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Abstract

The value of streamflow forecasts to inform water infrastructure operations has been extensively studied. Yet, their value

in informing infrastructure design is still unexplored. In this work, we investigate how dam design is shaped by information

feedbacks. We demonstrate how flexible operating policies informed by streamflow forecasts enable the design of less costly

reservoir relative to alternatives that do not rely on forecast information. Our approach initially establishes information bounds

by selecting the most informative lead times of perfect streamflow forecasts to be included in the infrastructure design. We

then analyze the design and operational sensitivities relative to realistic imperfect streamflow forecasts synthetically modeled

to explicitly represent different biases. We demonstrate our approach through an ex-post analysis of the Kariba dam in the

Zambezi river basin.

Results show that informing dam design with perfect forecasts enable attaining the same hydropower production of the existing

dam, while reducing infrastructure size and associated capital costs by 20%. The use of forecasts with lower skill reduces this

gain to approximately 15%. Finally, the adoption of forecast information in the operation of the existing system facilitate

an annual average increase of 60 GWh in hydropower production. This finding, extrapolated to the new planned dams in the

basin, suggests that consideration of forecast informed policies could yield power production benefits equal to 75% of the current

annual electricity consumption of the Zambian agricultural sector. Forecast information feedbacks have a strong potential to

become a valuable asset for the ongoing hydropower expansion in the basin.
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Abstract13

The value of streamflow forecasts to inform water infrastructure operations has been14

extensively studied. Yet, their value in informing infrastructure design is still un-15

explored. In this work, we investigate how dam design is shaped by information16

feedbacks. We demonstrate how flexible operating policies informed by streamflow17

forecasts enable the design of less costly reservoir relative to alternatives that do not18

rely on forecast information. Our approach initially establishes information bounds by19

selecting the most informative lead times of perfect streamflow forecasts to be included20

in the infrastructure design. We then analyze the design and operational sensitivities21

relative to realistic imperfect streamflow forecasts synthetically modeled to explicitly22

represent di↵erent biases. We demonstrate our approach through an ex-post analysis23

of the Kariba dam in the Zambezi river basin. Results show that informing dam design24

with perfect forecasts enable attaining the same hydropower production of the exist-25

ing dam, while reducing infrastructure size and associated capital costs by 20%. The26

use of forecasts with lower skill reduces this gain to approximately 15%. Finally, the27

adoption of forecast information in the operation of the existing system facilitate an28

annual average increase of 60 GWh in hydropower production. This finding, extrap-29

olated to the new planned dams in the basin, suggests that consideration of forecast30

informed policies could yield power production benefits equal to 75% of the current31

annual electricity consumption of the Zambian agricultural sector. Forecast informa-32

tion feedbacks have a strong potential to become a valuable asset for the ongoing33

hydropower expansion in the basin.34

1 Introduction35

Dam design and operation are classically treated as two independent problems. Opti-36

mal reservoir capacity sizing has typically been addressed using a least-cost problem37

framing, aimed at minimizing total costs (e.g., Perelman et al., (2013) in the water38

sector; Rodriguez et al., (2015) in the energy sector). In particular, when dealing with39

water infrastructures such as dams, sizing has usually been performed via the Rippl40

method, based on a sequence of pre-specified, desired releases and observed inflows41

(e.g., U.S. Army Corps of Engineers, 1975, 1977; Stephenson & Petersen, 1991). In42

these design frameworks, operations are represented using pre-defined operating poli-43

cies (e.g., Thomas Jr & Burden, 1963; Hall et al., 1969; Montaseri & Adeloye, 1999;44

Soils Incorporated Ltd, 2000; Jeuland & Whittington, 2014; Matrosov et al., 2015),45

without directly coupling reservoir planning and management as interdependent de-46

sign choices. The studies that have focused on solving planning and management47

jointly have typically employed Linear Programming (LP) (e.g., Eastman & ReVelle,48

1973; Houck et al., 1980; Lall & Miller, 1988; Mousavi & Ramamurthy, 2000; Afzali49

et al., 2008; Satishkumar et al., 2010; Afshar et al., 2015; Cervigni et al., 2015) or50

heuristic optimization techniques (Shourian et al., 2008; Paseka et al., 2018) in open-51

loop formulations (i.e., they do not account adaptive, information feedbacks). More52

recently, there are examples emerging in the literature that show the potential value of53

better abstracting adaptive information feedbacks in joint reservoir design and opera-54

tion (e.g., Geressu & Harou, 2015; Bertoni et al., 2019, and references therein). The55

joint optimization of dam size and operations in these studies is accomplished by cou-56

pling heuristic multi-objective search with stochastic simulation, where operations are57

abstracted using storage-dependent reservoir release policies. In all of these studies,58

the operating rules considered are only conditioned upon the reservoir level/storage,59

and do not account for other potentially valuable sources of information that are now60

widely acknowledged for forecast informed reservoir operations (Hejazi et al., 2008; Lu61

et al., 2017; Turner et al., 2017; Baker et al., 2019).62

The value of employing forecasts to enhance the operations of existing infrastructures63

has long been acknowledged (e.g., Kelman et al., 1990; Kim & Palmer, 1997; Faber64

–2–



manuscript submitted to Water Resources Research

& Stedinger, 2001). The theoretically attainable improvement in performance across65

operating objectives by the forecast informed system is referred to as forecast value66

(Murphy, 1993). Forecast value may change according to the temporal dynamics of67

the operating objectives as well as dam size (Anghileri et al., 2016). For example, in68

a water reservoir system primarily operated to satisfy short-term operating objectives69

(e.g., flood control), short-term forecasts might be most informative, allowing the sys-70

tem operator to create a bu↵er volume in advance for mitigating the upcoming flood71

peak and thus minimize flood damages (e.g., Saavedra Valeriano et al., 2010; Wang et72

al., 2012; Raso et al., 2014; Zhao et al., 2014). Alternatively, reservoirs operated with73

respect to long-term objectives (e.g., irrigation water supply) might benefit more from74

seasonal forecasts (e.g., Hamlet et al., 2002; Maurer & Lettenmaier, 2004; K. Geor-75

gakakos et al., 2005; Voisin et al., 2006; Block, 2011; Steinschneider & Brown, 2012;76

Anghileri et al., 2016). When dealing with a multi-purpose water reservoir system,77

estimating the associated forecast value becomes more challenging since both short-78

term and long-term operating objectives must be balanced (e.g., A. Georgakakos et79

al., 2012; Sreekanth et al., 2012; Xu et al., 2015; Denaro et al., 2017; Lu et al., 2017;80

Fuchs et al., 2018; Nayak et al., 2018). Prior studies have shown forecast value may81

change significantly also with dam size (e.g., You & Cai, 2008; Sankarasubramanian82

et al., 2009; Graham & Georgakakos, 2010; Anghileri et al., 2016; Turner et al., 2017).83

For example, when operated to guarantee downstream water supply, the operations84

of both under-sized and over-sized dams become trivial, since the former case always85

leads to a structural deficit in the system, whereas in over-sized context managers are86

always able to satisfy demands. Forecasts might therefore have no value in improving87

their operations. However, it is important to note that the aforementioned studies as-88

sess the sensitivity of forecast value with respect to multiple discrete sampled system89

configurations characterized by di↵erent structural features (e.g., di↵erent dam sizes,90

storage capacity-inflow ratios, storage capacity-demand ratios) chosen in absence of a91

broader search of the candidate design space. Given the complex interdependencies for92

how dynamics, information choices, and reservoir design decisions interact, the discrete93

problem decompositions tacit to these sensitivity analyses have significant limitations.94

In this study, we investigate the value of streamflow forecasts for informing the cou-95

pled design of a water reservoir size and its operations. Building on the robust dam96

design framework proposed in Bertoni et al. (2019), we assess whether more flexible97

operating policies informed by streamflow forecasts enable the design of less costly but98

operationally e↵ective reservoir systems. We achieve this by first identifying the most99

informative lead times for perfect streamflow forecasts across di↵erent dam sizes and100

operational trade-o↵s. Then, the forecasts over the selected lead times are included101

within the coupled dam design and operation problem to quantify an upper bound102

estimate for the associated forecast value. Lastly, we explore the sensitivity of the103

forecast value to realistic streamflow forecast biases. We demonstrate the value of our104

methodological contribution through an ex-post design analysis of the Kariba dam in105

the Zambezi river basin, a region where there are a large number of dams planned106

in the near future (World Bank, 2010), motivating the need for innovations in dam107

design. Kariba is the largest man-made reservoir in Africa, and the dam’s reservoir108

has the potential for large inter-annual carry over water volumes that could benefit109

from streamflow forecasts to mitigate seasonal and inter-annual drought anomalies.110

In summary, the main contributions of the paper include a framework for: (i) theoret-111

ically bounding cases for how perfect knowledge of the future inflows shapes changes112

in dam sizing and operational trade-o↵s; (ii) selecting the most informative lead times113

of perfect streamflow forecasts for di↵erent dam sizes and operational performance114

trade-o↵s; (iii) analyzing the potential benefits associated with including the selected115

perfect information forecasts into the coupled reservoir design and operation prob-116

lem; and (iv) assessing the sensitivity of the forecast informed reservoir design and117

operation alternatives to more realistic imperfect forecast information.118
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2 Case Study Description119

2.1 Kariba Dam120

The Kariba reservoir is a regulated lake in the transboundary Zambezi River Basin121

(ZRB) in southeastern Africa (Figure 1a). Draining 1.37 million km2, the ZRB is the122

4th largest basin in Africa. The river is shared among eight countries, with Zambia,123

Zimbabwe and Mozambique encompassing nearly 70% of the entire basin (SADC,124

2012). Hydropower is a main source of electricity within the basin, generated by four125

major regulated reservoirs with a total hydropower capacity of 5,145 MW. About 35%126

of this overall capacity is installed at the Kariba dam, built in 1960 and impounding127

the largest man-made reservoir in Africa with a surface area of about 5,600 km2 and a128

total storage capacity of about 180 km3 (65 km3 of which are active storage). Kariba129

dam feeds two hydropower plants, the North Bank Station in Zambia and the South130

Bank Station in Zimbabwe, for a total nameplate capacity of about 2,000 MW. The131

two plants are jointly operated by the Zambezi River Authority. The Kariba dam132

system is complemented by two irrigation districts, located respectively upstream and133

downstream the reservoir.134
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Figure 1: Panel a: Map of the Zambezi River Basin with Kariba dam squared in black.
Panel b: Schematic representation of the Kariba multi-purpose reservoir system.

2.2 Model Description135

As shown in Figure 1b, the model of the Kariba reservoir system consists of three136

main components, the reservoir with its hydropower plant and two irrigation districts137

upstream and downstream. A monthly modeling time-step is employed to capture the138

Kariba reservoir’s dynamics through the following water mass balance equation:139

st+1 = st + it+1 � rt+1 � et · St (1)

where st is the storage at the beginning of month t, it+1 is the inflow to the reservoir,140

rt+1 is the volume of water released and et · St is the water evaporated in the time141

interval [t, t + 1). In particular, et is the mean monthly evaporation rate, while St is142

the reservoir surface uniquely defined by a non-linear relation given st. The actual143

release rt+1 = f(st, ut, it+1, et,↵) is formulated according to the non-linear, stochastic144

relation f(·) between rt+1 and the release decision ut (Soncini-Sessa et al., 2007), which145
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is constrained within a certain zone of operational discretion by the maximum ūt(↵)146

and minimum u
t
(↵) feasible release functions, due to the presence of physical (i.e.,147

spillway activation) constraints. Such release functions directly depend upon the dam148

size ↵ 2 A, and the extension of the dam operation discretion space enlarges/shrinks149

proportionally to the dam size considered. As for the reservoir release decision ut, at150

each time step it is uniquely defined from an operating policy ut = p✓res(·), based on151

a certain set of inputs (e.g., reservoir storage, time, streamflow forecasts). The policy152

p✓res belongs to a pre-defined class of functions, according to which it is parameterized153

within the space of the parameters ✓res 2 ⇥res(↵). Note that the interdependency154

between dam size and operation is expressed in terms of the direct dependence of the155

feasibility set ⇥res(↵) of the policy parameters ✓res upon the dam size ↵. The physical156

dam size, therefore, constrains the space of operational discretion to reside within a157

limited range.158

Kariba provides storage for two hydropower plants managed by the same operator but159

with di↵erent features: the South Bank is equipped with deeper, more e�cient yet160

smaller turbines than the North Bank (Gandolfi & Togni, 1997). To account for that,161

in our model we assume the total release rt+1 to be split into r
N

t+1 = rt+1 ·� for the162

North and r
S

t+1 = rt+1 · (1��) for the South Bank. � and 1�� are the normalized163

turbines e�ciencies of the North and South Bank respectively, given the sum of their164

actual e�ciencies (i.e., ⌘N and ⌘
S , respectively) equal to one.165

As for the two irrigation districts (id=1,2), they can abstract water aid
t+1 from the river166

through a regulated water diversion channel. The volume of water they can abstract167

is calculated according to a non-linear hedging rule (Celeste & Billib, 2009):168

a
id

t+1 =

(
min(qid

t+1, w
id

t
· [ q

id
t+1

hid ]m
id

) if qid
t+1  h

id

min(qid
t+1, w

id

t
) else

(2)

where qid
t+1 is the volume of water available in the river upstream of the id-th irrigation169

district, and w
id

t
is the monthly water demand. As for the time invariant parameters170

h
id and m

id regulating the two diversion channels (id=1,2), they can be grouped into171

the vector ✓irr = [h1
,m

1
, h

2
,m

2] 2 ⇥irr. The diversion rules allow hedging the water172

abstractions to account for downstream users.173

3 Methods and Tools174

This study builds on Bertoni et al. (2019) to include streamflow forecasts within the175

coupled reservoir design and operation problem in order to assess the potential benefits176

of conditioning design alternatives on their use of key information feedbacks. Our177

methodology, illustrated in Figure 2, is composed of the following three methodological178

steps.179

The first step is the generation of streamflow forecasts and the selection of the most180

informative lead times to be included within the dam design phase. Three di↵erent181

sets of streamflow forecasts are considered, perfect seasonal (blue arrows), perfect182

inter-annual (black arrows), and realistic seasonal (red arrows) forecasts. The perfect183

seasonal and inter-annual forecasts are broadly used to evaluate the upper bound184

theoretical value of information at these timescales. The realistic seasonal forecast is185

intended to reproduce a more realistic decision making environment, where forecasts186

are a↵ected by systematic biases (i.e., over-estimation, under-estimation, and under-187

dispersion). Then, we select the most informative lead times of both seasonal and188

inter-annual forecasts for di↵erent dam sizes, based on their ability to best explain the189

target sequence of reservoir releases derived from a theoretical operating policy (i.e.,190

perfect operating policy, POP) (Giuliani et al., 2015), informed by perfect knowledge191

of the future.192
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Forecast value

Performance improvement
Performance improvement when 

including informative forecast lead 
times in the Infrastructure design

Perfect seasonal forecasts
Perfect streamflow forecasts up to 7 

months ahead

Perfect inter-annual forecasts
Perfect streamflow forecasts up to 5 

years ahead

Lead time selection
Selection of the most informative 

forecast lead times

Forecast biases generation
Generation of over-estimated, under-
estimated, under-dispersed forecasts

Informed infrastructure design
Infrastructure design conditioned upon the 

forecast lead times selected

Perfect operating policy
Policy used by an ideal infrastructure 

operator under perfect foresight

Basic infrastructure design
Infrastructure design conditioned upon a 

basic set of information

Design optimization

Forecasts generation and selection

Figure 2: Flowchart of the methodology employed in this study. Each line is colored
di↵erently based on the set of streamflow forecasts it refers to, namely perfect seasonal
(blue), perfect inter-annual (black), and realistic seasonal (red) forecasts.

The second step of our methodology consists of a joint optimization of reservoir size193

and operations. In particular, we identify the informed infrastructure design (IID),194

where operations are informed by the most e↵ective forecast lead times selected in the195

previous step. This set of optimal infrastructure designs is compared with the basic196

infrastructure design (BID), which represents the lower bound system performance as197

the system operations depend upon a basic set of policy inputs traditionally employed198

in the literature (e.g., reservoir storage).199

The last step of our methodological flowchart displayed in Figure 2 is the estimation of200

the forecast value, namely the performance improvement that could be attained when201

including the most informative forecast lead times within the infrastructure design202

phase. Given the upper bound of the forecast value as the di↵erence between the BID203

and POP performance, the IID is expected to approach the POP by partially filling204

this performance gap. The identified performance improvement represents the forecast205

value.206

3.1 Generation and selection of forecasts207

The generation and selection forecasts step consists of first identifying two arrays of208

perfect streamflow forecasts at both seasonal and inter-annual time scale, from which209

the most informative lead times are selected to inform the search for design and opera-210

tion alternatives. Then, a set of realistic seasonal streamflow forecasts characterized by211

di↵erent biases is generated to assess the sensitivity of the resulting forecast informed212

reservoir design and operation alternatives to the forecast biases.213

3.1.1 Perfect forecasts and lead time selection214

Initially, we identify an array ⌅s

t
of perfect seasonal streamflow forecasts for di↵erent215

monthly lead times up to a maximum of 7 months ahead. The 7-month lead time is se-216

lected to reflect the maximum lead time for seasonal forecasts available currently. The217

European Centre for Medium-Range Weather Forecasts (ECMWF) (Owens & Hew-218

son, 2018), as well as the most skilful lead time of the long-range Ensemble Streamflow219

Prediction (ESP) system, developed by the NOAA’s National Weather Service (Franz220

et al., 2003), were taken as references. The selection of the most informative forecast221

lead times is not a straightforward process. Since the forecast skill usually degrades222

with a longer lead time (Doblas-Reyes et al., 2011), shorter, more accurate forecast223

lead times would ideally be selected and relied on. However, since the operational value224
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of forecasts is strictly related to the structural characteristics of the system considered225

(e.g., reservoir size), bigger dam sizes with an annual carry over capacity might favor226

longer, less precise forecast lead times to further enhance their operations. In order to227

select the most informative lead times for di↵erent dam sizes, we use an input variable228

selection technique, following the Information Selection and Assessment (ISA) proce-229

dure proposed by Giuliani et al. (2015). Specifically, according to the guidelines in230

Galelli et al. (2014) and Giuliani et al. (2015), we employ the Iterative Input Selection231

(IIS) algorithm (Galelli & Castelletti, 2013b) coupled with Extremely Randomized232

Trees (Geurts et al., 2006; Galelli & Castelletti, 2013a). The IIS algorithm is a hybrid233

model-based/model-free approach characterized by modelling flexibility (i.e., ability to234

approximate strongly non-linear functions), computational e�ciency, and scalability235

with respect to the number of candidate inputs. For each dam size, the IIS algorithm236

follows an iterative procedure to select the most informative seasonal forecast lead237

times Is
t
2 ⌅s

t
that best model a target sequence of reservoir releases representing the238

optimal operation of the system. This sequence is derived for a specific dam size from a239

theoretical operating policy used by an ideal system operator under perfect knowledge240

on the future (i.e., perfect operating policy) (for further details about the identification241

of the target output, refer to both sections 3.4 and S2 in the Supplementary Material).242

The role of longer-term forecasts, such as decadal forecasts, is being recently inves-243

tigated in the literature (e.g., Ham et al., 2014; Schuster et al., 2019; Smith et al.,244

2019). Decadal forecasts aim at modeling future climatic conditions over a longer245

time horizon (i.e., the next 10-30 years). Inter-annual and decadal time frames are246

particularly relevant for infrastructure planners, water resources managers, and others247

(Meehl et al., 2009), potentially bringing added socioeconomic benefits to infrastruc-248

ture operations (Choudhury et al., 2019). As a means of theoretically bounding the249

value of inter-annual forecasts to inform the coupled infrastructure design, we gener-250

ate a second array ⌅i

t
of perfect streamflow forecasts up to a maximum lead time of 5251

years ahead. This longer forecast horizon might benefit particularly large dam sizes,252

as they have enough storage capacity to carry over large water volumes one or more253

years. These long carry over periods hold the potential to help mitigate the impacts254

of inter-annual anomalies related to global climate oscillations (e.g., El Niño Southern255

Oscillation). When informing their operations with inter-annual forecasts, the active256

storage of large reservoirs may be managed accordingly to decrease (increase) and make257

room (compensate) for the large (small) water volumes that will enter the reservoir in258

the upcoming years, achieving high system performance across the entire evaluation259

horizon. The same input variable selection technique described for seasonal forecasts260

is applied to inter-annual forecasts, in order to identify their most informative lead261

times Ii
t
2 ⌅i

t
for di↵erent dam sizes.262

3.1.2 Generation of biases in forecasts263

In the previous section, we explored perfect forecasts as a prescriptive upper bound264

for evaluating forecast value. In order to reproduce a more realistic decision mak-265

ing environment and assess the sensitivity of the coupled reservoir design and opera-266

tion alternatives with respect to typical forecast errors, we generate a set of realistic267

seasonal streamflow forecasts by incorporating di↵erent systematic biases reflecting268

common errors (i.e., over-estimation, under-estimation, under-dispersion; Cassagnole269

et al. (2017)). Over-estimated and under-estimated forecasts are symmetrical, while270

under-dispersed forecasts under-estimate high flows and over-estimated low ones. The271

accuracy of each biased forecast is evaluated in terms of the percent bias (Pbias) per-272

formance metric, which calculates the average tendency of the estimated forecasts with273

respect to the perfect ones (Moriasi et al., 2007).274

–7–



manuscript submitted to Water Resources Research

3.2 Design optimization275

The infrastructure design consists of a coupled multi-objective optimization of both
reservoir size and operations, which can be formulated as follows:

⇡
⇤ = argmin

⇡

J⇡

where J⇡ =
��Jcost

⇡
, J

hyd

⇡
, J

irr

⇡

��

subject to equations 1, 2

(3)

where ⇡ = |↵, p✓res , ✓irr| is the decision vector, including the dam size ↵ 2 A, the276

parametric operating policy p✓res , and the time invariant parameters regulating the277

two irrigation diversion channels ✓irr. Such decision variables are optimized with278

respect to one planning Jcost
⇡

and two management Jhyd
⇡

, Jirr
⇡

objectives, formulated279

as follows:280

• Minimization of dam construction costs Jcost

⇡
[$] discounted over the lifespan of

the project:

J
cost

⇡
= c(↵) · r

1� (1 + r)�L
(4)

where c(↵) [$] is the reservoir construction costs that is proportional to the dam281

size ↵, r [yr-1] is the interest rate set at 0.05 (IRENA, 2012) and L [yr] is the282

lifespan of the project set at 100 years (ibid.), over which construction costs are283

discounted.284

• Maximization of hydropower production J
hyd

⇡
[TWh/yr]:

J
hyd

⇡
=

1

H

H�1X

t=0

�g�(⌘N h̄
N

t
q
N

t+1 + ⌘
S
h̄
S

t
q
S

t+1) (5)

where � is a conversion factor to turn hydropower production into [TWh/yr], ⌘N285

and ⌘
S are the turbines e�ciencies of the North and South Bank, g = 9.81 [m/s2]286

is the gravitational acceleration, � = 1000 [kg/m3] is the water density, h̄N

t
and287

h̄
S

t
[m] are the net hydraulic heads of the North and South Bank (i.e., reservoir288

level minus tailwater level), while q
N

t+1 and q
S

t+1 [m3/s] are the turbinated flows289

at the North and South Bank. If we focus, for example, on the North Bank,290

the turbinated flow is calculated as follows: q
N

t+1 = min(rN
t+1, q̄

N ), where q̄
N is291

the maximum capacity of the turbines at the North Bank and r
N

t+1 = � · rt+1292

is the water flowing through them (for further discussion, refer to section 2.2).293

The same relation holds for the South Bank. In the end, at each time step the294

total hydropower production is given by the sum of the productions at the two295

power plants.296

• Minimization of total squared irrigation deficit J irr

⇡
[-] normalized with respect

to the squared irrigation demand of each district:

J
irr

⇡
=

1

H

H�1X

t=0

2X

id=1

✓
max(wid

t
� a

id

t+1, 0)

w
id
t

◆2

(6)

where w
id

t
and a

id

t+1 are the monthly irrigation water demand and abstraction297

for the id-th irrigation district respectively.298

At first, we identify the basic infrastructure design (BID) by solving problem 3 with299

basically informed operating policies associated to alternative dam sizes. Such policies300

are informed with a basic set of policy inputs (st, t), consisting of the reservoir storage301

st (state of the system) and the month of the year t. This basic information is tradi-302

tionally employed in the literature as the minimum set of information required when303

designing reservoir operations (Bertsekas, 1976), providing information feedbacks for304

–8–



manuscript submitted to Water Resources Research

the reservoir release decision ut, namely ut = p✓res(st, t). By conditioning their opera-305

tions on a minimum number of informative variables, the resulting basic infrastructure306

designs represent our lower bound system performance.307

Then, we solve problem 3 to identify the informed infrastructure design (IID), condi-308

tioning the operating policies p✓res associated to alternative dam sizes upon an enlarged309

set of policy inputs, consisting of storage st, month t, as well as the forecast over the310

identified lead times If
t
2 ⌅f

t
, with f = [s, i]. The resulting informed infrastructure311

designs di↵er from the basic only in the formulation of the operating policies associated312

to di↵erent dam sizes, which are now dependent upon the extended set of informative313

forecast lead times If
t
determining the release decision ut, namely ut = p(st, t, I

f

t
).314

We solve both the basic and informed joint planning and management formulations315

by following the approach proposed in Bertoni et al. (2019), where Evolutionary316

Multi-Objective Direct Policy Search (EMODPS; Giuliani et al. (2016)) is expanded317

to include reservoir sizing in addition to operations of both the reservoir itself and318

the two irrigation diversion channels. EMODPS is a parameterization-simulation-319

optimization approach (Guariso et al., 1986; Oliveira & Loucks, 1997; Koutsoyiannis320

& Economou, 2003) that searches candidate parameterized operating policies p✓res in321

the space of the parameters ✓res 2 ⇥res via Multi-Objective Evolutionary Algorithms322

(MOEAs). MOEA-based search identifies the set of Pareto approximate policies (i.e.,323

trade-o↵ solutions) whose performance in any single objective can only be improved324

at the cost of one or more other objectives (Coello Coello et al., 2007). Finding the325

optimal reservoir operating policy p
⇤
✓res

is therefore equivalent to finding the associated326

optimal policy parameters ✓⇤
res

. In this study, a single optimization problem must be327

solved over a complex search space to identify the optimal decision vector ⇡, formed328

by both continuous (i.e., policy parameters ✓res and irrigation diversion parameters329

✓irr) and discrete (i.e., dam size ↵) decision variables. The water reservoir operat-330

ing policy is parameterized according to non-linear approximating networks, and in331

particular Gaussian radial basis functions (RBFs) (for further details about the math-332

ematical formulation of the parameterized operating policy, refer to Section S1 in the333

Supplementary Material).334

The search tasks were implemented using the self-adaptive Borg MOEA algorithm335

(Hadka & Reed, 2013), since it has been proven to be highly robust across a wide num-336

ber of challenging multi-objective problems by meeting or exceeding the performance337

of other state-of-the-art MOEAs (Reed et al., 2013). The Borg MOEA employs mul-338

tiple global probabilistic search operators for mating, selection and mutation, whose339

probability of being selected during the optimization phase is linked to their demon-340

strated ability of generating quality solutions. In particular, we use the hierarchically341

parallelized version of the Borg MOEA, termed the Multi-Master Borg MOEA (Hadka342

& Reed, 2015), which has proven to be successful in complex reservoir control problems343

(Salazar et al., 2017; Giuliani et al., 2018; Quinn et al., 2018). The Multi-Master Borg344

MOEA exploits communication across multiple master-worker parallel implementa-345

tions of the Borg algorithm, improving both the algorithm’s reliability across random346

seed trials and the performance of the worst seeds, without degrading the best seeds347

(Hadka & Reed, 2015; Salazar et al., 2017; Giuliani et al., 2018).348

In addition to the BID and IID formulations, we have to determine the target output349

of the iterative input selection procedure described in section 3.1.1. This is achieved by350

solving the management side of the joint optimization problem 3 with respect to the351

vector of n = 2 management objectives (i.e., Jhyd
⇡

in equation 5, Jirr
⇡

in equation 6), for352

a fixed dam size ↵̄ and irrigation diversion parameters ✓̄irr. For further details about353

the mathematical formulation of the optimization problem, refer to Section S2 in the354

Supplementary Material. This pure management problem is solved via Deterministic355

Dynamic Programming (DDP) (Bellman, 1957) for di↵erent dam sizes identified under356

basic infrastructure design and with respect to the full, deterministically known tra-357
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jectory of external drivers (i.e., streamflows) over the entire evaluation horizon H. For358

each dam size, we therefore obtain an optimal operating policy, from which we derive359

a target sequence of optimal release decisions (i.e., target output of the correspond-360

ing iterative input selection procedure) that an ideal system operator would follow361

under deterministic knowledge on the future (refer to section 3.4 for further details).362

Given that this policy is identified under perfect knowledge of the future (i.e., POP),363

it represents the upper bound system performance.364

3.3 Forecast value365

Prior literature has defined forecast value as the operational value of employing fore-366

casts to enhance system operations, namely their e↵ectiveness in supporting decisions367

(Anghileri et al., 2016; Turner et al., 2017), and quantified in terms of performance368

improvement in the system operation objectives (Murphy, 1993). In this study, we369

first assess the theoretical upper bound of attainable forecast value by estimating the370

maximum space for improvement - also known as Expected Value of Perfect Informa-371

tion (EVPI) - that is in principle attainable under the assumption of full and perfect372

(deterministic) information on the future when operational decisions must be made373

(Giuliani et al., 2015; Denaro et al., 2017, for further details, refer to Section S2 in the374

Supplementary Material). We define a multi-objective performance envelope bounded375

by the POP and BID results. When dealing with single-objective problems, the single376

management objective considered assumes one scalar value for the POP and the BID,377

making it trivial to quantify the di↵erence between these performance bounds. For378

multi-objective problems, both BID and POP performance is a vector solution set of379

the optimization problem 3 (i.e., Pareto optimal or approximate set). Following Zitzler380

et al. (2003), we use finite set theory to quantify the candidate space for multi-objective381

performance improvement, using the hypervolume (HV) indicator that measures the382

volume of objective space dominated by a Pareto set. The HV measure has the benefit383

of capturing both convergence (”proximity to the best known solutions”) and diver-384

sity (”representation of the full extent tradeo↵s”). The upper bound of the forecast385

value is calculated as the di↵erence in hypervolume between the ideal optimal Pareto386

front (i.e., the POP ’s performance) and the approximation set attained using only387

information on the state of storage (i.e., the no forecast constrained BID), where the388

Pareto front associated to the higher hypervolume is the better. As a rule, the larger389

the delta is between these two sets of solutions, the more the system can benefit from390

including more forecast information during its joint optimization of candidate designs391

and operations.392

This Expected Value of Perfect Information is expected to be partially covered by393

the informed infrastructure design, filling the performance gap between the perfect394

(upper bound) and basic (lower bound) solutions and drawing its system performance395

as close as possible to the POP. Such performance improvement corresponds to the396

actual forecast value and is calculated as the di↵erence in hypervolume between the397

two approximation sets (i.e., informed minus basic infrastructure designs).398

3.4 Computational experiment399

Our computational experiment has the following structure:400

• Perfect seasonal streamflow forecasts : forecasts of Kariba inflows from 1974 to401

2005 computed over seven di↵erent lead times, ranging from 1 month to 7402

months ahead. In addition to the cumulative future streamflow, both the min-403

imum and maximum over 7 months are also included (see Table 1). The mini-404

mum future streamflow allows to acquire perfect knowledge on the most severe405

drought that will a↵ect the system in the next 7 months. The maximum future406

streamflow allows to acquire perfect knowledge on the maximum flood peak that407

will enter the Kariba dam in the next 7 months.408
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Table 1: Set of perfect seasonal streamflow forecasts calculated over di↵erent lead times.

Name Description Period

q1t,. . . ,q7t Cumulative future streamflow 1974-2005
over 1,. . . ,7 months

qm7t Minimum future streamflow 1974-2005
over 7 months

qM7t Maximum future streamflow 1974-2005
over 7 months

• Perfect inter-annual streamflow forecasts : in addition to the set of seasonal fore-409

casts in Table 1, we also consider inter-annual perfect forecasts of Kariba inflows410

from 1974 to 2005. In particular, we add the median of future streamflows over411

12, 24, 36, 48, and 60 months ahead. Other temporal aggregation metrics used412

to characterize streamflow forecasts, such as the cumulative future streamflows,413

as well as the maximum and minimum over subsequent months, usually pro-414

vide exact information on the amount of water that will enter the system in415

the near future. Therefore, their skill rapidly degrades with longer lead times416

(Doblas-Reyes et al., 2011). Due to the multi-year time resolution associated417

to inter-annual forecasts and the di�culties related to their exact estimate, we418

use the median to characterize them because it provides a rough estimate of419

the water volume entering the system in the next years, suggesting whether the420

upcoming years will be rather wet/dry in median.421

• Realistic streamflow forecasts: since the accuracy of each realistic forecast is422

evaluated in terms of the Pbias performance metric, we use a +30% Pbias for423

over-estimated, -20% for under-estimated and -10% for under-dispersed seasonal424

forecasts according to Cassagnole et al. (2017). A sensitivity analysis of the IID425

alternatives with respect to di↵erent realistic forecast Pbiases is reported in426

Section S7 in the Supplementary Material.427

• Basic infrastructure design: BID solutions are designed via EMODPS over the428

1974-2005 evaluation horizon. Based on Bertoni et al. (2019), three dam sizes429

are selected such that they uniformly cover the entire set of optimal system430

configurations identified under basic information, namely a small S = 128 km3,431

a medium M = 148 km3 and a large L = 188 km3 dam size. Note that this432

includes an alternative that is very similar to the existing Kariba dam’s size433

(188 km3 vs 180 km3 respectively).434

• Perfect operating policy : POP solutions are designed via DDP over the 1974-435

2005 evaluation horizon for each of the three dam sizes selected (for further436

details, refer to Section S2 in the Supplementary Material). Since DDP re-437

quires to solve a single-objective problem, we use the weighting method (Saaty438

& Gass, 1954) to convert the 2-objective problem discussed in section 3.2 into439

a single-objective one via convex combinations. The operational trade-o↵s be-440

tween the hydropower production and irrigation deficit objectives are explored441

by varying the weights used for aggregating the objectives. For each dam size,442

three target POPs associated to three di↵erent target trade-o↵s between the443

two management objectives are used as target outputs of the iterative input444

selection procedure to identify the most informative forecast lead times.445

• Information selection: for each target POP trade-o↵ to be explained and each446

dam size, the Iterative Input Selection algorithm is used to select the most in-447
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formative forecast lead times that mostly explain the target sequence of optimal448

releases. At first, we perform a regression on a sample dataset consisting of the449

Kariba storage st and month of the year t. Being these two variables highly450

correlated with the target output to be explained, they would overshadow the451

real contribution of other potentially informative variables if jointly considered452

in the information selection phase. Then, the IIS algorithm is run on the set ⌅s

t
453

of perfect seasonal streamflow forecasts presented in Table 1 to select the most454

informative lead times and temporal aggregation metrics (i.e., maximum and455

minimum over 7 months) Is
t
2 ⌅s

t
explaining the model residuals of st and t.456

The same procedure is then repeated for the set of perfect inter-annual stream-457

flow forecasts ⌅i

t
, where the IIS algorithm must select the most informative lead458

times only Ii
t
2 ⌅i

t
since inter-annual forecasts are characterized by the median459

of future streamflows over multiple years.460

• Informed infrastructure design: IID solutions are designed via EMODPS over461

the 1974-2005 evaluation horizon. Five sets of informed infrastructure designs462

are optimized, conditioning their operations upon: (i) most informative lead463

times and temporal aggregation metrics selected for perfect seasonal forecasts;464

(ii) most informative lead times selected for perfect inter-annual forecasts; (iii)465

+30% over-estimated seasonal forecasts; (iv) -20% under-estimated seasonal466

forecasts; (v) -10% under-dispersed seasonal forecasts. In order to estimate467

the forecast value, for each set of solutions we analyze the same three dam468

sizes selected under basic information from the set of optimal, informed system469

configurations.470

Both the BID and IID formulations have been solved using the Multi-Master Borg471

MOEA algorithm (see section 3.2), which is based on an epsilon dominance archiving,472

requiring the users to specify a numerical precision for each optimization objective be-473

low which they are insensitive to changes in performance. We use epsilon dominance474

values equal to 0.06 for Jhyd
⇡

, 0.01 for Jirr
⇡

, and 4.8 · 109 for Jcost
⇡

, representing the sig-475

nificance of precision that is considered consequential in evaluating decision trade-o↵s.476

Each optimization problem was run for 10 random seeds in order to improve solution477

diversity and avoid randomness dependence, using a 4-master implementation. Each478

seed was run up to 1 million function evaluations, proved to be su�cient by visual479

inspection of search progress, with little variability across seeds (refer to Section S3 in480

the Supplementary Material). The remainder of the Multi-Master Borg MOEA algo-481

rithm’s parameters were set using the defaults recommended in prior studies (Hadka482

& Reed, 2015; Salazar et al., 2017). For each computational experiment, the final483

set of Pareto approximate system configurations was computed as the reference set of484

non-dominated solutions obtained across the 10 optimization trials. The experiments485

were run on the Cube cluster at the Cornell Center for Advanced Computing, running486

CentOS 7.6 across 32 compute nodes with Dual 8-core E5-2680 CPUs at 2.7 GHz, 128487

GB of RAM, using 192 cores per island for a total of 3840 computational hours.488

4 Results and Discussion489

4.1 Influence of Dam Size on the Expected Value of Perfect Information490

In order to quantify the actual value of forecasts and their e↵ectiveness in enhancing491

dam design, we must first find the maximum space for improvement that is theoretically492

attainable with full and perfect (i.e., deterministic) foresight, namely the Expected493

Value of Perfect Information. This represents the upper bound system performance.494

A small space for improvement means that the potential gain in system performance495

achievable by using streamflow forecasts is negligible (and the converse for a large496

space for improvement).497

Figure 3 shows the performance for three di↵erent dam sizes, namely small S (stars,498

panel a), medium M (diamonds, panel b), and large L (circles, panel c), in terms of499
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hydropower production (Jhyd) and irrigation deficit (Jirr), and the associated EVPI500

obtained by comparing BID results exploiting only standard storage information (or-501

ange) and the POP baseline with perfect foresight (grey). For each dam size, the502

corresponding EVPI is calculated as the di↵erence in hypervolume between basic and503

Perfect solutions (grey shaded area) and reported in the bottom right corner of each504

panel (the absolute values of the hypervolume metric for both sets of solutions are re-505

ported in Figure 7). The Expected Value of Perfect Information increases from 0.54 to506

0.62 as we move from small to large dam sizes. Larger reservoirs provide an increased507

active storage capacity and operational flexibility to carry over significant water vol-508

umes across di↵erent temporal scales (i.e., from intra-monthly to inter-annually). The509

operations of large dams might thus benefit more from additional information on fu-510

ture hydro-climatic conditions of the system (e.g., future streamflows accumulated511

over several months). Moreover, regardless of dam size, the grey shaded area (i.e.,512

EVPI) shrinks as we move from a hydropower preference (top right) to an irrigation513

focus (bottom left) in the objective space. When the reservoir is operated to maximize514

hydropower, information on future hydrologic conditions is needed every month of the515

evaluation horizon to always keep the reservoir full to sustain constant releases while516

minimizing spillages. An irrigation focused operating policy is dominated by the need517

to meet the target irrigation demands with a maximum peak in August/September.518

Since there is a structural deficit in the system, namely a small deficit always occurs re-519

gardless of water availability and reservoir operations, the information on the amount520

of water entering the reservoir in subsequent months is less valuable. Therefore, better521

informing reservoir operations can never achieve zero deficit.522

In each of the three panels in Figure 3, we highlighted three di↵erent operational pref-523

erences: increased hydropower (H), compromise (C) and an emphasis on irrigation (I)524

(black squares). Our evaluations of the value of streamflow forecasts in the subsequent525

results are based on these 9 nine solutions.526

c) Large L

I

H

C

H

C

b) Medium M

I

H

C

a) Small S

I

Jhyd [TWh/yr]

Jirr
[-]

0.54 0.59 0.62

BID
POP

BID
POP

BID
POP

Figure 3: The objective space performance comparisons of the basic infrastructure de-
signs (orange) and the corresponding perfect operating policies (grey) for each of the three
dam sizes selected, namely small S (stars, panel a), medium M (diamonds, panel b), and
large L (circles, panel c). The grey shaded area represents the Expected Value of Perfect
Information, also reported in the bottom right corner of each panel. Arrows indicate the
direction of preference in the objectives.

4.2 Forecast Informed Infrastructure Design Using Perfect Seasonal Fore-527

casts528

After assessing the Expected Value of Perfect Information as well as the potential529

benefits that are achievable when hydropower strongly shapes solution preferences, we530

now identify via Iterative Input Selection the most informative seasonal forecast lead531

times Is
t
2 ⌅s

t
for the three target trade-o↵s for each of the three dam sizes (Figure532
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3). More details on the results of this information selection phase can be found in533

Section S4 in the Supplementary Material. Independent of dam size and operational534

performance trade-o↵s, the most informative variables selected always provide infor-535

mation on future streamflow extremes (i.e., maximum for flood peaks or minimum for536

drought periods) rather than on the cumulated water volume entering the reservoir537

over di↵erent monthly lead times. In particular, hydropower focused policies are best538

informed by the maximum future streamflow over 7 months qM7t for all three dam539

sizes. This input variable for the control policies allows the dam operator to acquire540

perfect knowledge on the maximum flood peak that will enter the reservoir in the next541

7 months, and act accordingly by lowering the levels in order not to spill and thus542

maximize hydropower production. We employ this variable as the first, most informa-543

tive input to be included in the informed infrastructure design phase in addition to544

reservoir storage and time. The second most informative input, the minimum future545

streamflow over 7 months qm7t, had a marginal impact control policies’ actions and546

was therefore not considered any further.547

Figure 4 compares the associated forecast value obtained by BID (orange) and IID548

(cyan) solutions for the small S (stars, panel a), medium M (diamonds, panel b), and549

large L (circles, panel c) dam sizes in terms of Jhyd and Jirr. For each dam size,550

the forecast value is computed as the di↵erence in hypervolume between basic and551

informed solutions (cyan shaded area), whereas the grey shaded area represents the552

residual space for improvement that is not yet explained (the absolute values of the553

hypervolume metric for all sets of solutions are reported in Figure 7). Regardless of554

dam size, the informed system performs better than the basic, moving closer to the555

set of POPs.556

For large dam sizes, the forecast value is characterized by a +32% hypervolume increase557

from 0.38 (basic) to 0.50 (informed), covering about 20% of the corresponding space558

for improvement. This corresponds to a +80 GWh/yr hydropower production increase559

and no changes in terms of irrigation deficit on average across all the basic and informed560

solutions. As for medium dam sizes, the forecast value is the smallest, with a +22%561

hypervolume increase from 0.41 (basic) to 0.50 (informed), covering about 15% of the562

corresponding space for improvement. This corresponds to a +42 GWh/yr hydropower563

production increase and a 0.05 normalized irrigation deficit decrease on average across564

all the basic and informed solutions. In the end, small dam sizes are associated to the565

highest forecast value, with a +33% hypervolume increase from 0.46 (basic) to 0.61566

(informed), covering about 28% of the corresponding space for improvement. This567

corresponds to a 0.13 normalized irrigation deficit decrease and no changes in terms568

of hydropower production on average across all the basic and informed solutions.569

Such improvements are particularly evident in the hydropower focused region of the570

objective space, which was already expected to attain the highest enhancement when571

including informative variables in infrastructure design. Here, the cyan shaded area is572

larger and the grey shaded area shrinks accordingly. In particular, if we fix a specific573

high level of hydropower production (e.g., Jhyd ' 3.84 TWh/yr), a 20% reduction in574

capital costs could be attained by designing a medium dam operated with forecast575

information (i.e., cyan diamond in Figure 4b), that produces the same hydropower as576

that of a larger reservoir informed with the basic set of policy inputs (i.e., orange circle577

in Figure 4c). Given this fixed level of hydropower production and a large dam size578

(Figure 4c), the informed infrastructure design (cyan) is able to produce 0.06 TWh/yr579

(60 GWh/yr) more hydropower than the corresponding basic solution (orange), mov-580

ing from a 3.84 TWh/yr to a 3.90 TWh/yr absolute value in the hydropower objective581

performance. This improvement is particularly significant as it corresponds to more582

than 25% of the yearly average electricity consumption by the agriculture sector in583

Zambia, where the Kariba dam is located, recorded over the 2014-2017 period (IEA,584

2019). Attained under perfect streamflow forecasts, 60 GWh/yr of additional hy-585

dropower production might not be fully achievable in the real world where forecasts586

may be a↵ected by systematic errors. However, achieving 50% of such increase (i.e.,587
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30 GWh/yr) might be realistic and still significant, as it corresponds to the yearly588

average electricity consumption by the transport sector in Zambia, recorded over the589

2014-2017 period (IEA, 2019). It is also important to notice that this hydropower590

improvement is attained at no additional cost for irrigation, as the irrigation deficit591

remains unchanged.592

c) Large Lb) Medium Ma) Small S

Jhyd [TWh/yr]

Jirr
[-]

BID
IID
POP

BID
IID
POP

BID
IID
POP

Figure 4: Comparison of the two objective tradeo↵s that result from the basic infrastruc-
ture designs (orange), the informed infrastructure designs (cyan) and perfect operating
policies (grey) for each of the three dam sizes selected, namely small S (stars, panel a),
medium M (diamonds, panel b), and large L (circles, panel c). The cyan shaded area
represents the forecast value, whereas the grey shaded area corresponds to the residual
space for improvement to still be filled. Arrows indicate the direction of preference in the
objectives.

To further understand the e↵ects of streamflow forecasts on enhancing the reservoir593

system design, we analyze the system dynamics achieved under a hydropower focused594

policy, where we have observed the greatest improvement. Figure 5 displays the system595

dynamics for medium dam sizes in terms of levels (panel b), inflows (panel c) and dry596

year levels (panel d) trajectories associated to the basic (orange), informed (cyan)597

and perfect (grey) solutions MH highlighted in panel a (for other dam sizes, refer to598

Section S5 in the Supplementary Material). Since the maximum future streamflow over599

7 months qM7t allows the system operator to acquire perfect knowledge on the flood600

events that will occur in the near future, he/she is able to keep the reservoir levels601

about 2 meters higher than the basic and closer to the perfect trajectories without602

spilling (Figure 5b). This leads the informed solution to a +2% further increase in603

hydropower production with respect to the basic one, approaching the performance604

achieved under POP (Figure 5a). On the contrary, since BID relies on the reservoir605

storage and time only, the system operator does not have any information on the future606

streamflows entering the reservoir. Being afraid of spilling and consequently wasting607

possible production, the operator keeps the reservoir levels very low, without exploiting608

the full hydropower potential of the dam. This is particularly evident during dry years609

(e.g., 1994), when low reservoir levels contribute to further decreasing hydropower610

production under basic infrastructure design (Figure 5d). Since less water enters the611

reservoir (red dotted line in Figure 5c), releases must be reduced in order not to further612

lower the levels and thus the hydropower potential, causing production to be decreased613

even further.614

4.3 Forecast Informed Infrastructure Design Using Perfect Inter-Annual Fore-615

casts616

To this point, our analysis has considered the value of an array of perfect seasonal617

streamflow forecasts over di↵erent monthly lead times up to the maximum lead time618
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Figure 5: Panel a: Two objective performance trade-o↵s for the medium M dam
size, where the BID (orange), IID (cyan) and POP (grey) solutions associated to a
hydropower-prone operating policy H are squared in black. Panel b: monthly cyclo-
stationary level trajectories for the three solutions highlighted in panel a. Dotted lines
bound the 5-th and 95-th percentiles of the monthly levels, whereas bold lines identify
the monthly cyclo-stationary average. Panel c: monthly cyclo-stationary inflow trajectory
of the Kariba dam. The shaded area is bounded by the 5-th and 95-th percentiles of the
monthly inflows, whereas the bold line identifies the monthly cyclo-stationary average.
The red dotted line corresponds to the inflow trajectory of a dry year (i.e., 1994). Panel
d: monthly level trajectories for the three solutions highlighted in panel a during a dry
year (i.e., 1994). The cyan shaded area covers the distance between the BID and IID
level trajectories.

of seasonal forecasts provided by weather forecast centers. However, it is also interest-619

ing to assess whether inter-annual streamflow forecasts contribute any further benefit620

particularly for large dam sizes, which can carry over large water volumes year-to-621

year. Even if inter-annual forecasts are not yet very accurate, their skill is expected to622

considerably increase in the near future. To this end, we employ the Iterative Input623

Selection algorithm to identify the most informative lead times Ii
t
out of an additional624

set of perfect inter-annual streamflow forecasts ⌅i

t
. The full details for our analysis625

of the inter-annual perfect information selection phase can be found in Section S4 in626

the Supplementary Material. In addition to the maximum future streamflow over 7627

months qM7t, the IIS algorithm selected the median of future streamflows over the628

next 12 months qmed12t, as an additional, not negligible informative variable to be629

included in the informed infrastructure design phase for all dam sizes.630

Figure 6a displays the performance of large L dam sizes in terms of Jhyd and Jirr631

achieved under basic (orange), informed under seasonal forecasts (cyan), informed un-632

der inter-annual forecasts IID - IA (blue) infrastructure designs and perfect operating633

policies (grey). Inter-annual forecasts coupled with qM7t bring particular advantages634
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in the hydropower focused region of the objective space, allowing the IID - IA alterna-635

tives to approach the POP set. This information allows the system operator to acquire636

perfect knowledge not only on the magnitude of the upcoming flood peak, but also637

whether the next year will be wet or dry relative to the median. The operator is there-638

fore confident in storing more water and keeping the levels higher without spilling, con-639

sequently increasing hydropower production and reducing irrigation deficit. However,640

this operating strategy can be applied to large dam sizes only, for which inter-annual641

forecasts are valuable as they can store significant water volumes and carry them over642

inter-annually. Adding inter-annual forecasts does not bring any additional benefits in643

the irrigation-prone area, where the potential improvement is extremely limited.644

Figure 6 displays the levels (panel b), inflows (panel c) and wet year levels (panel645

d) trajectories associated to the basic (orange), informed under seasonal forecasts646

(cyan), informed under inter-annual forecasts (blue), and perfect (grey) solutions LH647

highlighted in panel a. As expected, under IID - IA the reservoir levels are about648

2.5 and 0.5 meters higher than the basic and seasonally informed respectively on649

average, moving closer to the Perfect trajectories (Figure 6b). Such di↵erence is not big650

enough for allowing IID - IA to further increase hydropower production with respect651

to the seasonally informed system, yet it is su�cient for storing more water needed652

to satisfy the irrigation demand, attaining a 20% reduction in the irrigation deficit.653

When compared with the basic system, however, the di↵erence in the reservoir levels is654

significant, allowing IID - IA to achieve a 2% higher hydropower production and a 15%655

lower irrigation deficit (Figure 6a). These system dynamics are particularly evident656

during wet years (e.g., 1976, red dotted line in Figure 6c), where the contribution of657

qmed12t is evident in terms of keeping the levels 3 meters higher than the informed658

and closer to the Perfect trajectories (Figure 6d). In this case, the system operator659

is aware not only that the flood peak entering the reservoir will be one of the highest660

recorded across the entire time-period, but also how wet the next 12 months will be,661

increasing the levels accordingly without spilling.662

It must be noted that such performance improvements have been attained under per-663

fect inter-annual streamflow forecasts. However, in a realistic decision making envi-664

ronment inter-annual forecasts are still not reliable, since their longer-term resolution665

makes their correct estimation challenging.666

4.4 Forecast Informed Infrastructure Design Using Biased Forecasts667

This section explores how much performance might degrade with imperfect seasonal668

streamflow forecasts characterized by di↵erent biases, namely over-estimation, under-669

estimation, under-dispersion. We employ the same settings of the IID analysis pre-670

sented in section 4.2, where the number of policy inputs to be included in the optimal671

infrastructure design is limited to st, t, and qM7t.672

Figure 7 displays the performance of the small S (stars, panel a), mediumM (diamonds,673

panel b) and large L (circles, panel c) dam sizes in terms of Jhyd and Jirr and the as-674

sociated hypervolume metrics, associated to the set of basic infrastructure designs675

(orange) and perfect operating policies (grey), along with the suite of over-estimated676

(yellow), under-estimated (green), under-dispersed (purple) and perfect (cyan) sea-677

sonal forecasts. Regardless of dam size, the sets of IIDs are less sensitive to both678

under-estimated and under-dispersed forecasts, attaining almost the same hypervol-679

ume as for perfect forecasts. On the contrary, over-estimated forecasts lead to the680

lowest value of the HV metric for all three dam sizes. Since informed solutions are681

conditioned upon the maximum future streamflow over 7 months qM7t, over-estimated682

forecasts lead the system to release significant water volumes in order not to waste ex-683

cess flood water. However, when less water actually flows into the reservoir, the levels684

(and thus hydropower production) decrease while irrigation deficit increases, since less685

water is then available to be released for meeting the demand. Both L and S dam sizes686

achieve a 4% lower HV under over-estimated with respect to perfect seasonal forecasts,687
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Figure 6: Panel a: Two objective performance trade-o↵s for the large L dam size, where
the BID (orange), IID (cyan), IID under inter-annual forecasts (blue) and POP (grey)
solutions associated to a hydropower focused operating policy H are squared in black.
Panel b: monthly cyclo-stationary level trajectories for the four solutions highlighted
in panel a. Dotted lines bound the 5-th and 95-th percentiles of the monthly levels,
whereas bold lines identify the monthly cyclo-stationary average. Panel c: monthly cyclo-
stationary inflow trajectory of the Kariba dam. The shaded area is bounded by the 5-th
and 95-th percentiles of the monthly inflows, whereas the bold line identifies the monthly
cyclo-stationary average. The red dotted line corresponds to the inflow trajectory of a wet
year (i.e., 1976). Panel d: monthly level trajectories for the four solutions highlighted in
panel a during a wet year (i.e., 1976). The blue shaded area covers the distance between
the level trajectories of the IID and IID under inter-annual forecasts.

whereas M dam sizes are characterized by an 8% reduction. Medium dam sizes are688

therefore more sensitive to an over-estimation in the streamflow forecasts. Since they689

do not have enough storage capacity to store large flood water volumes, they must be690

carefully operated in order not to spill and thus waste both hydropower potential and691

water for irrigation supply. If future streamflows are over-estimated and less water692

actually enters the reservoir, the boundary conditions under which these dams have693

been optimized change. Their operation is therefore not optimal anymore with respect694

to what actually unfolds, preventing these reservoirs to be carefully operated in order695

to exploit their full active storage capacity. As for large and small dam sizes, they696

are less sensitive to over-estimated forecasts. The former present enough active stor-697

age capacity to compensate over-estimated flows. The latter are characterized by a698

small operation discretion space that does not allow for substantially di↵erent operat-699

ing strategies, since large water volumes are already spilled under perfect streamflow700

forecasts.701

Since the sets of IIDs are more sensitive to over-estimated forecasts, it is interesting to702

analyze the e↵ects of such biased forecasts on the system dynamics for both medium703
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and large dam sizes when operated under a hydropower-prone operating policy (i.e.,704

MH and LH in Figure 7b and 7c respectively; for small dam sizes, refer to Section S6705

in the Supplementary Material). Figure 8a and 8b display the system dynamics of LH706

and MH respectively in terms of level and release cyclo-stationary trajectories, attained707

under basic infrastructure design (orange) and perfect operating policy (grey), along708

with informed infrastructure design under over-estimated (IID (Over-est) - yellow)709

and perfect (IID (Perfect) - cyan) seasonal streamflow forecasts. When comparing710

IID (Over-est) and IID (Perfect) solutions, both LH and MH solutions present the711

same dynamics. In particular, over-estimated forecasts, which over-estimate the wet712

season flood peaks, force both reservoirs to release more water from January to March713

in order not to spill, while lowering releases during the dry season (September-October)714

in order not to excessively lower the reservoir levels and still maintain a satisfactory715

level of hydropower production. On the contrary, perfect seasonal forecasts enable716

both reservoirs to release less during the wet season, saving water for the dry season717

when irrigation demand is higher. As for the level dynamics, both IID (Perfect)718

and IID (Over-est) present the same trajectories under both LH and MH solutions,719

keeping the levels about 2 meters higher on average than the corresponding basic720

trajectories. These dynamics allow both informed infrastructure designs to attain the721

same hydropower production regardless of dam size, yet over-estimated forecasts attain722

a 8% and 20% higher irrigation deficit under LH and MH solutions respectively.723
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Figure 7: Two objective performance trade-o↵s where the basic infrastructure designs
(orange) are compared against the corresponding informed infrastructure designs and
perfect operating policies (grey) for each of the three dam sizes selected, namely small S
(stars, panel a), medium M (diamonds, panel b), and large L (circles, panel c). For each
dam size, the sets of IIDs are identified under perfect (cyan), over-estimated (yellow),
under-estimated (green), and under-dispersed (purple) forecasts and the associated value
of information is quantified in terms of hypervolume. Arrows indicate the direction of
preference in the objectives.

5 Conclusions and Future Work724

This paper investigates the value of streamflow forecasts in informing the coupled725

design of a water reservoir size and its operations, exploring their interdependencies726
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Figure 8: Monthly cyclo-stationary level and release trajectories for large L (panel a)
and medium M (panel b) dam sizes associated to a hydropower-prone operating policy
H, corresponding to the solutions highlighted in panels b and c of Figure 7. Dotted lines
bound the 5-th and 95-th percentiles of the monthly levels and releases, whereas bold lines
identify the monthly cyclo-stationary average.

and how streamflow forecasts shape them to enhance the final infrastructure design.727

Our main contribution in this paper is to explicitly map how informative streamflow728

forecasts shape multi-objective dam design trade-o↵s. The main goal of this study is to729

assess if the inclusion of forecast information can lead to less costly, more e�cient water730

reservoirs with respect to less informed systems. We demonstrate the potential of our731

contribution through an ex-post design analysis of the Kariba dam in the Zambezi732

river basin.733

Our results show that the operation of large dams characterized by a wide opera-734

tional discretion space and aimed at maximizing hydropower production is expected735

to benefit more from the information from seasonal forecasts than smaller dams serv-736

ing irrigated agriculture. In particular, the same hydropower production levels of a737

forecast uninformed dam can be generated with a 20% reduction in capital costs (i.e.738

20% smaller dam). Dam size being the same, forecasts allow to increase of 60 GWh/yr739

hydropower production in large dam, corresponding to more than 25% of the yearly740

average electricity consumption by the agriculture sector in Zambia, where Kariba dam741

is located (IEA, 2019). This hydropower improvement is attained at no additional cost742

for irrigation, as the irrigation deficit remains unchanged.743

Extrapolating these figures to the new planned dams (Mupata 1200 MW, Mhpanda744

1350MW, Batoka 1600 MW), which will cumulatively add more than double the in-745

stalled power in Kariba (1830 MW), might increase this rate to 75 %. In the end,746

when tested over realistic streamflow forecasts characterized by di↵erent biases, the747

Kariba reservoir system has proven to be more sensitive to an over-estimation in the748

seasonal streamflow forecasts used to inform the infrastructure design, leading to an749

8% maximum loss in the value of information.750

Given the positive outcomes attained using perfect streamflow forecasts, a future re-751

search direction will be to test the e↵ectiveness of our contribution using an existing752

forecast system, such as the Multi-model and Multi-product seasonal hydrological753

streamflow forecasting platform available for the Upper Zambezi (Roy et al., 2017;754

SERVIR Water Africa-Arizona Team (SWAAT), 2019) or the seasonal forecasts global755
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system (SMHI, 2019). Our work can also be extended to other catchments located in756

di↵erent hydro-climatic regions and characterized by di↵erent planning and manage-757

ment challenges, in order to assess further interrelations between dam sizes, operational758

trade-o↵s, and forecast value. In the end, our study could be repeated with multiple,759

stochastic streamflow realizations in order to design reservoir systems that are less760

vulnerable to the intrinsic, stationary variability of the hydrologic processes.761
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Introduction  

In this study, we generate three sets of infrastructure designs, namely alternative dam 
sizes with associate candidate operating policies, for the Kariba dam system by solving 
the following three distinct multi-objective optimization problems: (i) Basic Infrastructure 
Design (BID), where the operating policies associated to different dam sizes are informed 
using a basic set of policy inputs, consisting of the reservoir storage and the month of the 
year; (ii) Perfect Operating Policy (POP), identified with respect to the full, deterministic 
known trajectory of external drivers (i.e., streamflows) over the entire evaluation horizon 
for each of the three dam sizes selected within the set of BID, obtaining a sequence of 
optimal release decisions that an ideal system operator would follow under perfect 
knowledge on the future; (iii) Informed Infrastructure Design (IID), which differs from the 
Basic one only in the formulation of the operating policies associated to different dam 
sizes, which are now dependent upon the selected set of informative forecast lead times 
determining the reservoir releases. This supplement contains seven sections. The first 
provides a mathematical formulation of the parameterized reservoir operating policy, 
whereas the second of the pure management optimization problem to be solved for each 
of the three dam sizes selected within the set of BID for identifying the corresponding 
Perfect Operating Policy. The third displays the runtime evolution of the Borg MOEA 
search to ensure that the algorithm search is at convergence and that the ten random 
seeds optimization covers the entire diversity and convergence space, finding high-quality 
solutions. The fourth analyzes the results of the Iterative Input Selection phase performed 
over both seasonal and inter-annual streamflow forecasts in order to identify the most 
informative lead times to be included in the optimal infrastructure design phase. The fifth 
discusses the Kariba system dynamics achieved under different dam sizes, comparing 
Basic and Informed Infrastructure Designs in order to thoroughly understand the effects 
of informative forecast lead times on enhancing the infrastructure design. Similarly, the 
sixth presents the system dynamics achieved under over-estimated forecasts for different 
dam sizes. The seventh performs a sensitivity analysis of the Informed Infrastructure 
Designs with respect to different accuracies in all the biased forecasts generated, 
evaluated in terms of percentage bias (Pbias) performance metric. 
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Section S1: Gaussian radial basis functions 

In this study, the water reservoir operating policy is parameterized according to non-linear 
approximating networks, and in particular Gaussian radial basis functions (RBFs), and the 
reservoir release decision 𝒖𝒕 is therefore calculated as follows: 

𝒖𝒕 = 𝜷 +%𝒘𝒊𝝋𝒊(𝑰𝒕)
𝑵

𝒊$𝟏

 

where 𝑵 is the number of RBFs 𝝋(∙), 𝜷 is the linear parameter associated to the decision 
variable 𝒖𝒕, and 𝒘𝒊 is the non-negative weight of the i-th RBF (𝒘𝒊 ≥ 𝟎, ∀𝒊). As for the single 
RBF, it is defined as follows: 

𝝋𝒊(𝑰𝒕) = 𝒆𝒙𝒑 5−%
7(𝑰𝒕)𝒋 − 𝒄𝒋,𝒊9

𝟐

𝒃𝒋,𝒊𝟐

𝑴

𝒋$𝟏

; 

where	𝑴 is the number of policy inputs 𝑰𝒕, 𝒄𝒊 and 𝒃𝒊 are the M-dimensional center and 
radius vectors of the i-th RBF. In particular, the centers must lie within the input bounded 
space and the radii must be strictly positive (Busoniu et al, 2011). As a result, the 
parameters vector employed for the parametrization of the operating policy is defined as 
𝜽 = 7𝒄𝒋,𝒊, 𝒃𝒋,𝒊, 𝒘𝒊, 𝜷9 ∈ ℝ𝒏𝜽 where i = 1,…,N,  j = 1,…,M, 𝒏𝜽 = nu + N(2M+nu), and nu = 
number of policy outputs (i.e., nu = 1 as we consider a single reservoir release decision).  

Section S2: Pure management optimization problem 

As discussed in section 3.2 of the manuscript, the Perfect Operating Policy is identified 
under perfect foresight assumption by solving the management side of the joint 
optimization problem 3 in the manuscript with respect to the vector of 𝒏 = 2 management 
objectives, for a fixed dam size 𝜶C and associated irrigation diversion parameters 𝜽C𝒊𝒓𝒓 
selected within the set of Basic Infrastructure Designs. This pure management 
optimization problem can be formulated as follows: 

𝒑∗ = 𝐚𝐫𝐠	𝐦𝐢𝐧
𝒑

𝑱𝒑𝑷𝑶𝑷 

where          𝑱𝒑𝑷𝑶𝑷 = K𝑱𝒑
𝒉𝒚𝒅, 	𝑱𝒑𝒊𝒓𝒓K 

𝜶C, 𝜽C𝒊𝒓𝒓 given 

where the optimal operating policy 𝒑∗ is identified with respect to 𝒏 = 2 management 
objectives (i.e., 𝑱𝒑

𝒉𝒚𝒅, 	𝑱𝒑𝒊𝒓𝒓). This optimization problem can be solved by either a local 
optimization method (e.g., gradient-based) or a global optimization method (e.g., direct 
search). Conversely, if the objective function is time-separable, Deterministic Dynamic 
Programming (DDP) can be used (Bellman, 1957), which is able to provide an almost 
exact solution much more efficiently than other nonlinear optimization methods. We 
employ DDP to solve the pure management optimization problem with respect to the full, 
deterministically known trajectory of streamflows over the entire evaluation horizon H. For 
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each dam size, we therefore obtain an optimal operating policy 𝒑∗, from which we derive 
a target sequence of optimal release decisions (i.e., target output of the corresponding 
iterative input selection procedure) that an ideal system operator would follow under 
deterministic knowledge on the future.  

Section S3: Runtime evolution of the Borg MOEA search 

Our choice of running only 10 random seed trials was based on a preliminary diagnostic 
analysis of the Borg MOEA search in terms of hypervolume runtime dynamics (Figure S1). 
As can be observed, at the beginning of the search process the 10 random seed trials 
present an hypervolume that varies between 0.4 and 0.5. Such seeds variability quickly 
decreases as the number of function evaluations increases up to 1 million, when the 
hypervolume metric negligibly ranges from 0.75 to 0.77 (shaded area extension). In 
addition, from 750,000 to 1 million function evaluations the hypervolume value increases 
from 0.754 to 0.758 on average (bold line), meaning that no additional function evaluation 
is needed and that the best possible approximation of the Pareto front has been identified. 
This evolution of the search progress suggests that the algorithm eventually reaches 
convergence with little variability across the seeds, covering the entire diversity and 
convergence space and finding high-quality solutions. 

Section S4: Iterative Input Selection for seasonal and inter-annual forecasts 
We identify via Iterative Input Selection (IIS) algorithm the most informative seasonal 
forecast lead times that explain the sequence of optimal release decisions associated to 
the three target trade-offs highlighted in Figure 3 of the manuscript for the large L, medium 
M, and small S dam sizes selected. 
First, we perform a regression on a sample dataset consisting of the Kariba storage st and 
month of the year t in order to prevent this basic set of information, highly correlated with 
the release trajectory to be explained, to overshadow the real contribution of forecast lead 
times if jointly considered in the information selection phase. Results are summarized in 
Table S1, where each row corresponds to a different dam size, operated under three 
alternative target trade-offs, namely an hydropower-prone (H), a compromise (C) and an 
irrigation-prone (I) operating policy. The last column reports the share of the variance in 
the reservoir release trajectories obtained under the target trade-offs that is not explained 
(1-R2) by st and t respectively. The unexplained variance 1- R2 systematically increases 
from I to H operational trade-off, regardless of dam size. This has already been noticed in 
section 4.1 of the manuscript when discussing the maximum space for improvement in 
Figure 3 that decreases from H to I. Since the maximum space for improvement measures 
the distance between Basic Infrastructure Design and Perfect Operating Policy, and the 
former is informed with the basic set of information consisting of st and t, basic irrigation-
prone policies are already close to the target trade-off and would not benefit from their 
conditioning upon other informative variables besides storage and time. This is particularly 
evident for large L dam sizes, where 13% and 37% of the variance in the releases 
associated to I and H respectively is not explained by reservoir storage and time. The 
added benefit of including informative forecast lead times in addition to storage and time 
to explain the sequence of optimal release decisions will be thus more significant for large 
dam sizes operated under a hydropower-prone rather than an irrigation-prone policy. As 
for small S dam sizes, 1-R2 assumes almost constant values and equal to 0.27 across the 
three operational trade-offs. However, such values are pretty low, and the advantages of 
adding information are limited across all the operational trade-offs. This is reflected by the 
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value of the maximum space for improvement presented in Figure 3 of the manuscript, 
which assumes its lowest value for S dam sizes whose Basic and Perfect solutions are 
very close throughout the entire objective space. As expected, medium M dam sizes 
behave in between small and large reservoirs. 
After calculating the model residuals of st and t, they are employed as dependent variable 
when running the Iterative Input Selection algorithm with the set of perfect seasonal 
streamflow forecasts as independent variable. The aim of the IIS algorithm is to select the 
most informative seasonal forecast lead times and temporal aggregations (i.e., maximum 
and minimum over 7 months) describing the target optimal release sequence not 
explained by reservoir storage and time.  
Figure S2 shows the results of this information selection phase, reporting the variables 
that have been selected more frequently by IIS throughout the 50 runs of the algorithm 
and the associated average cumulated performance in terms of R2. This procedure was 
applied repeatedly to filter the randomness associated to the construction of the extra-
tress models employed by the input selection algorithm (Galelli and Castelletti, 2013). 
Each row corresponds to a specific dam size, each column to an alternative target trade-
off. Regardless of dam size and operational trade-off, the most informative variables 
selected always provide information on the future streamflow extremes (i.e., maximum for 
flood peaks or minimum for drought periods) rather than on the cumulated water volume 
entering the reservoir over different future lead times. In particular, hydropower-prone 
policies are best informed by the maximum future streamflow over 7 months qM7t for all 
three dam sizes. This variable allows the dam operator to acquire perfect knowledge on 
the maximum flood peak that will enter the reservoir in the next 7 months, and act 
accordingly by lowering the levels in order not to spill and thus maximize hydropower 
production (please refer to section 4.2 of the manuscript for further insights into system 
dynamics). The second most informative variable that is selected by the IIS algorithm is 
the minimum future streamflow over 7 months qm7t. However, this latter contributes to 
about 3% of the final cumulated performance averaged across the dam sizes and can be 
thus considered almost negligible. Dually, irrigation-prone operating policies are 
associated to the minimum future streamflow over 7 months qm7t as the only most 
informative variable for all three dam sizes. qm7 t allows the reservoir operator to acquire 
perfect knowledge on the most severe drought that the system will experience in the next 
7 months, and act accordingly by storing sufficient water to satisfy the irrigation demands 
and thus minimize the irrigation deficit. Not surprisingly, the compromise policy presents 
a less clear pattern than the other two extreme solutions, since it has to balance two 
competing objectives into a single operating strategy ensuring both satisfactory 
hydropower productions and irrigation deficits. Under a compromise trade-off, each dam 
size may achieve this balance by operating the reservoir differently based on its own active 
storage capacity. As a consequence, the most informative lead times explaining the 
different release trajectories obtained under each dam size change accordingly. 
 
Then, we employ the Iterative Input Selection algorithm to identify the most informative 
lead times out of an additional set of inter-annual streamflow forecast medians computed 
over 12, 24, 36, 48, and 60 months ahead (i.e., qmed12t, qmed24t, qmed36t, qmed48t, 
qmed60t). The selected lead times are then used in the Informed Infrastructure Design 
phase to assess whether inter-annual streamflow forecasts can further benefit particularly 
large dam sizes. Figure S3 shows the results of this second information selection phase, 
reporting the lead times that have been selected more frequently by IIS throughout the 50 
runs of the algorithm and the associated average cumulated performance in terms of R2. 
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This procedure was applied repeatedly to filter the randomness associated to the 
construction of the extra-trees models employed by the input selection algorithm (Galelli 
and Castelletti, 2013). Each row corresponds to a specific dam size (i.e., small S, medium 
M, large L), each column to an alternative target trade-off (i.e., hydropower-prone H, 
compromise C, irrigation-prone I). 

Section S5: System dynamics under Informed Infrastructure Design  

Figure S4 displays the system dynamics for large L and small S dam sizes in terms of 
level trajectories (panel b and d) associated to the basic (orange), informed (cyan) and 
perfect (grey) solutions LH and SH highlighted in panels a and c, respectively. As observed 
in section 4.2, since the maximum future streamflow over 7 months allows the system 
operator to acquire perfect knowledge on the flood events that will occur in the near future, 
he/she is able to keep the large and small reservoir levels respectively 2.5 and 0.5 meters 
higher than the Basic and closer to the Perfect trajectories without spilling. The 
advantages of adding informative forecast lead times during the infrastructure design 
phase are less evident for small dam sizes as they have a restricted space of operation 
discretion due to a rather small active storage capacity compared to both medium and 
large dam sizes. 

Section S6: System dynamics under over-estimated forecasts 
Figure S5a displays the performance of the small S dam size in terms of Jhyd and Jirr 
achieved under the set of Basic Infrastructures Designs (orange) and Perfect Operating 
Policies (grey), along with the set of Informed Infrastructure Designs under over-estimated 
(yellow), under-estimated (green), under-dispersed (purple) and perfect (cyan) seasonal 
forecasts. In addition, Figure S5b shows the system dynamics in terms of level and release 
trajectories for the small dam size, when operated under a hydropower-prone operating 
policy (i.e., SH solutions highlighted in Figure S5a). When comparing Informed (Over-est) 
and Informed (Perfect) solutions, over-estimated forecasts, which over-estimate the wet 
season flood peaks, force the reservoir to release more water from January to May in 
order not to spill, while lowering releases during the dry season (September-December) 
in order not to excessively lower the reservoir levels and still maintain a satisfactory level 
of hydropower production. On the contrary, perfect forecasts enable the reservoir to 
release less during the wet season, saving water for the dry season when irrigation 
demand is higher. These dynamics allow both Informed Infrastructure Designs to attain 
the same hydropower production, yet over-estimated forecasts attain a 12% higher 
irrigation deficit. 

Section S7: Sensitivity analysis with respect to forecasts Pbias 
We perform a sensitivity analysis of the Informed Infrastructure Designs with respect to 
different accuracies in all the biased forecasts generated, evaluated in terms of 
percentage bias (Pbias) performance metric. We test a low, moderate and high Pbias for 
each of the forecast biases considered, namely over-estimation, under-estimation, and 
under-dispersion. In particular, we use a +20% (low), +30% (moderate), and +40% (high) 
Pbias for over-estimated, -20% (low), -30% (moderate), and -40% (high) for under-
estimated, and in the end -6% (low), -10% (moderate), and -15% (high) for under-
dispersed seasonal forecasts. Figure S6-Figure S8 display the performance of the 
hypervolume metric associated to a large L (panel a), medium M (panel b), and small S 
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(panel c) dam size and identified under a basic set of information (orange), together with 
perfect (cyan), over-estimated (Figure S6), under-estimated (Figure S7), and under-
dispersed (Figure S8) seasonal forecasts characterized by different percentage biases 
(low - green, moderate - yellow, high - red). In all three figures, the grey bar with 
hypervolume equal to one corresponds to the Perfect Operating Policies, designed under 
a full, deterministic knowledge of the future. As already discussed in section 4.4, 
regardless of dam size, the sets of Informed Infrastructure Designs are less sensitive to 
both under-estimated and under-dispersed forecasts with both a low and moderate Pbias, 
attaining almost the same hypervolume as for perfect forecasts. However, when 
associated to a high Pbias, their performance in terms of hypervolume worsens, moving 
closer to the Basic Infrastructure Design value, especially for large and medium dam sizes. 
On the contrary, over-estimated forecasts lead to the lowest values of the hypervolume 
metric for all three dam sizes, whose under-performance becomes even more pronounced 
under a +40% over-estimation. 
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Figure S1. Hypervolume runtime dynamics for the 10 random seeds optimization of the 
Informed Infrastructure Design. The shaded area is bounded by 5th and 95th percentiles 
of the hypervolume performance value across the multiple random seeds at each 250,000 
runtime function evaluation (NFE), whereas the bold line identifies the average 
performance. 
 

 
 
Figure S2. Information selection results obtained by performing 50 runs of the IIS 
algorithm in terms of average cumulated performance. Each row refers to a single dam 
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size, each column corresponds to a specific target trade-off of the Perfect operating 
policies to be explained by the most informative seasonal forecast lead times selected. 
 
 
 

 
Figure S3. Information selection results obtained by performing 50 runs of the IIS 
algorithm in terms of average cumulated performance. Each row refers to a single dam 
size, each column corresponds to a specific target trade-off of the Perfect operating 
policies to be explained by the most informative inter-annual forecast lead times selected. 
 

qmed12t q6t
0

0.2

0.4

0.6

0.8

1

qmed12t q7t
0

0.2

0.4

0.6

0.8

1

qmed24t q5t q7t qm7t
0

0.2

0.4

0.6

0.8

1

qmed36t q7t qM7t qmed24t
0

0.2

0.4

0.6

0.8

1

Av
g.

 R
2

qmed12t q7t qmed60t
0

0.2

0.4

0.6

0.8

1

qmed24t q3t
0

0.2

0.4

0.6

0.8

1

qmed24tqM7t qm7t q5t
0

0.2

0.4

0.6

0.8

1

qmed60tqm7t qM7t qmed12t
Inputs

0

0.2

0.4

0.6

0.8

1

qmed24tqm7tqmed12t q2t
0

0.2

0.4

0.6

0.8

1

Av
er

ag
e 

R
2

c) Large L

b) Medium M

a) Small S

Hydropower (H) Compromise (C) Irrigation (I)



 
 

10 
 

 
Figure S4. Panel a/c: 2-D management objective space for the large L and small S dam 
sizes respectively, where the BID (orange), IID (cyan) and POP (grey) solutions 
associated to a hydropower-prone operating policy H are squared in black. Panel b/d: 
monthly cyclo-stationary level trajectories for the three solutions highlighted in panels a 
and c, respectively. Dotted lines bound the 5-th and 95-th percentiles of the monthly levels, 
whereas bold lines identify the monthly cyclo-stationary average. 
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Figure S5. Monthly cyclo-stationary level and release trajectories (panel b) for a small S 
dam size associated to a hydropower-prone operating policy H, corresponding to the 
solutions highlighted in panel a. Dotted lines bound the 5-th and 95-th percentiles of the 
monthly levels and releases, whereas bold lines identify the monthly cyclo-stationary 
average. 
 
 

 
Figure S6. For each dam size, namely large L (panel a), medium M (panel b), small S 
(panel c), the forecast value associated to the Informed Infrastructure Designs identified 
under basic information (orange), together with perfect (cyan), +20% over-estimated 
(green), +30% over-estimated (yellow), and +40% over-estimated (red) seasonal 
forecasts is quantified in terms of hypervolume. Arrows indicate the direction of preference 
in the hypervolume metric. 
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Figure S7. For each dam size, namely large L (panel a), medium M (panel b), small S 
(panel c), the forecast value associated to the Informed Infrastructure Designs identified 
under basic information (orange), together with perfect (cyan), -20% under-estimated 
(green), -30% under-estimated (yellow), and -40% under-estimated (red) seasonal 
forecasts is quantified in terms of hypervolume. Arrows indicate the direction of preference 
in the hypervolume metric. 
 

 
Figure S8. For each dam size, namely large L (panel a), medium M (panel b), small S 
(panel c), the forecast value associated to the Informed Infrastructure Designs identified 
under basic information (orange), together with perfect (cyan), -6% under-dispersed 
(green), -10% under-dispersed (yellow), and -15% under-dispersed (red) seasonal 
forecasts is quantified in terms of hypervolume. Arrows indicate the direction of preference 
in the hypervolume metric. 
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Table S1. Share of the variance in the reservoir release trajectories (dependent variable) 
that is not explained by reservoir storage and month of the year (independent variables) 
in terms of coefficient of non-determination 1-R2. Such trajectories are obtained under a 
hydropower-prone (H), compromise (C) and irrigation-prone (I) perfect operating policies 
associated to small S, medium M and large L dam sizes. 
 

Dam size Operational trade-off 1-R2 

Small (S) 
Hydropower (H) 0.29 
Compromise (C) 0.28 

Irrigation (I) 0.24 

Medium (M) 
Hydropower (H) 0.34 
Compromise (C) 0.27 

Irrigation (I) 0.20 

Large (L) 
Hydropower (H) 0.37 
Compromise (C) 0.23 

Irrigation (I) 0.13 
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