78 

al., 2014; Trigg et al., 2012), Congaree River in South Carolina (Kupfer et al., 2015), 79 

Medway River in southern Ontario (Thayer & Ashmore, 2016), West Fork White River, 80 

Indiana, USA (David et al., 2017), and the East Fork White River, Indiana, USA (Czuba 81 

et al., 2019). In a particularly compelling case, Czuba et al. (2019) conducted a study 82 

along the East Fork White River, Indiana, USA and showed that floodplain channels 83 

cause flooding at a 19-day recurrence interval (RI), even though banks were not fully 84 

inundated until a 9-month RI.  85 

 The overarching goal of this study is to test how the topographic connectivity of 86 

floodplain-channel networks—both within the network itself and between the network 87 

and main channel—affects flooding patterns. Specifically, we address three questions: 88 
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(1) How does the topographic connectivity between the floodplain and main channel 89 

influence spatial patterns of flooding and flooding extent? (2) To what degree does 90 

topographic connectivity within the floodplain-channel network influence hydraulics 91 

within the floodplain (e.g., depth, velocity)? and (3) How do river-to-floodplain and 92 

within-floodplain topographic connectivity influence surface-water residence time and 93 

lateral exchange between the river channel and floodplain? To address these questions, 94 

we extend the calibrated model from Czuba et al. (2019) of the East Fork White River 95 

near Seymour, IN, USA to account for fully unsteady flow. We conduct 2-D surface-96 

water flow modeling in Hydrologic Engineering Center’s River Analysis System (HEC-97 

RAS) exploring flooding processes as a function of various degrees of topographic 98 

connectivity between the floodplain and river channel and the topographic connectivity 99 

among floodplain channels. 100 

2.0 Study Site Description 101 

Our study area is located along the East Fork White River between Columbus 102 

and Brownstown, IN, USA (Figure 1). We chose this location because it includes a long 103 

continuous floodplain containing floodplain channels (Figure 1) and has a high 104 

floodplain channel density (~7 floodplain channels per cross-section) making the East 105 

Fork White River an ideal setting to study the influence of topographic connectivity on 106 

flooding processes. Additionally, this reach contains a USGS gage (gage number 107 

03365500) in the middle of the study area, just downstream of a low-head dam near 108 

Seymour, IN (Figure 1). The upstream extent of our study area has a drainage area of 109 
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about 5,120 km2. The only major tributary that enters the study area is Sand Creek, 110 

which drains 681 km2 of the White River drainage basin into the East Fork White River. 111 

The downstream extent of the study area drains about 6,160 km2 of land. Land cover in 112 

the model area is 75% agriculture, 13% vegetated/forested, 8% urban development, 113 

and 4% water (Homer et al., 2015). In the study reach, the main river channel has an 114 

average width of 73 m, an average bank height (river channel bottom to top of bank) of 115 

3.8 m, a bed slope of 3×10-4 m m-1, a sinuosity of 1.7 (David et al., 2017), and an 116 

average river bend migration rate of 3.4 m yr-1 (Figure 1; Robinson, 2013). In the model 117 

domain the floodplain averages 2,700 m wide and has a slope of 5×10-4 m m-1. The 118 

floodplain channels along this reach begin to convey water when the river reaches a 119 

discharge of 268 m3 s-1 (19-day RI; Czuba et al., 2019).  120 
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 121 

Figure 1. Study area of the East Fork White River. Imagery of the East Fork White River, where 122 

the study area is outlined in black. We show the locations of 2018 water surface elevations 123 

(WSE), 2008 high-water marks (HWM) collected by the USGS, and the USGS gage used for 124 

calibration and validation. Average river migration rates of specific bends are plotted as blue, 125 

yellow, and red dots with increasing migration rates, respectively (Robinson, 2013). The inset 126 

image shows the location of the White River drainage basin in Indiana (shown with a green line). 127 

The blue lines/polygons show floodplains without floodplain channels and the red lines/polygons 128 

show floodplains with floodplain channels (David et al., 2017). The maximum glacial extent of the 129 
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pre-Wisconsinan and Wisconsinan glaciations are shown with white and yellow lines, 130 

respectively. 131 

3.0 Methods 132 

3.1 Model Development 133 

Czuba et al. (2019) developed and calibrated a model of the East Fork White 134 

River in 2D HEC-RAS and ran it under steady-state flow using the diffusive wave 135 

equations. In this study, we have recalibrated this model to run full unsteady flows using 136 

the Saint Venant equations. For a full description of the modeling methods see Czuba et 137 

al. (2019) or a stand-alone account of the full methods used here that partially overlaps 138 

with those of Czuba et al. (2019) in the supplementary information. In this section we 139 

note only the elements of the modeling effort that differ from Czuba et al. (2019). 140 

Topographic data used in modeling experiments were constructed from a 1.5 m DEM 141 

derived from airborne light detection and ranging (lidar) data and field surveyed 142 

bathymetric data. In addition to the existing topography, we also generated five 143 

synthetic floodplains based on the East Fork White River floodplain with various 144 

degrees of floodplain channel and river-floodplain topographic connectivity. The 145 

synthetic floodplain surfaces were generated by extracting the extent of the East Fork 146 

White River active floodplain at the 89-year flood of record (Czuba et al., 2019). We 147 

then removed all floodplain channels from the floodplain surface by applying a Gaussian 148 

filter (Eqn. 1) as: 149 

𝐺(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2      Eqn. 1 150 
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where, x and y are spatial distances (m) and σ is the standard deviation of the Gaussian 151 

distribution (m). The calculation used σ = 6 m and iterated over the active floodplain 20 152 

times, creating a preliminary smoothed floodplain. The presence of the floodplain 153 

channels caused artificially low elevations between floodplain channels during the 154 

Gaussian spatial averaging. To overcome this, we removed and interpolated all portions 155 

of the active floodplain more than 0.1 m below the preliminary smoothed surface. This 156 

eliminated most floodplain channels and the river channel. Additionally, we removed all 157 

major road features in the active floodplain domain to avoid any artificial increases in 158 

floodplain elevation. We applied the same Gaussian filter as before to the active 159 

floodplain with the floodplain channels, river channel, and roads removed, thus 160 

producing a smoothed version of the East Fork White River floodplain that maintains 161 

long wavelength topography. The river channel, roads, and terraces were then added 162 

back into the smoothed floodplain topography creating a floodplain with similar long 163 

wavelength topography and floodplain extent, but without floodplain channels (Figure 2).  164 
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 165 

Figure 2. Smoothed floodplain topography. The left image shows the existing topography along 166 

the East Fork White River and the right image shows the smoothed topography after applying a 167 

Gaussian Filter. The topographic profiles illustrate how the Gaussian filter removed all floodplain 168 

channels, while maintaining long wavelength undulating topography. 169 

We used the smoothed floodplain (Figure 3a) and existing floodplain (Figure 3f) 170 

to generate four additional synthetic floodplains with different topographic connectivity 171 

between the floodplain channels and the river channel. We envision different floodplain-172 

channel network connectivity as being related to the degree of channelization. The 173 
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present floodplain surface is channelized with a highly integrated floodplain-channel 174 

network, and the smooth floodplain surface is the least channelized. We create 175 

intermediately channelized floodplains by selectively preserving the deepest parts of the 176 

channel network. This creates a floodplain with channel segments that are not 177 

connected. To do this we detrend the natural floodplain with the smoothed floodplain, 178 

thereby creating a normalized DEM where negative values represent elevations lower 179 

than the smoothed floodplain. We then use two floodplain channel masks with threshold 180 

values of -0.23 m and -0.84 m and remove all channel cells above the thresholds. This 181 

creates two surfaces that isolate and preserve only the lowest-lying floodplain channel 182 

cells (threshold of -0.84 m) and both low-lying and mid-elevation floodplain channels 183 

(threshold of -0.23 m). The two channel masks were used to extract floodplain channels 184 

from the existing topography and add them back to the smoothed floodplain topography. 185 

The threshold of -0.84 m created a floodplain with weakly connected floodplain 186 

channels (Figure 3c), and the threshold of -0.23 m created a floodplain with better 187 

connected floodplain channels (Figure 3e).  188 
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 189 

Figure 3. Initial and Boundary Conditions. a-f) Example reaches of the 6 initial conditions with 190 

varying down-valley floodplain channel connectivity (DVC) and river-floodplain channel 191 

connectivity (RFC). The illustration on the left shows the location of the example reaches, 192 

outlined in red, on our model domain, shown in black. g) Plot of parameter space for the 193 

calculated DVC and RFC values for the entire domain. The example reaches shown above are 194 

labeled (a-f) on the plot. h) Plot of total discharge used in our modeling. Each step is labeled with 195 

its respective RI. The shaded portions of the graph indicate the flooding extent for a given 196 

discharge reported by Czuba et al. (2019) used to guide our selection of discharges.   197 
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 198 

Additionally, we constructed two synthetic floodplains with the same floodplain-199 

channel connectivity as described above, but we also changed the strength of 200 

connections between the floodplain channel and the main river (Figure 3b, d). To 201 

accomplish this, all floodplain channels were removed from the two floodplain channel 202 

masks within 60 m (approximately two times the average levee width) of the river 203 

channel. This effectively removes all natural breaks in the levees and banks created by 204 

channels or crevasses. We created one additional floodplain channel mask to delineate 205 

the floodplain channels on the existing floodplain using a threshold of -0.15 m. The 206 

mask was used for data analysis and quantifying initial conditions.  207 

To quantitatively describe our six different floodplains initial conditions, we 208 

developed a metric to describe the connectivity within the floodplain-channel networks 209 

(hereafter down-valley connectivity, DVC). DVC was calculated as:  210 

    𝐷𝑉𝐶 =
𝐹𝐶𝐴

𝐹𝑇𝐴
× 𝐹𝐼    Eqn. 2 211 

where, FCA is the floodplain channel surface area (m2), FTA is the total floodplain area 212 

(m2), and FI is the number of floodplain segments surrounded by floodplain channels 213 

(an approximation to assess the number of floodplain channel connections). FCA was 214 

calculated with the floodplain channel masks used to extract floodplain channels 215 

(described above). FTA was measured based on the wetted extent of the 89-year flood 216 
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(peak of record) from Czuba et al., (2019). Hence, larger DVC values indicate a greater 217 

number of well-connected floodplain channels across the floodplain. 218 

 Similarly, we describe the connectivity between the floodplain and main channel 219 

as river-floodplain connectivity (RFC). RFC was computed as the coefficient of variation 220 

(standard deviation/mean) of the bank height within 30 m (approximately average levee 221 

width) of the river channel (Figure 3g). Larger RFC values represent river banks with 222 

higher topographic variability, hence an enhanced connection of the river channel to 223 

floodplain channels. 224 

3.2 Boundary Conditions 225 

The upstream boundary conditions were specified along the East Fork White 226 

River and Sand Creek as a quasi-steady state discharge entering the domain (see Fig. 227 

S1 and supplemental methods). The downstream boundary condition was set to 228 

maintain normal depth exiting the domain. The quasi-steady state simulations held the 229 

discharge entering the domain constant until equilibrium was achieved throughout the 230 

entire domain before increasing the discharge (Figure 3h). Our model simulated six 231 

discharges ranging from 292 m3s-1 to 2,730 m3s-1 which spanned a range of floodplain 232 

inundation extents (Czuba et al., 2019; Figure 3h). The six simulated discharges and six 233 

initial conditions created a total of 36 simulations exploring steady state discharges.  234 

In a second set of experiments, we relax the assumption of steady flow and 235 

explore flood wave propagation. For floodwave propagation the model setup was 236 
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identical to those for the steady state simulations; however, we specified no discharge 237 

entering the domain along the sand creek boundary condition and specified a 238 

hydrograph at the upstream boundary for the East Fork White River. The input 239 

hydrographs were triangular shaped that had peak discharges of 292 m3s-1, 581 m3s-1, 240 

and 1467 m3s-1, respectively. The rising limb of the floodwave increased at a rate of 241 

18.7 m3s-1 per hour and the falling limb decreased at a rate of 8.2 m3s-1 per hour. The 242 

rates for rising and falling floodwave limb is based on a 10-year average of all rising and 243 

falling limbs of floodwaves at the gage in Seymour, IN (USGS, 2018). 244 

3.3 Calibration and Validation 245 

We calibrated the model to the elevation-discharge rating curve developed for 246 

the USGS gage located near Seymour, IN (Figure 1). Model calibration was conducted 247 

by varying Manning’s roughness coefficients for the open water (river channel) and 248 

agricultural land cover classes (Homer et al., 2015). Final roughness coefficients for the 249 

open water and agricultural land cover classes were 0.022 and 0.025 (Table S1), 250 

respectively. The final calibrated roughness coefficients in our study differs from those 251 

in Czuba et al. (2019) due to the use of the Saint Venant equations rather than the 252 

diffusive wave equations. Comparing our model simulations to the elevation-discharge 253 

rating curve (USGS, 2018), we obtained a root mean squared error (RMSE) of 0.16 m 254 

and a mean average error (MAE) of 0.15 m (Figure S2). Model performance is 255 

comparable to that reported by Czuba et al., (2019). For an extended discussion of 256 

model calibration and validation, see supplementary information.  257 
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3.4 Data Analysis 258 

Initial model outputs from our 36 modeling experiments included water depth, 259 

depth averaged velocity magnitude, and 2-D (x and y directed) depth averaged velocity 260 

for each cell. We gridded the results at a 15-m resolution for all analysis. From the initial 261 

model outputs, we computed the magnitude of specific discharge (q, m2 s-1; Eqn. 3) and 262 

a 2-D specific discharge (qx,y, m2 s-1; Eqn. 4) for each grid cell in all model simulations 263 

as: 264 

𝑞 = �̅� ∗ ℎ      Eqn. 3 265 

and 266 

𝑞𝑥,𝑦 = 𝑣𝑥,𝑦̅̅ ̅̅ ̅ ∗ ℎ      Eqn. 4 267 

where, �̅� is the depth-averaged magnitude of velocity (m s-1), h is water depth (m), and 268 

𝑣𝑥,𝑦̅̅ ̅̅ ̅ is the 2-D depth-averaged velocity (m s-1) in the x or y direction, respectively.  269 

To assess the flooding extent in each of our modeling simulations, we produced 270 

polygons of the inundated floodplain area and tabulated the percent of the floodplain 271 

that was inundated. Additionally, we tabulated the number and area of hydrologic 272 

islands (non-inundated areas surrounded by water) in the domain.  273 

We also tabulated the average flooding depth, velocity magnitude, and specific 274 

discharge magnitude in the river channel, entire floodplain, and floodplain channels. 275 
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This was accomplished using a polygon mask of the river channel, entire floodplain 276 

extent, and the floodplain channel masks used to generate the initial conditions (section 277 

3.2.1). Averages and standard deviations were computed as the mean and standard 278 

deviations for a half-Gaussian distribution for all cells within the extent of a polygon. A 279 

half-Gaussian distribution was chosen because it best fit the data distribution. Trend 280 

significance of the results were evaluated using an F-test. Additionally, we computed an 281 

average lateral exchange of surface water between the river channel and floodplain and 282 

a unit residence time of water in the floodplain. These calculations follow the same 283 

procedure outlined by Czuba et al. (2019) and are detailed in the supplementary 284 

information. Finally, we mapped our model simulations into an average unit residence 285 

time-lateral exchange parameter space (Czuba et al., 2019). This parameter space 286 

illustrates how much water is exchanged between the river channel and floodplain and 287 

how long it resides in a given location along the floodplain. 288 

4.0 Results 289 

4.1 Spatial variability of flooding is controlled by river-floodplain and down-valley 290 

connectivity 291 

Spatial flooding patterns varied among the floodplains with different DVC and 292 

RFC. Model simulations with a low DVC have flooded areas close to the main river 293 

channel at low flooding discharges (Figure 4). As discharge increased, the flooded area 294 

incrementally inundated higher elevation topographic features and extended toward the 295 

valley margins (Figure 4a-c). In contrast, simulations with a large DVC allowed 296 
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floodwaters at lower discharges to reach the valley margins through floodplain 297 

channels. As discharge increased for high DVC scenarios, the floodplain segments 298 

between floodplain channels became incrementally inundated (Figure 4d-f). 299 

Additionally, we found that the spatial distribution of floodwaters was strongly influenced 300 

by long-wavelength topography in simulations with a low DVC causing hydrologic 301 

islands to form around broad topographic highs (Figure 4a-c). Simulations with a high 302 

DVC were weakly influenced by the long-wavelength topography as flow at lower stages 303 

was routed though floodplain channels (Figure 4d-f). Simulations with a low RFC 304 

caused flooding to inundate the majority of the river banks at low flooding discharges 305 

(Figure 4a, b, d), whereas simulations with a high RFC had more variability of wet and 306 

dry banks at lower discharges (Figure 4c, e, f).  307 
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 308 

Figure 4. Spatial variability of flooding. a-f) Examples of flooding spatial patterns for six different 309 

initial conditions varying DVC and RFC. The shades of blue indicate flooding extent for different 310 

discharges, where darker blues show the new areas flooded at progressively higher discharges. 311 

The black line delineates the river-channel banks. The example locations are the same reach of 312 

river shown in figure 3.  313 

Topographic connectivity also influences the proportion of floodplain that is 314 

inundated. Changes in RFC resulted in no statistically significant changes in the 315 

proportion of floodplain inundated (Figure 5a). When 80% or more of the floodplain was 316 
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inundated (Q=935m3s-1), the influence of DVC was negligible (Figure 5b). However, Q < 317 

935m3s-1, increasing DVC decreased the percent of floodplain inundated because water 318 

is confined within channels (Figure 5b). Analysis of the number of hydrologic islands in 319 

the floodplain showed that increasing DVC and RFC increased the number of 320 

hydrologic islands (Figure 5c, d). As the number of islands increases, we expect more 321 

spatially varied flood pathways as water takes increasingly tortuous paths across the 322 

floodplain. As discharge increases for a given DVC and RFC we generally find the 323 

number of hydrologic islands increase until a discharge of 581 m3s-1, beyond which the 324 

number of hydrologic islands decreases with increasing discharge (Figure 5c, d). 325 
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 326 

Figure 5. Inundated area and island analysis for entire domain. a, b) Percent of floodplain 327 

inundated as a function of varying RFC and DVC. The lines show the best fit for each steady 328 

state discharge. c, d) Number of hydrologic islands in the floodplain as a function of RFC and 329 

DVC. Solid lines indicate trends with statistical significance (p<0.05) and dashed line are not 330 

statistically significant. 331 

4.2 Increases in DVC and RFC have the most influence on surface-water flow 332 

characteristics at lower flooding discharges 333 

In nearly all cases, changes in DVC and RFC only have statistically significance 334 

when the incoming discharge is less than 382 m3 s-1 (e.g. Figure 6-8). At these low 335 

flooding discharges increasing RFC and DVC generally causes the depth (Figure 6a, b) 336 
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and specific discharge (Figure 6e, f) in the main channel to decrease. The effect on the 337 

main channel velocity is unclear (Figure 6c, d). The response across the entire 338 

floodplain show that the average velocity and specific discharge increase with 339 

increasing connectivity (p < 0.05 for Q = 292 and 382 m3 s-1; Figure 7c-f). Flow 340 

characteristics within the floodplain channels did not significantly change as a function 341 

of DVC or RFC.  342 
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 343 

Figure 6. Spatially averaged main river channel flow dynamics throughout the domain. The 344 

colored lines are the best fit for each steady state discharge simulated and error bars show one 345 

standard deviation in the data. Solid lines indicate trends with statistical significance (P<0.05) and 346 

dashed line are not statistically significant. 347 
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 348 

Figure 7. Spatially averaged flow dynamics in the floodplain. The colored lines are the best fit for 349 

each steady state discharge simulated and error bars show one standard deviation in the data. 350 

Solid lines indicate trends with statistical significance (p<0.05) and dashed line are not statistically 351 

significant. 352 

 353 
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4.3 Controls on the lateral exchange and residence time of surface water 354 

Lateral exchange of surface waters between the river and floodplain is 355 

predominantly controlled by river stage. We find no significant trends between lateral 356 

exchange and RFC or DVC (Figure 8a, b). At low flooding discharges, residence time in 357 

the floodplain decreased as RFC increased (Figure 8c).  For higher discharges, 358 

residence time increased slightly as DVC increased (Figure 8d). 359 

 At low flooding discharges, we found that a low DVC maximized the lateral 360 

exchange and average residence time for water in the floodplain (Figure 8e). At higher 361 

discharges, larger RFC maximized the lateral exchange-unit residence relationship 362 

(Figure 8e). In general, our results suggest that floodplains with moderate DVC and high 363 

RFC will promote the highest lateral exchange-unit residence time under most 364 

discharges.  365 

 366 
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Figure 8. Unitless lateral exchange and unitless residence time. Colored lines in a-d show best 367 

fits for each simulated discharge, solid lines indicate trend is statically significant (P<0.05) and 368 

dashed lines indicate non-statically significant trend. a, b) Average lateral exchange between the 369 

river channel and floodplain normalized by the average flux through the river channel as a 370 

function of RFC and DVC. c, d) Average residence time-per-unit length of floodplain normalized 371 

by the average residence time-per-unit length in the river as a function of  372 

RFC and DVC.  Simulations varying RFC showed a statistically significant trend for a discharge 373 

of 292 m3 s-1 (P=0.00048). Variations in DVC showed statistically significant trends at discharges 374 

of 935 m3 s-1, 1467 m3 s-1, and 2730 m3 s-1 (P=0.006, P=0.013, P=0.01, respectively). e) 375 

Exchange-residence time parameters space. Colored lines indicate results for different initial 376 

RFC and DVC values.  377 

4.4 Increases in DVC and RFC influence floodwave propagation 378 

Our steady state simulations suggest that increasing DVC and RFC should drive 379 

floodwave attenuation by increasing flow path lengths (Figure 4) and increasing volume 380 

of water flowing in the floodplain (Figure 8f). To see how increasing DVC and RFC 381 

affects floodwave attenuation, we ran an additional six models for the smoothed 382 

floodplain (Figure 4a) and the natural floodplain (Figure 4f). Our simulations show that 383 

floodplain channels do attenuate floodwaves and their influence is accentuated at lower 384 

discharges (Figure 9a). We find that from our simulations with floodwaves of a peak 385 

discharge 292 m3s-1, 581 m3s-1, and 1467 m3s-1
 the floodplain channels resulted in a 386 

3.5%, 1.8%, and, 0.16% percent increase in floodwave attenuation, respectively (Figure 387 

9a). Additionally, we find that the majority of floodwave attenuation occurs at the initial 388 

portion of the rising limb and the final portion of the falling floodwave limb Figure (9b-d), 389 

further suggesting floodplain channels have the strongest influence on flood 390 

hydrodynamics at lower flooding discharges.  391 
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 392 

Figure 9. Floodwave dynamics.  a) Plot showing percentage of peak discharge attenuated for 393 

the existing topography (grey) and the smoothed topography (black). b-d) Plots showing how the 394 

resulting hydrographs were reshaped from the initial input hydrograph (black dashed line) to the 395 

downstream hydrograph for the smooth (black solid line) and natural (grey solid line) topography.  396 

5.0 Discussion 397 

5.1 Floodplain channels alter how floodplains become inundated  398 

Floodplain channel presence is an important control on flooding processes and 399 

floodplain hydrodynamics. For instance, consider the classical model for river flooding 400 

based on the notion of bankfull discharge (Leopold et al., 1964; Williams, 1978), where 401 

after a river stage threshold is met water spills over the banks and spreads out across 402 
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the floodplain. Our model simulations with no floodplain channels and floodplain 403 

channels with a low DVC behave similarly to the classical model (Figure 4a-c). In these 404 

simulations, water spilled over the banks and incrementally increased the wetted width 405 

until reaching the valley walls, creating hydrologic islands around only long-wavelength 406 

topography. In contrast, simulations with a high DVC and at the lowest discharges, 407 

water extended out to the floodplain margins (Figure 4d-f) and created many hydrologic 408 

islands across the floodplain surface (Figure 5d). As discharge increases, the water 409 

level in the floodplain channels rises inundating the floodplain segments between 410 

floodplain channels (Figure 4d-f). Hence, when DVC is high, floodplains are inundated 411 

from water rising in the floodplain channels, rather than from the widening of the wetted 412 

flood pool. Similar flooding patterns have been observed on the Congaree River in 413 

South Carolina (Kupfer et al., 2015) and the Ogeechee River in Georgia (Benke et al., 414 

2000).   415 

Our results show that floodplain inundation pattern is more sensitive to DVC than 416 

to RFC (compare Figure 4a-c to d-f). This suggests that floodplains with a high DVC do 417 

not conform to the classical model of overbank topping and floodplain inundation during 418 

low discharge flooding events. Hence, classical models are insufficient to characterize 419 

the complex transitions from river channel to overbank flow, which are important to 420 

consider given that low discharge flooding events occur frequently in these systems 421 

(Czuba et al., 2019). Accounting for floods occurring before all river banks are 422 

overtopped is important as it will create increased variability in wet-dry transitions along 423 

the river banks and in the floodplain (Figure 4d-f). The increased variability should 424 



manuscript submitted to Water Resources Research 

 

29 

 

promote the development ecological and bio-geochemical hotspots (Frei et al., 2012) in 425 

floodplains with a high DVC, thus affecting floodplain functioning. 426 

5.2 Increases in RFC promote increased floodplain functioning by increasing 427 

exchange and residence time 428 

 We applied the methodological framework outlined by Czuba et al. (2019) for 429 

quantifying lateral exchange and residence-time parameter space of surface water. This 430 

parameter space allows us to examine the quantity and duration of water on the 431 

floodplain in our model runs (Figure 8e). It is worth noting that our computed residence 432 

time is measured as a time-per-unit length in the floodplain and in the river, rather than 433 

a total time along the entire pathway.  434 

 In this parameter space (Figure 8e) we can explore how DVC and RFC influence 435 

floodplain functioning. The upper right corner of the parameter space indicates when the 436 

most water enters the floodplain and resides there the longest. This portion of 437 

parameter space should maximize the ability of a floodplain to attenuate floodwaves 438 

(Lininger and Latrubesse, 2016), recharge aquifers (Morin et al., 2009; Sophocleous, 439 

2002), and store sediment, solutes, and nutrients (Junk et al., 1989; Mitsch & Gosselink, 440 

2000; Tockner & Stanford, 2002; Walling, 1999). Our results suggest that higher RFC 441 

pushes floodplain functioning towards this space. Surprisingly, DVC has virtually no 442 

impact on residence time or lateral exchange (Figure 8e). This suggests to us that the 443 

processes that drive RFC are also important for floodplain functioning even if they do 444 

not strongly affect inundation patterns.   445 
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 As we have shown, floodplain channels have an influence on the functioning of 446 

floodplains especially in their role to increase RFC. Because of this they should be 447 

considered in floodplain restoration projects. Restoration projects often rely on the 448 

removal of artificial levees to enhance lateral connectivity of rivers and floodplains 449 

(Opperman et al., 2009; Tockner & Stanford, 2002). Floodplains are often engineered 450 

after the classical meandering river model (Nanson & Croke, 1992), which presents 451 

floodplains as relatively flat, featureless accumulations of sediment. However, our 452 

models show that topographic connectivity of the floodplain influences flooding 453 

processes and may alter floodplain functioning when compared to a relatively 454 

featureless floodplain. For example, increasing topographic connectivity increases the 455 

volume and residence time of water in the floodplain (Figure 8e), which would enhance 456 

solute diffusion (Bryant-Mason et al., 2013; Forshay & Stanley, 2005; Tockner et al., 457 

1999), sediment deposition and retention (Croke et al., 2013; Malard et al., 2002; 458 

Tockner et al., 1999), and water infiltration into the subsurface (Morin et al., 2009; 459 

Sophocleous, 2002). Floodplain restoration, guided by our results, would benefit by 460 

considering how floodplain channels connecting to the main river channel enhance 461 

restoration efforts.  462 

5.3 Floodplain channels affect floodwave propagation at low flooding discharge 463 

Floodplain channel connectivity may also have important implications for 464 

floodwave dynamics. We already know that topographic lows on floodplains have been 465 

shown to aid in floodwave attenuation through water retention and adding topographic 466 
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roughness. For instance, paleo-meander cutoffs attenuated the peak flood by 30% on 467 

the Araguaia River in Brazil (Lininger & Latrubesse, 2016). Moreover, paleo-meander 468 

cutoffs can be linked together by secondary channels to form an integrated floodplain-469 

channel network (David et al., 2017). Our result that floodwave propagation is affected 470 

by floodplain channels at low discharges is consistent with these ideas and the recent 471 

modeling results from Czuba et al., (2019). They showed that as the floodplain became 472 

more inundated the surface-water flow paths were less influenced by floodplain 473 

channels, which explains why floodplain channels are less effective at attenuating 474 

floodwaves during large flooding events.  475 

While our unsteady modeling results suggest that floodplain channels increase 476 

floodwave attenuation, we do not simulate some important processes that may further 477 

complicate this relationship. For instance, simulations with a high DVC and RFC 478 

produce more wet-dry transitions, which could result in increased aquifer recharge that 479 

would further attenuate a translating floodwave. Additionally, floodplains with a high 480 

DVC and RFC may be able to drain more water, leaving less trapped in topographic 481 

lows than a floodplain rich in geomorphic features that are not well connected. Hence, 482 

further modeling and field work is necessary to fully assess how floodplain geomorphic 483 

connectivity and floodplain channels affect floodwave dynamics. 484 

5.4 Floodplain topography is a critical control on flooding processes at low 485 

discharge, frequent flooding 486 
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 Our modeling results provide insight into understanding the relative roles of a 487 

fluctuating hydrograph and the topographic connectivity on setting flood hydrodynamics. 488 

The influence of floodplain topography is most significant at the lowest flooding 489 

discharges simulated in this study. We only simulated discharges that cause flooding, 490 

and when considering the full range of flows, the low flooding discharges simulated here 491 

are in the 50-75th percentile of all flows (Czuba et al., 2019). This is not entirely 492 

surprising since at high discharges most of the low-relief floodplain topography we 493 

investigate here is fully inundated and at the lowest discharges, water remains in the 494 

main channel, and floodplain channels are inactive (Czuba et al., 2019). Still, increased 495 

RFC creates more lateral exchange even at higher discharges (Figure 8). 496 

Our results suggest that these low-discharge flooding events could be an 497 

important part of floodplain functioning. At our study site, low-level floods have a RI of 498 

19 days (Czuba et al., 2019) compared to RIs of once a year (or less frequent) for larger 499 

events. Because of their frequency these low-level floods may be important components 500 

that drive hyporheic exchange and biogeochemical processing in the floodplain. Both of 501 

these processes are sensitive to the kind of smaller-scale topography we investigated 502 

here (Frei et al., 2012).  503 

The well-connected topographic configuration of the floodplain surface opens a 504 

window for flooding processes to initiate that does not occur in threshold systems that 505 

only put water on the floodplain above some bankfull discharge. It remains an open and 506 

interesting question exactly how the dynamics of hyporheic exchange and nutrient 507 
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processing are affected by highly connected river-floodplain systems that repeatedly 508 

flood at below bankfull stages.   509 

6.0 Conclusion 510 

In this study, we investigated how the connectivity of floodplain topographic lows 511 

influence flooding processes. Results suggest that floodplain topography influences 512 

flooding most at low flooding discharges because at high discharge those topographic 513 

features are fully inundated and no longer significantly steer flow. With minimal 514 

connectivity of topographic lows, floodplain inundation incrementally extends to the 515 

valley margins as discharge increases. Whereas at high connectivity, inundation 516 

extends to the valley margin at low flooding discharges and creates many hydrologic 517 

islands. As discharge increases the hydrologic islands are incrementally inundated. At 518 

the lowest discharges simulated here, highly connected floodplain topography, both 519 

down-valley and lateral with the river channel, decreases average specific discharge in 520 

the main channel because flow is lost to the floodplain. Subsequently, the specific 521 

discharge on the floodplain increases as connectivity increases. Additionally at low 522 

flooding discharges, high down-valley connectivity decreases residence time of surface 523 

waters, whereas at high discharges increased lateral connectivity of the river to 524 

floodplain increases lateral exchange. Our results suggest that topographic connectivity 525 

between the floodplain and the main channel has an important effect on flooding 526 

processes at low flooding discharges by driving surface water exchange and increasing 527 

residence time on the floodplain.  528 
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Text S1: 1.0 Extended Methods  

1.1.0 Model Development   

We developed a 2-D unsteady surface-water hydrodynamic model for the East Fork 

White River and its adjacent floodplain in HEC-RAS version 5.0.3 using the Saint Venant 

equations. The computational mesh contained a total of 187,955 cells and used a combination 

of structured and unstructured meshes. The structured computational mesh has square cells, 

each 900 m2. Breaklines were enforced along major roadways (cell spacing of ~3m), river 

banks, middle of the river (cell spacing of ~12m), and across the low head dam (cell spacing of 

~1.5m; Figure S1) producing the unstructured portion of the mesh. A spatially varied Manning’s 



roughness was applied to the mesh, based on 30 m resolution land cover data (Homer et al., 

2015),and the coefficients were chosen based on model calibration discussed in section 1.2. 

The topography data used in the model was a 1.5m digital elevation model (DEM) derived from 

light detection and ranging (lidar) data, bathymetric data, and theoretical topography for 

connectivity scenarios constructed by modifying the empirical elevation datasets. The 

topographic and bathymetric data collection and manipulation is described in section 1.1.1. 

Boundary conditions were set at three locations on the model grid: the upstream model extent of 

the East Fork White River, the upstream model extent of Sand Creek, and the downstream 

model extent of the East Fork White River (Figure S1). Our choice in boundary conditions is 

discussed in section 1.1.2.  

1.1.1 Topography and Bathymetry Data 

Topographic data used in the model consisted of a combination of empirical and 

theoretical topographic datasets. The empirical data used were constructed from a 1.5m DEM 

derived from aerial lidar flown on March 23, 2011 (http://www.indianamap.org). The lidar sensor 

could not measure topography through surface water, hence data points with water on the day 

of data acquisition were removed and replaced with a flat or sloping plane, a process called 

hydro-flattening. But the geometry of the main channel is important for the flooding processes 

we seek to understand here. We surveyed the river channel using a single-beam acoustic 

profiler measuring water depth and spatial location. The portion of the reach we surveyed is 

shown with a yellow line in figure 1. Additionally, we measured water-surface profiles with a 

real-time kinematic geographic position system (RTK-GPS) along the river during the day of 

surveying. To construct the bed-elevation surface we subtracted the depth data from the 

measured water-surface elevation data. Bed elevation data were processed into a DEM by 

taking the average depth along 30 m (approximately half the average river width) segments of 

the river centerline. The average depth along the segment was then assigned to a cross-section 

along that river segment. A triangulated irregular network was generated from the cross-

sections, averaging all cross-channel variability while maintaining down-valley pool and riffle 

sequences. River reaches without bathymetric data were lowered by 1.5m to match the overall 

slope of our measured bathymetric data.  

In addition to the actual topography, we also generated five synthetic floodplains based 

on the East Fork White River floodplain with various degrees of floodplain channel and river-

floodplain connectivity. The synthetic floodplain surfaces were generated by extracting the 

extent of the East Fork White River active floodplain at the 89-year flood of record. We then 

removed all floodplain channels from the floodplains surface by applying a Gaussian filter (Eqn. 

1) as: 

𝐺(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2      Eqn. 1 

where, x and y are spatial distances (meters) and σ is the standard deviation of the Gaussian 

distribution. The calculation used σ = 6 m and iterated over the active floodplain 20 times, 

creating a preliminary smoothed floodplain. The presence of the floodplain channels caused 

artificially low inter-channel areas during the spatial averaging. To overcome this, we removed 

and interpolated all portions of the active floodplain ~0.1m lower than the preliminary smoothed 

surface. This eliminated most floodplain channels and the river channel. Additionally, we 

removed all major road features in the active floodplain domain to avoid any artificial increases 



in floodplain elevation. We applied the same Gaussian filter as before to the active floodplain 

with the floodplain channels, river channel, and roads removed, thus producing a smoothed 

version of the East Fork White River floodplain that maintains long wavelength topography. The 

river channel, roads, and terraces were then added back into the smoothed floodplain 

topography creating a floodplain with a similar long wavelength topography and floodplain 

extent, but without floodplain channels (Figure 2).  

We used the smoothed floodplain (Figure 3a) and existing floodplain (Figure 3f) to 

generate four additional floodplains with different topographic connectivity between the 

floodplain channels and the river channel. We envision different floodplain-channel network 

connectivity as being related to the degree of channelization. The present floodplain surface is 

channelized with a highly integrated floodplain-channel network, and the smooth floodplain 

surface is the least channelized. We create intermediately channelized floodplains by selectively 

preserving the deepest parts of the channel network. This creates a floodplain with channel 

segments that are not connected. To do this we detrend the natural floodplain with the 

smoothed floodplain, thereby creating a normalized DEM where negative values represent 

elevations lower than the smoothed floodplain. We then use two floodplain channel masks with 

threshold values of -0.23 m and -0.84 m and remove all channel cells above the thresholds. 

This creates two surfaces that isolate and preserve only the lowest-lying floodplain channel cells 

(threshold of -0.84 m) and both low-lying and mid-elevation floodplain channels (threshold 

of -0.23 m). The two channel masks were used to extract floodplain channels from the existing 

topography and add them back to the smoothed floodplain topography. The threshold of -0.84 m 

created a floodplain with weakly connected floodplain channels (Figure 4c), and the threshold of 

-0.23 m created a floodplain with better connected floodplain channels (Figure 4e).  

Additionally, we constructed two synthetic floodplains with the same floodplain-channel 

connectivity as described above, but we also changed the strength of connections between the 

floodplain channel and the main river (Figure 3b, d). To accomplish this, all floodplain channels 

were removed from the two floodplain channel masks within 60 m (approximately two times the 

average levee width) of the river channel. This effectively removes all natural breaks in the 

levees and banks created by channels or crevasses. We created one additional floodplain 

channel mask to delineate the floodplain channels on the existing floodplain using a threshold of 

-0.15 m. The mask was used for data analysis and quantifying initial conditions.  

To quantitatively describe our six different initial conditions, we developed a metric to 

describe the connectivity within the floodplain-channel networks (hereafter down-valley 

connectivity, DVC). DVC was calculated as:  

    𝐷𝑉𝐶 =
𝐹𝐶𝐴

𝐹𝑇𝐴
× 𝐹𝐼    Eqn. 2 

where, FCA is the floodplain channel surface area (m2), FTA is the total floodplain area (m2), and 

FI is the number of floodplain segments surrounded by floodplain channels (an approximation to 

assess the number of floodplain channel connections). FCA was calculated with the floodplain 

channel masks used to extract floodplain channels (described above). FTA was measured based 

on the wetted extent of the 89-year flood (peak of record) from Czuba et al., (2019). Hence, 

larger DVC values indicate a greater number of well-connected floodplain channels across the 

floodplain. 



 Similarly, we describe the connectivity between the floodplain and main channel as river-

floodplain connectivity (RFC). RFC was computed as the coefficient of variation (standard 

deviation/mean) of the bank height within 30 m (approximately average levee width) of the river 

channel (Figure 3g). Larger RFC values represent river banks with higher topographic 

variability, hence an enhanced connection of the river channel to floodplain channels. 

 

 

Figure S1. Model setup along the East Fork White River. The inset shows an example of the 

computational grid used in the study. Note the floodplain contains a structured grid, while the river and 

roads have unstructured grids. Locations of the boundary conditions are shown with red lines.  

 

1.2 Boundary Conditions 

The upstream boundary conditions were specified along the East Fork White River and 

Sand Creek (Figure S1) as a quasi-steady state discharge entering the domain. The quasi-

steady state simulations held the discharge entering the domain constant until equilibrium was 

achieved throughout the entire domain before increasing the discharge (Figure 3h). Discharge 

entering the domain at the upstream boundaries was chosen based on modeling work by Czuba 



et al. (2019), which simulated a variety of discharges (7-day to 89-yr. recurrence interval; RI) on 

the same reach of the East Fork White River. For our modeling experiments, we used six 

different discharges ranging from 292 m3s-1 to 2,730 m3s-1 which spanned a range of floodplain 

inundation extents (Figure 3h). Discharges were specified as 90% of the flow entering the 

domain from the East Fork White River and 10% entering along Sand Creek, based on 

comparing relative drainage areas. The downstream boundary was specified along the 

downstream extent of the East Fork White River and its floodplain was set as normal depth 

(Figure S1). The computation of normal depth required a friction slope (energy grade line slope) 

which was set to 0.001 along the boundary. The six simulated discharges and six initial 

conditions created a total of 36 simulations exploring steady state discharges. Additionally, we 

ran six simulations for unsteady discharges using the smoothed and existing topography. For 

the unsteady simulations, we specified no discharge entering the domain along the Sand Creek 

boundary condition and specified a hydrograph at the upstream boundary for the East Fork 

White River. The input hydrographs were triangular shaped that had peak discharges of 292 

m3s-1, 581 m3s-1, and 1467 m3s-1, respectively. The rising limb of the floodwave increased at a 

rate of 18.7 m3s-1 per hour and the falling limb decreased at a rate of 8.2 m3s-1 per hour. The 

rates for rising and falling floodwave limb is based on a 10-year average of all rising and falling 

limbs of floodwaves at the gage in Seymour, IN (USGS, 2018; Figure 9). 

 

1.3 Calibration and Validation 

We calibrated the model to the elevation-discharge rating curve developed for the USGS 

gage located near Seymour, IN (USGS, 2018; Figure 1). Model calibration was conducted by 

varying Manning’s roughness coefficients for the open water (river channel) and agricultural 

land cover classes (Homer et al., 2015). Final roughness coefficients for the open water and 

agricultural land cover classes were 0.022 and 0.025 (Table S1), respectively. The final 

calibrated roughness coefficients in our study differs from those in Czuba et al. (2019) due to 

the use of the Saint Venant equations rather than the diffusive wave equations. Comparing our 

model simulations to the elevation-discharge rating curve, we obtained a root mean squared 

error (RMSE) of 0.16 m and a mean average error (MAE) of 0.15 m. The error we obtained from 

our model simulations was within the error of the USGS field data used to compute the 

elevation-discharge rating curve (RMSE= 0.26 m, MAE = 0.18 m; Figure S2a).   

 

 

 

 

 

 

 

 

 



 

Land cover class Default n Final n 

Agricultural Vegetation 0.04 0.025 

Open Water 0.035 0.022 

Forest & Woodland 0.12 0.12 

Undifferentiated Barren Land 0.04 0.04 

Developed, Open Space 0.04 0.04 

Developed, Low Intensity 0.08 0.08 

Developed, Medium Intensity 0.1 0.1 

Developed, High Intensity 0.15 0.15 

 

Table S1. Land cover classes and their associated Manning’s Roughness coefficients (n). The 

table shows the default Manning’s Roughness coefficients (Brunner, 2016) based on land cover 

classes and our final coefficients after calibration.   

 

 

 Model validation was accomplished using surveyed high-water marks collected by the 

USGS in 2008 (Morlock et al., 2008), water-surface elevations collected during flooding in 

February, 2018, and aerial imagery of flooding collected in April, 2011 (locations shown in 

Figure 1). The 2008 high-water marks were measured using mud, drift, debris, and seed lines 

on trees, fences, buildings, and utility poles (Morlock et al., 2008) as a proxy for maximum 

water-surface elevation. The measurements corresponded to the peak of record on June 8, 

2018 with a discharge of 2,730 m3s-1. The 2018 water-surface elevations were measured on 

February 26, 2018 using RTK-GPS and corresponded to a flow of ~890 m3s-1 at the USGS gage 

in Seymour, IN. Comparing our model simulation of the existing topography to the measured 

high-water marks gave a RMSE of 0.51m and a MAE of 0.46m (Figure S3b). A comparison 

between our model simulation and direct measurements of water-surface elevations collected in 

2018 was more accurate with a RMSE of 0.17 m and a MAE of 0.12 m (Figure S3b).  

 The aerial photo of flooding (Figure S2c) was taken on April 7, 2011 at ~12:30 pm 

corresponded to a discharge of ~657 m3s-1 and a water-surface elevation of 127.7 m at the 

USGS gage in Seymour, IN. Comparing our model simulation with a discharge of ~657 m3s-1 

and a water-surface elevation of 172.9 m (at the location of the river gage) to the aerial imagery, 

the simulation slightly over-predicts the extent of inundation, but still captures the majority of 

land-water transitions (Figure S2d) in high detail.  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Model calibration and validation data.  a) Model calibration to the elevation-discharge rating 

curve, gage location is shown in Figure 1. b) Simulated vs. measured water surface elevations for high 

water marks measured from the peak record flood in June 2008 and water surface elevations from flooding 

on Feb. 26, 2018. c) Aerial photography of flooding on April 7, 2011. d) Model simulation showing transition 

of water to land as black lines corresponding to the same discharge when the image was taken.  

 

3.3 Data Analysis 

Initial model outputs from our 36 modeling experiments included water depth, depth 

averaged velocity magnitude, and 2-D (x and y directed) depth averaged velocity for each cell. 

We gridded the results at a 15-m resolution for all analysis. From the initial model outputs, we 

computed the magnitude of specific discharge (q, Eqn. 3) and a 2-D specific discharge (qx,y; 

Eqn. 4) for each grid cell in all model simulations as: 

𝑞 = �̅� ∗ ℎ      Eqn. 3 

and 

𝑞𝑥,𝑦 = 𝑣𝑥,𝑦̅̅ ̅̅ ̅ ∗ ℎ      Eqn. 4 



where, �̅� is the depth-averaged magnitude of velocity (m s-1), h is water depth (m), and 𝑣𝑥,𝑦̅̅ ̅̅ ̅ is 

the 2-D depth-averaged velocity in the x or y direction, respectively (m s-1).  

To assess the flooding extent in each of our modeling simulations, we produced water 

masks from our depth data. Water masks were constructed by converting the gridded depth 

data into polygons and merging the depth polygons into a single polygon representing the 

wetted extent of the floodplain. The wetted extent polygons were then used to compute the 

percent of the floodplain that was inundated. Additionally, water masks were used to compute 

the number and area of hydrologic islands in the domain. Hydrologic islands are defined as dry 

areas surrounded by water.  

We measured the average flooding depth, velocity magnitude, and specific discharge 

magnitude in the river channel, entire floodplain, and floodplain channels. This was 

accomplished using a polygon mask of the river channel, entire floodplain extent, and floodplain 

channel masks used to generate the initial conditions (section 3.2.1). Averages and standard 

deviations were computed as the mean and standard deviations for a half-Gaussian distribution 

for all cells within the extent of a polygon. Trend significance of the results were evaluated using 

a F-test.  

We computed an average lateral exchange of surface water between the river channel 

and floodplain for each steady state model run. Lateral exchange was measured perpendicular 

to lines situated parallel and positioned 30 m (approximate levee width) from the river banks. 

The lines were discretized into 90 m long segments and the average qx and qy were calculated 

over each 90m line segment. Between vertices, along the 90 m line segment, we used vector 

decomposition to solve for the magnitude of specific discharge perpendicular to each line 

segment (qp, m s-1), where positive qp values indicate a flux into the river channel and negative 

values indicate a flux into the floodplain. The average lateral exchange for each side of this river 

(𝑞𝑒𝑥
𝐿,𝑅̅̅ ̅̅ ̅, L is river left and R is river right) is calculated as: 

    𝑞𝑒𝑥
𝐿,𝑅̅̅ ̅̅ ̅ = (∑ |𝑞𝑗

𝐿,𝑅|𝑗 𝑑𝑗
𝐿,𝑅)

1

𝐷𝐿,𝑅     Eqn. 5 

where, 𝑑𝑗
𝐿,𝑅 (meters) is the length of individual line segment j and  𝐷𝐿,𝑅 (meters) is the total 

distance of all line segments along a given side of the river. The absolute value was taken to 

account for all flux between the river channel and floodplain. Whereas if the absolute value was 

not taken, we would compute a net flux between the river and floodplain giving a value of ~0, as 

flow entering the river and exiting the river would negate each other. The lateral exchange 

through the left and right side of the river were added together and normalized by the average 

specific discharge in the river channel (𝑞𝑟̅̅ ̅) to produce normalized unitless river-floodplain 

exchange (qex; Eqn. 6).  

    𝑞𝑒𝑥 =
𝑞𝑒𝑥

𝐿̅̅ ̅̅ ̅+𝑞𝑒𝑥
𝑅̅̅ ̅̅ ̅

𝑞𝑟̅̅ ̅
        Eqn. 6 

 To assess the unit residence time of water in the floodplain, we used a defined network 

of simulated flow paths that were manually traced by Czuba et al. (2019) in the upper portion of 

our domain. Flow paths were delineated by systematically increasing discharge, and all new 

flow paths were traced for each increase in flow. In total, there were 23,211 paths mapped with 

a cumulative distance of ~1,050 km (Figure S3). Average flow velocity (vi; m s-1) was calculated 



for each line segment that existed in the wetted extent of each model simulation. A length-

averaged velocity (𝑣𝑓̅̅ ̅; m s-1) in the floodplain over all the line segments was computed as: 

     𝑣𝑓̅̅ ̅ =
(∑ 𝑣𝑖𝑙𝑖)

𝐿
      Eqn. 7 

where, li is the length of a line segment and L is the length of the total active flow paths. A 

residence time per unit length of floodplain (tf; s m-1) was calculated as the inverse of vf, which 

describes the time water spends along a certain length scale. Additionally, we calculated a 

residence time per unit length for the river (tc; s m-1) by taking the inverse of the average 

magnitude of velocity in the river channel. We normalized unit residence time (tr) by the 

residence time in the river, creating a unitless residence time in the system as: 

𝑡𝑟 =
𝑡𝑓

𝑡𝑐
       Eqn. 8 

 

 

 

Figure S3. Flow paths for unit residence time calculation. The yellow lines show the flow paths delineated 

by Czuba et al. (2019), used to compute the average unit residence time in the floodplain. The portion of 

the domain for which the analysis was performed is shown in red and the entire model domain is shown in 

black. 


