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Abstract

The angle between the wind stress that overlies the ocean and the resulting current at the ocean surface is calculated for a

two-layer ocean with uniform eddy viscosity in the lower layer and for several assumed eddy viscosity profiles in the upper layer.

The calculation of the deflection angle is greatly simplified by transforming the linear, second order, vertical structure equation

to its associated nonlinear, first order, Riccati equation. Though the transformation to a Riccati equation can be used as an

alternate numerical scheme, its main advantage is that it yields analytic expressions for particular eddy viscosity profiles.
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Abstract11

The angle between the wind stress that overlies the ocean and the resulting current12

at the ocean surface is calculated for a two-layer ocean with uniform eddy viscosity in13

the lower layer and for several assumed eddy viscosity profiles in the upper layer. The14

calculation of the deflection angle is greatly simplified by transforming the linear, second15

order, vertical structure equation to its associated nonlinear, first order, Riccati equation.16

Though the transformation to a Riccati equation can be used as an alternate numeri-17

cal scheme, its main advantage is that it yields analytic expressions for particular eddy18

viscosity profiles.19

1 Introduction20

For wind-driven surface ocean currents, various ranges of the deflection angle are recorded (see21

Röhrs and Christensen, 2015). Predictions for the deflection angle are only available for spe-22

cial profiles of vertical eddy viscosities (see the discussions in Bressan and Constantin, 2019;23

Constantin, 2020; Dritschel et al., 2020). Numerical approaches for depth-dependent eddy24

viscosities rely on the WKB approach (see Wenegrat and McPhaden, 2016) to find accurate ap-25

proximations for the solution of the second-order boundary-value problem that governs Ekman26

flows. The WKB approximation consists of a rapidly oscillating complex exponential multiplied27

by a slowly varying amplitude, and requires that the properties of the medium vary more slowly28

than the solution (see the discussion in Holmes , 2013). In particular, the eddy viscosity should29

vary gradually with depth, an assumption that limits the applicability of the WKB approach.30

In this paper we derive a uniformly valid formula for the deflection angle that, rather than31

relying on solving a second-oder boundary-value problem on an interval of infinite length, only32

requires the solution of a first-order initial-value problem, with a suitable Riccati equation, on33

a finite interval.34

Note that the Riccati equation arises in many different fields of physics and engineering, e.g.35

control theory, statistical thermodynamics, quantum mechanics, cosmology (see the survey in36

Schuh, 2014). In light of this, its relevance to the study of wind-driven currents is perhaps not37

that surprising.38
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2 The proposed algorithm39

The non-dimensional linear governing equations for steady wind-driven ocean currents in the40

non-equatorial Northern Hemisphere are (see Dritschel et al., 2020)41

(Kψ′)′ − 2iψ = 0 for z < 0 , (1)42

ψ′(0) = 1 on z = 0 , (2)43

ψ → 0 as z → −∞ , (3)44
45

where the complex vector ψ = u + iv represents the horizontal velocity field, z is the upward46

pointing vertical variable (with the free surface at z = 0) scaled on
√

(2τ/ρ)/f (where τ is47

the applied wind stress at the ocean’s surface, ρ is the water density and f is the constant48

Coriolis parameter) and K(z) is the vertical (depth-dependent) non-dimensional eddy viscosity49

(that equals the dimensional eddy viscosity scaled on τ/f). Since the turbulence is practically50

confined to a near-surface ocean layer, it is reasonable to assume that below a certain depth h51

the eddy viscosity is equal to the molecular viscosity of sea water, normalised so that52

K(z) = 1 for z ≤ −h , (4)53

with K(z) > 0 for z ∈ (−h, 0] unconstrained, other than by a continuous dependence on z. The54

deflection angle from the wind direction at the surface is the argument of the complex vector55

ψ(0). For K ≡ 1 the unique solution to (1)-(2)-(3) is56

ψ(z) =
1

1 + i
e(1+i)z , z ≤ 0 ,57

with ψ(0) = 1√
2

e−i
π
4 corresponding to a deflection angle of π

4
(which we’ll denote below as 45o)58

to the right of the wind direction; this is the classical result of Ekman (1905).59

Let us now present the algorithm that we propose for the calculation of the deflection angle60

for general continuous depth-dependent eddy viscosities, the justification of the procedure being61

provided in the next section.62

1. Solve the Riccati equation63

q′(z) +
1

K(z)
q2(z) = 2i on (−h, 0) , (5)64

with ”initial” data65

q(−h) = 1 + i . (6)66

2. With q(0) computed in Step 1, the deflection angle is67

arg[ψ(0)] = −arg[q(0)] . (7)68

Note that the Riccati equation is essentially the only ordinary differential equation admitting69

a nonlinear superposition principle, a remarkable feature ensuring the existence of a symmetry70

group and leading to integrability conditions (see Cariñena and Ramos , 1999). However, equa-71

tion (5) is not, in general, solvable by quadratures (see the discussion in Hille, 1997) and in72

general one has to rely on numerical methods to obtain accurate approximations of the unique73

solution to the initial-value problem (5)-(6).74
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3 Methods75

Let us now justify the algorithm described in Section 2.76

Equation (1) simplifies on (−∞,−h) to77

ψ′′ = 2iψ , z < −h , (8)78

for which the general solution is a linear combination of the linearly-independent functions79

e±(1+i)z. If we denote by ψ± the solutions of (1) with80

ψ±(z) ∝ e±(1+i)z , z < −h , (9)81

then we have a fundamental system of solutions for (1). The asymptotic behaviour (3) thus82

ensures that the solution ψ to (1) satisfies83

ψ(z) = C ψ+(z) , z ≤ 0 , (10)84

for some complex constant C determined by the boundary condition (2). Differentiating (10)85

and evaluating the outcome and equation (10) at z = 0, we find86

ψ(0)ψ′+(0) = ψ+(0) , (11)87

taking (2) into account. It is known (see Constantin, 2020) that ψ(z) 6= 0 for all z ≤ 0.88

Consequently (10) yields ψ+(z) 6= 0 for all z ≤ 0 and C 6= 0, while from (10) and (11) we get89

C =
1

ψ′+(0)
=

ψ(0)

ψ+(0)
. (12)90

Now consider the function91

q(z) =
K(z)ψ′+(z)

ψ+(z)
, z ≤ 0 . (13)92

From (1) we obtain93

q′(z) +
q2(z)

K(z)
= 2i , z < 0 ,94

with95

q(z) = 1 + i , z ≤ −h ,96

due to (9). Consequently the restriction of the function q to [−h, 0] is the unique solution of97

the initial-value problem (5) and (6). On the other hand, (11)-(13) yield98

q(0) =
K(0)

ψ(0)
. (14)99

Since K(0) is real, relation (7) emerges. The proposed algorithm is therefore validated.100

Remark. The proposed algorithm also yields the horizontal velocity field. Indeed, using (10),101

integrating (13) and taking (11) and (14) into account, we get102

ψ(z) =
K(0)

q(0)
exp

{
−
∫ 0

z

q(s)

K(s)
ds
}
, z ∈ [−h, 0] . (15)103

On the other hand, (9), (10) and (12) yield104

ψ(z) =
ψ(−h)

ψ+(−h)
e(1+i)z = ψ(−h) e(1+i)(z+h) , z < −h ,105

and consequently106

ψ(z) =
K(0)

q(0)
exp

{
(1 + i)(z + h)−

∫ 0

−h

q(s)

K(s)
ds
}
, z < −h . (16)107

since ψ(−h) can be computed from the formula (15). �108

3



4 Examples109

We now present some examples of solutions to the initial-value problem (5) and (6). Since110

K(z) = 1 for z ≤ −h, it suffices to specify a continuous function K : [−h, 0] → (0,∞) with111

K(−h) = 1.112

4.1 The quadratic profile113

For the quadratic polynomial114

K(z) = [a(z + h) + 1]2 , z ∈ [−h, 0] ,115

the substitution Q(z) = q(z)/(a(z+h)+1) transforms (5) and (6) to the equivalent initial-value116

problem117

Q′(z) =
2i− aQ(z)−Q2(z)

a(z + h) + 1
, z ∈ (−h, 0) , (17)118

Q(−h) = 1 + i . (18)119
120

To ensure the regularity of Q(z) the values of a and h have to satisfy ah > −1. The differential121

equation (17) is separable and can be straightforwardly integrated, yielding122

ln

(
Q(z) + a+ζ

2

Q(z) + a−ζ
2

)
= ln

(
1 + i + a+ζ

2

1 + i + a−ζ
2

)
+

1

aζ
ln[a(z + h) + 1] , z ∈ [−h, 0] ,123

where124

ζ =
4
√
a4 + 64 exp

[
i

2
arctan

( 8

a2

)]
.125

Since q(0) = (1− ah)Q(0), an explicit formula for the deflection angle (7) emerges, dependent126

on the parameters a and h.127

4.2 The 4/3 power-law profile128

For129

K(z) = [3(z + h) + 1]
4
3 , z ∈ [−h, 0] ,130

the general solution of (5) is131

q(z) = −S(z)− (1− i)S2(z) tan
(

(1− i)S(z) + C
)
, z ∈ [−h, 0] ,132

where S(z) = [3(z + h) + 1]
1
3 , while C is a complex constant determined by the boundary133

condition (6). Using the complex identity arctan(z) = 1
2i

tan
(
i−z
i+z

)
we find134

C = −1 + i + i
2

ln
(
1−i
i−5

)
.135

4.3 The linear profile136

Madsen (1977) investigated an infinitely deep ocean with an eddy viscosity that increases137

linearly with depth from a value of zero at the free surface. For µ > 0, the eddy viscosity138

profile139

K(z) = µ+
µ− 1

h
z , z ∈ [−h, 0] ,140
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equals µ at the surface and decreases/increases with depth, according to whether µ > 1 or141

µ ∈ (0, 1), respectively. In this case the general solution of (5) is available in terms of the142

Bessel functions J1 and Y1 (see Polyanin and Zaitsev , 2013).143

q(z) =
2ih

µ− 1

Q(x)

Q′(x)
with Q(x) =

√
x
[
C1J1

(
ζ
√
x
)

+ C2Y1
(
ζ,
√
x
)]

144

where C1 and C2 are chosen such that their ratio satisfies the boundary condition (6), while145

ζ = 2h(1− i)/(|µ−1|) and x = µ+ z(µ−1)/h ranges between 1 and µ. Note that (6) becomes:146

1 + ζ

(
C1J

′
1(ζ) + C2Y

′
1(ζ)

C1J1(ζ) + C2Y1(ζ)
− 1

)
= 0147

which determines the ratio C1/C2 purely in terms of ζ; notably the solution q(z) depends148

only on this ratio.149

5 Results150

In this section, we examine how the surface deflection angle θ0 varies with the value of the151

surface eddy viscosity K(0) and the depth h of the upper layer of variable eddy viscosity, for152

the three examples provided in the previous section. To gain further insight, we also compare153

the deflection angle obtained from the associated Riccati equation with the case of constant154

eddy viscosity in the upper layer that was examined previously in Dritschel et al. (2020).155

The analytical expressions obtained for the three examples above were checked numerically156

by directly integrating the Ricatti equation (5) (a simple Python code, entitled ekman sipral.py157

which may be adapted for any continuousK(z) is available on zenodo: 10.5281/zenodo.3904295).158

In most cases the exact and numerical expressions for q(z) agree within around 10−7 (similar159

to the tolerance of the ODE integrator used). Exceptions occur only when K(0)� 1, i.e. when160

(5) is nearly singular at z = 0. In the singular case K(z) ∼ −γz as z → 0 (here γ > 0), one161

can show that to leading order q(z) ∼ −γ/ ln(−z) as z → 0 a dependence which is difficult to162

accurately capture by the ODE integrator without modifying the equation. As this is not an163

important case, no effort was made to do this.164

We start with the 4/3 power law discussed in section 4.2 since this case depends only on a165

single parameter, h, and is therefore simplest. The surface deflection angle θ0 is plotted as a166

function of h in figure 1 (note the log scaling of h). For h� 1, as expected θ0 ≈ 45◦ since in this167

case K ≈ 1 throughout the shallow upper layer. The largest deflection occurs for h ≈ 2.463,168

for which θ0 ≈ 62.22654◦. At larger depths, the surface deflection angle decreases again, slowly169

approaching 45◦ in the limit h→∞ (which also corresponds to infinite surface eddy viscosity).170

One can show that tan θ0 ≈ 1 + (3h)−1/3 for h� 1.171

Next we consider the upper-layer eddy viscosity K(z) = [a(z + h) + 1]2 whose analytical172

solution is provided in section 4.1. This now depends on two parameters, a and h. To facilitate173

comparisons with other profiles of K(z), we use the surface eddy viscosity K(0) = (ah+1)2 ≡ µ174

as the control parameter instead of a, alongside the upper layer depth h. The dependence of the175

surface deflection angle θ0 on µ and h is shown in figure 2 over an extensive range of parameter176

values. First of all, when µ = 1, K(z) = 1 for all z and θ0 = 45◦; this is the constant viscosity177

case examined originally by Ekman (1905). When µ > 1, the deflection angle in increased,178

while when µ < 1, it is decreased. The biggest change in θ0 depends on h, favouring small h179

when µ� 1 and large h when µ� 1. In fact, the biggest change occurs roughly on the curve180

h = 0.7µ1/4, found by a least squares fit to log10 h = c0 + c1 log10 µ. While the fit is not perfect,181

the variance in log10 h is only 0.0175 over the range of log10 µ considered.182

We next examine the linear upper-layer eddy viscosity profile K(z) = (µ− 1)(z + h)/h+ 1183

introduced in section 4.3. The dependence of θ0 on µ and h is shown in figure 3 over the184
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Figure 1: Surface deflection angle θ0 (in degrees) as a function of the non-dimensional depth h

of the upper layer when K(z) = [3(z + h) + 1]
4
3 there and K(z) = 1 below.
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Figure 2: Surface deflection angle θ0 (in degrees) as a function of the surface eddy viscosity µ
and non-dimensional depth h of the upper layer when K(z) = [(

√
µ− 1)(z + h)/h+ 1]2 there.
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Figure 3: Surface deflection angle θ0 (in degrees) as a function of the surface eddy viscosity µ
and non-dimensional depth h of the upper layer when K(z) = (µ− 1)(z + h)/h+ 1 there.

same range of parameter values considered in figure 2. The results are broadly similar, with a185

decrease in θ0 from 45◦ for µ < 1 and an increase for µ > 1. For µ > 1, the results compare186

surprisingly closely, but this is not true for µ < 1, where now the biggest change in θ0 occurs187

for larger h, and the same overall change is spread over a larger range of h.188

6 Discussion189

The theoretical results derived in this work based on the transformation of the second order190

linear differential equation to the associated nonlinear first order Riccati equation can only191

be applied to oceanic observation when using a dimensional depth h (or z). As mentioned192

above the scale of z equals
√

(2τ/ρ)/f so for τ = 0.1Pa, ρ = 103Kg/m3 and f = 10−4s−1 a193

non-dimensional h = 1 corresponds to a dimensional depth of 100m. Accordingly, the limiting194

values of h = 10−2 and h = 102 in Figures 1, 2, and 3 correspond to dimensional depths of 1m195

and 104m, respectively.196

In conclusion it is instructive to compare the change in the deflection angle that occurs in the197

piecewise constant case (where K(z) = µ for z > −h and K(z) = 1 for z ≤ −h) when the value198

of µ varies. The discontinuity of K(z) at z = −h does not permit the use of the proposed Riccati199

equation algorithm as proposed above. However, a straightforward matching analysis similar200

to that used in Dritschel et al. (2020) yields the contour plot of the deflection angle shown in201

Figure 4. Notably, a smoothed profile of the eddy viscosity in which K(z) varies continuously202

near z = −h between the values of µ and 1 (i.e. K(z) varies as 1
2
(µ+1)+ 1

2
(µ−1) sin(π(z+h)/2ε)203

for −h− ε ≤ z ≤ −h+ ε with ε� 1 ) yields indistinguishable results. These results show that,204

compared to the uniform K(z) associated with µ = 1 in which case θ0 = 45o, the deflection205

angle decreases for µ ≤ 1 provided h is sufficiently small and increases for µ ≥ 1 provided h is206

sufficiently large. Clearly, a simple averaging of the eddy viscosities in the two layers yields an207

erroneous value of the deflection angle.208
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Figure 4: Surface deflection angle θ0 (in degrees) as a function of the upper-layer eddy viscosity
µ and non-dimensional depth h for a piece-wise-constant profile of K(z). Here K(z) = µ for
z > −h and K(z) = 1 for z ≤ −h.
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