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Abstract

High quality citizen science data can be instrumental in advancing science toward new discoveries and a deeper understanding

of under-observed phenomena. However, the error structure of citizen scientist (CS) data must be well-defined. Within a citizen

science program, the errors in submitted observations vary, and their occurrence may depend on CS-specific characteristics.

This study develops a graphical Bayesian inference model of error types in CS data. The model assumes that: (1) each CS

observation is subject to a specific error type, each with its own bias and noise; and (2) an observation’s error type depends on

the error community of the CS, which in turn relates to characteristics of the CS submitting the observation. Given a set of CS

observations and corresponding ground-truth values, the model can be calibrated for a specific application, yielding (i) number

of error types and error communities, (ii) bias and noise for each error type, (iii) error distribution of each error community,

and (iv) the error community to which each CS belongs. The model, applied to Nepal CS rainfall observations, identifies five

error types and sorts CSs into four model-inferred communities. In the case study, 73% of CSs submitted data with errors in

fewer than 5% of their observations. The remaining CSs submitted data with unit, meniscus, and unknown errors. A CS’s

assigned community, coupled with model-inferred error probabilities, can identify observations that require verification. With

such a system, the onus of validating CS data is partially transferred from human effort to machine-learned algorithms.
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Abstract16

High quality citizen science data can be instrumental in advancing science toward new17

discoveries and a deeper understanding of under-observed phenomena. However, the er-18

ror structure of citizen scientist (CS) data must be well-defined. Within a citizen science19

program, the errors in submitted observations vary, and their occurrence may depend20

on CS-specific characteristics. This study develops a graphical Bayesian inference model21

of error types in CS data. The model assumes that: (1) each CS observation is subject22

to a specific error type, each with its own bias and noise; and (2) an observation’s er-23

ror type depends on the error community of the CS, which in turn relates to character-24

istics of the CS submitting the observation. Given a set of CS observations and corre-25

sponding ground-truth values, the model can be calibrated for a specific application, yield-26

ing (i) number of error types and error communities, (ii) bias and noise for each error27

type, (iii) error distribution of each error community, and (iv) the error community to28

which each CS belongs. The model, applied to Nepal CS rainfall observations, identi-29

fies five error types and sorts CSs into four model-inferred communities. In the case study,30

73% of CSs submitted data with errors in fewer than 5% of their observations. The re-31

maining CSs submitted data with unit, meniscus, and unknown errors. A CS’s assigned32

community, coupled with model-inferred error probabilities, can identify observations that33

require verification. With such a system, the onus of validating CS data is partially trans-34

ferred from human effort to machine-learned algorithms.35

1 Introduction36

Communities worldwide face increasing uncertainty regarding extreme weather events37

due to climate change. Reliable weather forecasts allow a community to initiate proac-38

tive measures when anticipating an extreme event—measures that sometimes save hun-39

dreds, if not thousands of lives. Unfortunately, sparse weather data in many regions of40

the world inhibit coordinated response efforts of local and regional governments (Teague41

& Gallicchio, 2017, p. 218). Citizen science can help bridge such data gaps.42

Citizen science programs, organized efforts to collect scientific data from members43

of the public, have become increasingly popular as advances in technology have made44

the data collection and submission process more accessible (Bonney et al., 2009; New-45

man et al., 2012). However, some traditional scientists continue to question the quality46

of data submitted by members of the public, and have yet to accept the legitimacy of47
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scientific discoveries advanced by citizen scientists (Hunter, Alabri, & van Ingen, 2013;48

Riesch & Potter, 2014; Sheppard & Terveen, 2011). Others, however, have embraced cit-49

izen science as an effective means for increasing the spatial and temporal resolution of50

scientific data. Successful citizen science programs investigate the type and frequency51

of errors in the data collected by program participants and develop training initiatives52

designed to reduce errors (Bird et al., 2014; Crall et al., 2011; Davids et al., 2019).53

Most citizen scientist programs conduct quality control of the data submitted by54

their participants. For example, citizen scientists report when they feel an earthquake55

and rank its strength for the United States Geological Survey’s (USGS) Did You Feel56

It? program. The USGS removes outliers and aggregates reported intensities at zip code57

or city-level after processing the data through the Community Decimal Intensity algo-58

rithm (USGS, n.d.). Other citizen scientist programs invest significant time and energy59

into assuring the quality of their data. For example, citizen scientists submit rainfall depth60

observations to the SmartPhones4Water-Nepal (S4W-Nepal) program. S4W-Nepal checks61

the value of each submitted rainfall observation against an accompanying photograph62

of the rain gauge and manually corrects erroneous observations (Davids et al., 2019). The63

range of time and effort dedicated to conduct quality control for citizen science data varies64

greatly across programs.65

Rainfall observations submitted by citizen scientists have immense potential to in-66

crease the scientific community’s understanding of rain events which are, by nature, highly67

heterogeneous in space and time. Currently, only about 1.6% of the land surface on Earth68

lies within 10 km of a rain gauge, and rain gauges are notoriously inconsistent (Kidd et69

al., 2017). So much so that the correlation coefficient for rain gauges 4 km apart in the70

midwestern United States was less than 0.5 for instantaneous rainfall (Habib, Krajew-71

ski, & Ciach, 2001). Citizen science rainfall observation programs must contend with the72

systematic errors inherent in measuring rainfall, as well as the errors induced by the cit-73

izen scientists. Detailed investigations into the errors made by citizen scientists, such as74

the efforts of S4W-Nepal, can help increase the utility of citizen science data and inform75

future program development, and is the subject of this study.76

Motivated by the need to reduce the time-cost for quality control of citizen science77

data without sacrificing effectiveness, this study seeks to develop a reliable, semi-automated78

method for identifying citizen science observations that require additional verification.79
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Most error analyses of citizen science data focus on identifying and removing outliers from80

a dataset. Trained filters flag outliers by identifying observations that do not fit within81

the expected range of values or classes, such as species range or allowable count (Bon-82

ter & Cooper, 2012; Wiggins, Newman, Stevenson, & Crowston, 2011). Some citizen sci-83

ence programs develop eligibility or trust rating procedures to identify users that are likely84

to submit correct observations (Delaney, Sperling, Adams, & Leung, 2008; Hunter et al.,85

2013). Ratings schemes that consider demographic and experience-related characteris-86

tics have potential for describing the variability in citizen science data reliability (Kos-87

mala, Wiggins, Swanson, & Simmons, 2016). However, some individual citizen scientists88

do not submit enough observations to be accurately assigned a rating. To overcome such89

limitations, Venanzi, Guiver, Kazai, Kohli, and Shokouhi (2014) based their error anal-90

ysis on four communities of citizen scientists, each with a distinctive pattern of errors.91

Machine learning algorithms and hierarchical, generalized linear, and mixed-effects92

models have also been employed by a variety of citizen science programs to study errors93

in citizen science data (Bird et al., 2014; Venanzi et al., 2014). Generalized linear mod-94

els have largely been used to study whether and how characteristics of citizen scientists95

affect the accuracy of their observations (Butt, Slade, Thompson, Malhi, & Riutta, 2013;96

Crall et al., 2011; Delaney et al., 2008). Mixed-effects models add a random-effects fac-97

tor to generalized linear models, permitting the study of errors in relation to an unin-98

tended grouping effect, such as spatial clustering (Bird et al., 2014; Brunsdon & Comber,99

2012). Alternatively, hierarchical models have been leveraged to study how citizen sci-100

entist errors relate to effort and site-level effects (de Solla et al., 2005; Fink et al., 2010;101

Miller et al., 2011). Lastly, machine learning has been used to study errors in qualita-102

tive citizen science data, such as species identification and labeling tweets (Cox, Philip-103

poff, Baumgartner, & Smith, 2012; Lukyanenko, Wiggins, & Rosser, 2019; Venanzi et104

al., 2014). Machine learning has not yet been employed to identify erroneous citizen sci-105

ence observations for quantitative data. In addition, most machine learning citizen sci-106

ence research has focused on datasets that are relatively static or slow-moving in the fields107

of biology and conservation (Lukyanenko et al., 2019). To our knowledge, the study pre-108

sented here is the first attempt to leverage machine learning to assess errors in quanti-109

tative citizen science data with high spatiotemporal variability. Despite the wide range110

of existing research on citizen science errors, flexible methods for analyzing errors in quan-111

titative citizen science data remains largely unexplored.112

–4–



manuscript submitted to Water Resources Research

The objective of this study is to improve quality control of quantitative citizen sci-113

ence data by developing a Bayesian inference model that discovers, explains, and pos-114

sibly corrects the errors in observations submitted by citizen scientists. The following115

research questions will be explored:116

1. How can the type and magnitude of citizen science data errors be automatically117

identified from citizen science data and corresponding ground truth?118

2. Given a calibrated citizen scientist, to what extent can errors be detected and cor-119

rected without ground truth?120

3. To what extent do citizen scientist characteristics help in identifying and screen-121

ing errors?122

A probabilistic graphical model was developed to address these questions based on as-123

sumptions about the probabilistic relationships between citizen scientists, their charac-124

teristics, and the magnitude of their errors. The probabilistic graphical model includes125

a regression clustering sub-model relating true and observed values and includes an un-126

known number of linear regressions. The model also includes a probabilistic sub-model127

relating citizen scientist characteristics to error types. Applied to the S4W-Nepal pro-128

gram, the model identifies unique error types within the S4W-Nepal citizen scientist rain-129

fall observations, and groups citizen scientists into communities based on their charac-130

teristics and error profile. Each community is characterized by a distinct distribution of131

error types which indicates the likelihood that a submitted observation should be reviewed132

further. After testing and training, the model was applied to investigate three practi-133

cal issues: the error evolution of citizen scientist data over time (research question 1),134

multiple observations of a single rainfall event (research question 2), and observations135

submitted by citizen scientists with unknown characteristics(research question 3).136

2 Study Area137

SmartPhones4Water Nepal (S4W-Nepal) partners with citizen scientists across Nepal138

to collect rainfall observations (see Figure 1). Across Nepal, rainfall is highly heteroge-139

neous in space and time. Average annual rainfall in Nepal varies from 250 mm on the140

leeward side of the Himalayas to over 3,000 mm in the center of the country near Pokhara141

(Figure 1) (Nayava, 1974). The South Asian summer monsoon brings approximately 80%142

of Nepal’s annual precipitation during the months of June to September (Nayava, 1974).143
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The majority of citizen scientists participating in S4W-Nepal’s rainfall data collection144

efforts reside in the Kathmandu Valley, home to about 10% of Nepal’s population (Vibhāga,145

2012). While the average annual precipitation is approximately 1,500 mm in the city of146

Kathmandu and 1,800 mm in the surrounding hills, it is highly variable and unpredictable147

(Thapa, Ishidaira, Pandey, & Shakya, 2017).148

Hetauda
 (n=2)

Pokhara
 (n=22)

Kathmandu
 (n=127)

Biratnagar and Dharan
 (n=2)

Nepal
Citizen Scientist

Annual Rainfall (mm)
High : 4950
Low : 195

±

0 260130 km

Figure 1. Locations of citizen scientists for which characteristics are known with the num-

ber of citizen scientists at specified locations shown in parentheses. Average annual rainfall grid

created by USAID Nepal from observed data at 200 weather stations from 1980-2000.

3 Data149

S4W-Nepal recruits citizen scientists to participate in a crowdsourced rainfall ob-150

servation program in Nepal. S4W-Nepal collects the submitted observations via the Open151

Data Kit application for smart phones. Submitted observations include geo-location data,152

time of measurement, citizen scientist-reported depth of rainfall in millimeters, and a pho-153

tograph of the rain gauge. The program is ongoing and has collected over 24,500 obser-154

vations from over 265 citizen scientists since 2016.155
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3.1 Rain gauges156

The participants were given a rain gauge constructed by S4W-Nepal and provided157

instructions on the proper installation and recording of rainfall data. The rain gauges158

were constructed from a re-purposed clear plastic bottle with a 100 mm diameter. The159

bottle was filled with a few centimeters of concrete to provide stability and a level mea-160

suring surface. The lid of the bottle was cut off where the taper ends, inverted, and placed161

flush with the top of the bottle to reduce evaporation losses. Finally, a ruler with mil-162

limeter precision was attached to the bottle to assist the reading of the rainfall depth163

(Davids et al., 2019).164

3.2 Citizen characteristics165

During the recruitment process, S4W-Nepal recorded characteristic data for 153166

citizen scientists. Characteristics recorded were: motivation (paid/volunteer), recruit-167

ment method (personal connection, random site visit, social media, outreach), age (≤18,168

19-25, >25), education (<Bachelors, Bachelors, >Bachelors), place of residence (urban,169

semi-urban, rural), occupation (agriculture, student, other), and gender (male, female).170

Citizen scientist characteristics will be used here to relate individual citizen scientists171

with the likelihood of errors in the data they submit.172

4 Methods173

4.1 Identification of erroneous observations174

To detect erroneous rainfall observations submitted by citizen scientists, S4W-Nepal175

checks the value of each submitted rainfall observation against the accompanying rain176

gauge photograph. If they detect an error, the correct rain depth is recorded while pre-177

serving the record of the original value submitted by the citizen scientist. This allows178

S4W-Nepal to track the types and frequencies of errors made by the citizen scientists.179

Overall, approximately 9% of submitted rainfall observations are erroneous. Meniscus180

errors are the most common (58% of errors; records capillary rise), followed by unknown181

errors (33%), and unit errors (8%; records data in centimeters rather than millimeters)182

(Davids et al., 2019).183

–7–



manuscript submitted to Water Resources Research

4.2 Model development184

4.2.1 Assumptions and model structure185

A Bayesian probabilistic graphical model was developed based on a number of as-186

sumptions about the data being modeled. These assumptions were used to inform the187

relationships between the variables and ensure the model accurately represents the mod-188

eler’s understanding of the physical processes that underlie the data (Winn, Bishop, Di-189

ethe, Guiver, & Zaykov, 2020). The following assumptions informed the development of190

the citizen science errors inference model:191

1. Each citizen scientist belongs to a single community.192

2. A citizen scientist’s community is defined by their collective demographic and experience-193

related characteristics and the type and frequency of errors they have made in prior194

submissions.195

3. Each citizen scientist in a particular community always submits an observation196

with a community-specific error type distribution.197

4. Each citizen scientist observation relates to an underlying true value with a sys-198

tematic bias and random noise level that depends on the error type of the obser-199

vation.200

While the tendency of citizen scientists to make errors may change as they gain ex-201

perience, the model developed here assumes that a citizen scientist will not change com-202

munities over time. This simplifies the model while also including the potential impact203

of experience as a citizen characteristic. Citizen scientist demographic information was204

assumed to be a factor in determining community, because demographics, such as age,205

experience, and education, are a useful predictor in citizen scientist performance (Crall206

et al., 2011; Delaney et al., 2008; Sunde & Jessen, 2013). Furthermore, motivation and207

recruitment method were predictive factors in citizen scientist participation rate (Davids208

et al., 2019). The predictive power of demographics in determining community will be209

assessed. An additional assumption was incorporated, due to the nature of rainfall data:210

the inferred true value of rainfall was assumed to be between 0 and 540 mm. Rainfall211

events cannot result in negative rainfall, and 540 mm is the maximum one-day rainfall212

recorded for Nepal. Similar assumptions unique to a specific type of citizen science ob-213
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servation may be necessary at this stage of model development for application to other214

citizen science programs.215

These assumptions are translated into the following set of equations describing the216

probabilistic relationship between model variables. The terminology and symbology used217

here is based on probabilistic graphical models (Winn et al., 2020). We first state the218

main statistical relations used in the model and have provided clarifications for the wider219

hydrological community. The community γ to which citizen scientist S belongs is a dis-220

crete random variable drawn from a discrete distribution denoted by Dis with proba-221

bility vector PCom that specifies the prior probability of each community occurring within222

the citizen scientist population:223

γs ∼ Dis(PCom|s), (1)224

We use a lowercase subscript to denote a random variable index (e.g. γs indicates225

there is a community variable for each citizen scientist S). Greek letters represent la-226

tent (inferred) variables, and Latin letters to represent observable variables. The value227

Zc,s of citizen characteristic c for citizen scientist s is assumed to be from a discrete dis-228

tribution with probability vector PChar that depends on the characteristic c under con-229

sideration and the community γs the citizen scientist belongs to:230

Zc,s ∼ Dis(PCharc|γs), (2)231

Equation 2 quantifies the probabilistic relationship between each citizen charac-232

teristic and each assigned community in the form of a conditional probability table. Sim-233

ilarly, Equation 3, below, describes the conditional probability table for each error type234

and community. The error type εs,e of event e observed by citizen scientist s is assumed235

to be from a discrete distribution with probability vector PErr that depends on the com-236

munity γs that the citizen scientist belongs to:237

εs,e ∼ Dis(PErr|γs), (3)238

As seen in Equations 1-3, the model assigns each citizen scientist to a single com-239

munity based on their characteristics and the type and frequency of errors they make.240
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Next, we quantify systematic (bias) and random (noise) differences between observations241

and underlying true values by means of a linear regression model parameterized by an242

error-type specific slope α, offset β and precision (inverse variance) τ :243

Os,e ∼ N (αεs,eϑe + βεs,e , τεs,e), (4)244

where Os,e represents the observed amount of rainfall in event e submitted by citizen sci-245

entist s, and ϑe is the corresponding true rainfall amount for event e. Given the error246

type of an observation, the observed value is thus drawn from a Gaussian distribution247

with mean equal to an error-type specific linear function of the true value and an error-248

type specific variance. α, β, and τ depend on error type εs,e. It follows that uncondi-249

tionally, i.e. without knowing the error type, the relation between observed and true value250

is a mixture of error-type specific Gaussian distributions, with the weight of each Gaus-251

sian distribution in the mixture given by the probability of the corresponding error type.252

Finally, the model is completed by specifying priors for the regression parameters (α, β,253

τ) and the probability vectors (PCom, PCharc, PErr). The priors were different for254

the training and testing phases and are detailed below.255

4.2.2 Model implementation256

We implemented the probabilistic model using Microsoft Research’s open source257

Infer.NET software framework (Minka et al., 2018). The Infer.NET framework provides258

adaptable tools to develop and run Bayesian inference for probabilistic graphical mod-259

els. The modeler must define the variables, the dependencies between variables, and pro-260

vide prior distributions for the variables that will be inferred. For implementation in In-261

fer.NET, Equations 1-4 are translated into a factor graph as shown in Figure 2. The fac-262

tor graph completely describes the joint posterior probability of the model (see Equa-263

tion A.5). The factor graph includes observable and latent (inferred) variables, factor264

nodes, edges (arrows), plates, and gates. Variables are depicted by shaded or unfilled el-265

lipses. A shaded variable is an observable value; an unfilled variable is a latent value. Fac-266

tor nodes are the small black boxes connected to variables, describing the relation be-267

tween variables connected to the factor. Edges (directional arrows) connect factor nodes268

to variables (Winn et al., 2020).269

Plates. Plates are the large boxes outlined in gray surrounding portions of the fac-270

tor graph. Plates are a simplified way to express repeated structures. The number of times271
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a structure will be repeated is based on the index variable shown in the bottom right cor-272

ner of the plate (Winn et al., 2020). For example, in Figure 2, the structure within the273

characteristics plate is repeated nine times, because the model considers nine different274

CS characteristics: motivation, recruitment, age, education, place of residence, occupa-275

tion, gender, performance, and experience.276

Gates. Gates are indicated by a dashed box, as seen around the Regression factor277

node in Figure 2. Gates essentially act as a switch, turning on and off depending on the278

value of the selector variable, which is the error type here (Minka & Winn, 2008). When279

gates are used to define a distribution, that distribution is a mixture.

PCom

Community, 
𝛾

Discrete
(Eq. 1)

SubmittedObservation, 
𝑂

s: citizen scientists

TrueValue, 
𝜗

ε

e: events

Regression 
(Eq. 4)

CitizenCharacteristic, 
𝑍

c: characteristics

PChar[𝛾]

ErrorType, 
ε

PErr[𝛾]

Discrete
(Eq. 2)

Discrete
(Eq. 3)

error types

Figure 2. The citizen science error model depicted as a factor graph. A factor node represents

a probabilistic relation between variables in the model and is shown by a black square. A vari-

able is shown in an oval, with shading identifying observable variables. Arrows depict the output

variable of each factor. A gate is represented by a dashed box. Plates are represented by gray

rectangles with rounded corners. Symbols adopted from Winn et al. (2020).

280

Infer.NET generates a computationally efficient code for the inference algorithm281

using one of three available inference algorithms: expectation propagation, variational282

message passing, and Gibbs sampling. The model developed here employs the expecta-283

tion propagation algorithm, because it is time efficient but reasonably accurate (Minka,284

2013). Expectation propagation is a deterministic approximate inference algorithm for285
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computing the marginal posterior distribution of each variable in the model (Minka, 2013).286

Each posterior distribution is assumed to take a specific parametric form in an exponen-287

tial family (e.g. Gaussian, Gamma, discrete). The algorithm then aims to find param-288

eter values for each parametric posterior that result in a good approximation of the ex-289

act posterior in terms of moment matching. For example, for a Gaussian approximation,290

expectation propagation will find a Gaussian whose mean and variance approximate those291

of the actual posterior. This is done using an iterative approach that starts from an ini-292

tial guess for the approximate posteriors, and iteratively refines each posterior in turn293

via moment matching. Since all individual posterior updates depend on each other, the294

algorithm is iterated until all updates and posteriors stabilize (here, in <5 iterations).295

The final posteriors are not necessarily unique and may depend on how the algorithm296

was initialized. Here, we adopt a random initialization strategy for mixture models as297

used in Nishihara, Minka, and Tarlow (2013) and Minka et al. (2018) and evaluate non-298

uniqueness in the inferred posteriors using multiple runs with different random initial-299

ization.300

4.2.3 Community and error selection301

To select the appropriate number of communities to capture the differences among302

the citizen scientists, model evidence was used. Model evidence indicates which model303

best explains the data relative to the model’s complexity (MacKay, 2003, p. 343-386).304

While the model evidence is notoriously hard to compute, expectation propagation pro-305

vides a convenient estimate as a by-product of its posterior approximations. Model ev-306

idence calculation in Infer.NET is achieved by inferring posterior component weights of307

a mixture consisting of two components, i.e. the entire model and the empty model (Minka,308

2000).309

Too many communities may lead to overfitting, whereas too few communities may310

lead to underfitting. The model evidence automatically makes this trade-off and iden-311

tifies the optimal number of communities. Model evidence was computed for models with312

one to ten communities. The number of communities that resulted in the largest model313

evidence was selected as the correct number of communities for the model and data. Sim-314

ilarly, model evidence was used to determine how many error types were present in the315

data. Model evidence was computed for one to twelve error types while using the op-316

timal number of communities. The number of error types that resulted in the largest model317
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evidence was selected as the number of error types for the model and data. After select-318

ing the number of error types, model evidence was again checked to verify that the op-319

timal number of communities remained constant. Selecting the error types via model ev-320

idence may identify more error types than expected, but the Bayesian model accounts321

for all possibilities and selects the one that most accurately represents the data.322

4.2.4 Training and testing the model323

The inference model was trained and tested to ensure model performance was con-324

sistent across different groups of data. During training and testing, the following char-325

acteristics were known for each citizen scientist: motivation, recruitment, age, education,326

place of residence, occupation, gender, performance, and experience. The first seven char-327

acteristics were recorded by S4W-Nepal (as explained in Section 3). The last two char-328

acteristics, performance and experience, were defined based on the observations submit-329

ted by each citizen scientist. Performance is simply the percentage of observations sub-330

mitted by a citizen scientist that did not require correction. A performance of 90% in-331

dicates that 90% of that citizen scientist’s submitted observations matched the true value332

shown in the associated photograph. Experience is a count of how many observations333

a citizen scientist submitted through the 2018 monsoon season. Performance and expe-334

rience rates were split into three levels based on natural breakpoints in their respective335

histograms.336

Splitting the data. Rainfall observations submitted by citizen scientists with known337

characteristics from 2016 to 2018 were randomly split into a training data set and a test-338

ing data set. The training set consisted of 92% of available observations, representing339

6,091 observations submitted by 152 citizen scientists. The citizen scientists in the train-340

ing set submitted anywhere from 1 to 159 observations, with the average number of sub-341

missions being 43.5. The testing set consisted of the remaining 8% of available obser-342

vations, representing 527 observations from 109 citizen scientists. The citizen scientists343

in the testing set submitted anywhere from 1 to 159 observations, with the average num-344

ber of submissions being 57.4. All citizen scientists in the testing set were also in the train-345

ing set. Note that individual observations in each group were unique.346

Training the model. Before training the model, prior distributions were set for the347

variables that were inferred. Uniform prior distributions were set for the citizen char-348
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acteristics (see Equation A.1), community (see Equation A.2), and error (see Equation A.3).349

The prior distribution for the true value parameter was a Gaussian distribution with a350

mean equal to the average value of all submitted observations (15) and the four times351

the variance of the entire dataset (2400; see Equation A.4). A true value prior variance352

of 2400 was chosen to reduce small event bias and accommodate inference of large rain-353

fall observations. The prior distributions for the Gaussian mixture parameters (α, β, and354

τ) were assigned based on the magnitude of unit, meniscus, and unknown errors clas-355

sified by Davids et al. (2019).356

While running the model in the training phase, the characteristics for each citizen357

scientist, the submitted observations, and the true values were known. The community358

for each citizen scientist, the error type for each submitted observation, the conditional359

probability tables for each characteristic and error type, and parameters for the Gaus-360

sian mixture were inferred (see Equations 2-4 and Figure 2). The training phase provided361

posterior distributions that were then used while testing the model.362

Testing the model. To test the model, prior distributions for latent variables were363

set to the associated posterior distribution calculated during training. The character-364

istics for each citizen scientist and the values of the submitted observations were set. The365

model inferred the community for each citizen scientist, the probable error type for each366

observation, and provided a posterior distribution for the true value of the submitted ob-367

servation. The performance of the model was assessed based on the whether the inferred368

posterior distribution for true value (ϑ) covered the true value identified in the accom-369

panying photograph submitted by the citizen scientist and whether the mode of the true370

value posterior matched the actual true value.371

A synthetic rainfall event was created to explore how many observations of a sin-372

gle event are needed to produce a reliable estimate of the event’s true value. A synthetic373

observation of the event was created by first assigning an error type to each citizen sci-374

entist based on the distribution of errors for their respective error communities (see Ta-375

ble 2). Then, the value of the synthetic observation was calculated using Equation 4, the376

α, β, and τ values from Table 1 with a true value of 15 mm. Multiple synthetic events377

were created with two to three observations of the same event with one to two erroneous378

observations per event. The true value of each synthetic event was predicted by the model.379
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5 Results and Discussion380

5.1 Number of communities and error types381

Model evidence indicated that there are four communities and five error types present382

in the data, given the model structure. In comparison, S4W-Nepal identified four error383

types in the data based on visual inspection of the submitted observations. The infer-384

ence model, however, is a much more powerful tool for uncovering nuances in the data385

than graphical techniques. Therefore, the number of communities and error types inferred386

from the model were used for the remaining analysis.387

5.2 Error analysis388

Parameters for the error-specific linear regressions were inferred for the five error389

types in the submitted rainfall observations (see Table 1 and Figure 3). The inferred pa-390

rameters included the mean and precision, τ , of the Gaussian distribution, where the mean391

is based on a linear regression α, β, and ϑ as shown in Equation 4. Four of the five er-392

ror types align well with the error types identified by Davids et al. (2019): none, unit,393

meniscus, and unknown. Meniscus errors occur when a citizen scientist reports the top394

of a concave meniscus rather than the bottom of the meniscus. Unit errors indicate in-395

stances where a citizen scientist submitted an observation in units of centimeters rather396

than millimeters, resulting in a unit error slope, α, of 0.10. Unknown errors do not present397

a discernible pattern that would explain their origin, as indicated by the low inferred pre-398

cision (0.01) for this error type. Figure 3 shows that the model-inferred error types are399

accurate, with only the unknown error type encompassing highly variable submitted ob-400

servation/true value pairs.401

The inference model identified one error type that was overlooked during the Davids402

et al. (2019) analysis of errors in the Nepal citizen science data: slope outliers. Slope out-403

liers signify a case where the citizen scientist’s reported observation was approximately404

ten times greater than the true value evident in the accompanying photograph of the rain-405

fall gauge. The underlying cause of outlier errors is unclear, but these outliers can likely406

be attributed to typos (e.g. adding an additional zero) or a mistake made by reading the407

gauge from the wrong direction (e.g. top down). Of the 6,091 observations included in408

the training data, only two were labelled as slope outliers.409
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Table 1. Inferred regression parameters for the different error types

Error Type Slope, α Intercept, β Precision, τ

None 1.00 0.00 55750.04

Unit 0.10 0.07 36.89

Meniscus 1.00 2.54 1.74

Unknown 0.97 2.37 0.01

Slope Outlier 10.31 -0.69 1.50

y = x
R² = 1

y = 0.1x + 0.07
R² = 1

y = x + 2.54
R² = 1

y = 0.97x + 2.37
R² = 0.87

y = 10.31x - 0.69
R² = 1

0

200

400

600

800

1000

1200

1400

1600

1800

0

50

100

150

200

250

0 50 100 150 200 250

Su
b

m
it

te
d

 O
b

se
rv

at
io

n
 (

Sl
o

p
e 

O
u

tl
ie

r)

Su
b

m
it

te
d

 O
b

se
rv

at
io

n
 (

m
m

)

True Value (mm)

None Unit Meniscus Unknown Slope Outlier

Figure 3. Inferred error types for each pair of submitted observation and true value of rainfall

in the training dataset.

5.2.1 Error distribution within communities410

The distribution of errors committed by citizen scientists varied depending on the411

assigned community, as seen in Table 2. Each community was named based on its re-412

spective error distribution: Few, Few-MUn, Mensicus, and Random Unknown (RandU).413

The Few community makes very few errors—only 2% of submitted observations are er-414

roneous. Of the erroneous submissions, members in the Few community are most likely415

to make meniscus or unknown errors (1% each). The Few-MUn community also makes416
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Table 2. Distribution of errors made by citizen scientists in each community

Community None Unit Meniscus Unknown Slope

Outlier

Few (0.47) 0.98 0.00 0.01 0.01 0.00

Few-MUn (0.26) 0.95 0.00 0.03 0.02 0.00

Meniscus (0.20) 0.80 0.01 0.17 0.02 0.00

RandU (0.07) 0.78 0.06 0.06 0.11 0.00

Note : The probability of each community is shown in parentheses after the

community name. Bold values indicate the most common error type(s) for

each community. The probabilities may not add to 1 due to rounding.

relatively few mistakes but does so at a rate of 5%. Members of the Few-MUn commu-417

nity are almost equally likely to make meniscus errors (3%) and unknown errors (2%).418

The two other communities, Meniscus and RandU, are much more likely to submit er-419

roneous rainfall observations. The Meniscus community submits erroneous observations420

at a rate of 20%. These observations are largely erroneous due to citizen scientists read-421

ing the meniscus of the water incorrectly (17%). Lastly, the RandU community makes422

the most errors, with 22% of its observations requiring correction. While the RandU com-423

munity makes primarily unknown errors (11%), meniscus (6%) and unit (6%) errors still424

represent a large portion of the erroneous submissions. Members of the RandU commu-425

nity are prone to making a wide variety of errors.426

The Few community members may have a high degree of scientific literacy; more427

than 97% of Few community members have at least a Bachelor’s degree. The Few-MUn428

community members may also have high scientific literacy but occasionally make mis-429

takes. Citizen scientists that were initially error prone but were able to correct their mis-430

understandings based on the feedback provided by S4W-Nepal may also be assigned to431

the Few-MUn community. For example, one citizen scientist in the Few-MUn commu-432

nity made 3 mistakes in the first 16 submissions, but then submitted 44 observations over433

the next 1.5 years without making a mistake. The Meniscus community largely misun-434

derstands how to correctly read the depth of water in the rain gauge. The RandU com-435

munity has several misunderstandings that cross multiple error types, therefore citizen436

scientists in this community make a mix of errors.437
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The distribution of errors within each community is a useful tool not only for se-438

lecting which submitted observations might require verification, but also for identifying439

opportunities to improve or maintain the overall accuracy of submitted observations. Cit-440

izen science project organizers can use targeted training to help specific communities im-441

prove their performance (Budde et al., 2017; Sheppard & Terveen, 2011). For example,442

S4W-Nepal could occasionally send feedback messages to the meniscus community mem-443

bers reminding them to read the rainfall depth from the bottom of the meniscus. As an-444

other example, members in the Few community might positively respond to general feed-445

back messages acknowledging their strong record of accurate observations and choose446

to remain engaged with the program. Knowing the error structure of observations sub-447

mitted by different communities may help improve the overall effectiveness of citizen sci-448

ence programs.449

5.3 Community composition450

The model grouped citizen scientists into four distinct communities with a unique451

combination of characteristics and probability of making errors. The Few community is452

the largest with 47% of citizen scientists in the training group assigned to this commu-453

nity (see Table 2). The RandU community is the smallest with only 7% of citizen sci-454

entists classified into this group. The remaining citizen scientists are grouped into the455

Few-Un (19%) and Meniscus (16%) communities. Overall, only 24% of participating cit-456

izen scientists are likely to make errors in more than 8.3% of their submitted observa-457

tions.458

The probability that a citizen scientist will belong to a specific community depends,459

in part, on the unique characteristics of that citizen scientist. Figure 4 provides the pos-460

terior probability that a citizen scientist with a particular characteristic would belong461

to each community, offering insight into the characteristic composition of each commu-462

nity. Singular characteristics may have a large impact on the tendency of a citizen sci-463

entist to make errors, and therefore to be assigned to a specific community. However,464

it is also true that any combination of characteristics could contribute to the probabil-465

ity of a citizen scientist being assigned to a community. In some cases, citizen scientists466

are likely to possess a similar combination of characteristics, which surfaces in the com-467

munity distributions. For example, Figure 4 indicates that citizen scientists recruited dur-468

ing a random visit, older than 25 years of age, holding less than a bachelor’s degree, and469
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with an “other” occupation make up 20% of all citizen scientists in the project and have470

a similar community distribution. While community assignment trends for singular char-471

acteristics can be enlightening, the impact of multiple citizen scientists with a similar472

combination of characteristics must be acknowledged.473

0% 50% 100%

Few Few-MUn Mensicus RandU

0% 50% 100%

Volunteer (76%)

Paid (24%)

Motivation

0% 50% 100%

Outreach (40%)

PersConnect (34%)

RandomVisit (19%)

SocialMedia (7%)

Recruitment

0% 50% 100%

<=18 (12%)

19-25 (69%)

>25 (19%)

Age

0% 50% 100%

<Bachelors (21%)

Bachelors (71%)

>Bachelors (8%)

Education

0% 50% 100%

Rural (9%)

Semi-Urban (65%)

Urban (26%)

Place of Residence

0% 50% 100%

Agriculture (3%)

Student (82%)

Other (15%)

Occupation

0% 50% 100%

Female (39%)

Male (61%)

Gender

0% 50% 100%

<70% (4%)

70-90% (24%)

>90% (72%)

Performance

0% 50% 100%

<28 (46%)

27-53 (23%)

>53 (31%)

Experience

Figure 4. Community composition for each characteristic. The percentage of participating

citizen scientists with the associated characteristic is shown in parentheses.

5.4 Sensitivity of α, β, and τ Priors and algorithm initialization474

In the model application examined here, Davids et al. (2019) provided prior infor-475

mation on the types of errors in the data, but such information will not always be avail-476

able. Prior information on the types of errors in the data is useful but not necessary to477

identify some of the errors made by participating citizen scientists. When prior error in-478

formation is known, the model reliably infers the same five errors, even when the uncer-479

tainty of this information is high (i.e. high variance assigned to the Gaussian prior dis-480

tributions). When no prior information is known about the potential types of errors present481
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in the data (i.e. αε ∼ N (1, 100), βε ∼ N (0, 100)), the model reliably infers the no er-482

ror type and splits the meniscus error into two error types—a 2-mm meniscus error and483

a 3.8-mm meniscus error. The two remaining error types identified are variations on the484

unknown error with relatively low R2 values, 0.79 and 0.09 compared with 1.0 for the485

none and meniscus errors. The model may fail to identify the unit error type, because486

it occurs in only 0.7% of submitted observations. Multiple local optima exist for the er-487

ror types, and the model may fail to identify all unique errors if no prior information on488

the errors is known. Regardless of whether error information is known previously, model489

evidence indicated that four communities and five error types best capture the variance490

in the data. The model may require many more iterations (possibly up to 100) to con-491

verge when the priors are vague.492

There is also some variation in the inferred posterior distributions that is based on493

how the algorithm is initialized, but the variation is insignificant (p>0.05). Changing494

the algorithm initialization during inference minimally affects the posterior distributions495

of the error types. For example, with a different initialization, the α, β, and τ of the slope496

outlier change from (10.31, -0.69, 1.5) to (10.31, -0.24, 1.5). The α, β, and τ values of497

the remaining error types are more consistent than the slope outlier type, regardless of498

how the algorithm is initialized.499

5.5 Inferring the true value of a submitted observation500

In addition to providing insight into the error structure of the submitted observa-501

tions and the relationship between citizen scientist characteristics and error tendencies,502

the model provides information about the true value of submitted observations. Test-503

ing the model reveals that the model can infer a previously unknown true value based504

on the value of the submitted observation and the characteristics of the citizen scientist.505

The inferred true value differs from the actual true value by a median percent error of506

0.9%. The standard deviation of percent error is, however, 98.8%. With a wide true value507

prior distribution (here, 24,000; see Eq. A.4), the model has a tendency to over-predict508

unit errors for a small number of observations submitted with a value of 6 mm or lower509

which causes the large standard deviation (see Figure 5a). In most cases, the actual true510

value of the submitted observation falls within the range of the posterior distribution in-511

ferred for the true value variable as seen in Figures 5b,c. However, as Figures 5b,c show,512
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the mode of the posterior distribution is not always a good estimate of the actual true513

value.514
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Figure 5. a. The inferred true value is usually a good estimate of the true value of the sub-

mitted observation. In some erroneous submissions, the mode of the estimated single-mode

posterior is not equal to the true value, however an exact Gaussian mixture of the true value

posterior distributions has a local peak at the true value of an observation submitted with a (b.)

unit error and a (c.) meniscus error. The points shown in (b.) and (c.) are indicated by a plus

(+) in (a.).

To increase the computational efficiency of an inference algorithm that sometimes515

needs to consider thousands of variables, expectation propagation approximates a multi-516

mode posterior distribution with a single-mode distribution (Minka et al., 2018) by min-517

imizing the Kullback-Leibler divergence between the two (Minka, 2005). In many ap-518

plications, this method works very well. However, here, the mixture distribution covers519

values ranging from 10% (unit error) of the true value up through 1,000% (slope out-520

lier error) of the true value. Such a wide range of possible true values results in a pre-521

dicted true value posterior with high variance and a mode that is occasionally shifted522

left or right of the true value (see Figures 5b,c).523

While the predicted single-mode true value posterior distribution does not always524

estimate the actual true value of an erroneous submission well, the exact Gaussian mix-525

ture posterior often exhibits a local peak at the actual true value (see Figures 5b,c). The526

mode of the Gaussian mixture posterior usually presents at the value of the submitted527

observation because of the high precision associated with the none error type (see Ta-528

ble 1). Only 8.7% of submitted observations have greater than a 20% probability of be-529

ing erroneous in this example application. Therefore, the inferred error type posterior530
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Table 3. Synthetic tests inferring true value from multiple observations submitted for a single

event with a true value of 15 mm

Inferred Inferred

No.

Obs.

Error

Types True Value Variance

No.

Obs.

Error

Types True Value Variance

2 0, 1 14.98 6.26E-2 2 2, 4 168.10 2.89

2 0, 2 15.00 1.39E-3 3 0, 2, 4 15.00 6.54E-5

2 0, 3 14.99 1.39E-2 3 0, 3, 4 15.00 5.43E-5

2 0, 4 153.85 3.45 2 1, 3 16.69 4.23E-1

Different 15.00 9.04E-5 3 0, 1, 3 14.99 1.66E-2

CS community 15.00 5.94E-2 2 1, 2 17.35 5.96E-1

combinations 15.00 5.94E-2 3 0, 1, 2 15.00 3.27E-3

... 15.00 5.94E-2 2 2, 3 17.59 1.91E-1

3 0, 0, 4 150.70 1.22 3 0, 2, 3 15.00 3.29E-3

4 0, 0, 0, 4 150.50 0.64

Note : Error Types: 0=None, 1=Unit, 2=Meniscus, 3=Unknown, 4=Slope Outlier

distribution may be examined in conjunction with the Gaussian mixture posterior to pro-531

vide additional information on the probability of each error type. For example, despite532

the mode of the Gaussian mixture posterior being located at the value of the submit-533

ted observation in Figure 5b, the probability of a none error type is only 0.23, and the534

unit error probability is 0.73. The Gaussian mixture posterior and the error type pos-535

terior distributions may provide a more accurate representation of the true value of a536

submitted observation than the approximated single-mode Gaussian posterior distribu-537

tion.538

5.5.1 Multiple observations of a single event539

If only a single observation of a rainfall event is available, the predicted error type540

is based on the error types observed during model training. However, analyzing multi-541

ple observations of a single rainfall event should improve the accuracy of the inferred er-542

ror type and true value of rainfall.543
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For each of the simulations described below, the model was not given any infor-544

mation about the error types associated with the submitted observations. The model545

inferred the true value solely based on what it learned during model training. When only546

one error was made out of two observations submitted, the model predicted the true value547

every time except for instances of a slope outlier error (see Table 3 column 1). In such548

cases, the ability of the model to correctly infer the event true value was related to the549

error communities of the citizen scientists. Through 12 trials (not shown) with differ-550

ent algorithm initialization and combinations of citizen scientists from the Few-MUn and551

Meniscus communities, the model correctly inferred the true value only twice. However,552

the model was able to infer the true value if one submitted observation had a slope out-553

lier for other combinations of citizen scientist communities (see Table 3 column 1). If one554

slope outlier observation was paired with two or more correct observations, the model555

consistently failed to infer the correct true value. The low probability of a slope outlier556

combined with the relatively high probability of unit and meniscus errors cause the model557

to infer the slope outlier as a meniscus error and the correct observations as unit errors.558

When one slope outlier error was paired with another error, the model required an ad-559

ditional correct observation to accurately predict the true value (see Table 3 column 2).560

For the best performance, the slope outlier error needs to be paired with at least one other561

erroneous observation and a correct observation. When two errors were made out of two562

observations submitted, the model often failed to correctly predict the true value. How-563

ever, when a third observation without an error was included, the model predicted the564

true value every time (see Table 3). Overall, the model inferred the correct error types565

when the inferred true value was also correct.566

For instances when multiple observations of a single event are submitted, at least567

one error-free observation is likely necessary to ensure that the model predicts the true568

value with minimal uncertainty. When multiple erroneous observations are submitted,569

the model performs best when at least one correct observation is submitted of that same570

event. Given that over 90% of submitted observations do not have an error, it is unlikely571

that an erroneous observation would be submitted without a complementary error-free572

observation, assuming that additional citizen scientists are active.573
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5.6 Further model applications574

The trained model was tested for two unique applications that provide insight into575

the utility of the model in practical applications and the distribution of errors in citi-576

zen science data over time.577

5.6.1 Citizen scientists with unknown characteristics578

As citizen scientist programs expand, recording complete characteristics data for579

each participating citizen scientist may become challenging. The model’s ability to in-580

fer the correct community for citizen scientists with unknown characteristics and the cor-581

rect true value for the observations they submit was investigated. The characteristics582

for each unknown citizen scientist were selected from a discrete distribution estimated583

from the characteristics data of citizen scientists observed during training. The prior dis-584

tribution of the community, PCom, was set to a discrete distribution equal to the over-585

all community posterior distribution of the training set. The community for each citi-586

zen scientist and the true values of their submitted observations were inferred and com-587

pared to the communities and true values inferred when the characteristics were known588

precisely, but the community was also unknown.589

The model performed quite well while inferring the community of unknown citi-590

zen scientists and the true values of observations submitted by unknown citizen scien-591

tists. Communities of citizen scientists with known characteristics were correctly pre-592

dicted 0.9% more than citizen scientists with unknown characteristics. The coefficient593

of determination between the actual true values and predicted true values was 0.015 higher594

for known citizen scientists than for unknown citizen scientists. While the predicted true595

values for known and unknown citizen scientists were similar, the uncertainty of the true596

values predicted from observations submitted by unknown citizen scientists was higher.597

The average variance of the inferred true value posteriors was 140.2 mm2 for unknown598

citizen scientists and 125.6 mm2 for known citizen scientists. Overall, the value of sub-599

mitted observations has greater influence on the inferred true values of rainfall than the600

characteristics of the associated citizen scientist. While knowing the characteristics of601

all citizen scientists increases the accuracy of predicting the true value of submitted ob-602

servations, it is not essential.603
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5.6.2 Evolution of error structure within communities604

The change in error distribution over time within each community was studied. The605

observations submitted by citizen scientists with known characteristics were divided into606

years 2017, 2018, and 2019. The same communities assigned to each citizen scientist dur-607

ing training were assigned, and the α, β, and τ for each error type inferred during train-608

ing were made static. In addition, a uniform prior was set for the community error dis-609

tributions to reduce skew in the posterior distribution. Then, the inference model was610

run to infer the error distribution for each community during each year.611

The probability that a citizen scientist in each community would commit a type612

of error changed from the 2017 to 2018 to 2019 S4W-Nepal program years (see Figure 6).613

In 2017, only 16 citizen scientists for whom characteristics are known submitted obser-614

vations (see Table 4). The 2017 community error distributions, particularly the Few-MUn,615

Meniscus, and Unit-MUn communities, are highly uncertain due to the small sample size.616

Overall, citizen scientists became increasingly active as S4W-Nepal’s program progressed617

through the years. Citizen scientists submitted an average of just over 8 observations in618

2017, growing to 80 by 2019. In the first full year of rainfall submissions (2017), most619

citizen scientists were assigned to the Few-MUn community. In the following two years,620

active citizen scientists were most often in the Few community, followed by the Few-MUn621

community. In all three years of S4W-Nepal’s program, the RandU community repre-622

sented the smallest fraction of active citizen scientists.623

As S4W-Nepal gained experience in operating a citizen science program, the par-624

ticipating citizen scientists also gained skills in collecting and submitting accurate rain-625

fall observations. The Meniscus community had an increasing probability of submitting626

correct observations in each year after 2017, while the Few-MUn community maintained627

a low probability of submitting an erroneous observation (see Figure 6). The Few and628

RandU communities also increased their probability of submitting a correct observation629

in 2018 but saw a decrease in 2019. As the years progressed, all communities submit-630

ted the same or successively fewer meniscus errors. Similarly, unit errors tended to de-631

crease or remain the same as citizen scientists gained experience. Interestingly, while menis-632

cus type errors and unit errors decreased over time, 2019 saw relatively high rates of un-633

known errors. The reason for an increase in unknown errors is difficult to diagnose but634

may be due to an evolution in the magnitude of errors committed. For example, if the635
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Table 4. Yearly Observations and Community Sizes

2017 2018 2019

Number of Observations

Min. 1 1 1

Max. 30 216 409

Average 8.1 46.7 80.0

Std. Dev. 9.6 47.6 93.0

Total 130 6915 4878

Community Probability (Count)

Few 0.25 (4) 0.46 (68) 0.30 (18)

Few-MUn 0.56 (9) 0.26 (38) 0.33 (20)

Meniscus 0.13 (2) 0.20 (29) 0.28 (17)

RandU 0.06 (1) 0.08 (12) 0.10 (6)

Note : The number of citizen scientists in each

community is shown in parentheses.

regression parameters for this analysis are inferred rather than held constant, the un-636

known error β decreases from 2.4 in 2017 to 1.7 in 2019. The error structure of obser-637

vations submitted by citizen scientists is evolving as both S4W-Nepal and the partici-638

pating citizen scientists gain experience, a common trend in citizen science programs (Kos-639

mala et al., 2016).640

S4W-Nepal uses various training techniques and feedback methods to increase the641

scientific literacy of citizen scientists (Davids et al., 2019). Their methods have been ef-642

fective in reducing the magnitude and frequency of errors committed by the citizen sci-643

entists. Perhaps the best evidence for this change is the reduction in meniscus errors com-644

mitted by citizen scientists in the Meniscus community. From 2018 to 2019, the prob-645

ability of meniscus errors in the Meniscus community decreased from 19.0 to 8.1%. Sim-646

ilarly, unit errors committed by those in the RandU community decreased from 6.4% in647

2018 to 4.2% in 2019. While a trend in reduced meniscus and unit errors over two years648

is promising, additional analysis after multiple years of collecting citizen scientist obser-649

–26–



manuscript submitted to Water Resources Research

vations would provide more conclusive evidence for increased scientific literacy of the par-650

ticipants.651

2018

2017

2019

0% 20% 40% 60% 80% 100%

RandU

Meniscus

Few-MUn

Few

None Unit Meniscus Unknown Slope Outlier

Figure 6. Change in the distribution of errors for each community over time. Note that the

2017 error distributions for the Few, Meniscus, and RandU communities are poorly informed due

to the low number of active citizen scientists assigned to those communities.

5.7 Utility and limitations in application652

The model proposed here can be implemented by a wide array of citizen science653

programs. The model is flexible, and thus can be adapted to both qualitative and quan-654

titative citizen science observations. For example, the model could be directly used to655

assess errors in citizen science water quality measurements or river stage observations.656

The model could also be adapted to assess the quality of count data submitted by cit-657

izen scientists, for example, in the Audubon Society’s Christmas Bird Count. Here, the658

error variable would likely need to be further informed by physiographic features that659

influence bird habitat and migration. As a qualitative example, the model could be adapted660

to assess errors in galaxy identification conducted by citizen scientists. Here, the Gaus-661

sian mixture of regressions factor would be replaced by a simple discrete distribution wherein662

the correct galaxy label is assumed to be from a community-specific probability distri-663

bution of possible galaxy labels.664
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While the model has potential for adaptation to a wide variety of citizen science665

programs, it has limitations. For example, the model is data intensive, because a large666

dataset is required for training and testing the model. This limits its utility for small-667

scale or newly developed citizen science programs. In addition, a record of erroneous data668

is required for training the model, which must be identified and corrected by the citi-669

zen science program. This may require a large effort and, depending on the type of data670

collected, may be difficult to achieve. It could be interesting to investigate to what ex-671

tent the model can be trained without the availability of error-free ground truth data.672

For example, Schoups and Nasseri (2020) showed that fusion of multi-source data with673

unknown noise and bias (in their case, water balance data from remote sensing) is pos-674

sible in the absence of ground truth data. Lastly, the model design requires that citizen675

scientists are registered with the program, and that submissions can be linked to reg-676

istered individuals. This is not the case for all citizen science programs- some do not re-677

quire registration and some do not track the submission record of their participants. The678

model can be implemented for quality assessment in many citizen science programs, but679

the model is not universally useful or without limitations.680

6 Summary and conclusions681

This study developed a probabilistic model to investigate the type and frequency682

of errors in citizen science data. The model assigns citizen scientists to a community based683

on the characteristics of the citizen scientist and their tendency to submit erroneous ob-684

servations. This helps to target manual corrections of CS data. The model then infers685

a posterior distribution of the true value of a submitted observation from the value of686

the observation and the community of the participating citizen scientist. Designed thus,687

the model can be adapted to a wide array of citizen science datasets.688

Analysis of the error structure in citizen scientist rainfall observations revealed that689

individuals can be characterized by one of four error patterns: not error prone, mostly690

not error prone, meniscus error prone, and random or various error prone. While the Bayesian691

inference model developed here used communities to relate citizen scientist character-692

istics to error tendencies, the magnitude and type of errors committed is the crux of ev-693

ery community assignment. The distribution of characteristics within each community694

is useful for investigating potential reasons for making errors rather than for identify-695

ing individuals who might be particularly error prone.696
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The Bayesian inference model developed using Infer.NET’s software framework un-697

covered five error types and their probability distribution within each of the four error-698

based communities. The community assignments are a useful tool for discerning which699

citizen scientists are more likely to submit erroneous observations that require further700

review. In addition, community-specific training and feedback messages may be a pow-701

erful tool for increasing the quality and frequency of submissions. The Bayesian prob-702

abilistic model was often able to predict the true value of a submitted observation, and703

the model extrapolated useful error probabilities for each observation. These error prob-704

abilities, in conjunction with the model’s inferred error-specific regression and precision705

parameters, can be used to calculate a Gaussian mixture distribution that provides more706

information about the probable true value of submitted observations than Infer.NET’s707

single-mode true value prediction. As citizen science programs expand to include mul-708

tiple participants submitting observations of a single event, the model’s ability to pre-709

dict the true value for that event will likely increase. However, the model’s potential may710

be limited in regions where the target parameter is highly heterogeneous in space and711

time.712

As a graphical, assumption-based Bayesian inference model, the citizen science er-713

ror model presented here has immense potential for adaptation to other citizen science714

programs with diverse data types. The implementation of error-based communities pro-715

vides a simple, yet effective method for tracking changes in the types and frequency of716

errors committed by citizen scientists. The communities also provide opportunities for717

targeted training and feedback to improve citizen science data at the point of collection,718

rather than at the point of correction. Improving the quality of citizen science data at719

every step enables increasingly more citizen scientist-supported decision-making and sci-720

entific discoveries.721

A Prior and Posterior Distributions722

The prior distribution for each inferred model variable was a uniform Dirichlet dis-723

tribution, with the exception of the true value prior. The prior distribution for true value724

was a Gaussian distribution with a mean of 15 and variance of 2400. The variance for725

the true value prior was selected is four times the variance of the entire true value dataset726

(i.e., twice the standard deviation). Note that Equation A.5 is the posterior distribution727

for the model. The posterior is obtained by writing the joint distribution over latent vari-728

–29–



manuscript submitted to Water Resources Research

ables X = (PChar, PCom,PErr, ϑ, ε, γ, αε, βε, τε) and observed variables D = (Z,O),729

followed by conditioning on the observations.730

PCharc|γ ∼ Dirichlet(Uniform), (A.1)731

PComs ∼ Dirichlet(Uniform), (A.2)732

PErr|γ ∼ Dirichlet(Uniform), (A.3)733

ϑe ∼ N (15, 2400), (A.4)734

p(X|D) ∝ Dir(PCom|s)Dir(PErr|γ)
∏
ε

N (µα, σ
2
α|ε)N (µβ , σ

2
β |ε)Gamma(A,B|ε)

C∏
c=1

Dir(PCharc)

E∏
e=1

N (ϑe|µe, σ2
e)

S∏
s=1

{
Dis(γs|PCom)

C∏
c=1

{
Dis(Zs,c|γs, PCharc)

}
E∏
e=1

{
Dis(εs,e|γs, PErr)

∏
ε

N (Os,e|αεϑe + βε, τε)
δ(εs,e−ε)

}}
,

(A.5)735

where the Dirac delta function δ() in the exponent on the last line is used to mathemat-736

ically represent the mixture of linear regressions (i.e. the gate in Fig. 2), as documented737

in Minka and Winn (2008).738

The prior distributions for the α and β parameters in Eq. 4 were set to a Gaus-739

sian distribution parameterized by mean and variance.740

αε ∼ N (µα, σ
2
α|ε) (A.6)741

where µα = (1, 0.1, 1.002, 0.9, 7), and σ2
α = (0.5, 0.5, 2, 50, 70). And,742

βε ∼ N (µβ , σ
2
β |ε) (A.7)743

where µβ = (0, 0.02, 2.3, 4.2, 3), and σ2
β = (0.5, 0.5, 0.2, 50, 30). The α and β mean and744

variance for the first four ε error types were based on the mean and variance of a series745
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of slopes and intercepts from linear regressions fit to subsets of (ϑ, O) pairs correspond-746

ing to the four error types identified by Davids et al. (2019). Note that the σ2 values used747

are larger than calculated to provide a wider prior distribution. The mean and variance748

for the remaining error type was selected randomly, since there was no information avail-749

able regarding this error prior to training the model.750

The prior distributions for the τ parameter in Eq. 4 were set to a Gamma distri-751

bution parameterized by shape (A) and rate (B).752

τε ∼ Gamma(A,B|ε) (A.8)753

where A = (0.25, 0.75, 1.5, 0.5, 15), and B = (0.05, 0.25, 0.05, 0.01, 10). The τ shape754

and rate for the first four ε error types were calculated based a Gamma distribution fit755

to observations that corresponded to the four error types identified by Davids et al. (2019).756

The shape and rate for the remaining error type was selected randomly, since there was757

no information available regarding this error prior to training the model.758

Notation759

Dir Dirichlet distribution760

Dis Discrete distribution761

N Gaussian distribution762

C characteristic763

S citizen scientist764

ε error type765

e event766

γ Community767

O SubmittedObservation768

ϑ TrueValue769

Acknowledgments770

The dataset analyzed for this study can be accessed in the Supplementary Material pub-771

lished by Davids et al. (2019). This research has been supported by the National Sci-772

ence Foundation, Division of Graduate Education (grant no. DGE-1333468) and the Dutch773

Research Council. Data collection and quality control was supported by the Swedish In-774

–31–



manuscript submitted to Water Resources Research

ternational Development Agency (grant no. 2016-05801) and by SmartPhones4Water775

(S4W). The authors declare that they have no conflict of interest. The authors would776

like to thank S4W’s Saujan Maka for instrumental guidance.777

References778

Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J.,779

. . . Frusher, S. (2014, May). Statistical solutions for error and bias in780

global citizen science datasets. Biological Conservation, 173 , 144–154. Re-781

trieved 2020-05-02, from https://linkinghub.elsevier.com/retrieve/pii/782

S0006320713002693 doi: 10.1016/j.biocon.2013.07.037783

Bonney, R., Cooper, C. B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg,784

K. V., & Shirk, J. (2009, December). Citizen Science: A Developing Tool785

for Expanding Science Knowledge and Scientific Literacy. BioScience,786

59 (11), 977–984. Retrieved 2020-05-02, from https://academic.oup.com/787

bioscience/article-lookup/doi/10.1525/bio.2009.59.11.9 doi:788

10.1525/bio.2009.59.11.9789

Bonter, D. N., & Cooper, C. B. (2012, August). Data validation in citizen science:790

a case study from Project FeederWatch. Frontiers in Ecology and the Environ-791

ment , 10 (6), 305–307. Retrieved 2020-05-03, from http://doi.wiley.com/10792

.1890/110273 doi: 10.1890/110273793

Brunsdon, C., & Comber, L. (2012). Assessing the changing flowering date of the794

common lilac in north america: a random coefficient model approach. Geoin-795

formatica, 16 (4), 675–690.796

Budde, M., Schankin, A., Hoffmann, J., Danz, M., Riedel, T., & Beigl, M. (2017,797

September). Participatory Sensing or Participatory Nonsense?: Mitigating798

the Effect of Human Error on Data Quality in Citizen Science. Proceedings of799

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1 (3),800

1–23. Retrieved 2020-05-03, from https://dl.acm.org/doi/10.1145/3131900801

doi: 10.1145/3131900802

Butt, N., Slade, E., Thompson, J., Malhi, Y., & Riutta, T. (2013). Quantifying803

the sampling error in tree census measurements by volunteers and its effect on804

carbon stock estimates. Ecological Applications, 23 (4), 936–943.805

Cox, T., Philippoff, J., Baumgartner, E., & Smith, C. (2012). Expert variability pro-806

–32–



manuscript submitted to Water Resources Research

vides perspective on the strengths and weaknesses of citizen-driven intertidal807

monitoring program. Ecological Applications, 22 (4), 1201–1212.808

Crall, A. W., Newman, G. J., Stohlgren, T. J., Holfelder, K. A., Graham, J., &809

Waller, D. M. (2011, December). Assessing citizen science data qual-810

ity: an invasive species case study: Assessing citizen science data qual-811

ity. Conservation Letters, 4 (6), 433–442. Retrieved 2020-05-02, from812

http://doi.wiley.com/10.1111/j.1755-263X.2011.00196.x doi:813

10.1111/j.1755-263X.2011.00196.x814

Davids, J. C., Devkota, N., Pandey, A., Prajapati, R., Ertis, B. A., Rutten, M. M.,815

. . . van de Giesen, N. (2019, March). Soda Bottle Science—Citizen Science816

Monsoon Precipitation Monitoring in Nepal. Frontiers in Earth Science, 7 ,817

46. Retrieved 2020-04-23, from https://www.frontiersin.org/article/818

10.3389/feart.2019.00046/full doi: 10.3389/feart.2019.00046819

Delaney, D. G., Sperling, C. D., Adams, C. S., & Leung, B. (2008, January). Ma-820

rine invasive species: validation of citizen science and implications for national821

monitoring networks. Biological Invasions, 10 (1), 117–128. Retrieved 2020-822

05-03, from http://link.springer.com/10.1007/s10530-007-9114-0 doi:823

10.1007/s10530-007-9114-0824

de Solla, S. R., Shirose, L. J., Fernie, K. J., Barrett, G. C., Brousseau, C. S., &825

Bishop, C. A. (2005). Effect of sampling effort and species detectability on826

volunteer based anuran monitoring programs. Biological Conservation, 121 (4),827

585–594.828

Fink, D., Hochachka, W. M., Zuckerberg, B., Winkler, D. W., Shaby, B., Munson,829

M. A., . . . Kelling, S. (2010). Spatiotemporal exploratory models for broad-830

scale survey data. Ecological Applications, 20 (8), 2131–2147.831

Habib, E., Krajewski, W. F., & Ciach, G. J. (2001). Estimation of rainfall intersta-832

tion correlation. Journal of Hydrometeorology , 2 , 621–629. doi: 10.1175/1525833

-7541(2001)002〈0621:EORIC〉2.0.CO;2834

Hunter, J., Alabri, A., & van Ingen, C. (2013, February). Assessing the quality and835

trustworthiness of citizen science data. Concurrency and Computation: Prac-836

tice and Experience, 25 (4), 454–466. Retrieved 2020-05-03, from http://doi837

.wiley.com/10.1002/cpe.2923 doi: 10.1002/cpe.2923838

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G.,839

–33–



manuscript submitted to Water Resources Research

& Kirschbaum, D. B. (2017, January). So, How Much of the Earth’s Surface840

Is Covered by Rain Gauges? Bulletin of the American Meteorological Society ,841

98 (1), 69–78. Retrieved 2020-05-02, from http://journals.ametsoc.org/842

doi/10.1175/BAMS-D-14-00283.1 doi: 10.1175/BAMS-D-14-00283.1843

Kosmala, M., Wiggins, A., Swanson, A., & Simmons, B. (2016, December). As-844

sessing data quality in citizen science. Frontiers in Ecology and the Environ-845

ment , 14 (10), 551–560. Retrieved 2020-05-03, from http://doi.wiley.com/10846

.1002/fee.1436 doi: 10.1002/fee.1436847

Lukyanenko, R., Wiggins, A., & Rosser, H. K. (2019). Citizen science: An informa-848

tion quality research frontier. Information Systems Frontiers, 1–23.849

MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms.850

Cambridge: Cambridge University Press.851

Miller, D. A., Nichols, J. D., McClintock, B. T., Grant, E. H. C., Bailey, L. L., &852

Weir, L. A. (2011). Improving occupancy estimation when two types of ob-853

servational error occur: Non-detection and species misidentification. Ecology ,854

92 (7), 1422–1428.855

Minka, T. (2000). Bayesian linear regression (Tech. Rep.). Citeseer.856

Minka, T. (2005). Divergence measures and message passing (Technical Report No.857

TR-2005-173). Microsoft Research.858

Minka, T. (2013). Expectation propagation for approximate bayesian inference.859

arXiv preprint arXiv:1301.2294 .860

Minka, T., & Winn, J. (2008). Gates. Advances in Neural Information Processing861

Systems 21 , 1073–1080.862

Minka, T., Winn, J., Guiver, J., Zaykov, Y., Fabian, D., & Bronskill, J. (2018). In-863

fer.NET 0.3. Microsoft Research Cambridge. Retrieved from http://dotnet864

.github.io/infer865

Nayava, J. L. (1974, December). Heavy monsoon rainfall in Nepal. Weather , 29 (12),866

443–450. Retrieved 2020-04-23, from http://doi.wiley.com/10.1002/j.1477867

-8696.1974.tb03299.x doi: 10.1002/j.1477-8696.1974.tb03299.x868

Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., & Crowston, K.869

(2012, August). The future of citizen science: emerging technologies and shift-870

ing paradigms. Frontiers in Ecology and the Environment , 10 (6), 298–304.871

Retrieved 2020-05-02, from http://doi.wiley.com/10.1890/110294 doi:872

–34–



manuscript submitted to Water Resources Research

10.1890/110294873

Nishihara, R., Minka, T., & Tarlow, D. (2013). Detecting parameter symmetries in874

probabilistic models. arXiv preprint, arXiv:1312.5386 .875

Riesch, H., & Potter, C. (2014, January). Citizen science as seen by scien-876

tists: Methodological, epistemological and ethical dimensions. Public877

Understanding of Science, 23 (1), 107–120. Retrieved 2020-05-02, from878

http://journals.sagepub.com/doi/10.1177/0963662513497324 doi:879

10.1177/0963662513497324880

Schoups, G., & Nasseri, M. (2020). Gracefully closing the water balance: a data-881

driven probabilistic approach applied to river basins in iran.882

Sheppard, S. A., & Terveen, L. (2011). Quality is a verb: the operationaliza-883

tion of data quality in a citizen science community. In Proceedings of the884

7th International Symposium on Wikis and Open Collaboration - WikiSym885

’11 (p. 29). Mountain View, California: ACM Press. Retrieved 2020-05-886

03, from http://dl.acm.org/citation.cfm?doid=2038558.2038565 doi:887

10.1145/2038558.2038565888

Sunde, P., & Jessen, L. (2013). It counts who counts: an experimental evaluation889

of the importance of observer effects on spotlight count estimates. European890

Journal of Wildlife Research, 59 (5), 645–653.891

Teague, K. A., & Gallicchio, N. (2017). The evolution of meteorology: a look into892

the past, present, and future of weather forecasting. Hoboken, NJ: John Wiley893

& Sons, Inc.894

Thapa, B. R., Ishidaira, H., Pandey, V. P., & Shakya, N. M. (2017, February). A895

multi-model approach for analyzing water balance dynamics in Kathmandu896

Valley, Nepal. Journal of Hydrology: Regional Studies, 9 , 149–162. Re-897

trieved 2020-04-23, from https://linkinghub.elsevier.com/retrieve/pii/898

S2214581816303342 doi: 10.1016/j.ejrh.2016.12.080899

USGS. (n.d.). DYFI Scientific Background. Retrieved 2020-05-05, from https://900

earthquake.usgs.gov/data/dyfi/background.php901

Venanzi, M., Guiver, J., Kazai, G., Kohli, P., & Shokouhi, M. (2014). Community-902

based bayesian aggregation models for crowdsourcing. In Proceedings of the903

23rd international conference on World wide web - WWW ’14 (pp. 155–164).904

Seoul, Korea: ACM Press. Retrieved 2020-05-03, from http://dl.acm.org/905

–35–



manuscript submitted to Water Resources Research

citation.cfm?doid=2566486.2567989 doi: 10.1145/2566486.2567989906

Vibhāga, N. K. T. (2012). National Population and Housing Census 2011: National907

report (Vol. 1). Government of Nepal, National Planning Commission Secre-908

tariat, Central . . . .909

Wiggins, A., Newman, G., Stevenson, R. D., & Crowston, K. (2011, Decem-910

ber). Mechanisms for Data Quality and Validation in Citizen Science. In911

2011 IEEE Seventh International Conference on e-Science Workshops (pp.912

14–19). Stockholm, Sweden: IEEE. Retrieved 2020-05-03, from http://913

ieeexplore.ieee.org/document/6130725/ doi: 10.1109/eScienceW.2011.27914

Winn, J., Bishop, C., Diethe, T., Guiver, J., & Zaykov, Y. (2020). Model-based ma-915

chine learning (early access ed.). online: Microsoft Research. Retrieved from916

www.mbmlbook.com917

–36–


