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Abstract

When a tsunami wave comes from the ocean and propagates through the shelf, it is necessary to predict the maximum flooding

of the coast, the height of the tsunami on the coast, the speed of the tsunami front through the coast, and other characteristics.

A linear solution to this problem is unsatisfactory: it gives an infinite rate of coastal flooding, that is, the coast is flooded

instantly and without a frontal boundary. In this study, we propose a new solution in nonlinear theory to calculate these

tsunami characteristics. The obtained formulas show that the tsunami wave can be stopped on the shelf when approaching

the shore. For this, it is necessary to artificially raise several tens of bottom protrusions to the level of calm water. Thus, the

obtained solution allows to saving human lives and preventing material damage.

1



1 

 

 1 

On the problem of tsunami run-up to a flat shore 2 

 3 

Sergey A. Arsen'yev
1
 and Lev V. Eppelbaum

2
 4 

 
5 

1
Institute of the Physics of the Earth, Russian Academy of Sciences, Bolshaya Gruzinskaya 6 

St., Moscow 123995, Russia 7 

2
Department of Geophysics, Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 8 

6997801, Tel Aviv, Israel  9 

 10 

Key points: 11 

 A comparatively simple analytical solution to a nonlinear equation describing the tsunami 12 

run-up on a flat shore was found. 13 

 14 

 The solution found describes a clear boundary of the front of the tsunami running ashore 15 

at a finite speed. 16 

 17 

 Obtained solution indicates that rough shelf stops the tsunami wave by turbulence effect 18 

and it does not reach the coast 19 

20 
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Abstract 21 

When a tsunami wave comes from the ocean and propagates through the shelf, it is 22 

necessary to predict the maximum flooding of the coast, the height of the tsunami on the 23 

coast, the speed of the tsunami front through the coast, and other characteristics. A linear 24 

solution to this problem is unsatisfactory: it gives an infinite rate of coastal flooding, that 25 

is, the coast is flooded instantly and without a frontal boundary. In this study, we propose a 26 

new solution in nonlinear theory to calculate these tsunami characteristics. The obtained 27 

formulas show that the tsunami wave can be stopped on the shelf when approaching the 28 

shore. For this, it is necessary to artificially raise several tens of bottom protrusions to the 29 

level of calm water. Thus, the obtained solution allows to saving human lives and 30 

preventing material damage. 31 

 32 

 33 

Plain Language Summary  34 

The problem of reducing the impact force of tsunami, and consequently the reduction in 35 

the number of human casualties and the decrease of the level of destruction, is very 36 

significant. However, in order to understand the interaction of the tsunami with the shelf 37 

zone and the coastline, a convenient applied physical-geodynamic model of this 38 

phenomenon must be created. We found that the linear model is completely unsuitable for 39 

describing this complex natural phenomenon. On the basis of the many years of research 40 

experience in this area, we have found a nonlinear, relatively simple, but effective model 41 

of tsunami behavior near the coastline. Based on this model, a proposed solution allows to 42 

stop (or considerably weaken) the effect of the impending tsunami wave. 43 

 44 

45 
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Introduction 46 

Tsunami are long gravitational waves in the ocean occurring as a result of a short-term 47 

change in its volume, that is, due to large-scale disturbances in the ocean surface, its 48 

shores, or the bottom (Arsen'yev et al., 1998; Levin and Nosov, 2016; Rabinovich, 2020. 49 

Waves with a length  exceeding the depth of the ocean H are called long waves  > . 50 

Therefore, tsunami cover the entire ocean's thickness (in the concrete region) and can 51 

spread over transoceanic distances, that is, they are a planetary phenomenon like 52 

astronomical tides. Typical tsunami wave periods are from 1 minute to several hours, and 53 

characteristic wavelengths are from 1 km to 100 km. Therefore, when approaching the 54 

shelf, tsunami waves can nonlinearly interact with the shallow components of the ocean 55 

tide, which can weaken or strengthen the tsunami wave Arsen'yev et al., 1993). 56 

  The tsunami phenomenon is a natural disaster, which has been intensively studied 57 

since the second half of the 20th century. Modern tsunami studies can be tentatively 58 

divided into three groups.  59 

First, tsunami sources in the oceans and seas are being studied e.g., Beisel et al., 60 

2009; Wendt et al., 2009; Allgeyer and Cummins, 2014; Lay et al., 2016. Here, the waves 61 

are often calculated using the linear theory of potential, non-eddy motions of an ideal 62 

frictionless fluid under the influence of gravity field Levin and Nosov, 2016. Such 63 

models are called non-hydrostatic, since they do not use shallow water equations and the 64 

hydrostatic law, which are valid for the long waves. In other models, tsunami waves are 65 

considered as long waves already at the source of excitement, therefore they are called as 66 

hydrostatic models Garagash and Lobkovsky, 2006; Lobkovsky et al., 2019. 67 

 The second group of investigators studies the propagation of tsunami waves in the 68 

ocean e.g., Beisel et al., 2009; Allgeyer, Cummins, 2014; Lay et al., 2016; Levin and 69 

Nosov, 2016; Wang et al., 2017. Here the waves are considered as long ones, the 70 

hydrostatic models of the theory of shallow water are used, and the process itself 71 

substantially depends on the depth of the ocean (Pelinovsky, 1996). 72 

In the third group of works, the process of tsunami propagation through the 73 

continental shelf and coastal shallows is studied, including the process of transformation 74 

and destruction of waves upon running out to the land e.g., Carrier and Greenspan, 1958; 75 

Arsen'yev, 1991; Arsen'yev et al., 1993; Didenkulova and Pelinovsky, 2000; Choi et al., 76 

2006; Namekar et al., 2009; Satake et al., 2013; Montoya and Lynett, 2018.  77 

This work belongs to the third group of studies. They are the most difficult, since is 78 

based on solving nonlinear equations. When a tsunami enters shallow water, nonlinear 79 
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accelerations become significant, the wave height increases, bottom friction intensifies, 80 

and the motion becomes very turbulent. On the other hand, the stage of tsunami landfall is 81 

the most destructive, and its study is most important from both from scientific and practical 82 

points of view. 83 

The problem of tsunami approaching the shore is often solved at present with the 84 

help of the Carrier-Greenspan transformation (Carrier and Greenspan, 1958). It allows to 85 

reduce the system of nonlinear equations of hydrodynamics to a linear wave equation with 86 

respect to the wave function for a given slope of the coast α. In this paper, we solve the 87 

problem of the tsunami wave run-up over a flat plain, considering the coastal slope absent 88 

(α = 0). The area of flooding and the range of tsunami propagation inside into the land are 89 

in this case maximal. Thus, the found solutions to the problem, are of interest for numerous 90 

experts engaged in building construction, environment and safety in the coastal zone of the 91 

oceans and seas Arsen'yev et al., 1998; Satake et al., 2013. 92 

 93 

Statement of problem 94 

We choose the origin of coordinates at the sea edge of the shelf x = 0. The x axis is directed 95 

along the wave propagation direction perpendicular to the coast, the y axis is perpendicular 96 

to the x axis left), the z axis is down vertically Figures 1 and 2. The letter M denotes the 97 

width of the shelf. Let us will select the level z = 0 at the surface of calm water, the letter  98 

denotes the wave disturbance of the sea surface, and positive value  is counted down from 99 

the unperturbed level of z = 0 Figure 2. The letter H and r denote the average depth of the 100 

shelf and the height of the protrusions of the roughness at the bottom, respectively. Thus, 101 

the total depth of the shelf is value of .rH   102 

 We will use the equations of shallow water theory. They are obtained from the 103 

equations of geophysical hydrodynamics by integration along the z axis in the range from 104 

z  to rHz   Arsen'yev, 1991; Røed, 2014. Assuming that there are no changes 105 

along the y axis 












0

y
, we write the initial equations in the form 106 

                                                    ,0









z

w

x

u
                                                      1107 

 
z

z
x

R

x

p

x
g

z

u
w

x

u
u

t

u a
































 1
.                              2 108 

Here u is the component of the flow velocity in the wave along the x axis, w is the velocity 109 

component along the z axis, p
a
 is the atmospheric pressure at the water surface, g is the 110 
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gravity acceleration, z
xR  is the vertical component of the turbulent Reynolds stresses 111 

(Reynolds, 1894), and  is the density of water. 112 

Estimates show that when a wave comes out in shallow water, the turbulent friction 113 

z

R z
x




 is two to three orders of magnitude greater than the nonlinear accelerations and the 114 

non-stationary term. Therefore, the equation 2 can be written as 115 

    
x

p

z

z
x

R

x
g

a

















 1
   .                                                               3  116 

It is necessary to add vertical boundary conditions to equations 1 and 3 117 

,0,,
x

Rz
x

R
x

u
t

wz 











                                             4 118 

.,0, H
x

Rz
x

RwurHz                                                5 119 

Integrating equations 1 and 3 along the vertical axis from z to rHz   it is 120 

the real depth, taking into account the protrusions of the roughness at the bottom), we 121 

obtain 122 

  ,0;
x

RH
x

R
x

prH

x
rHg

x

S

t

a












 






















                     6 123 

and when integrating, we took into account the boundary conditions 4 and 5. 124 

 In equation 6, Rx
0
 is the turbulent stress on the surface of the water caused by the 125 

action of the wind. This stress, as well as the atmospheric pressure gradient xa  , 126 

should be taken into account only when studying the processes of occurrence of storm 127 

surges and meteorological tsunamis Arsen'yev and Shelkovnikov, 2010; Rabinovich, 128 

2020. In our case, when studying the tsunami wave approach to the shore, these terms can 129 

be neglected. We associate the water turbulent friction on the bottom Rx
H
 with the total 130 

flow S by a linear law 131 

 








rH
dzuS

rH

A
T

S
T

H
x

R



 .,
2

3
,                                 7 132 

Here T is the friction frequency, and A is the shear vertical turbulent viscosity 133 

coefficient Arsen'yev and Shelkovnikov, 2010.  134 

Thus, equations 6 can be written as 135 
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  .; S
x

rHg
x

S

t
T




















                                        8 136 

Two equations 8 can easily be reduced to one nonlinear equation of parabolic type 137 

with respect to the level  138 

  ,





















x
K

xt





                                                   9 139 

in which the wave diffusion coefficient 140 

 
 























T

g

T

rHg
K                                              10   141 

depends on an unknown quantity .  142 

Similar equations were studied in static physics (Boltzmann, 2011, in the theory of 143 

filtration  Boussinesq, 1904; Polubarinova-Kochina, 1971; Barenblatt, 1996, in the theory 144 

of atomic explosions Zeldovich and Companaetz, 1950; Tikhonov and Samarskiy, 1963, 145 

in biomedical engineering Kardashov et al., 1999; 2000, and in the theory of tornadoes 146 

(Arsen'yev et al., 2010. To solve them, numerical methods Tikhonov and Samarskiy, 147 

1963 and approximate analytical methods Zeldovich and Companaetz, 1950; 148 

Polubarinova-Kochina, 1971; Barenblatt, 1996) have been developed. In this paper, we 149 

propose an elegant automodel solution to the problem, which describes the phenomenon 150 

under study with sufficient for practice accuracy. 151 

 152 

Task solution 153 

We first consider the simple case of a deep shelf, when  rH . Then equation (9) can 154 

be written as 155 

  
2

2

x
L

K
t 






 
.                                                    (11) 156 

This is a classical parabolic equation of the type of the diffusion equation (or heat 157 

conduction) (Eppelbaum et al., 2014), which describes the process of tsunami wave 158 

dissipation on the shelf. It has the character of turbulent spreading with a diffusion 159 

coefficient 160 
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   

A

nHg

T

nHg
L

K
3

3131 






 .                                    (12) 161 

Here Hrn   is the relative roughness of the ocean bottom. This process can be 162 

understood by solving equation (11) with corresponding initial (13) and boundary 163 

conditions (14): 164 

  by t  0,     = 0     for all x,                                                  (13) 165 

 by t > 0,     = 0 ;  by x = 0,   = 0    by x  .                                   (14) 166 

As a result, we will be able to determine the horizontal emission of the tsunami wave 167 

to the shore, that is, the maximum range of tsunami propagation inland. We have 168 

 





























t
L

K

x

2
1

0
 ,                                              (15) 169 

where 170 

 





d
t

L
K

x
 

























0

2exp
2

2
                                      (16) 171 

is the probability integral in which the upper limit
  2/1

2 tK

x

l

 .  172 

The thickness of the coastal strip flooded by the tsunami wave, i.e., a surge , can be 173 

found from the condition of a sufficiently noticeable decrease in the level  when moving 174 

away from the beginning x = 0 175 

           ,
0

01.0
20




 















t
L

K
erfc                                       (17) 176 

where 177 

 

























t
L

K

x

t
L

K

x
erfc

2
1

2
                                          (18) 178 

is the additional probability integral.  179 

The numerical value 0.01 is reached by the erfc function when the value of its 180 

argument   2/1
4


 tK L is equal to two. Hence, 181 

  
 

,
1

44

T

tnHg
t

L
K





                                         (19) 182 

or 183 
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 

.
3

313
4

A

tnHg 
                                                 (20) 184 

It follows from equation (20) that the width of the flood zone  does not depend on 185 

the amplitude of the tsunami wave 0 falling to the shelf zone, does not depend on the 186 

width of the shelf M, but very strongly depends on the depth of the shelf H, the relative 187 

roughness 
H

r
n   and time t of tsunami action. Process of turbulence destroys the tsunami 188 

wave, therefore, with an increase in the shear turbulent viscosity coefficient A, the width of 189 

the flood zone  decreases. 190 

For A = 10 m
2
/s, n = 0 (smooth bottom) and H = 10 m, from formula (20) follows 191 

that for t = 1 hour,  = 4300 m. With a shelf width of M = 2000 m, the coast will be 192 

flooded by 2300 m. However, with a very rough bottom (reefs, rocky ledges at the bottom) 193 

when n = 0.5, we have for the same depth, time and turbulent viscosity from formula (20) 194 

 = 1500 m, i.e. a wave the tsunami completely attenuates on the shelf with a width of M = 195 

2000 m. We see that the tsunami attack can be stopped by creating flood barriers or berms 196 

on the shelf with a height of r = H. In this case, n = 1.1 - n = 0 and from formula (12) 197 

follows that KL = 0. Equation (16) gives 198 

 1

0

2exp
2









 


d                                                 (21) 199 

and from solution of equation (15) we get  = 0. Thus, the tsunami run-up stops on the 200 

shelf, and the coast remains dry (intact). 201 

 Note that the obtained solution is approximate and has two fundamental 202 

disadvantages. First, the width of the flood zone, strictly speaking, is infinite. And we cut it 203 

off artificially, using condition (17). Secondly, water spreads through the shelf and shore 204 

with infinite speed, which is unrealistic one. These shortcomings belong to any solution of 205 

a degenerate linear parabolic equation (11). However, as we will see now, they are absent 206 

in the solution of the nonlinear equation 9. 207 

Let us introduce the length scale rHh  , time scale AhT 2 , dimensionless 208 

coordinate hx  and dimensionless time Tt . Then the dimensionless diffusion 209 

coefficient 210 

 
,

23

13
G

A

ehg

A

K



                                                 22 211 
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where e =  /h is the dimensionless level disturbance, 
2

3

3A

gh
G   

 is some parameter (the 212 

authors of the paper suggest to call it as 'Galileo's number'), and e1  is the relative 213 

water surface level.  214 

Then equation (9) takes the form 215 

 .





























G                                                  23 216 

Its solution  217 

   ,1
0

, 



 cby

c









                                         24 218 

              .0,  cby                                                25 219 

It is easy to verify that it satisfies not only equation 23, but the boundary condition 220 

at the beginning of coordinates x = 0,  = 0 and the initial condition  = t = 0: 221 

     .00,,
0

,0                                                26           222 

Here 0 is the initial constant value. For example, for 0 = 1, we have 0 = 0, i.e., there is 223 

no initial perturbation of the water surface level. 224 

 Indeed, substituting the solution 24 into equation 23, we obtain с = G 0
1/2

  225 

and 226 

 
 

.
3

0



hg

A

h
с                                                     27                                                                                                         227 

The coordinates of the moving point x* of the water edge, that is the nose of the 228 

tsunami wave running onto the shore (where 0,1   ), is determined from the equation 229 

 ,
*

1
0

1 














с
                                                    28 230 

which is equivalent to the equation 231 

 .*
0


с

с                                                        29 232 

From this follows that ,
**

dt

dx

h

T

d

d
c 




 or in dimensional form 233 
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 234 

  
 

.
3

0* 











rHg
c

T

h

td

xd
V                                      30 235 

Tsunami nose coordinate (water edge nx *  moves according to the law 236 

 
 

.
3

*
0

0

2 














rHg

A

h
tx                                       31 237 

Discussion 238 

Solutions 24 - 30 describe simple, but actual physical-geodynamical model of tsunami 239 

wave running onto a coastal plain with a finite velocity of 30. It differs from the 240 

Lagrange velocity   21
gH of long waves, since roughness r, initial perturbation of the 241 

water level 0 and turbulent friction are taken into account here. It can be seen from 242 

formula (27 that a tsunami wave with 0 = 0 can be eliminated by creating roughness 243 

protrusions with a height of 0,  hHr  at the bottom of the shelf. However, in contrast 244 

to the linear case, the tsunami wave is not just scattered over the shelf, but stops (or greatly 245 

weaken) because equation (30) indicates that its speed V vanishes. 246 

Figure 3 shows the dependence of the total depth  0zHD  on the distance x 247 

for three time instants. Let us we stand on the shore of a beach with a width of M = 300 m 248 

near the water edge at a point x = 300 m from the beginning of coordinates, which is 249 

located on the sea edge of this beach Fig. 1. Then the wave will begin to cover us, 250 

starting at the time t = 166 s, after the arrival of the wave from the origin x = 0. At time t = 251 

387 s, the wave will lift us to a height of 2.21 m, and at time t = 664 s – to a height of 5 m. 252 

If after that, the flow of water to the origin ceases,   1s664;0   x , then the water 253 

that flooded the coastal plain on it will remain until the evaporation and infiltration into the 254 

soil will drain this coast.  255 

The calculations shown in Fig. 3 are done for 0 = 1, 0 = 0, depth h = 1 m and 256 

velocity V = 1.8 m/s. Analyzing Fig. 3, we see that the region covered by the tsunami 257 

*xn  is finite and moves at a speed V described in equation 30. Let us compare the 258 

size of the flood zone  according to linear  and nonlinear theory n, setting Н = 10 m, 0 259 

= 1, 0 = 0 and r = 0 smooth bottom. According to the aforementioned nonlinear (more 260 

exact) theory, V = 5.71 m/s, and for 1 hour tsunami will flood an area of size n = 20,500 261 
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m. The linear theory presented in equation 20 gives for A = 10 m
2
/s the size of  = 4,300 262 

m, that is 4.7 times smaller. 263 

For a very rough bottom, when H = 10 m, r = 5 m, h = 5 m, n = 0.5, we have V = 4 264 

m/s and the nonlinear theory gives n = 14,500 m. The linear theory at A = 10 m
2
/s gives in 265 

this case  = 1,530 m, that is 9.4 times less. As you can see, the linear approximation gives 266 

great errors. The fact is that the diffusion coefficient K in the equation 9 stands near the 267 

highest derivative. Therefore, the solutions of this equation substantially depend on the 268 

value of K. 269 

The solution of equation 24 also makes it easy to reconstruct the dependence of 270 

the depth D and the average flow velocity hSU  on time t at various fixed distances x 271 

from the source. Corresponding nomograms and graphs can be used for engineering 272 

assessments in the construction of structures that will protect especially important objects 273 

(for example, nuclear and thermal power plants, chemical plants, airfields and others 274 

Arsen'yev et al., 1998)) located nearly the shores of the seas and oceans from the tsunami 275 

phenomenon. 276 

 277 

Conclusions 278 

Let us state the main results obtained in this paper. Based on the nonlinear theory of 279 

shallow water, taking into account turbulent friction on a rough bottom, the theory of 280 

tsunami roll-up to a flat shore is constructed. Exact solutions of linearized and nonlinear 281 

equations are found. It is shown that the use of solutions of linearized equations leads to 282 

large errors. The obtained formulas make it easy to calculate the advancement of the water 283 

front inland, the height of flooding of the shelf and shore at a given point, the tsunami 284 

wave propagation range, the average current velocity in the wave, and other characteristics 285 

necessary for engineering calculations. It was established that the speed of the tsunami 286 

wave can be turned to zero, that is, the movement of the tsunami wave can be stopped 287 

when approaching the coast, on the shelf. To realize this, it is necessary to increase the 288 

height of the roughness protrusions (possibly using artificial adjustable structures) on the 289 

bottom of the shelf r to the level of undisturbed depth of the shelf H. The strong turbulent 290 

friction about the bottom that occurs destroys the tsunami wave on the shelf and the 291 

tsunami wave does not reach the shore.  292 

 293 

 294 
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Figure 1. Horizontal coordinate axes and designations 388 
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391 
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Figure 2. Vertical section of the water flow and corresponding designations 393 
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 395 

Figure 3. Dependence of the total depth of water flow D on the distance x at various time 396 

intervals. Graph t1  = 166 s, water edge is located at x = 300 m. Graph t2  = 387 s, 397 

water edge is located at x = 700 m. Graph t3  = 664 s, water edge is located at x = 1200 398 

m. 399 
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