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Abstract

High quality citizen science data can be instrumental in advancing science toward new discoveries and a deeper understanding

of under-observed phenomena. However, the error structure of citizen scientist (CS) data must be well-defined. Within a citizen

science program, the errors in submitted observations vary, and their occurrence may depend on CS-specific characteristics.

This study develops a graphical Bayesian inference model of error types in CS data. The model assumes that: (1) each CS

observation is subject to a 5 specific error type, each with its own bias and noise; and (2) an observation’s error type depends on

the error community of the CS, which in turn relates to characteristics of the CS submitting the observation. Given a set of CS

observations and corresponding ground-truth values, the model can be calibrated for a specific application, yielding (i) number

of error types and error communities, (ii) bias and noise for each error type, (iii) error distribution of each error community,

and (iv) the error community to which each CS belongs. The model, applied to Nepal CS rainfall observations, 10 identifies

five error types and sorts CSs into four model-inferred communities. In the case study, 73% of CSs submitted data with errors

in fewer than 5% of their observations. The remaining CSs submitted data with unit, meniscus, unknown, and outlier errors.

A CS’s assigned community, coupled with model-inferred error probabilities, can identify observations that require verification.

With such a system, the onus of validating CS data is partially transferred from human effort to machine-learned algorithms.
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Abstract. High quality citizen science data can be instrumental in advancing science toward new discoveries and a deeper

understanding of under-observed phenomena. However, the error structure of citizen scientist (CS) data must be well-defined.

Within a citizen science program, the errors in submitted observations vary, and their occurrence may depend on CS-specific

characteristics. This study develops a graphical Bayesian inference model of error types in CS data. The model assumes that:

(1) each CS observation is subject to a specific error type, each with its own bias and noise; and (2) an observation’s error type5

depends on the error community of the CS, which in turn relates to characteristics of the CS submitting the observation. Given

a set of CS observations and corresponding ground-truth values, the model can be calibrated for a specific application, yielding

(i) number of error types and error communities, (ii) bias and noise for each error type, (iii) error distribution of each error

community, and (iv) the error community to which each CS belongs. The model, applied to Nepal CS rainfall observations,

identifies five error types and sorts CSs into four model-inferred communities. In the case study, 73% of CSs submitted data10

with errors in fewer than 5% of their observations. The remaining CSs submitted data with unit, meniscus, unknown, and

outlier errors. A CS’s assigned community, coupled with model-inferred error probabilities, can identify observations that

require verification. With such a system, the onus of validating CS data is partially transferred from human effort to machine-

learned algorithms.

1 Introduction15

Communities worldwide face increasing uncertainty regarding extreme weather events due to climate change. Reliable weather

forecasts allow a community to initiate proactive measures when anticipating an extreme event—measures that sometimes

save hundreds, if not thousands of lives. Unfortunately, sparse weather data in many regions of the world inhibit coordinated

response efforts of local and regional governments (Teague and Gallicchio, 2017, p. 218). Further, some countries lack the

institutional capacity to effectively utilize available weather data, inhibiting the generation and distribution of locally relevant20

weather forecasts. Citizen science can help bridge such data gaps.

Citizen science programs, organized efforts to collect scientific data in collaboration with members of the public, have be-

come increasingly popular as advances in technology have made the data collection and submission process more accessible
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(Bonney et al., 2009; Newman et al., 2012). However, some traditional scientists, policymakers, and workers in federal water

bureaucracies continue to question the quality of data submitted by members of the public, and have yet to accept the legiti-25

macy of scientific discoveries advanced by citizen scientists (CSs) (Hunter et al., 2013; Paul et al., 2018; Riesch and Potter,

2014; Sheppard and Terveen, 2011). Others, however, have embraced citizen science as an effective means for increasing the

spatiotemporal resolution of scientific data while acknowledging the data may contain errors. Many citizen science programs

investigate the type and frequency of mistakes in the data collected by program participants and develop training initiatives

designed to reduce errors (Bird et al., 2014; Crall et al., 2011; Davids et al., 2019). While mistakes in citizen science data are30

well-recognized, issues with incompleteness, data gaps, and fragmentary recording may also limit the utility of citizen science

data (Paul et al., 2020).

Most CS programs conduct quality control of the data submitted by their participants, but the time and effort invested varies

widely. For example, CSs report when they feel an earthquake and rank its strength for the United States Geological Survey’s

(USGS) Did You Feel It? program. The USGS removes outliers and aggregates reported intensities at zip code or city-level35

after processing the data through the Community Decimal Intensity algorithm (Atkinson and Wald, 2007). On the other end

of the spectrum, CS programs like SmartPhones4Water-Nepal (S4W-Nepal) undertake an intensive quality control process.

CSs submit rainfall depth observations to S4W-Nepal, and S4W-Nepal checks the value of each submitted rainfall observation

against an accompanying photograph of the rain gauge and manually corrects erroneous observations (Davids et al., 2019).

The range of time and effort dedicated to conduct quality control for citizen science data varies greatly across programs.40

Most error analyses of citizen science data focus on identifying and removing outliers from a dataset. Trained filters flag

outliers by identifying observations that do not fit within the expected range of values or classes, such as species range or

allowable count (Bonter and Cooper, 2012; Wiggins et al., 2011). Some citizen science programs develop eligibility or trust

rating procedures to identify users that are likely to submit correct observations (Delaney et al., 2008; Hunter et al., 2013).

Ratings schemes that consider demographic and experience-related characteristics have potential for describing the variability45

in citizen science data reliability (Kosmala et al., 2016). However, some individual CSs do not submit enough observations to

be accurately assigned a rating. To overcome such limitations, Venanzi et al. (2014) employed model-based machine learning

to group CSs into four communities, each with a distinct pattern of errors.

Machine learning algorithms in the form of hierarchical, generalized linear, and mixed-effects models have been employed

by a variety of citizen science programs to study errors in citizen science data (Bird et al., 2014; Venanzi et al., 2014). Gen-50

eralized linear models (GLMs) have largely been used to study whether and how characteristics of CSs affect the accuracy of

their observations (Butt et al., 2013; Crall et al., 2011; Delaney et al., 2008). GLMs can determine whether CS characteristics

significantly impact the likelihood of making a mistake, but they cannot infer the types of errors made. Mixed-effects models

add a random-effects factor to generalized linear models, permitting the study of errors in relation to an unintended grouping

effect, such as spatial clustering (Bird et al., 2014; Brunsdon and Comber, 2012). Mixed-effects models may effectively group55

CSs into communities with similar characteristics or mistake tendencies, but, as with GLMs, they cannot quantify the number

and type of mistakes made. Alternatively, hierarchical models have been leveraged to study how CS mistakes relate to effort

and site-level effects (de Solla et al., 2005; Fink et al., 2010; Miller et al., 2011). Most machine learning-based models have
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been used to study errors in qualitative citizen science data, such as species identification and labeling tweets (Cox et al., 2012;

Lukyanenko et al., 2019; Venanzi et al., 2014). Thus far, no error-based investigations of CS observations have developed a60

unified methodology that can both infer the number and types of errors present in quantitative data and group the CSs into

communities based on mistake tendency and characteristics. Error modeling has only been employed to identify erroneous

citizen science observations for quantitative data in a limited manner. In addition, most machine learning citizen science re-

search has focused on datasets that are relatively static or slow-moving in the fields of biology and conservation (Lukyanenko

et al., 2019). To our knowledge, the study presented here is the first attempt to leverage hierarchical machine learning to assess65

errors in quantitative citizen science data with high spatiotemporal variability. Despite the range of existing research on citizen

science errors, widely adaptable methods for analyzing errors in quantitative citizen science data remain largely unexplored.

Motivated by the need to reduce the time-cost for quality control of citizen science data without sacrificing effectiveness, this

study seeks to develop a reliable, semi-automated method for identifying citizen science observations that require additional

verification. The objective is to improve quality control of quantitative citizen science data by developing a Bayesian inference70

model that discovers, explains, and possibly corrects the errors in observations submitted by CSs. The following research

questions will be explored:

1. How can the type and magnitude of citizen science data errors be automatically identified from citizen science data and

corresponding ground truth?

2. Given a calibrated model, to what extent can errors be detected and corrected without ground truth?75

3. To what extent do CS characteristics help in identifying and screening errors?

A probabilistic graphical model was developed to address these questions based on assumptions about the probabilistic re-

lationships between CSs, their characteristics, and types and magnitude of their errors. Here, CS characteristics means any

additional information a citizen science program has about participating CSs, e.g., age, education, and occupation. The prob-

abilistic graphical model design (research question 1) includes a mixture of linear regressions sub-models relating true and80

observed values and includes an unknown number of linear regressions. The model also includes a probabilistic sub-model

relating CS characteristics to error types. Each CS is grouped into a community based on their characteristics and error profile.

Each community is characterized by a distinct distribution of error types which indicates the likelihood that a submitted ob-

servation should be reviewed further. The model was applied to investigate its utility, including the capabilities of the model in

identifying erroneous observations and predicting the true value of submitted observations and the impact of multiple observa-85

tions of a single event on model performance (research question 2) and model performance when observations are submitted

by CSs with unknown characteristics (research question 3).
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2 Model development and implementation

2.1 Model approach

The model described here is based on the Community Bayesian Classifier Combination (CommunityBCC) Model developed90

in Venanzi et al. (2014). Whereas the CommunityBCC Model was initially developed to assess errors in crowdscourced tweet

labels by grouping participants into communities of similar labelling tendencies, the model presented here extends the Com-

munityBCC Model to assess mistakes in CS-submitted rainfall measurements by grouping CSs into communities of similar

characteristics and mistake tendencies. The decision to include CS characteristics in the community-assignment process was

motivated by past studies that identified a significant relationship between CS characteristics and performance (Crall et al.,95

2011; Delaney et al., 2008; Sunde and Jessen, 2013). The use of communities to generalize the reliability of quantitative CS

observations is novel, as is the effort to correct those observations based on the overarching mistake tendencies of the CSs

inferred community.

2.2 Assumptions and model structure

A Bayesian probabilistic graphical model was developed based on a number of assumptions about the data being modeled.100

These assumptions were used to inform the relationships between the variables and ensure the model accurately represents the

modeler’s understanding of the physical processes that underlie the data (Krapu and Borsuk, 2019; Winn et al., 2020). The

following assumptions informed the development of the citizen science errors inference model:

1. Each CS belongs to a single community.

2. CSs in the same community will have similar demographic and experience-related characteristics and will have made105

similar types and frequencies of errors in prior submissions.

3. Each CS in a particular community always submits an observation with a community-specific error type distribution.

4. Each CS observation relates to an underlying true value with a systematic bias and random noise level that depends on

the error type of the observation.

While the tendency of CSs to make mistakes may change as they gain experience, the model developed here assumes110

that a CS will not change communities over time. This simplifies the model while also including the potential impact of

experience as a citizen characteristic. CS demographic information was assumed to be a factor in determining community,

because demographics, such as age, experience, and education, are a useful predictor in CS performance (Crall et al., 2011;

Delaney et al., 2008; Sunde and Jessen, 2013). As an imprint of a CS’s lived experience, demographics may influence CS

performance. For example, education and occupation imply specific skills training, which may present in the CS’s observation115

tendencies. In addition, factors like motivation and recruitment may impact a CS’s dedication to collecting and reporting

accurate observations. Notably, motivation and recruitment method were predictive factors in CS participation rate (Davids

et al., 2019). The predictive power of demographics in determining community will be assessed.
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These assumptions are translated into the following set of equations describing the probabilistic relationship between model

variables. The terminology and symbology used here is based on probabilistic graphical models (Winn et al., 2020). We first120

state the main statistical relations used in the model and provide clarifications for the wider research community. The model

equations are presented following the order of hierarchy in the model, i.e., equations for the observed data layers are shown

first, followed by the equations for variables in each previous layer.

Notation. Consider there are S CSs with C characteristics submitting an O observation with ε latent error type for event e.

Let ϑe be the latent true value of rainfall for the submitted observation, Os,e for event e. We use a lowercase subscript to denote125

an index (e.g. ϑe indicates there is a TrueValue variable for each event e). Greek letters represent latent (inferred) variables,

and Latin letters represent observable variables. To keep notation simple, we assume a dense set of labels in which all CSs

observe all events. However, model implementation does not require CSs to submit observations for all events, as in Venanzi

et al. (2014).

We quantify systematic (bias) and random (noise) differences between observations and underlying true values by means of130

a linear regression model parameterized by an error-type specific slope α, offset β and precision (inverse variance) τ :

Os,e|ϑe ∼
N∏

n=1

N (αnϑe +βn, τn)
δ(εs,e−n), (1)

where Os,e represents the observed amount of rainfall in event e submitted by CS s, and ϑe is the corresponding true rainfall

amount for event e. Given the TrueValue, ϑe, of an observation, the observed value is thus generated from the product of N

Gaussian distributions with mean equal to an error-type specific linear function of the true value and an error-type specific135

variance, where N is the number of error types. α, β, and τ depend on error type εs,e. The Dirac delta function δ() in the

exponent is used to mathematically represent the mixture of linear regressions (i.e. the gate in Fig. 1), as documented in Minka

and Winn (2008). It follows that unconditionally, i.e. without knowing the error type, the relation between observed and true

value is a mixture of error-type specific Gaussian distributions, with the weight of each Gaussian distribution in the mixture

given by the probability of the corresponding error type.140

Equation 2, below, describes the conditional probability table for each error type and community. The error type εs,e of event

e observed by CS s is assumed to be generated from a discrete distribution denoted by Dis that depends on the community-

specific probability vector PErrγ and the community γs that the CS belongs to:

εs,e|PErr[γs]∼Dis(εs,e|PErr[γs]), (2)

Similarly, the community γ to which CS s belongs is a discrete random variable generated from a discrete distribution that145

depends on the probability vector PComs, which specifies the prior probability of CS s belonging to each community:

γs|PComs ∼Dis(γs|PComs), (3)
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The value Zc,s of citizen characteristic c for CS s is generated from a discrete distribution that depends on the probability

PChar, which is derived from the characteristic c under consideration and the community γs the CS belongs to:

Zc,s|PCharc[γs]∼Dis(Zc,s|PCharc[γs]), (4)150

Equation 4 quantifies the probabilistic relationship between each citizen characteristic and each assigned community in

the form of a conditional probability table. As seen in Equations 2-4, the model assigns each CS to a single community,

automatically grouping CSs with similar characteristics and error tendencies.

Finally, the model is completed by specifying priors for the regression parameters (α, β, τ ), the probability vectors (PCom,

PCharc, PErr), and ϑe, given in Appendix A. The priors were different for the training and testing phases and are detailed155

in Section 3.4. Generally, the training phase priors for PCom, PCharc and PErr are uniform Dirichlet distributions, and the

training phase priors for α, β, τ , and ϑe are Gaussian distributions with mean and variance informed by the testing data. The

testing phase priors are equal to the training phase posteriors for all latent variables.

2.3 Representation as a factor graph

Equations 1-4 are translated into a factor graph as shown in Figure 1. The factor graph describes the joint posterior probability of160

the model (see Equation A5), while omitting the prior distributions for the sake of clarity. The factor graph includes observable

and latent (inferred) variables, factor nodes, edges (arrows), plates, and gates. Variables are depicted by shaded or unfilled

ellipses. A shaded variable is an observable value; an unfilled variable is a latent value. Factor nodes are the small black boxes

connected to variables, describing the relation between variables connected to the factor. Edges (directional arrows) connect

factor nodes to variables (Winn et al., 2020).165

Plates. Plates are the large boxes outlined in gray surrounding portions of the factor graph. Plates are a simplified way to

express repeated structures. The number of times a structure will be repeated is based on the index variable shown in the bottom

right corner of the plate (Winn et al., 2020). For example, in Figure 1, the structure within the characteristics plate is repeated

X times, where X is equal to the number of CS characteristics the model considers.

Gates. Gates are indicated by a dashed box, as seen around the Regression factor node in Figure 1. Gates essentially act as170

a switch, turning on and off depending on the value of the selector variable, which is the error type here (Minka and Winn,

2008). When gates are used to define a distribution, that distribution is a mixture.

2.4 Model implementation

We implemented the probabilistic model using Microsoft Research’s open source Infer.NET software framework (Minka et al.,

2018). The Infer.NET framework provides adaptable tools to develop and run Bayesian inference for probabilistic graphical175

models. The modeler must define the variables, the dependencies between variables, and provide prior distributions for the

variables that will be inferred.
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PCom

Community, 
𝛾𝛾

Discrete
(Eq. 3)

SubmittedObservation, 
𝑂𝑂

s: citizen scientists

TrueValue, 
𝜗𝜗

n

e: events

Regression 
(Eq. 1)

CitizenCharacteristic, 
𝑍𝑍

c: characteristics

PChar[𝛾𝛾]

Error, 
ε

PErr[𝛾𝛾]

Discrete
(Eq. 4)

Discrete
(Eq. 2)

n: error types

Figure 1. The citizen science error model depicted as a factor graph. A factor node represents a probabilistic relation between variables in

the model and is shown by a black square. A variable is shown in an oval, with shading identifying observable variables. Arrows depict

the output variable of each factor. A gate is represented by a dashed box. Plates are represented by gray rectangles with rounded corners.

Symbols adopted from Winn et al. (2020).

Infer.NET generates a computationally efficient code for the inference algorithm using one of three available inference

algorithms: expectation propagation, variational message passing, and Gibbs sampling. The model developed here employs the

expectation propagation algorithm, because it is time efficient but reasonably accurate (Minka, 2013). Expectation propagation180

is a deterministic approximate inference algorithm for computing the marginal posterior distribution of each variable in the

model (Minka, 2013). Each posterior distribution is assumed to take a specific parametric form in an exponential family

(e.g. Gaussian, Gamma, discrete). The algorithm then aims to find parameter values for each parametric posterior that result

in a good approximation of the exact posterior in terms of moment matching. For example, for a Gaussian approximation,

expectation propagation will find a Gaussian whose mean and variance approximate those of the actual posterior. This is done185

using an iterative approach that starts from an initial guess for the approximate posteriors, and iteratively refines each posterior

in turn via moment matching. Since all individual posterior updates depend on each other, the algorithm is iterated until all

updates and posteriors stabilize (here, in <5 iterations). The final posteriors are not necessarily unique and may depend on

how the algorithm was initialized. Here, we adopt a random initialization strategy for mixture models as used in Nishihara

et al. (2013) and Minka et al. (2018) and evaluate non-uniqueness in the inferred posteriors using multiple runs with different190

random initialization.
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3 Model application

Rainfall observations submitted by CSs have immense potential to increase the scientific community’s understanding of rain

events which are, by nature, highly heterogeneous in space and time. Currently, only about 1.6% of the land surface on Earth lies

within 10 km of a rain gauge, and rain gauges are notoriously inconsistent (Kidd et al., 2017). So much so that the correlation195

coefficient for rain gauges 4 km apart in the midwestern United States was less than 0.5 for instantaneous rainfall (Habib et al.,

2001). Citizen science rainfall observation programs must contend with the systematic errors inherent in measuring rainfall, as

well as the errors induced by the CSs. Detailed investigations into the errors made by CSs, such as the efforts of S4W-Nepal,

can help increase the utility of citizen science data and inform future program development, and is the subject of this study.

3.1 Study area200

SmartPhones4Water Nepal (S4W-Nepal) partners with CSs across Nepal to collect rainfall observations (see Figure 2). Across

Nepal, rainfall is highly heterogeneous in space and time. Average annual rainfall in Nepal varies from 250 mm on the leeward

side of the Himalayas to over 3,000 mm in the center of the country near Pokhara (Figure 2) (Nayava, 1974). The South Asian

summer monsoon brings approximately 80% of Nepal’s annual precipitation during the months of June to September (Nayava,

1974). The majority of CSs participating in S4W-Nepal’s rainfall data collection efforts reside in the Kathmandu Valley, home205

to about 10% of Nepal’s population (Vibhāga, 2012). While the average annual precipitation is approximately 1,500 mm in the

city of Kathmandu and 1,800 mm in the surrounding hills, it is highly variable and unpredictable (Thapa et al., 2017).

3.2 Data

S4W-Nepal recruits CSs to participate in a crowdsourced rainfall observation program in Nepal. S4W-Nepal collects the sub-

mitted observations via the Open Data Kit application for smart phones. Submitted observations include geo-location data, time210

of measurement, CS-reported depth of rainfall in millimeters, and a photograph of the rain gauge (Davids et al., 2019). The

program is ongoing and has collected over 24,500 observations from over 265 CSs since 2016. An overview of the S4W-Nepal

data is provided below; a detailed description can be found in Davids et al. (2019).

3.2.1 Rain gauges

The participants were given a rain gauge constructed by S4W-Nepal and provided instructions on the proper installation and215

recording of rainfall data. The rain gauges were constructed from a re-purposed clear plastic bottle with a 100 mm diameter.

The bottle was filled with a few centimeters of concrete to provide stability and a level measuring surface. The lid of the bottle

was cut off where the taper ends, inverted, and placed flush with the top of the bottle to reduce evaporation losses. Finally, a

ruler with millimeter precision was attached to the bottle to assist the reading of the rainfall depth (Davids et al., 2019).
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Hetauda
 (n=2)

Pokhara
 (n=22)

Kathmandu
 (n=127)

Biratnagar and Dharan
 (n=2)

Nepal
Citizen Scientist

Annual Rainfall (mm)
High : 4950
Low : 195

±

0 260130 km

Figure 2. Locations of CSs for which characteristics are known with the number of CSs at specified locations shown in parentheses. Average

annual rainfall grid created from observed data at 200 weather stations from 1980-2000 (USAID Nepal, 2013).

3.2.2 Citizen characteristics220

During the recruitment process, S4W-Nepal recorded characteristic data for 153 CSs. Characteristics recorded were: motiva-

tion (paid/volunteer), recruitment method (personal connection, random site visit, social media, outreach), age (≤18, 19-25,

>25), education (<Bachelors, Bachelors, >Bachelors), place of residence (urban, semi-urban, rural), occupation (agriculture,

student, other), and gender (male, female). CS characteristics will be used here to relate individual CSs with the likelihood

of mistakes in the data they submit. All CS characteristics recorded by S4W-Nepal, regardless of pre-existing evidence that a225

characteristic is significantly correlated with CS performance, are included in the model. The model will determine the relative

importance of each CS characteristic in defining mistake tendencies while inferring the community groups.

3.2.3 Erroneous observations

To detect erroneous rainfall observations submitted by CSs, S4W-Nepal checks the value of each submitted rainfall observation

against the accompanying rain gauge photograph. If they detect an error, the correct rain depth is recorded while preserving the230

record of the original value submitted by the CS. This allows S4W-Nepal to track the types and frequencies of errors made by

the CSs. Overall, approximately 9% of submitted rainfall observations are erroneous. Meniscus errors are the most common
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(58% of errors; records capillary rise), followed by unknown errors (33%), and unit errors (8%; records data in centimeters

rather than millimeters) (Davids et al., 2019).

3.3 Community and error selection235

To select the appropriate number of communities to capture the differences among the CSs, model evidence was used. Model

evidence indicates which model best explains the data relative to the model’s complexity (MacKay, 2003, p. 343-386). While

the model evidence is notoriously hard to compute, expectation propagation provides a convenient estimate as a by-product of

its posterior approximations. Model evidence calculation in Infer.NET is achieved by inferring posterior component weights

of a mixture consisting of two components, i.e. the entire model and the empty model (Minka, 2000).240

Too many communities may lead to overfitting, whereas too few communities may lead to underfitting. The model evidence

automatically makes this trade-off and identifies the optimal number of communities. Model evidence was computed for

models with one to ten communities. The number of communities that resulted in the largest model evidence was selected as

the correct number of communities for the model and data. Similarly, model evidence was used to determine how many error

types were present in the data. Model evidence was computed for two to ten error types while using the optimal number of245

communities. The number of error types that resulted in the largest model evidence was selected as the number of error types

for the model and data. After selecting the number of error types, model evidence was again checked to verify that the optimal

number of communities remained constant. Selecting the error types via model evidence may identify more error types than

expected, but the Bayesian model accounts for all possibilities and selects the one that most accurately represents the data.

3.4 Training and testing the model250

Before training and testing, an additional assumption was incorporated, due to the nature of rainfall data: the inferred true value

of rainfall was assumed to be between 0 and 540 mm. Rainfall events cannot result in negative rainfall, and 540 mm is the

maximum one-day rainfall recorded for Nepal. Similar assumptions unique to a specific type of citizen science observation

may be necessary at this stage of model development for application to other citizen science programs.

The inference model was trained and tested to ensure model performance was consistent across different groups of data.255

During training and testing, the following characteristics were known for each CS: motivation, recruitment, age, education,

place of residence, occupation, gender, performance, and experience. The first seven characteristics were recorded by S4W-

Nepal (as explained in Section 3.2). The last two characteristics, performance and experience, were defined based on the

observations submitted by each CS. Performance is simply the percentage of observations submitted by a CS that did not require

correction. A performance of 90% indicates that 90% of that CS’s submitted observations matched the true value shown in the260

associated photograph. Experience is a count of how many observations a CS submitted through the 2018 monsoon season.

Performance and experience rates were split into three levels based on natural breakpoints in their respective histograms.
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3.4.1 Splitting the data

Rainfall observations submitted by CSs with known characteristics from 2016 to 2018 were randomly split into a training

data set and a testing data set. The training set consisted of 92% of available observations, representing 6,091 observations265

submitted by 152 CSs. The CSs in the training set submitted anywhere from 1 to 159 observations, with the average number

of submissions being 43.5. The testing set consisted of the remaining 8% of available observations, representing 527 observa-

tions from 109 CSs. The CSs in the testing set submitted anywhere from 1 to 159 observations, with the average number of

submissions being 57.4. All CSs in the testing set were also in the training set. Note that individual observations in each group

were unique.270

3.4.2 Training the model

Before training the model, prior distributions were set for the variables that were inferred. Uniform prior distributions were

set for the citizen characteristics, community, and error. The prior distribution for the true value parameter was a Gaussian

distribution with a mean equal to the average value of all submitted observations (15) and the four times the variance of the

entire dataset (2400; see Equation A1).275

A true value prior variance of 2400 was chosen to reduce small event bias and accommodate inference of large rainfall

observations. The prior distributions for the Gaussian mixture parameters (α, β, and τ ) were assigned based on the magnitude

of unit, meniscus, and unknown errors classified by Davids et al. (2019).

While running the model in the training phase, the characteristics for each CS, the submitted observations, and the true

values were known. The community for each CS, the error type for each submitted observation, the conditional probability280

tables for each characteristic and error type, and parameters for the Gaussian mixture were inferred (see Equations 1-4 and

Figure 1). The training phase provided posterior distributions that were then used while testing the model.

3.4.3 Testing the model

To test the model, prior distributions for latent variables were set to the associated posterior distribution calculated during

training. The values of the submitted observations were set. The model inferred the community for each CS, the probable285

error type for each observation, and provided a posterior distribution for the true value of the submitted observation. The

performance of the model was assessed based on whether the inferred posterior distribution for true value (ϑ) covered the

true value identified in the accompanying photograph submitted by the CS and whether the mode of the true value posterior

matched the actual true value.

A synthetic rainfall event was created to explore how many observations of a single event are needed to produce a reliable290

estimate of the event’s true value. A synthetic observation of the event was created by first assigning an error type to each

CS based on the distribution of errors for their respective error communities (see Table 2). Then, the value of the synthetic

observation was calculated using Equation 1, the α, β, and τ values from Table 1 with a true value of 15 mm. Multiple
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synthetic events were created with two to three observations of the same event with one to two erroneous observations per

event. The true value of each synthetic event was predicted by the model.295

4 Results and discussion

4.1 Sensitivity of α, β, and τ priors and algorithm initialization

In the model application examined here, Davids et al. (2019) provided prior information on the types of errors in the data, but

such information will not always be available. Prior information on the types of errors in the data is useful but not necessary

to identify some of the errors made by participating CSs. When prior error information is known, the model reliably infers300

the same five errors, even when the uncertainty of this information is high (i.e. high variance assigned to the Gaussian prior

distributions). When no prior information is known about the potential types of errors present in the data (i.e. αε ∼N (1,100),

βε ∼N (0,100)), the model reliably infers the none error type and splits the meniscus error into two error types—a 2-mm

meniscus error and a 3.8-mm meniscus error. The two remaining error types identified are variations on the unknown error

type with relatively low R2 values, 0.79 and 0.09 compared with R2 values of 1.0 for the none and meniscus errors. The model305

may fail to identify the unit error type, because it occurs in only 0.7% of submitted observations. Multiple local optima exist for

the error types, and the model may fail to identify all unique errors if no prior information on the errors is known. Regardless

of whether error information is known previously, model evidence indicated that four communities and five error types best

capture the variance in the data. When the priors are vague, the model may require many more iterations (possibly up to 100)

to converge.310

There is also some variation in the inferred posterior distributions that is based on how the algorithm is initialized, but the

variation is not statistically significant (p>0.05, per a two-tailed student’s T-test). Changing the algorithm initialization during

inference minimally affects the posterior distributions of the error types. For example, with a different initialization, the α, β,

and τ of the slope outlier change from (10.31, -0.69, 1.5) to (10.31, -0.24, 1.5). The α, β, and τ values of the remaining error

types are more consistent than the slope outlier type, regardless of how the algorithm is initialized.315

4.2 Number of communities and error types

Model evidence indicated that there are four communities and five error types present in the data, given the model structure

(see Fig. 3). In comparison, S4W-Nepal identified four error types in the data based on visual inspection of the submitted

observations. The inference model, however, is a much more powerful tool for uncovering nuances in the data than graphi-

cal techniques. Therefore, the number of communities and error types inferred from the model were used for the remaining320

analysis.
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Figure 3. Model Evidence for selecting the number of communities and number of error types present in the data given the model structure.

Note that model evidence for communities was calculated using five errors. Model evidence for error types was calculated using four

communities.

4.3 Error analysis

Parameters for the error-specific linear regressions were inferred for the five error types in the submitted rainfall observations

(see Table 1 and Figure 4). The inferred parameters included the mean and precision, τ , of the Gaussian distribution, where

the mean is based on a linear regression of α, β, and ϑ as shown in Equation 1. Four of the five error types align well with325

the error types identified by Davids et al. (2019): none, unit, meniscus, and unknown. The none error type occurs when the

submitted observation matches the true value of the rainfall, as determined from the corresponding submitted photo. The

posterior distribution of submitted observations inferred to have a none error type has a high precision (55750), because there

is no deviation from the α and β values across the submitted observation/true value pairs. Every submitted observation inferred

to have no error exactly matches the corresponding true value. Meniscus errors occur when a CS reports the top of a concave330

meniscus rather than the bottom of the meniscus. Unit errors indicate instances where a CS submitted an observation in units

of centimeters rather than millimeters, resulting in a unit error slope, α, of 0.10. Unknown errors do not present a discernible

pattern that would explain their origin, as indicated by the low inferred precision (0.01) for this error type. Figure 4 shows

that the model-inferred error types are accurate, with only the unknown error type encompassing highly variable submitted

observation/true value pairs.335

The inference model identified one error type that was overlooked during the Davids et al. (2019) analysis of errors in the

Nepal citizen science data: slope outliers. Slope outliers signify a case where the CS’s reported observation was approximately

ten times greater than the true value evident in the accompanying photograph of the rainfall gauge. The underlying cause of

outlier errors is unclear, but these outliers can likely be attributed to typos (e.g. adding an additional zero) or a mistake made

by reading the gauge from the wrong direction (e.g. top down). Of the 6,091 observations included in the training data, only340

two were labelled as slope outliers.
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Table 1. Inferred regression parameters for the different error types

Error type Slope, α Intercept, β Precision, τ

None 1.00 0.00 55750.04

Unit 0.10 0.07 36.89

Meniscus 1.00 2.54 1.74

Unknown 0.97 2.37 0.01

Slope Outlier 10.31 -0.69 1.50

y = x
R² = 1

y = 0.1x + 0.07
R² = 1

y = x + 2.54
R² = 1

y = 0.97x + 2.37
R² = 0.87

y = 10.31x - 0.69
R² = 1
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Figure 4. Inferred error types for each pair of submitted observation and true value of rainfall in the training dataset. Note that the above plot

shows all 6,091 observations used in the training dataset. Few points can be clearly discerned, however, because most (91%) fall along the

none error type line and are overlapping elsewhere.

4.3.1 Error distribution within communities

The distribution of errors committed by CSs varied depending on the assigned community, as seen in Table 2. Each community

was named based on its respective error distribution: Few, Few-MUn, Meniscus, and Unknown Error. The Few community

makes very few errors—only 2% of submitted observations are erroneous. Of the erroneous submissions, members in the Few345

community are most likely to make meniscus or unknown errors (1% each). The Few-MUn community also makes relatively

few mistakes but does so at a rate of 5%. Members of the Few-MUn community are almost equally likely to make meniscus

errors (3%) and unknown errors (2%). The two other communities, Meniscus and Unknown Error, are much more likely to
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Table 2. Distribution of errors made by CSs in each community

Community None Unit Meniscus Unknown Slope outlier

Few (0.47) 0.98 0.00 0.01 0.01 0.00

Few-MUn (0.26) 0.95 0.00 0.03 0.02 0.00

Meniscus (0.20) 0.80 0.01 0.17 0.02 0.00

Unknown Error (0.07) 0.78 0.06 0.06 0.11 0.00

Note : The probability of each community is shown in parentheses after the community name.

Bold values indicate the most common error type(s) for each community. The probabilities may

not add to 1.0 due to rounding.

submit erroneous rainfall observations. The Meniscus community submits erroneous observations at a rate of 20%. These

observations are largely erroneous due to CSs reading the meniscus of the water incorrectly (17%). Lastly, the Unknown Error350

community makes the most errors, with 22% of its observations requiring correction. While the Unknown Error community

makes primarily unknown errors (11%), meniscus (6%) and unit (6%) errors still represent a large portion of the erroneous

submissions. Members of the Unknown Error community are prone to making a wide variety of errors.

The Few community members may have a high degree of scientific literacy; more than 97% of Few community members

have at least a Bachelor’s degree. The Few-MUn community members may also have high scientific literacy but occasionally355

make mistakes. CSs that were initially error prone but were able to correct their misunderstandings based on the feedback

provided by S4W-Nepal may also be assigned to the Few-MUn community. For example, one CS in the Few-MUn community

made 3 mistakes in the first 16 submissions, but then submitted 44 observations over the next 1.5 years without making a

mistake. The Meniscus community largely misunderstands how to correctly read the depth of water in the rain gauge. The

Unknown Error community has several misunderstandings that cross multiple error types, therefore CSs in this community360

make a mix of errors.

The distribution of errors within each community is a useful tool not only for selecting which submitted observations might

require verification, but also for identifying opportunities to improve or maintain the overall accuracy of submitted observa-

tions. Citizen science project organizers can use targeted training to help specific communities improve their performance

(Budde et al., 2017; Sheppard and Terveen, 2011). For example, S4W-Nepal could occasionally send feedback messages to365

the meniscus community members reminding them to read the rainfall depth from the bottom of the meniscus. As another

example, members in the Few community might positively respond to general feedback messages acknowledging their strong

record of accurate observations and choose to remain engaged with the program. Knowing the error structure of observations

submitted by different communities may help improve the overall effectiveness of citizen science programs.

4.4 Community composition370

The model grouped CSs into four distinct communities with a unique combination of characteristics and probability of making

errors. The Few community is the largest with 47% of CSs in the training group assigned to this community (see Table 2). The

Unknown community is the smallest with only 7% of CSs classified into this group. The remaining CSs are grouped into the
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Figure 5. Community composition for each characteristic. The percentage of participating CSs with the associated characteristic is shown in

parentheses.

Few-Un (19%) and Meniscus (16%) communities. Overall, only 24% of participating CSs are likely to make errors in more

than 8.3% of their submitted observations.375

The probability that a CS will belong to a specific community depends, in part, on the unique characteristics of that CS.

Figure 5 provides the posterior probability that a CS with a particular characteristic would belong to each community, offering

insight into the characteristic composition of each community. Singular characteristics may have a large impact on the tendency

of a CS to make errors, and therefore to be assigned to a specific community. However, it is also true that any combination

of characteristics could contribute to the probability of a CS being assigned to a community. In some cases, CSs are likely380

to possess a similar combination of characteristics, which surfaces in the community distributions. For example, Figure 5

indicates that CSs recruited during a random visit, older than 25 years of age, holding less than a bachelor’s degree, and with

an “other” occupation make up 20% of all CSs in the project and have a similar community distribution. While community

assignment trends for singular characteristics can be enlightening, the impact of multiple CSs with a similar combination of

characteristics must be acknowledged.385
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Figure 6. (a) The inferred true value is usually a good estimate of the true value of the submitted observation. In some erroneous submissions,

the mode of the estimated single-mode posterior is not equal to the true value, however an exact Gaussian mixture of the true value posterior

distributions has a local peak at the true value of an observation submitted with a (b) unit error and a (c) meniscus error. The points shown in

(b) and (c) are indicated by a plus (+) in (a).

4.5 Inferring the true value of a submitted observation

In addition to providing insight into the error structure of the submitted observations and the relationship between CS char-

acteristics and error tendencies, the model provides information about the true value of submitted observations. Testing the

model reveals that the model can infer a previously unknown true value based on the value of the submitted observation and

the characteristics of the CS. The inferred true value differs from the actual true value by a median percent error of 0.9%. The390

standard deviation of percent error is, however, 98.8%. With a wide true value prior distribution (here, 24,000; see Eq. A1), the

model has a tendency to over-predict unit errors for a small number of observations submitted with a value of 6 mm or lower

which causes the large standard deviation (see Figure 6a). In most cases, the actual true value of the submitted observation

falls within the range of the posterior distribution inferred for the true value variable as seen in Figures 6b,c. However, as

Figures 6b,c show, the mode of the posterior distribution is not always a good estimate of the actual true value.395

To increase the computational efficiency of an inference algorithm that sometimes needs to consider thousands of variables,

expectation propagation approximates a multi-mode posterior distribution with a single-mode distribution (Minka et al., 2018)

by minimizing the Kullback-Leibler divergence between the two distributions (Minka, 2005). In many applications, this method

works very well. However, here, the mixture distribution covers values ranging from 10% (unit error) of the true value up

through 1,000% (slope outlier error) of the true value. Such a wide range of possible true values results in a predicted true400

value posterior with high variance and a mode that is occasionally shifted left or right of the true value (see Figures 6b,c).

While the predicted single-mode true value posterior distribution does not always estimate the actual true value of an er-

roneous submission well, the exact Gaussian mixture posterior often exhibits a local peak at the actual true value (see Fig-

ures 6b,c). The mode of the Gaussian mixture posterior usually presents at the value of the submitted observation because of

the high precision associated with the none error type (see Table 1). Only 8.7% of submitted observations have greater than a405

20% probability of being erroneous in this example application. Therefore, the inferred error type posterior distribution may be

examined in conjunction with the Gaussian mixture posterior to provide additional information on the probability of each error

17



Table 3. Synthetic tests inferring true value from multiple observations submitted for a single event with a true value of 15 mm

Inferred Inferred

No.

obs.

Error

types Value (mm) Variance (mm2)

No.

obs.

Error

types Value (mm) Variance (mm2)

2 0, 1 14.98 6.26E-2 2 2, 4 168.10 2.89

2 0, 2 15.00 1.39E-3 3 0, 2, 4 15.00 6.54E-5

2 0, 3 14.99 1.39E-2 3 0, 3, 4 15.00 5.43E-5

2 0, 4 153.85 3.45 2 1, 3 16.69 4.23E-1

Different 15.00 9.04E-5 3 0, 1, 3 14.99 1.66E-2

CS community 15.00 5.94E-2 2 1, 2 17.35 5.96E-1

combinations 15.00 5.94E-2 3 0, 1, 2 15.00 3.27E-3

... 15.00 5.94E-2 2 2, 3 17.59 1.91E-1

3 0, 0, 4 150.70 1.22 3 0, 2, 3 15.00 3.29E-3

4 0, 0, 0, 4 150.50 0.64

Note : Error Types: 0=None, 1=Unit, 2=Meniscus, 3=Unknown, 4=Slope Outlier

type. For example, despite the mode of the Gaussian mixture posterior being located at the value of the submitted observation

in Figure 6b, the probability of a none error type is only 0.23, and the unit error probability is 0.73. The Gaussian mixture

posterior and the error type posterior distributions may provide a more accurate representation of the true value of a submitted410

observation than the approximated single-mode Gaussian posterior distribution.

4.5.1 Multiple observations of a single event

If only a single observation of a rainfall event is available, the predicted error type is based on the error types observed during

model training. However, analyzing multiple observations of a single rainfall event should improve the accuracy of the inferred

error type and true value of rainfall.415

For each of the simulations described below, the model was not given any information about the error types associated with

the submitted observations. The model inferred the true value solely based on what it learned during model training. When

only one error was made out of two observations submitted, the model predicted the true value every time except for instances

of a slope outlier error (see Table 3 column 1). In such cases, the ability of the model to correctly infer the event true value

was related to the error communities of the CSs. Through 12 trials (not shown) with different algorithm initialization and420

combinations of CSs from the Few-MUn and Meniscus communities, the model correctly inferred the true value only twice.

However, the model was able to infer the true value if one submitted observation had a slope outlier for other combinations of

CS communities (see Table 3 column 1). If one slope outlier observation was paired with two or more correct observations, the

model consistently failed to infer the correct true value. The low probability of a slope outlier combined with the relatively high

probability of unit and meniscus errors cause the model to infer the slope outlier as a meniscus error and the correct observations425
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as unit errors. When one slope outlier error was paired with another error, the model required an additional correct observation

to accurately predict the true value (see Table 3 column 2). For the best performance, the slope outlier error needs to be paired

with at least one other erroneous observation and a correct observation. When two errors were made out of two observations

submitted, the model often failed to correctly predict the true value. However, when a third observation without an error was

included, the model predicted the true value every time (see Table 3). Overall, the model inferred the correct error types when430

the inferred true value was also correct.

For instances when multiple observations of a single event are submitted, at least one error-free observation is likely nec-

essary to ensure that the model predicts the true value with minimal uncertainty. When multiple erroneous observations are

submitted, the model performs best when at least one correct observation is submitted of that same event. Given that over

90% of submitted observations do not have an error, it is unlikely that an erroneous observation would be submitted without a435

complementary error-free observation, assuming that additional CSs are active.

4.5.2 CSs with unknown characteristics

As CS programs expand, recording complete characteristics data for each participating CS may become challenging. The

model’s ability to infer the correct community for CSs with unknown characteristics and the correct true value for the ob-

servations they submit was investigated. The characteristics for each unknown CS were selected from a discrete distribution440

estimated from the characteristics data of CSs observed during training. The prior distribution of the community, PCom, was

set to a discrete distribution equal to the overall community posterior distribution of the training set. The community for each

CS and the true values of their submitted observations were inferred and compared to the communities and true values inferred

when the characteristics were known precisely, but the community was also unknown.

The model performed well while inferring the community of unknown CSs and the true values of observations submitted by445

unknown CSs. Communities of CSs with known characteristics were correctly predicted 0.9% more than CSs with unknown

characteristics. The coefficient of determination between the actual true values and predicted true values was 0.015 higher for

known CSs than for unknown CSs. While the predicted true values for known and unknown CSs were similar, the uncertainty

of the true values predicted from observations submitted by unknown CSs was higher. The average variance of the inferred true

value posteriors was 140.2 mm2 for unknown CSs and 125.6 mm2 for known CSs. Overall, the value of submitted observations450

has greater influence on the inferred true values of rainfall than the characteristics of the associated CS. While knowing the

characteristics of all CSs increases the accuracy of predicting the true value of submitted observations, it is not essential.

4.6 Limitations in application

While the model has potential for adaptation to a wide variety of citizen science programs, it has limitations. For example,

the model is data intensive, because a large dataset is required for training and testing the model. This limits its utility for455

small-scale or newly developed citizen science programs. In addition, a record of erroneous data is required for training the

model, which must be identified and corrected by the citizen science program. This may require a large effort and, depending

on the type of data collected, may be difficult to achieve. It could be interesting to investigate to what extent the model can be
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trained without the availability of error-free ground truth data. For example, Schoups and Nasseri (2021) showed that fusion

of multi-source data with unknown noise and bias (in their case, water balance data from remote sensing) is possible in the460

absence of ground truth data. Lastly, the model design requires that CSs are registered with the program, and that submissions

can be linked to registered individuals. This is not the case for all citizen science programs- some do not require registration

and some do not track the submission record of their participants. The model can be implemented for quality assessment in

many citizen science programs, but the model is not universally useful or without limitations.

5 Summary and conclusions465

This study developed a probabilistic model to investigate the type and frequency of errors in citizen science data. The model

assigns CSs to a community based on the characteristics of the CS and their tendency to submit erroneous observations. This

helps to target manual corrections of CS data. The model then infers a posterior distribution of the true value of a submitted

observation from the value of the observation and the community of the participating CS. Designed thus, the model can be

adapted to a wide array of citizen science datasets.470

Analysis of the error structure in CS rainfall observations revealed that individuals can be characterized by one of four error

patterns: not error prone, mostly not error prone, meniscus error prone, and random or various error prone. While the Bayesian

inference model developed here used communities to relate CS characteristics to error tendencies, the magnitude and type of

errors committed is the crux of every community assignment. The distribution of characteristics within each community is

useful for investigating potential reasons for making errors rather than for identifying individuals who might be particularly475

error prone.

The Bayesian inference model developed using Infer.NET’s software framework uncovered five error types and their proba-

bility distribution within each of the four error-based communities. The community assignments are a useful tool for discerning

which CSs are more likely to submit erroneous observations that require further review. In addition, community-specific train-

ing and feedback messages may be a powerful tool for increasing the quality and frequency of submissions.480

The Bayesian probabilistic model was often able to predict the true value of a submitted observation, and the model ex-

trapolated useful error probabilities for each observation. These error probabilities, in conjunction with the model’s inferred

error-specific regression and precision parameters, can be used to calculate a Gaussian mixture distribution that provides more

information about the probable true value of submitted observations than Infer.NET’s single-mode true value prediction. As

citizen science programs expand to include multiple participants submitting observations of a single event, the model’s ability485

to predict the true value for that event will likely increase.

As a graphical, assumption-based Bayesian inference model, the citizen science error model presented here has potential for

adaptation to other citizen science programs with diverse data types. The implementation of error-based communities provides

a simple, yet effective method for tracking changes in the types and frequency of errors committed by CSs. The communities

also provide opportunities for targeted re-training and feedback to improve citizen science data at the point of collection,490
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rather than at the point of correction. Improving the quality of citizen science data at every step enables increasingly more

CS-supported decision-making and scientific discoveries.

6 Future work

Testing and refinement of the model will continue as new citizen science datasets that meet the minimum requirement of having

a CS observation coupled with a known true value are discovered. Some citizen science datasets can be analyzed directly with495

the model formulation presented here, like Paul et al. (2020) who compare rainfall observations collected by secondary students

with co-located automatic rain gauges. Others may require some adjustments to the model due to special features of the data,

like the censored stream stage data collected by CrowdWater. The CrowdWater Application collects CS observations of stream

stage and the CrowdWater Game crowdsources the true value of the submitted stage observations (Seibert et al., 2019; Strobl

et al., 2019). In addition to testing the model further with new datasets, the model may be improved, for example, by deriving500

prior distributions from remotely sensed observations.

Code and data availability. The dataset analyzed for this study can be accessed in the Supplementary Material published by Davids et al.

(2019). The source code developed for this research will be made available via GitHub before this manuscript is published.

Appendix A: Prior and Posterior Distributions

The prior distribution for the true value of each event (ϑe) was a Gaussian distribution with a mean equal to the mean of the505

entire true value dataset (µϑ), and a variance equal to four times the variance of the entire true value dataset (4σϑ
2; i.e., twice

the standard deviation). Here, the true value prior was set to a Gaussian distribution with a mean of 15 and a variance of 2400.

ϑe ∼N (ϑe|µϑ,4σϑ
2), (A1)

The prior distributions for the α and β parameters in Eq. 1 were set to a Gaussian distribution parameterized by mean and

variance. In the S4W-Nepal case study, the α and β mean and variance were informed by the mean and variance of a series510

of slopes and intercepts from linear regressions fit to subsets of (ϑ, O) pairs corresponding to error types identified by Davids

et al. (2019). Davids et al. (2019) only identified four error types, whereas the model evidence indicated 5 error types were

present in the S4W-Nepal dataset. Therefore, in the case study presented, the priors for the first 4 error types are informative

and the prior for the last error type is noninformative.

αn ∼N (αn|µα,σ
2
α) (A2)515
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where µα = (1, 0.1, 1.002, 0.9, 7), and σ2
α = (0.5, 0.5, 2, 50, 70) for the S4W-Nepal case study. Note that the σ2 values used are

larger than calculated to provide a wider prior distribution. And,

βn ∼N (βn|µβ ,σ
2
β) (A3)

where µβ = (0, 0.02, 2.3, 4.2, 3), and σ2
β = (0.5, 0.5, 0.2, 50, 30) for the S4W-Nepal case study. Similarly, the σ2 values used

are larger than calculated to provide a wider prior distribution.520

The prior distributions for the τ parameter in Eq. 1 were set to a Gamma distribution parameterized by shape (A) and rate

(B). In the S4W-Nepal case study, The τ shape and rate for the first four ε error types were informed by a Gamma distribution

fit to observations that corresponded to the four error types identified by Davids et al. (2019). The shape and rate for the

remaining error type was selected randomly, since there was no information available regarding this error prior to training the

model.525

τn ∼ G(τn|A,B) (A4)

where A = (0.25, 0.75, 1.5, 0.5, 15), and B = (0.05, 0.25, 0.05, 0.01, 10) for the S4W-Nepal case study.

Finally, prior distributions for the various probability vectors in the model, i.e. PCharc, PComs, and PErr were all set to

uniform Dirichlet distributions, reflecting a lack of knowledge on these variables.

Putting everything together, Equation A5 gives the posterior distribution for the model. The posterior is obtained by writing530

the joint distribution over latent variables X = (PCharc,PComs,PErr,ϑ,ε,γ,αn,βn, τn) and observed variables D = (Z,O),

followed by conditioning on the observations. Here, N is the number of error types present in the CS data.

p(X|D)∝
S∏

s=1

C∏
c=1

Dis(Zs,c|PCharc[γs])

S∏
s=1

Dis(γs|PComs)

S∏
s=1

E∏
e=1

Dis(εs,e|PErr[γs])

S∏
s=1

E∏
e=1

N∏
n=1

N (Os,e|αnϑe +βn, τn)
δ(εs,e−n)

N∏
n=1

N (αn|µα,σ
2
α)N (βn|µβ ,σ

2
β)G(τn|A,B))

E∏
e=1

N (ϑe|µϑ,4σϑ
2)

(A5)
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where the first four lines correspond to eqs. 1-4 in the paper (and to the four factor boxes shown in the factor graph, Figure

1, replicated over the plates that contain them), and the last two lines denote regression parameter and true value priors (not535

explicitly shown in the factor graph). For simplicity, the priors for PCharc, PComs, and PErr are not explicitly shown in the

posterior equation, since they are all uniform Dirichlet distributions and, as such, are absorbed in the proportionality constant.
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