
P
os

te
d

on
1

D
ec

20
22

—
C

C
-B

Y
-N

C
-N

D
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
50

35
9
3/

v
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Simulation of the present and future projection of permafrost on the

Qinghai-Tibet Plateau with statistical and machine learning models

jie ni1,1,1, Tonghua Wu2,2,2, Xiaofan Zhu2,2,2, Guojie Hu2,2,2, Defu Zou3,3,3, Xiaodong Wu4,4,4,
Ren Li5,5,5, Changwei Xie6,6,6, Yongping Qiao3,3,3, Junmin Hao2,2,2, and Cheng Yang2,2,2

1Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
2Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences
3Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of
Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, CAS
4Chinese Academy of Sciences (CAS)
5CRS-QTP, Cold and Arid Regions Environmental and Engineering Research Institute
6Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI),
CAS

December 1, 2022

Abstract

The comprehensive understanding of the occurred changes of permafrost, including the changes of mean annual ground temper-

ature (MAGT) and active layer thickness (ALT), on the Qinghai-Tibet Plateau (QTP) is critical to project permafrost changes

due to climate change. Here, we use statistical and machine learning (ML) modeling approaches to simulate the present and

future changes of MAGT and ALT in the permafrost regions of the QTP. The results show that the combination of statistical

and ML method is reliable to simulate the MAGT and ALT, with the root-mean-square error of 0.53°C and 0.69 m for the

MAGT and ALT, respectively. The results show that the present (2000?2015) permafrost area on the QTP is 1.04 x 106 km2

(0.80?1.28 x 106 km2), and the average MAGT and ALT are -1.35 +- 0.42degC and 2.3 +- 0.60 m, respectively. According to

the classification system of permafrost stability, 37.3% of the QTP permafrost is suffering from the risk of disappearance. In

the future (2061?2080), the near-surface permafrost area will shrink significantly under different Representative Concentration

Pathway scenarios (RCPs). It is predicted that the permafrost area will be reduced to 42% of the present area under RCP8.5.

Overall, the future changes of MAGT and ALT are pronounced and region-specific. As a result, the combined statistical method

with ML requires less parameters and input variables for simulation permafrost thermal regimes and could present an efficient

way to figure out the response of permafrost to climatic changes on the QTP.
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Key Points:

• The combined statistical method with machine learning is efficient to obtain the thermal regime of
permafrost on the QTP.

• The present permafrost area on the QTP is ˜1.04 × 106 km2, and the average MAGT and ALT are
-1.35 ± 0.42°C and 2.3 ± 0.60 m, respectively.

• The future changes of permafrost are projected to be pronounced due to climate change, but region-
specific.

Abstract

The comprehensive understanding of the occurred changes of permafrost, including the changes of mean
annual ground temperature (MAGT) and active layer thickness (ALT), on the Qinghai-Tibet Plateau (QTP)
is critical to project permafrost changes due to climate change. Here, we use statistical and machine learning
(ML) modeling approaches to simulate the present and future changes of MAGT and ALT in the permafrost
regions of the QTP. The results show that the combination of statistical and ML method is reliable to
simulate the MAGT and ALT, with the root-mean-square error of 0.53°C and 0.69 m for the MAGT and
ALT, respectively. The results show that the present (2000-2015) permafrost area on the QTP is 1.04 x
106km2 (0.80-1.28 x 106km2), and the average MAGT and ALT are -1.35 +- 0.42degC and 2.3 +- 0.60 m,
respectively. According to the classification system of permafrost stability, 37.3% of the QTP permafrost
is suffering from the risk of disappearance. In the future (2061-2080), the near-surface permafrost area will
shrink significantly under different Representative Concentration Pathway scenarios (RCPs). It is predicted
that the permafrost area will be reduced to 42% of the present area under RCP8.5. Overall, the future changes
of MAGT and ALT are pronounced and region-specific. As a result, the combined statistical method with
ML requires less parameters and input variables for simulation permafrost thermal regimes and could present
an efficient way to figure out the response of permafrost to climatic changes on the QTP.

Keywords: permafrost; mean annual ground temperature; active layer; climate change; Qinghai-Tibet
Plateau

1. Introduction

Frozen ground is an important component of the cryosphere, which exerts strong influences on regional
ecology, hydrology and infrastructure engineering (Westermann et al., 2015; Wang et al., 2018a). The
Qinghai-Tibet Plateau (QTP) is underlain by typical high-altitude permafrost region, which is undergoing
more dramatic climatic warming than its surrounding regions (Wang et al., 2019a). A growing number
of studies have reported the present status and predicted degradation of permafrost under various global
warming scenarios (Pang et al., 2010, 2012; Zhang and Wu, 2012a; Guo and Wang, 2017; Xu et al., 2017a;
Wang et al., 2018a). The degradation of permafrost may trigger the release of organic carbon into the
atmosphere (Cheng and Wu 2007; Wu et al., 2017a; Chang et al., 2018; Wang et al., 2018b; Ran et al.,
2018). It is also a potential threat to engineering construction and maintenance. However, most of these
studies are based on linear statistical models and equilibrium models, and mainly focused on identifying the
extent of permafrost, while researches on the present and future change of ground thermal regimes (including:
the mean annual ground temperature, MAGT, and the active layer thickness, ALT) are relatively rare (Zhang
et al., 2012a; Wang et al., 2019a). The changes of MAGT and ALT could affect the ecosystem of the QTP
by altering the ground ice evolution, hydrological processes, vegetation dynamics and carbon cycling, etc.
(Yang et al., 2010a; Wu et al., 2016; Niu et al., 2019; Hu et al., 2020). Therefore, it is of great importance
to investigate present and future changes of the MAGT and ALT in the permafrost region (Qin et al., 2017;
Zhang et al., 2018).

Permafrost is a thermally-defined subsurface phenomenon (Westermann et al 2015). Satellite sensors could
obtain limited surface information, and only portion of the microwave remote sensing could penetrate several
centimetres underground (Zhao et al., 2011; Michaelides et al., 2018; Qu et al., 2019). In general, it is
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difficult to use remote sensing to directly obtain information on changes in the physical state of permafrost
(Yang et al., 2019). The current research on permafrost thermal regime is mostly focus on either in situ
observing or modeling using atmospheric circulation models (Westermann et al., 2015). Most of the existing
modeling frameworks require ground-based measurements as model inputs, while the in situ observations of
permafrost are relatively sparse and highly non-uniform in cold regions. The long-term and continuous in
situ observation sites for permafrost on the QTP are mostly located along the Qinghai-Tibet Highway and
Railway, and other regions are less well distributed (Hu et al., 2015; Qin et al., 2017; Zheng et al., 2019).
The absence of observation data would greatly weakens the accuracy of simulation results. Therefore, it is
challenging to select reliable modeling approaches with limited data to obtain the occurrence of permafrost
and its projection due to climate change.

At present, the simulation studies on the ALT and soil thermal state of the QTP fall into two categories,
including equilibrium models and mechanistic transient models. (Riseborough et al., 2008; Qin et al., 2017;
Aalto et al., 2018). The most commonly used equilibrium models include Stefan formula (Zhang and Wu
2012a; Xu et al., 2017a), Kudryavtsev formula (Pang et al., 2009; Wang et al., 2020a), the N factor (Nan et
al., 2012), and the Temperature at the Top of the Permafrost model (TTOP) (Zou et al., 2017). The form
of the equilibrium model is relatively simple and requires fewer driving data for input (Riseborough et al.,
2008; Pang et al., 2009). However, this type of model tend to show poor portability. In contrast, mechanistic
transient models consider more details of the hydrothermal exchange processes between the atmosphere and
ground. Examples of this model include the Community Land Model (CLM; Oleson et al., 2010; Fang et
al., 2016; Chen et al., 2017), Noah (Gao et al., 2015; Chen et al., 2015), the Geomorphology-based Eco-
hydrological Model (GBEHM; Zheng et al., 2019), the SHAW model (Guo et al., 2011; Liu et al., 2013), and
the CoupModel (Zhang et al., 2012b; Hu et al., 2013). Nevertheless, the processes of these models are complex
and often insufficiently account for the hydrothermal dynamics, with the understanding of the soil physical
mechanisms increase, the parameterization processes will become more complex (Harris et al., 2009; Hu et
al., 2015; Guo and Wang, 2016). In addition to the transient models mentioned above, in recent years, the
fine-scale tightly coupled hydro-thermal modeling of permafrost has also made great progress (e.g., models
like ATS, Jafarov et al., 2018; and SUTRA, Walvoord et al., 2019, etc.), These models are typically based
on a multidimensional solution to address fully coupled surface/subsurface permafrost thermal hydrology,
which have played an important role to study the permafrost of local scale and microtopography (Painter et
al., 2016).

Physics-based mechanistic models are currently the popular methods to study the permafrost, and the simu-
lation results can show high accuracy. However, even with significant improvements in computer technology
and algorithm simulation (Westermann et al., 2016), the current modeling still exists a trade-off between
modeling resolution and size of the geographical domain (Etzelmuller, 2013). Especially in the case of lack
of data and insufficient computing resources, the extensive application of physics-based mechanistic models
would be limited. Whereas, the combined statistical method with machine learning (ML) can make up these
deficiencies. In recent years, their great power in permafrost modeling has been confirmed (Xu et al., 2017b;
Chadburn et al., 2017; Aalto et al., 2018). The main purpose of statistical and ML model is to identify
the relationship between a dependent variable and one or more explanatory variables (Wheeler et al., 2013).
They can easily explain environmental conditions related to topography and land cover, whereas these factors
may be difficult to express with physical parameters (Etzelmuller, 2013). Due to the good coupling between
air temperature (often characterized by mean annual air temperature or cumulative temperature sums) and
ground thermal regime (Chadburn et al., 2017; Aalto et al., 2018), the subsurface (<10-20 m) soil thermal
conditions respond well to climate change at the decadal scale (Aalto et al., 2018). In addition, precipitation
type (e.g., snow, rain and sleet) and local environmental predictors (e.g., topography, underlying surface
condition and soil texture condition) have great impacts on soil hydrothermal dynamics and the surface
radiation budget (Lee et al., 2013; Zhu et al., 2019).

Therefore, in this study, we employed statistical and ML methods to investigate the MAGT and ALT across
the QTP. The objective is to verify the applicability of the combined method on the QTP and quantitatively
assess the present and future status of QTP permafrost. Firstly, we identified the critical factors which
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determining the occurrence of permafrost. Secondly, we used the combined modeling approaches integrated
with field observation data, meteorological data and geospatial environmental predictors to calculate the
present MAGT and ALT. Thirdly, the present results were benchmarked against in situ measurements of
ALT and ground temperatures. Finally, the optimal modeling framework was used to predict future MAGT
and ALT forced by different RCPs. The projection of the MAGT and ALT can serve as a useful reference and
provide important information for the study of climate change, hydrology, ecology, and geohazards resulted
from permafrost degradation on the QTP.

2. Data and Methods

2.1. Data sources

1) Ground temperature data

The MAGT is an important factor that reflects the thermal state of permafrost, and is defined as the ground
temperature at the zero annual amplitude depth (ZAA, i.e., the depth at which the annual temperature
variation < 0.1degC) (Qin, 2016). Due to the harsh environment of the QTP, some boreholes are measured
manually using a multimeter once each year (Qin et al., 2017). Most MAGTs, however, are not easily
accessible from the ZAA. In these cases, the temperature at or closest to 10 m below the ground surface
was used (Nan et al., 2002; Liu et al., 2017). All disturbed measurement sites (e.g., sites submerged by
the rising waters of a lake) were removed. Ultimately, 84 MAGT sites (Figure 1) were selected from both
field station observations (Cryosphere Research Station on the Qinghai-Tibet Plateau, Chinese Academy of
Sciences, available athttp://www.crs.ac.cn/ ) and the related literatures (Wu et al., 2012a; Qin et al., 2017;
Wang et al., 2017). We selected the period from 2000 to 2015 as the reference period, and all observations
obtained were during this period. Some sites were based on one year of observation, while others were based
on the average of several years, from which we calculated the long-term average value.

2) Active layer thickness data

In order to better fit the ALT, we attempted to collect a large amount of observed data from relevant
literatures (Wu et al., 2012a; Qin et al., 2017; Wang et al., 2017). An additional portion of the active
layer data came from field pit detection. A total of 77 ALT observation sites (Figure 1) were selected. The
time node selection and disturbance data processing for ALT were the same as those used for the MAGT.
Based on the distribution of MAGT and ALT observation sites, we divided them into five typical regions,
the Wenquan typical region (WQIR), Xikunlun typical region (XKLIR), Gaize typical region (GZIR), Aerjin
typical region (AEJIR) and Qinghai-Tibet Highway typical region (G109IR), which represent the permafrost
regions of the eastern, western, southern, northern and central areas of the QTP, respectively.

3) Meteorological data

In order to obtain climate data for the reference periods (2000–2015), the China Meteorological Forcing
Dataset (CMFD) (available athttp://www.tpedatabase.cn/; Yang et al., 2010b; Yang et al., 2010b; He et
al., 2020) with temporal and spatial resolutions of 3 hours and 0.1deg x 0.1deg, respectively, was utilized
in this study. The time scale of the dataset covered the studying period. According to the study of He et
al. (2020), the CMFD was established by merging Princeton reanalysis data, GLDAS data, GEWEX-SRB
radiation data, and TRMM precipitation data, as well as the regular meteorological observations made by
the China Meteorological Administration. The accuracy of CMFD is between the observation data and the
remote sensing data (Yang et al., 2010b), and it has been widely used due to its high reliability (Xue et al.,
2013; Xu et al., 2017a; Wang et al., 2019a).

In the study, we used air temperature and precipitation data from the CMFD to calculate the two key
predictors, including the thawing indices (thawing degree days, TDD) and the freezing indices (freezing
degree days, FDD), which play essential roles in the studies of the frozen ground. As useful indicators, they
have been widely applied in the permafrost region to predict the ALT (Zhang et al., 2005; Nelson et al., 1997;
Peng et al., 2018; Shiklomanov and Nelson, 2002) and permafrost distribution (Nelson and Outcalt, 1987).
In addition, we also calculated the other two predictors, including the solid precipitation (i.e., precipitation
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with a temperature below 0degC, Sol pre), and liquid precipitation (i.e., precipitation with a temperature
above 0degC, Liq pre).

For future conditions, the BCC-CSM 1.1 climate change modeling data was used (available
athttp://www.worldclim.org/ ). It was downscaled GCMs data from CMIP5 (IPCC Fifth Assessment). BCC-
CSM1.1 is the version 1.1 of the Beijing Climate Center Climate System Model, the coupling was realized
using the flux coupler version 5 developed by the National Center for Atmosphere Research (NCAR) (Wu
et al., 2019). It was a fully coupled model with ocean, land surface, atmosphere, and sea-ice components,
and was often used to simulate the response of global climate to rising greenhouse gas concentrations, the
performance is satisfactory in China (Zhang and Wu, 2012b; Xin et al., 2018). In this study, we chose the
monthly average air temperature and precipitation over the time period 2061–2080 under three Representa-
tive Concentration Pathways (RCPs): RCP2.6, RCP4.5, and RCP8.5 (Moss et al., 2010; Taylor et al 2012).
The four predictors (TDD, FDD, Sol pre, and Liq pre) were recalculated in the same way for each time
period and RCP scenario.

4) Geospatial environmental predictors

The geospatial environmental predictors were mainly derived from topographic data and regional environ-
mental data. The Shuttle Radar Topography Mission (SRTM) data for a 1-km spatial resolution digital
elevation model (DEM) (Reuter et al., 2007) were selected to calculate the predictors of elevation (Ele) and
potential incoming solar radiation (PISR) (McCune and Keon, 2002). Soil organic matter is also an impor-
tant factor affecting the ALT of permafrost. Due to the low decomposition rate of organic matter, high soil
organic carbon has been accumulated in the permafrost regions (Ping et al., 2008). The adiabatic properties
of organic matter relative to minerals will reduce the heat exchange between ground and air (Molders and
Romanovsky, 2006; Nicolsky et al., 2007; Paquin and Sushama, 2015). Moreover, the organic matter can
also affect the thermal properties and the amount of unfrozen water of soil (Romanovsky and Osterkamp,
2000; Nicolsky et al., 2009). In order to consider the influence of the regional organic matter content (Wu
et al., 2012b), soil organic carbon content information (SOC, ton*ha-1) from global SoilGrids 1-km data
(available at https://soilgrids.org ; Hengl et al., 2014) was also used in our prediction analysis. Finally, all of
the data layers were resampled to the matching spatial resolution (0.1degx0.1deg) and cropped to the study
area (QTP).

5) Glacier and lake data

The spatial distributions of the glaciers and lakes on the QTP were collected from the Second Glacier
Inventory Dataset of China and the Chinese Cryosphere Information System provided by the Cold and Arid
Regions Science Data Center (http://westdc.westgis.ac.cn).

2.2. Model description

Statistical models are general methods in the study of geography. It is usually built on some theoretical
assumptions, and the data need to obey or approximately conform to a specific spatial distribution before
the model can obtain credible results. However, ML algorithm is a general approximation algorithm, which
generally does not require theoretical assumptions. The spatial analysis algorithm based on ML does not
need a prior knowledge but a set of training data to learn the patterns of the geoscience system (Lary et
al., 2016). Based on the above characteristics, we chose two statistical models and two ML algorithms to
fit the present and future MAGT and ALT in this paper. The generalized linear modeling (GLM) and
the generalized additive modeling (GAM) are traditional statistical methods used to simulate the thermal
regimes of permafrost (Nan et al., 2002; Zhang et al., 2012a). And the two ML algorithms are the generalized
boosting method (GBM) and random forest (RF). In this study, all the four models were executed based on
the R software program. The detailed information and characteristics of the models are as follows:

1) Generalized linear model

The generalized linear model (GLM) is an extension of a linear model that can deal with the nonlinear
relationships between explanatory variables and response variables (Nelder and Wedderburn, 1972):
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g {µ (x)} = β0 + β1 (x1) + β2 (x2) + . . .+ βi (xi)(1)

where g (µ) is the link function connecting the estimated mean to the distribution of the response vari-
able (here is MAGT and ALT), μ =E (y/x1, x2, x3, . . . , xi), E is the expected value, β0 is the intercept
component,βi is the regression coefficient to be estimated andxi is the predictor. For MAGT and ALT, GLM
was based on first and second order polynomials and identity–link function.

2) Generalized additive model

Generalized additive model (GAM) is semi-parametric extensions of GLM that specify smoothing functions
to fit nonlinear response curves to the data (Hastie and Tibshirani, 1986):

g {µ (x)} = β0 + f1 (x1) + f2 (x2) + . . .+ fi (xi) (2)

where g (µ) is the link function connecting the estimated mean to the distribution of the response variable
(here is MAGT and ALT), μ =E (y/x1, x2, x3, . . . , xi), E is the expected value, β0 is the intercept component,
fiis a smoothing function for each explanatory variable and xi is the predictor. To associate the MAGT
and ALT with environmental predictors, the maximum smoothing function was set to three which were
subsequently optimized by the model fitting function.

3) Generalized boosting method

The generalized boosting method (GBM, based on the R package dismo) is a sequential integration modeling
method that combines a large number of iteratively fitted classification trees into a single model, using cross-
validation methods to estimate the optimal number of trees, and thereby improving prediction accuracy (Elith
et al., 2008). GBMs automatically incorporate interactions between predictors and are capable of modeling
highly complex nonlinear systems (Aalto et al., 2018). GBMs (with Gaussian–Markov error assumption)
were fitted using the gbm.step function, including the main parameters of the learning rate, tree complexity,
bagging fraction, maximum number of trees, and others.

4) Random forest

Random forest (RF, implemented in the R package randomForest.) is a ML algorithm based on a classi-
fication tree, which forms a “forest” by generating a large ensemble of regression trees. The model uses
a bootstrap sampling method to extract multiple samples from the original samples, conduct decision tree
modeling for each sample, and then combine the prediction of multiple decision trees in order to obtain the
final prediction result through a voting process. The model is characterized by strong applicability, effective
avoidance of over-fitting and insensitivity to missing data and multivariate collinearity (Breiman et al., 2001;
Hutengs and Vohland 2016). It is an effective empirical approach in the nonlinear-regression systems and its
superiority has been proved useful by a large number of applications in the earth system (Lary et al., 2016).

To study the effects of predictors on MAGT and ALT, our models were designed using the following speci-
fications:

MAGT = f1 (TDD)+f2 (FDD)+f3 (Sol pre)+f4 (Liq pre)+f5 (PISR)+f6 (SOC)

+f7 (Lon)+f8 (Lat )+f9 (Ele)(3)

ALT = f1 (TDD)+f2 (FDD)+f3 (Sol pre)+f4 (Liq pre)+f5 (PISR)+f6 (SOC)

+f7 (Lon)+f8 (Lat )+f9 (Ele)(4)

The independent variables in these equations are same, while the correspondingfi (xi) in each equation is
different. In order to fully consider the advantages and disadvantages of the above four models and to reduce
the uncertainty, we used an ensemble approach. This method puts the average of the four models as the new
results. The optimal model was determined by comparing the key parameters of the final five results. Model
performance was assessed using a repeated cross-validation (CV) scheme. Based on a total of 84 boreholes
and 70 ALT observation sites, the models gave the simulated results after 10 times fitting processes using
a random sample of 90% of the observation data and verification processes using the remaining 10%. After
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each CV run for all models, the predicted and observed values of MAGT and ALT were compared in the
terms of the root-mean-square error (RMSE), mean difference (cf. bias), and R-squared (R2).

3. Results

3.1. Reliability assessment of MAGT and ALT

The simulation results were compared with the in situ observation data using cross-validation. A comparison
of the five results (Figure 2) reveals that there was no significant bias between the simulated values and the
available borehole data on the QTP, but the RMSE and R2 of the ensemble method imply that it was more
reliable than the other four methods. The consistency between the measured and simulated MAGT at most
sites for the five models was less than 1°C. Among these models, the ensemble method performed optimally,
with a simulation accuracy for 80 sites of < 1°C, which account for 95% of the total sites. It exhibited a
strong positive correlation between the simulated and observed MAGT (R2 = 0.73, p < 0.001). Overall, the
ensemble method (Figure 2(e)) displayed the highest accuracy among the models in forecasting the MAGT.
For this reason, the ensemble model was selected to simulate the present MAGT and future trends.

Similarly, the simulated ALT results were compared with the insitu observation data using the same statistical
method. For ALT, the best fitting result was RF (Figure 3(d)), which exhibited the highest R2 and the
lowest RMSE values of 0.51 and 0.69 m, respectively. Although the GLM method exhibited a smaller bias,
the difference between the two methods was not large. Overall, the validations for the five results did not
differ significantly. Based on further comparison of Figures 2 and 3, it can be seen that the fitting accuracy
of MAGT was better than that of ALT, withR2 values of the corresponding optimal fitting results of 0.73
and 0.51, respectively. This is due to the fact that the spatial heterogeneity of the ALT is larger than that
of the MAGT on the QTP, and the ALT will fluctuate greatly during climate change within a short period
(Cao et al., 2017).

We calculated the error distribution for five typical regions separately (Table 1). Overall, the distribution
of RMSE and bias on the QTP was relatively uniform, with the exception of the RMSE in the AEJIR.
The reason for this may be that there are relatively few observation sites in the northern part of the whole
investigated regions, and the simulating accuracy has high sensitivity to single points and poor regional
representation. In addition, permafrost along the G109 Highway is greatly affected by human activities, and
there are more observation sites in this region. Compared with the error statistics of the entire QTP, the
RMSE of MAGT in the G109IR was relatively small, while the RMSE of ALT was relatively large. Thus,
we may conclude that MAGT is relatively less affected by human activities, while ALT is more affected by
disturbance and displays great spatial heterogeneity. In terms of bias, the region with the largest bias was
GZIR. The reason is that GZIR located in the transition zone between permafrost and seasonally frozen
ground, and the accuracy of the results would be affected to some extent.

3.2. MAGT and ALT during the reference period

Using the collected borehole data, we fitted the meteorological factors and geographical environmental factors
to obtain the MAGT distribution of the permafrost regions on the QTP (Figure 4). We extracted the MAGT
of the QTP below 0 °C as an average range of permafrost (Chen et al., 2015), which indicating suitable
conditions for permafrost, with a total area of 1.04 × 106 km2 (excluding glaciers and lakes). Considering
the heterogeneity and uncertainty of ground temperature on the QTP, the minimum permafrost extent is 0.8
× 106 km2 (the area within MAGT [?] -0.5degC), and the maximum extent is 1.28 x 106km2 (the area within
MAGT [?] +0.5degC). Compared with the pan-Arctic permafrost, the permafrost temperature on the QTP
is relatively high (Obu et al., 2019). Nearly half of the permafrost temperature area on the QTP exceed
-1.0oC and the average temperature is -1.35 +- 0.42 oC. The permafrost temperature is not only affected
by latitude, but also by altitude. As illustrated in Figure 4, the lower-temperature permafrost on the QTP
generally occurs in high-altitude mountains, and the ground temperature gradually rises with decreasing
altitude, with the lowest value distributes in the Kunlun Mountain and its surrounding regions. In general,
the MAGT on the QTP was found to be higher in the southern region (GZIR) than that in the northern
region (AEJIR), and higher in the eastern region (WQIR) than that in the western region (XKLIR).
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Based on permafrost extent, the spatial distribution of the ALT for the entire QTP was obtained (Figure
5). The statistical results indicated that the average ALT is 2.3 +- 0.60 m on the QTP, and the ALT value
of ˜ 90% of the permafrost region ranged from 1.6 to 3.0 m. Geographically, the ALT in the eastern part
of the QTP is relatively thinner (generally no more than 2 m) with slight variations. The ALT along the
Qinghai-Tibet Highway and in the central and western plateau is highly heterogeneous. The overall ALT
pattern is thin in the mountains, thick on the plains, thin in the hinterlands, and thick along the periphery
of the permafrost. The maximum value appears along the southern boundary of the permafrost and the
surrounding sporadic permafrost (generally [?] 3.2 m). In general, MAGT and ALT exhibit a consistent
trend in spatial distribution, with a correlation coefficient of 0.44. The smaller value of MAGT corresponds
to thinner ALTs.

3.3. The projection of MAGT and ALT

In view of a strong statistical rule of MAGT and ALT in climatic factors (e.g., TDD and FDD) and to-
pographic factors (e.g., Lon, Lat, and Ele), most studies have begun to use similar statistical methods to
investigate the present and future development trends of the periglacial climate realm (Koven et al., 2013;
Aalto et al., 2017, 2018; Zhang et al., 2019). In this study, the optimal fitting model for the present state
was employed to forecast MAGT and ALT under different future climate scenarios. For ALT, the spatial
domain was limited to the area with simulated MAGT [?] 0degC during each associated period and/or RCP
scenario.

Due to climate change, the permafrost temperature exhibits an obvious rising trend on the QTP. We simu-
lated the future change of permafrost on the QTP after half a century. The results revealed that the future
changes of MAGT and ALT are predicted to be pronounced, but region-specific (Figure 6). The forecasted
average MAGT over the QTP permafrost regions will increase from -1.35degC (present status) to -0.66degC
by 2061-2080 (RCP2.6) and to 0.25degC for RCP8.5 (Table 2). The ALT, however, was only predicted to
increase from 2.3 m (2000-2015) to 2.7 m (2061-2080) for RCP8.5. The reason for the consistency or small
change of the ALT is that, the section of the permafrost with a MAGT near 0degC is forecasted to degrade
to seasonally frozen ground, and this part of the permafrost usually corresponds to a thicker active layer.
Additionally, the uncertainties related to the forecasts of MAGT and ALT under different RCPs in the future
were given. And, the uncertainties are characterized by the range of MAGT value and ALT value. As can
be seen in Figure 7, even under the different RCPs scenarios, the fluctuation range of MAGT and ALT is
basically the consistent.

Over the next half century, the near-surface permafrost areas are predicted to continue to decrease by
0.13 x 106km2 (12%), 0.42 x 106km2 (40%) and 0.60 x 106km2 (58%) on the QTP by 2070 (2061-2080),
under the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively. The result is basically consistent with the
projected change by Chang et al. (2018) (Figure 8). Permafrost is in non-equilibrium under the influence
of climate change, and there may be no permafrost that is driven by the current climate. In fact, it may
be that permafrost is degrading, so the distribution range of the simulation results may be underestimated
(Zhao et al., 2019). The changes in MAGT and ALT are not only related to the changes in temperature
and precipitation but also closely related to hydrothermal parameters and surface energy balance (Guo
and Wang, 2016; Hu et al., 2019). Based on the existing observation data and improved soil physics, the
estimated changes in previous studies are generally larger than that of actual change (Lawrence et al., 2012;
Cheng et al., 2019; Wang et al., 2019b).

4. Discussion

In order to project the possible future changes of permafrost, we simulated MAGT and ALT changes under
the present state and future scenarios based on statistical and ML methods. The results show that under
different RCPs, significant degradation of the QTP permafrost may occur (e.g., MAGT rising and ALT
thickening); in particular, under RCP8.5, more than half of the near-surface permafrost will disappear,
and regional differences were observed. In this section, to further verify the feasibility of our results, we
compared our simulated MAGT and ALT with those of previous studies and then analyzed the vulnerability
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of permafrost to climate change under the present state. Based on these findings, we proposed urgent action
should be taken to adapt climate change. Finally, the model performance and potential sources of the
uncertainty in this study were discussed.

4.1. Comparisons with previous results

The most likely permafrost area on the QTP is 1.04 x 106 km2 (the region where MAGT < 0degC, Figure
4), or about 45.4% of the total QTP land surface area. Our results were compared with the permafrost
distribution map of the QTP for the period 2003–2012 based on the TTOP model, which was basically
consistent with the new permafrost area (1.06 x 106 km2, Zou et al., 2017). The two results showed substantial
consistency, with a kappa coefficient of 0.63 (Table 3). However, there were still certain spatial differences
(Figure 9). These differences mainly occurred at the southern margin of the continuous permafrost and the
islands of permafrost in the south eastern QTP.

For the results of MAGT and ALT, a similar study showed relatively large deviations at the hemispheric scale
(the RMSEs of MAGT and ALT were 1.6degC and 0.89 m, respectively; Aalto et al., 2018). In their study, an
interesting discovery was mentioned, for both MAGT and ALT: after considering the area north of 60degN,
the uncertainty was greatly reduced. This is primarily due to the fact that the permafrost on the QTP is quite
different from that of the pan-Arctic region. The QTP is the dominant by the high-altitude permafrost, while
the pan-Arctic is mainly the high-latitude permafrost. Compared with the pan-Arctic region, the active layer
on the QTP is thicker, the ground temperature is higher, and the spatial heterogeneity is greater (Nicolsky et
al., 2017; Cao et al., 2017; Qin et al., 2017). Therefore, combining the QTP permafrost and the pan-Arctic
permafrost hemispherically will inevitably reduce the accuracy of the results.

We further compared the simulated results of MAGT and ALT with previous studies on the QTP. Table 4
summarizes the error statistics among different types of permafrost models (i.e., equilibrium model, transient
model and statistical model). We can find that for the R-value, our method combined of the statistical and
ML has the similar accuracy with the transient model. Although the RMSE of ALT in our study is the
largest among all models, the differences are not significant. Moreover, the RMSE of MAGT in our study
shows relatively smaller error. Meanwhile, from the overall spatial distribution of the ALT, although there
are some differences in the spatial details, the distribution pattern of our result is comparable with the
presented recently (Zhao and Wu, 2019; Wang et al., 2020b). In generally, our model can obtain a relatively
higher simulation accuracy.

We qualitatively analyzed the main reasons for these differences as follows. Firstly, there are differences in
accuracy among different types of models, such as the equilibrium models and mechanistic transient models.
Secondly, there is a slight gap between the research period and the data used for verification. Permafrost is
often viewed as a product of long-term climate change, which is slowly changing (Zhang et al., 2007); this
may also lead to differences between the results. Finally, the 0.1deg resolution of our model can’t capture all
of regional information on climate change, which may limit the model’s ability to capture detailed changes
in the permafrost to some extent, especially in the boundary of the permafrost region (Etzelmuller, 2013;
Guo and Wang, 2016). Therefore, the ability to capture the permafrost edge information should be further
improvement. Overall, by comparing with previous studies on the QTP, that our method is relatively simple
and effective, and thus could be a useful tool to evaluate the permafrost conditions with a high accuracy on
the QTP.

4.2. Permafrost vulnerability

According to Figure 4, the ground temperature of the entire QTP permafrost is relatively high. In order to
analyze the vulnerability of the QTP permafrost to climate warming, the permafrost region with MAGTs
ranging from -0.5 to 0.5degC was extracted (Figure 10). According to the permafrost stability classification
(Cheng and Wang, 1982), permafrost in this range is classified as unstable region. It can be observed that
0.49 x 106 km2 of the permafrost area over the QTP is in danger at present, which accounting for 37.3% of
the maximum permafrost area. This unstable permafrost primarily distributed in the transition region of
permafrost and seasonally frozen ground.
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As a result of the global warming and increased anthropogenic activity, the QTP has experienced an ap-
proximately 3-fold warming increase over the past 50 years (Wan et al., 2018). Under the influence of this
accelerated warming, the permafrost region adjacent to the seasonally frozen ground is becoming increas-
ingly fragile (Qin et al., 2017). This part of the permafrost is generally in the process of ice-water phase
transformation. A comparison with Figure 6, reveals that this region is consistent with the areas in which
permafrost will disappear under future RCPs, but it also greatly affected by the local ground ice content,
underlying surface types, and other related factors (Nelson et al., 2001; Yang et al., 2010c).

The Qinghai-Tibet Engineering Corridor (QTEC, the region that contains the Qinghai-Tibet Highway and
Railway, pipelines, electric transmission lines, and so on) is an important conduit connecting mainland China
and the QTP. Under the influence of intensifying global climate change and frequent human activities, the
ecological environment along the QTEC is fragile, and the permafrost in the QTEC has degraded significantly
and the alpine ecosystem is facing new challenges (Niu et al., 2018). Based on Figure 10, the statistical results
show that 757 km of the QTEC crosses through the permafrost region (at its maximum extent), accounting
for nearly 40% of its total length (from Xining to Lhasa). Of this, approximately half of the QTEC faces
the risk of the permafrost disappearing, and the other half may experience varying degrees of permafrost
degradation in the future. This will result in huge economic losses and threaten associated infrastructures
along the QTEC.

Recent studies have shown that several cryosphere tipping points are dangerously close (IPCC, 2019), and
the permafrost in the Arctic has begun to thaw irreversibly and release carbon dioxide and methane, but the
inevitable effects could still be mitigated by reducing greenhouse gas emissions (Lenton et al., 2019). The
stability and resilience of the QTP permafrost is in peril. We should take urgent action to reduce greenhouse
gas emissions, and put them as the priority of the present and future work. In order to effectively mitigate
the degradation of permafrost, all the emission reduction measures should be reflected in words even in
actions.

4.3. Model performance and uncertainty analysis

Our study integrated field observation data, meteorological data, geospatial environmental predictors and
multiple statistical models to study MAGT and ALT changes in the present and future QTP permafrost
regions. Based on the CV analysis, the reliability of both predictions displayed relatively low uncertainty.
For MAGT, the benefits of using the ensemble modeling approach were obvious, i.e., the average of the four
methods yielded the best simulation result. For ALT, large errors still existed among the ensemble modeling
approach after CV, which indicating that the method does not always produce the most reliable results.
The simulation accuracy of ALT is lower than that of MAGT, and the result can only represent the general
change trend of ALT. The main reason for this is that, the spatial heterogeneity of ALT on the QTP is large,
with the change rate of ALT per unit (100 m2) reaching 80%, thus resulting in the relatively low R2values
and large RMSEs (Cao et al., 2017). Additionally, our model predicts the equilibrium state of permafrost
and does not consider the lag time associated with the formation and degradation of permafrost (Xu et al.,
2017b). Compared with previous studies, although our results show great reliability, there are still some
uncertainties embedded in the predictions, including the measurement accuracy of the data, the equilibrium
assumption in the statistical modeling and the influence of other factors (Aalto et al., 2018).

Due to the limitations of the observation data, we had to use one-year or multi-year averages to represent
the present state and to fit the model. MAGT and ALT changed during this period, however, in particular,
ALT changed greatly at the inter-annual scale. We did our best to collect datasets with MAGT and ALT,
but the number of sample points used for training was still limited, and the model was still highly sensitive
to single observations. To some extent, this also indicates that the number of observation sites on the QTP
is too sparse to represent the present large spatial heterogeneity of the plateau.

When calculating the input factors of the model, in the future warming scenarios, the TDD and FDD were
calculated based on the monthly mean air temperature instead of the daily mean air temperature. This
approximate calculation method will bring some unavoidable errors, especially when the temperature is
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close to 0 (Wu et al., 2011; Shi et al., 2019). Additionally, we simply take 0degC temperature as the critical
temperature threshold between solid precipitation and liquid precipitation, while, in most cases, snowfall
events even occur in some regions on the QTP when the air temperature is > 4degC, but not 0 (Wang et
al., 2016).

In this study, some key soil parameters, including soil texture, soil moisture content and bulk density, were
excluded from the analyses in the model due to missing data, which exerted strong influence on water and
heat transfer in the active layer as well as the change in permafrost temperature (Wu et al., 2017b; Du et
al., 2020). The PISR and SOC in permafrost region are not static. However, it was assumed to be the fixed
value in our model. With the further research on the key predictors of the permafrost region, we will add
more dynamic datasets to our model. In summary, we used statistical and ML models combined with easily
accessible data to simulate the present and future dynamics of permafrost on the QTP. By comparison and
verification, our model can obtain high precision results through a relatively simple calculation process.

5. Conclusions

In this study, the method combined of statistical and ML was used to obtain the key permafrost metrics in
both the present and a half-century in the future (2061-2080) on the QTP. Based on the comparison with
in situ observation data and previous researches, we found that this method was reliable for simulating the
changes in MAGT and ALT. We demonstrated the permafrost degradation from a quantitative perspective.
Our results can provide a scientific basis for the study of climate change in permafrost. The main conclusions
are listed as follows:

1. A combination method of statistical and ML models is efficient to capture the changes in the thermal
state of the permafrost on the QTP.

2. The present (2000-2015) permafrost area on the QTP is approximate to be 1.04 x 106 km2. The average
MAGT and ALT of the permafrost region amount to -1.35 +- 0.42oC and 2.3 +- 0.60 m, respectively.

3. In the future (2061-2080), the maximum permafrost area may be reduced to 0.44 x 106 km2. The
future changes of MAGT and ALT are forecast to be pronounced, but region-specific.

4. The unstable permafrost mainly distributed at the edge of the permafrost region, and approximately
half permafrost in the QTEC will be at risk of disappearing in the future.
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Figure 1. Location of the investigated regions and observation sites. Green dots and red triangles stand for
the mean annual ground temperature (MAGT) and active layer thickness (ALT) monitoring sites, respec-
tively. The black polygons depict the five typical regions.

Figure 2. Observed vs . simulated mean annual ground temperature (MAGT) for 84 borehole sites based
on four statistical techniques (GLM = generalized linear model, GAM = generalized additive model, GBM
= generalized boosting method, RF = random forest.) and an ensemble method (the average of the four
methods). The red dashed lines are the +-1 intervals around the 1:1 line (in black solid line).

Figure 3. Observed vs . modeled active layer thickness (ALT) based on four statistical techniques (GLM
= generalized linear model, GAM = generalized additive model, GBM = generalized boosting method, RF
= random forest.) and an ensemble method (the average of the four methods). The red dashed lines are the
+-1 m interval around the 1:1 line (in black solid line).

Figure 4. Spatial distribution of permafrost on the QTP based on the MAGT.

Figure 5. Distribution of the ALT on the permafrost regions of the QTP.

Figure 6. Forecast mean annual ground temperature (MAGT) and active layer thickness (ALT) across the
study domains under different RCPs (RCP2.6, RCP4.5 and RCP8.5) for the 2070s (average of 2061-2080).

Figure 7. The uncertainty related to the spatial forecasts of mean annual ground temperature (MAGT)
and active layer thickness (ALT) in RCP 2.6(a), RCP 4.5 (b), RCP 8.5 (c) scenarios. The uncertainty is
quantified using a repeated (n = 1,000) bootstrap sampling procedure inside the study domain. The boxplots
depict the mean, median, 1st and 3rd quartiles and range of variation over 1000 predictions for modeling
techniques.

Figure 8. Projections of the changes in permafrost area on the QTP under RCP2.6, RCP4.5, RCP6.0 and
RCP8.5 via 7(a) surface frost index (SFI) and 7(b) Kudryavtsev method (KUD). The graph is derived from
Changet al. (2018). Shaded areas show the standard deviations across the CMIP5 models, the black lines
show the equivalent present-day area, and the grey dotted line represent the degraded area in 2070 under
different RCPs.

Figure 9. Spatial differences between our results (2000–2015) and those of Zou et al (2003–2012; TTOP
model). P and SFG represent permafrost and seasonally frozen ground, respectively; Result is the permafrost
distribution of this study. The permafrost distribution is obtained from Zou et al. (2017).

Figure 10. Spatial distribution of the permafrost regions prone to degradation.

Table 1. Model Error statistics of the ALT and MAGT in different typical regions

Region Region
(WQIR)
East

(XKLIR)
West

(GZIR)
South

(AEJIR)
North

(G109IR)
Central

(QTP)
Entire

MAGT RMSE () 0.60 0.56 0.61 0.73 0.45 0.53
Bias () 0.025 0.06 -0.15 -0.14 -0.03 -0.02

ALT RMSE
(m)

0.60 0.62 0.68 0.11 0.76 0.69

Bias (m) 0.24 0.06 -0.46 0.09 0.18 -0.11

Table 2. Key characteristic metrics of permafrost under different RCPs

Present RCP2.6 RCP4.5 RCP8.5

2000-2015 2061-2080 2061-2080 2061-2080
MAGT () -1.35 -0.66 -0.14 0.25
ALT (m) 2.3 2.5 2.5 2.7
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Present RCP2.6 RCP4.5 RCP8.5

Area (×106 km2) 1.04 0.91 0.62 0.44

Note: the statistics of mean annual ground temperatures (MAGT) in three scenarios (RCP2.6, RCP4.5,
RCP8.5) were based on the permafrost range under present status.

Table 3. Discrepancy area of permafrost on QTP

Area discrepancy (×106 km2) Percentage (%)

Both P 0.86 35.41
Result P and Zou SFG 0.18 7.41
Result SFG and Zou P 0.20 8.23
Both SFG Total 1.19 2.43 48.95 100

Table 4. Compare the statistical errors between different types of models

Numerical
model Time period RMSE R Source

MAGT () Equilibrium
model

2000-2016 1.85 0.20 Obu et al., 2019

Transient
model

2007-2010 0.31 0.93 Wu et al., 2018

Statistical and
ML

2000-2015 0.53 0.85 This study

ALT (m) Equilibrium
model

Before 2009 0.47 0.46 Pang et al., 2012

Transient
model

2007-2010 0.57 0.86 Wu et al., 2018

Statistical and
ML

2000-2015 0.69 0.71 This study

Note: bold data represents the best result for each model.
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Key Points:

 The combined statistical method with machine learning is efficient to obtain the

thermal regime of permafrost on the QTP.

 The present permafrost  area on the QTP is ~1.04 × 106  km2,  and the average

MAGT and ALT are -1.35 ± 0.42°C and 2.3 ± 0.60 m, respectively.

 The future changes of permafrost are projected to be pronounced due to climate

change, but region-specific.
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Abstract

The comprehensive understanding of the occurred changes of permafrost, including

the changes of mean annual ground temperature (MAGT) and active layer thickness

(ALT),  on the Qinghai-Tibet Plateau (QTP) is critical to project permafrost changes

due to climate change. Here, we use statistical and machine learning (ML) modeling

approaches to  simulate  the present and future changes of MAGT and ALT in the

permafrost regions of the QTP. The results show that the combination of statistical

and ML  method is  reliable  to simulate  the MAGT and ALT, with the root-mean-

square error of 0.53°C and 0.69 m for the MAGT and ALT, respectively. The results

show that the present (20002015) permafrost area on the QTP is 1.04 × 106  km2

(0.801.28 × 106 km2), and the average MAGT and ALT are -1.35 ± 0.42°C and 2.3 ±

0.60 m, respectively. According to the classification system of permafrost stability,

37.3% of the QTP permafrost is suffering from the risk of disappearance. In the future

(20612080),  the  near-surface  permafrost  area  will  shrink  significantly  under

different Representative Concentration Pathway scenarios (RCPs). It is predicted that

the permafrost area will be reduced to 42% of the present area under RCP8.5. Overall,

the  future changes  of  MAGT and ALT are pronounced and region-specific.  As a

result, the combined statistical method with ML requires less parameters and input

variables for simulation permafrost thermal regimes and could present an efficient

way to figure out the response of permafrost to climatic changes on the QTP.
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Keywords:  permafrost;  mean  annual  ground  temperature;  active  layer;  climate

change; Qinghai-Tibet Plateau

1. Introduction

Frozen ground is an important component of the cryosphere, which exerts strong

influences  on  regional  ecology,  hydrology  and infrastructure  engineering

(Westermann et al., 2015; Wang et al., 2018a). The Qinghai-Tibet Plateau (QTP) is

underlain  by  typical  high-altitude  permafrost  region,  which  is  undergoing  more

dramatic  climatic  warming  than  its  surrounding  regions  (Wang  et  al.,  2019a).  A

growing number of studies have reported the present status and predicted degradation

of permafrost under various global warming scenarios (Pang et al., 2010, 2012; Zhang

and Wu, 2012a; Guo and Wang, 2017; Xu et al.,  2017a; Wang et al.,  2018a).  The

degradation  of  permafrost  may  trigger  the  release  of  organic carbon  into  the

atmosphere (Cheng and Wu 2007; Wu et al., 2017a; Chang et al., 2018; Wang et al.,

2018b; Ran et al., 2018). It is also a potential threat to engineering construction and

maintenance. However, most of these studies are based on linear statistical models

and equilibrium models, and mainly focused on identifying the extent of permafrost,

while  researches  on  the  present  and  future  change  of  ground  thermal  regimes

(including:  the  mean  annual  ground  temperature,  MAGT,  and  the  active  layer

thickness,  ALT) are relatively rare (Zhang et al.,  2012a; Wang et al.,  2019a). The

changes of MAGT and ALT could affect the ecosystem of the QTP by altering the

ground  ice  evolution,  hydrological  processes,  vegetation  dynamics  and  carbon
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cycling, etc. (Yang et al., 2010a; Wu et al., 2016; Niu et al., 2019; Hu et al., 2020).

Therefore, it is of great importance to investigate present and future changes of the

MAGT and ALT in the permafrost region (Qin et al., 2017; Zhang et al., 2018).

Permafrost  is  a  thermally-defined  subsurface  phenomenon  (Westermann  et  al

2015). Satellite sensors could obtain limited surface information, and only portion of

the microwave remote sensing could penetrate several centimetres underground (Zhao

et al., 2011; Michaelides et al., 2018; Qu et al., 2019). In general, it is difficult to use

remote  sensing to  directly  obtain  information  on changes  in  the  physical  state  of

permafrost (Yang et al., 2019). The current research on permafrost thermal regime is

mostly focus on either  in situ observing or modeling using atmospheric circulation

models (Westermann et al., 2015). Most of the existing modeling frameworks require

ground-based  measurements  as  model  inputs,  while  the  in  situ observations  of

permafrost are relatively sparse and highly non-uniform in cold regions. The long-

term and continuous  in situ observation sites for permafrost on the QTP are mostly

located along the Qinghai-Tibet Highway and Railway, and other regions are less well

distributed (Hu et al.,  2015; Qin et al.,  2017; Zheng et al.,  2019). The absence of

observation data would greatly weakens the accuracy of simulation results. Therefore,

it is challenging to select reliable modeling approaches with limited data to obtain the

occurrence of permafrost and its projection due to climate change.

At present, the simulation studies on the ALT and soil thermal state of the QTP

fall  into  two  categories,  including  equilibrium  models  and  mechanistic  transient

models.  (Riseborough et  al.,  2008; Qin et al.,  2017; Aalto et  al.,  2018). The most
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commonly used equilibrium models include Stefan formula (Zhang and Wu 2012a;

Xu et al., 2017a), Kudryavtsev formula (Pang et al., 2009; Wang et al., 2020a), the N

factor (Nan et al., 2012), and the Temperature at the Top of the Permafrost model

(TTOP) (Zou et al., 2017). The form of the equilibrium model is relatively simple and

requires fewer driving data for input (Riseborough et al., 2008; Pang et al., 2009).

However, this type of model tend to show poor portability. In contrast, mechanistic

transient  models  consider  more  details  of  the  hydrothermal  exchange  processes

between the atmosphere and ground. Examples of this model include the Community

Land Model (CLM; Oleson et al., 2010; Fang et al., 2016; Chen et al., 2017), Noah

(Gao et  al.,  2015;  Chen et  al.,  2015),  the Geomorphology-based Eco-hydrological

Model (GBEHM; Zheng et al., 2019), the SHAW model (Guo et al., 2011; Liu et al.,

2013), and the CoupModel (Zhang et al., 2012b; Hu et al., 2013).  Nevertheless, the

processes  of  these  models  are  complex  and  often  insufficiently  account  for  the

hydrothermal  dynamics,  with  the  understanding  of  the  soil  physical  mechanisms

increase,  the parameterization processes will  become more complex (Harris  et  al.,

2009;  Hu et  al.,  2015;  Guo and Wang, 2016).  In addition to the transient  models

mentioned  above,  in  recent  years,  the  fine-scale  tightly  coupled  hydro-thermal

modeling of permafrost has also made great progress (e.g., models like ATS, Jafarov

et al., 2018; and SUTRA,  Walvoord et al., 2019, etc.), These models are typically

based  on  a  multidimensional  solution  to  address  fully  coupled  surface/subsurface

permafrost  thermal  hydrology,  which  have  played  an  important  role  to  study  the

permafrost of local scale and microtopography (Painter et al., 2016). 
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Physics-based mechanistic models are currently the popular methods to study the

permafrost, and the simulation results can show high accuracy.  However, even with

significant  improvements  in  computer  technology  and  algorithm  simulation

(Westermann  et  al.,  2016),  the  current  modeling  still  exists  a  trade-off  between

modeling  resolution  and  size  of  the  geographical  domain  (Etzelmüller,  2013).

Especially  in  the  case  of  lack  of  data  and  insufficient  computing  resources,  the

extensive  application  of  physics-based  mechanistic  models would  be  limited.

Whereas, the combined statistical method with machine learning (ML) can make up

these deficiencies. In recent years, their great power in permafrost modeling has been

confirmed (Xu et al.,  2017b; Chadburn et al.,  2017; Aalto et  al.,  2018). The main

purpose  of  statistical  and  ML  model  is  to  identify  the  relationship  between  a

dependent  variable  and one or  more explanatory  variables  (Wheeler  et  al.,  2013).

They  can  easily  explain  environmental  conditions  related  to  topography  and land

cover,  whereas  these factors  may be difficult  to express  with physical  parameters

(Etzelmüller,  2013). Due  to  the  good  coupling  between  air  temperature  (often

characterized by mean annual air temperature or cumulative temperature sums) and

ground thermal  regime (Chadburn et  al.,  2017;  Aalto et  al.,  2018),  the subsurface

(<1020 m) soil thermal conditions respond well to climate change at the decadal

scale (Aalto et al., 2018). In addition, precipitation type (e.g., snow, rain and sleet)

and local  environmental  predictors  (e.g.,  topography,  underlying  surface  condition

and soil texture condition) have great impacts on soil hydrothermal dynamics and the

surface radiation budget (Lee et al., 2013; Zhu et al., 2019). 
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Therefore, in this study, we employed statistical and ML methods to investigate

the MAGT and ALT across the QTP. The objective is to verify the applicability of the

combined method on the QTP and quantitatively assess the present and future status

of QTP permafrost.  Firstly, we identified the critical factors which determining the

occurrence  of  permafrost.  Secondly,  we  used  the  combined  modeling  approaches

integrated  with  field  observation  data,  meteorological  data  and  geospatial

environmental  predictors  to  calculate  the  present  MAGT  and  ALT.  Thirdly,  the

present results were benchmarked against  in situ  measurements of ALT and ground

temperatures.  Finally,  the optimal  modeling framework was used to  predict  future

MAGT and ALT forced by different RCPs. The projection of the MAGT and ALT

can serve as a useful reference and provide important information for the study of

climate  change,  hydrology,  ecology,  and  geohazards  resulted  from  permafrost

degradation on the QTP.

2. Data and Methods

2.1. Data sources

1) Ground temperature data

The MAGT is an important factor that reflects the thermal state of permafrost,

and is defined as the ground temperature at the zero annual amplitude depth (ZAA,

i.e., the depth at which the annual temperature variation < 0.1°C) (Qin, 2016). Due to

the harsh environment of the QTP, some boreholes are measured manually using a

multimeter once each year (Qin et al., 2017). Most MAGTs, however, are not easily
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accessible from the ZAA. In these cases, the temperature at or closest to 10 m below

the  ground  surface  was  used  (Nan  et  al.,  2002;  Liu  et  al.,  2017).  All  disturbed

measurement  sites  (e.g.,  sites  submerged  by  the  rising  waters  of  a  lake)  were

removed. Ultimately, 84 MAGT sites (Figure 1) were selected from both field station

observations  (Cryosphere  Research  Station  on  the  Qinghai-Tibet  Plateau,  Chinese

Academy of Sciences, available at http://www.crs.ac.cn/) and the related literatures

(Wu et al., 2012a; Qin et al., 2017; Wang et al., 2017). We selected the period from

2000 to 2015 as the reference period, and all observations obtained were during this

period. Some sites were based on one year of observation, while others were based on

the average of several years, from which we calculated the long-term average value.

2) Active layer thickness data

In order to better fit the ALT, we attempted to collect a large amount of observed

data from relevant literatures (Wu et al., 2012a; Qin et al., 2017; Wang et al., 2017).

An additional portion of the active layer data came from field pit detection. A total of

77  ALT observation  sites  (Figure  1)  were  selected.  The  time  node selection  and

disturbance data processing for ALT were the same as those used for the MAGT.

Based on the distribution of MAGT and ALT observation sites, we divided them into

five typical regions,  the Wenquan typical region (WQIR), Xikunlun typical  region

(XKLIR), Gaize typical region (GZIR), Aerjin typical region (AEJIR) and Qinghai-

Tibet Highway typical region (G109IR), which represent the permafrost regions of the

eastern, western, southern, northern and central areas of the QTP, respectively.

3) Meteorological data
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In order to obtain climate data for the reference periods (2000–2015), the China

Meteorological  Forcing  Dataset  (CMFD)  (available  at  http://www.tpedatabase.cn/  ;  

Yang et al.,  2010b; Yang et al.,  2010b; He et al.,  2020) with temporal and spatial

resolutions of 3 hours and 0.1° × 0.1°, respectively, was utilized in this study. The

time scale of the dataset covered the studying period. According to the study of He et

al. (2020), the CMFD was established by merging Princeton reanalysis data, GLDAS

data,  GEWEX-SRB radiation  data,  and  TRMM precipitation  data,  as  well  as  the

regular  meteorological  observations  made  by  the  China  Meteorological

Administration.  The  accuracy  of  CMFD is  between  the  observation  data  and  the

remote sensing data (Yang et al., 2010b), and it has been widely used due to its high

reliability (Xue et al., 2013; Xu et al., 2017a; Wang et al., 2019a). 

In the study, we used air temperature and precipitation data from the CMFD to

calculate the two key predictors, including the thawing indices (thawing degree days,

TDD)  and the freezing indices  (freezing degree days,  FDD), which play essential

roles in the studies of the frozen ground. As useful indicators, they have been widely

applied in the permafrost region to predict the ALT (Zhang et al., 2005; Nelson et al.,

1997; Peng et al., 2018; Shiklomanov and Nelson, 2002) and permafrost distribution

(Nelson and Outcalt, 1987). In addition, we also calculated the other two predictors,

including  the solid  precipitation  (i.e.,  precipitation  with a  temperature  below 0°C,

Sol_pre), and liquid precipitation (i.e.,  precipitation with a temperature above 0°C,

Liq_pre).
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For future conditions, the BCC-CSM 1.1 climate change modeling data was used

(available at http://www.worldclim.org/). It was downscaled GCMs data from CMIP5

(IPCC Fifth  Assessment).  BCC-CSM1.1 is  the version 1.1 of  the Beijing  Climate

Center  Climate  System  Model,  the  coupling  was  realized  using  the  flux  coupler

version 5 developed by the National Center for Atmosphere Research (NCAR) (Wu et

al., 2019). It was a fully coupled model with ocean, land surface, atmosphere, and sea-

ice components,  and was often used to simulate  the response of global climate to

rising greenhouse gas concentrations, the performance is satisfactory in China (Zhang

and Wu, 2012b; Xin et al., 2018). In this study, we chose the monthly average air

temperature  and  precipitation  over  the  time  period  2061–2080  under  three

Representative Concentration Pathways (RCPs): RCP2.6, RCP4.5, and RCP8.5 (Moss

et  al.,  2010;  Taylor  et  al  2012).  The  four  predictors  (TDD,  FDD,  Sol_pre,  and

Liq_pre) were recalculated in the same way for each time period and RCP scenario.

4) Geospatial environmental predictors

The geospatial environmental predictors were mainly derived from topographic

data  and  regional  environmental  data.  The  Shuttle  Radar  Topography  Mission

(SRTM) data for a 1-km spatial resolution digital elevation model (DEM) (Reuter et

al.,  2007) were selected to calculate the predictors of elevation (Ele) and potential

incoming solar radiation (PISR) (McCune and Keon, 2002). Soil organic matter is

also  an  important  factor  affecting  the  ALT  of  permafrost.  Due  to  the  low

decomposition rate of organic matter, high soil organic carbon has been accumulated

in  the  permafrost  regions (Ping et  al.,  2008).  The adiabatic  properties  of  organic
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matter  relative to minerals  will  reduce the heat exchange between ground and air

(Mölders and Romanovsky, 2006; Nicolsky et al., 2007; Paquin and Sushama, 2015).

Moreover, the organic matter can also affect the thermal properties and the amount of

unfrozen water of soil (Romanovsky and Osterkamp, 2000; Nicolsky et al., 2009). In

order  to  consider  the  influence  of  the  regional  organic  matter  content  (Wu et  al.,

2012b), soil organic carbon content information (SOC, ton·ha-1) from global SoilGrids

1-km data (available at https://soilgrids.org; Hengl et al., 2014) was also used in our

prediction analysis.  Finally,  all  of the data layers were resampled to the matching

spatial resolution (0.1°×0.1°) and cropped to the study area (QTP).

5) Glacier and lake data

The spatial  distributions  of the glaciers and lakes on the QTP were collected

from the Second Glacier  Inventory Dataset  of  China and the Chinese  Cryosphere

Information  System provided by the  Cold and Arid  Regions  Science  Data Center

(http://westdc.westgis.ac.cn).

2.2. Model description

Statistical models are general methods in the study of geography. It is usually

built on some theoretical assumptions, and the data need to obey or approximately

conform to a specific spatial distribution before the model can obtain credible results.

However, ML algorithm is a general approximation algorithm, which generally does

not require theoretical assumptions. The spatial analysis algorithm based on ML does

not  need a prior knowledge but a set  of training data  to learn the patterns  of the
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geoscience system (Lary et al., 2016). Based on the above characteristics, we chose

two statistical models and two ML algorithms to fit the present and future MAGT and

ALT  in  this  paper.  The  generalized  linear  modeling  (GLM)  and  the  generalized

additive  modeling  (GAM) are  traditional  statistical  methods  used  to  simulate  the

thermal regimes of permafrost (Nan et al., 2002; Zhang et al., 2012a). And the two

ML algorithms are the generalized boosting method (GBM) and random forest (RF).

In this study, all the four models were executed based on the R software program. The

detailed information and characteristics of the models are as follows:

1) Generalized linear model 

The generalized linear model (GLM) is an extension of a linear model that can

deal  with  the  nonlinear  relationships  between  explanatory  variables  and  response

variables (Nelder and Wedderburn, 1972):

g {μ ( x ) }=β0+β1 ( x1 )+β2 ( x2 )+…+β i ( x i )
                     (1)

where  g ( μ ) is the link function connecting the estimated mean to the distribution of

the response variable (here is MAGT and ALT),  μ =  E
( y / x1 , x2 , x3 , …, x i )

,  E is the

expected value,  β0 is the intercept component,  β i is the regression coefficient to be

estimated and x i is the predictor. For MAGT and ALT, GLM was based on first and

second order polynomials and identity–link function.

2) Generalized additive model 
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Generalized additive model (GAM) is semi-parametric extensions of GLM that

specify smoothing functions to fit nonlinear response curves to the data (Hastie and

Tibshirani, 1986):

g {μ ( x ) }=β0+f 1 ( x1 )+f 2 ( x2 )+…+ f i ( xi )
                    (2)

where  g ( μ ) is the link function connecting the estimated mean to the distribution of

the response variable (here is MAGT and ALT),  μ =  E
( y / x1 , x2 , x3 , …, x i )

,  E is the

expected value,  β0 is the intercept component,  f i is a smoothing function for each

explanatory variable and x i is the predictor. To associate the MAGT and ALT with

environmental predictors, the maximum smoothing function was set to three which

were subsequently optimized by the model fitting function.

3) Generalized boosting method

    The generalized boosting method (GBM, based on the R package dismo) is  a

sequential integration modeling method that combines a large number of iteratively

fitted  classification  trees  into  a  single  model,  using  cross-validation  methods  to

estimate  the  optimal  number  of  trees,  and  thereby  improving  prediction  accuracy

(Elith et al., 2008). GBMs automatically incorporate interactions between predictors

and are capable of modeling highly complex nonlinear systems (Aalto et al., 2018).

GBMs  (with  Gaussian–Markov  error  assumption)  were  fitted  using  the  gbm.step

function, including the main parameters of the learning rate, tree complexity, bagging

fraction, maximum number of trees, and others. 

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276



4) Random forest

Random forest  (RF,  implemented  in  the  R  package  randomForest.)  is  a  ML

algorithm based on a classification tree, which forms a “forest” by generating a large

ensemble of regression trees. The model uses a bootstrap sampling method to extract

multiple samples from the original samples, conduct decision tree modeling for each

sample, and then combine the prediction of multiple decision trees in order to obtain

the final prediction result through a voting process. The model is characterized by

strong applicability,  effective avoidance of over-fitting and insensitivity to missing

data and multivariate collinearity (Breiman et al., 2001; Hutengs and Vohland 2016).

It is  an  effective  empirical  approach  in  the  nonlinear-regression  systems  and  its

superiority  has been proved useful by a large number of applications  in the earth

system (Lary et al., 2016).

To study the effects of predictors on MAGT and ALT, our models were designed

using the following specifications:

MAGT =
f 1 (TDD )

+
f 2 ( FDD )

+f 3 ( Sol pre )
+f 4 ( Liq pre)

+
f 5 ( PISR )

+
f 6 ( SOC )

                     +
f 7 ( Lon )

+
f 8 ( Lat )

+
f 9 ( Ele )

                      (3)

ALT =
f 1 (TDD )

+
f 2 ( FDD )

+f 3 ( Sol pre )
+f 4 ( Liq pre)

+
f 5 ( PISR )

+
f 6 ( SOC )

                     +
f 7 ( Lon )

+
f 8 ( Lat )

+
f 9 ( Ele )

                      (4)
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The independent variables in these equations are same, while the corresponding

f i ( x i )
 in  each equation  is  different.  In  order  to  fully  consider  the  advantages  and

disadvantages of the above four models and to reduce the uncertainty,  we used an

ensemble  approach.  This  method puts  the average of  the four  models  as the new

results. The optimal model was determined by comparing the key parameters of the

final five results. Model performance was assessed using a repeated cross-validation

(CV) scheme.  Based on a total of 84 boreholes and 70 ALT observation sites, the

models gave the simulated results  after  10 times fitting processes using a random

sample of 90% of the observation data and verification processes using the remaining

10%. After each CV run for all models, the predicted and observed values of MAGT

and ALT were compared in the terms of the root-mean-square error (RMSE), mean

difference (cf. bias), and R-squared (R2).

3. Results

3.1. Reliability assessment of MAGT and ALT

The simulation results  were compared with the  in situ observation data using

cross-validation. A comparison of the five results (Figure 2) reveals that there was no

significant bias between the simulated values and the available borehole data on the

QTP, but the RMSE and R2 of the ensemble method imply that it was more reliable

than the other four methods. The consistency between the measured and simulated

MAGT at most sites for the five models was less than 1°C. Among these models, the
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ensemble method performed optimally, with a simulation accuracy for 80 sites of <

1°C, which account for 95% of the total sites. It exhibited a strong positive correlation

between  the  simulated  and observed  MAGT (R2  = 0.73,  p  < 0.001).  Overall,  the

ensemble method (Figure 2(e)) displayed the highest accuracy among the models in

forecasting the MAGT. For this reason, the ensemble model was selected to simulate

the present MAGT and future trends.

Similarly, the simulated ALT results were compared with the in situ observation

data using the same statistical method. For ALT, the best fitting result was RF (Figure

3(d)), which exhibited the highest R2 and the lowest RMSE values of 0.51 and 0.69 m,

respectively.  Although  the  GLM  method  exhibited  a  smaller  bias,  the  difference

between the two methods was not large. Overall, the validations for the five results

did not differ significantly. Based on further comparison of Figures 2 and 3, it can be

seen that the fitting accuracy of MAGT was better than that of ALT, with R2 values of

the corresponding optimal fitting results of 0.73 and 0.51, respectively. This is due to

the fact that the spatial heterogeneity of the ALT is larger than that of the MAGT on

the QTP, and the ALT will fluctuate greatly during climate change within a short

period (Cao et al., 2017).

    We calculated the error distribution for five typical regions separately (Table 1).

Overall, the distribution of RMSE and bias on the QTP was relatively uniform, with

the exception of the RMSE in the AEJIR. The reason for this may be that there are

relatively few observation sites in the northern part of the whole investigated regions,

and the simulating accuracy has high sensitivity to single points and poor regional
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representation. In addition, permafrost along the G109 Highway is greatly affected by

human activities, and there are more observation sites in this region. Compared with

the  error  statistics  of  the  entire  QTP,  the  RMSE of  MAGT in  the  G109IR  was

relatively  small,  while  the  RMSE  of  ALT  was  relatively  large.  Thus, we  may

conclude that MAGT is relatively less affected by human activities,  while ALT is

more affected  by disturbance and displays great  spatial  heterogeneity.  In terms of

bias, the region with the largest bias was GZIR. The reason is that GZIR located in the

transition zone between permafrost and seasonally frozen ground, and the accuracy of

the results would be affected to some extent.

3.2. MAGT and ALT during the reference period

Using  the  collected  borehole  data,  we  fitted  the  meteorological  factors  and

geographical environmental factors to obtain the MAGT distribution of the permafrost

regions on the QTP (Figure 4). We extracted the MAGT of the QTP below 0 °C as an

average range of permafrost (Chen et al., 2015), which indicating suitable conditions

for permafrost,  with a total  area of 1.04 × 106  km2  (excluding glaciers  and lakes).

Considering the heterogeneity and uncertainty of ground temperature on the QTP, the

minimum permafrost extent is 0.8 × 106 km2 (the area within MAGT ≤ −0.5°C), and

the maximum extent is 1.28 × 106 km2 (the area within MAGT ≤ +0.5°C). Compared

with the pan-Arctic permafrost, the permafrost temperature on the QTP is relatively

high (Obu et al., 2019). Nearly half of the permafrost temperature area on the QTP

exceed  -1.0ºC  and  the  average  temperature  is  -1.35  ±  0.42  ºC.  The  permafrost
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temperature is not only affected by latitude,  but also by altitude.  As illustrated in

Figure  4,  the lower-temperature  permafrost  on the  QTP generally  occurs  in  high-

altitude  mountains,  and  the  ground  temperature  gradually  rises  with  decreasing

altitude, with the lowest value distributes in the Kunlun Mountain and its surrounding

regions. In general, the MAGT on the QTP was found to be higher in the southern

region (GZIR) than that in the northern region (AEJIR), and higher in the eastern

region (WQIR) than that in the western region (XKLIR).

Based on permafrost extent,  the spatial  distribution of the ALT for the entire

QTP was obtained (Figure 5). The statistical results indicated that the average ALT is

2.3 ± 0.60 m on the QTP, and the ALT value of ~ 90% of the  permafrost region

ranged from 1.6 to 3.0 m. Geographically, the ALT in the eastern part of the QTP is

relatively thinner (generally no more than 2 m) with slight variations. The ALT along

the  Qinghai-Tibet  Highway  and  in  the  central  and  western  plateau  is  highly

heterogeneous. The overall ALT pattern is thin in the mountains, thick on the plains,

thin in the hinterlands, and thick along the periphery of the permafrost. The maximum

value appears along the southern boundary of the permafrost  and the surrounding

sporadic  permafrost  (generally  ≥  3.2  m).  In  general,  MAGT  and  ALT  exhibit  a

consistent  trend in  spatial  distribution,  with  a  correlation  coefficient  of  0.44.  The

smaller value of MAGT corresponds to thinner ALTs.

3.3. The projection of MAGT and ALT
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In view of a strong statistical rule of MAGT and ALT in climatic factors (e.g.,

TDD and FDD) and topographic factors (e.g., Lon, Lat, and Ele), most studies have

begun  to  use  similar  statistical  methods  to  investigate  the  present  and future

development trends of the periglacial climate realm (Koven et al., 2013; Aalto et al.,

2017, 2018; Zhang et al., 2019). In this study, the optimal fitting model for the present

state  was  employed  to  forecast  MAGT  and  ALT  under  different  future  climate

scenarios. For ALT, the spatial domain was limited to the area with simulated MAGT

≤ 0°C during each associated period and/or RCP scenario.

Due to climate change, the permafrost temperature exhibits  an obvious rising

trend on the QTP. We simulated the future change of permafrost on the QTP after half

a  century.  The  results  revealed  that  the  future  changes  of  MAGT  and  ALT are

predicted to be pronounced, but region-specific (Figure 6). The forecasted average

MAGT over the QTP permafrost regions will increase from -1.35°C (present status)

to -0.66°C by 2061-2080 (RCP2.6) and to 0.25°C for RCP8.5 (Table 2). The ALT,

however, was only predicted to increase from 2.3 m (2000-2015) to 2.7 m (2061-

2080) for RCP8.5. The reason for the consistency or small change of the ALT is that,

the section of the permafrost  with a  MAGT near  0°C is  forecasted  to  degrade to

seasonally frozen ground, and this part  of the permafrost usually corresponds to a

thicker active layer. Additionally, the uncertainties related to the forecasts of MAGT

and ALT under different RCPs in the future were given. And, the uncertainties are

characterized by the range of MAGT value and ALT value. As can be seen in Figure
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7, even under the different RCPs scenarios, the fluctuation range of MAGT and ALT

is basically the consistent.

Over the next half  century,  the near-surface permafrost areas are predicted to

continue to decrease by 0.13 × 106  km2  (12%), 0.42 × 106  km2  (40%) and 0.60 × 106

km2 (58%) on the QTP by 2070 (2061-2080), under the RCP2.6, RCP4.5 and RCP8.5

scenarios, respectively. The result is basically consistent with the projected change by

Chang et al.  (2018) (Figure 8). Permafrost is in non-equilibrium under the influence

of  climate  change,  and there  may  be  no  permafrost  that  is  driven by the  current

climate. In fact, it may be that permafrost is degrading, so the distribution range of the

simulation results may be underestimated (Zhao et al., 2019). The changes in MAGT

and ALT are not only related to the changes in temperature and precipitation but also

closely  related  to  hydrothermal  parameters  and  surface  energy  balance  (Guo  and

Wang, 2016; Hu et al., 2019). Based on the existing observation data and improved

soil physics, the estimated changes in previous studies are generally larger than that of

actual change (Lawrence et al., 2012; Cheng et al., 2019; Wang et al., 2019b).

4. Discussion

In  order  to  project  the  possible  future  changes  of  permafrost,  we  simulated

MAGT  and  ALT changes  under  the  present  state  and  future  scenarios  based  on

statistical and ML methods. The results show that under different RCPs, significant

degradation  of  the  QTP  permafrost  may  occur  (e.g.,  MAGT  rising  and  ALT

thickening);  in  particular,  under  RCP8.5,  more  than  half  of  the  near-surface
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permafrost will disappear, and regional differences were observed. In this section, to

further verify the feasibility of our results, we compared our simulated MAGT and

ALT with those of previous studies and then analyzed the vulnerability of permafrost

to  climate  change  under  the  present  state.  Based on these  findings,  we proposed

urgent action should be taken to adapt climate change. Finally, the model performance

and potential sources of the uncertainty in this study were discussed.

4.1. Comparisons with previous results

The most likely permafrost area on the QTP is 1.04 × 106 km2 (the region where

MAGT < 0°C,  Figure 4), or about 45.4% of the total  QTP land surface area.  Our

results were compared with the permafrost distribution map of the QTP for the period

2003–2012 based on the TTOP model, which was basically consistent with the new

permafrost area (1.06 × 106 km2, Zou et al., 2017). The two results showed substantial

consistency,  with a  kappa coefficient  of 0.63 (Table 3).  However,  there were still

certain  spatial  differences  (Figure  9).  These  differences  mainly  occurred  at  the

southern margin of the continuous permafrost and the islands  of permafrost in the

south eastern QTP.

For  the  results  of  MAGT and ALT,  a  similar  study showed  relatively  large

deviations at the hemispheric scale (the RMSEs of MAGT and ALT were 1.6°C and

0.89 m, respectively; Aalto et al., 2018). In their study, an interesting discovery was

mentioned, for both MAGT and ALT: after considering the area north of 60°N, the

uncertainty was greatly reduced. This is primarily due to the fact that the permafrost
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on the QTP is  quite different  from that of the pan-Arctic  region. The QTP is the

dominant by the high-altitude permafrost,  while the pan-Arctic is mainly the high-

latitude permafrost. Compared with the pan-Arctic region, the active layer on the QTP

is thicker, the ground temperature is higher, and the spatial heterogeneity is greater

(Nicolsky et al., 2017; Cao et al., 2017; Qin et al., 2017). Therefore, combining the

QTP permafrost and the pan-Arctic permafrost hemispherically will inevitably reduce

the accuracy of the results.

We  further compared the simulated results of MAGT and ALT with previous

studies on the QTP. Table 4 summarizes the error statistics among different types of

permafrost models (i.e., equilibrium model, transient model and statistical model). We

can find that for the R-value, our method combined of the statistical and ML has the

similar accuracy with the transient model. Although the RMSE of ALT in our study is

the largest among all models, the differences are not significant. Moreover, the RMSE

of MAGT in our study shows relatively smaller error.  Meanwhile, from the overall

spatial  distribution of the ALT, although there are some differences  in  the spatial

details, the distribution pattern of our result is comparable with the presented recently

(Zhao  and Wu,  2019;  Wang et  al.,  2020b). In  generally,  our  model  can  obtain  a

relatively higher simulation accuracy.

We qualitatively  analyzed  the  main  reasons  for  these  differences  as  follows.

Firstly, there are differences in accuracy among different types of models, such as the

equilibrium models and mechanistic transient models. Secondly, there is a slight gap

between the research period and the data used for verification. Permafrost is often
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viewed as a product of long-term climate change, which is slowly changing (Zhang et

al.,  2007);  this  may also lead  to  differences  between the results.  Finally,  the 0.1°

resolution of our model can’t capture all of regional information on climate change,

which may limit the model’s ability to capture detailed changes in the permafrost to

some extent, especially in the boundary of the permafrost region (Etzelmüller, 2013;

Guo  and  Wang,  2016). Therefore,  the  ability  to  capture  the  permafrost  edge

information  should  be  further  improvement.  Overall,  by  comparing  with  previous

studies on the QTP, that our method is relatively simple and effective, and thus could

be a useful tool to evaluate the permafrost conditions with a high accuracy on the

QTP.

4.2. Permafrost vulnerability

According to Figure 4, the ground temperature of the entire QTP permafrost is

relatively high. In order to analyze the vulnerability of the QTP permafrost to climate

warming,  the  permafrost  region  with  MAGTs  ranging  from  -0.5  to  0.5°C  was

extracted (Figure 10). According to the permafrost stability classification (Cheng and

Wang,  1982),  permafrost  in  this  range  is  classified  as  unstable  region.  It  can  be

observed that 0.49 × 106  km2 of the permafrost area over the QTP is in danger at

present, which accounting for 37.3% of the maximum permafrost area. This unstable

permafrost primarily distributed in the transition region of permafrost and seasonally

frozen ground.
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As a result of the global warming and increased anthropogenic activity, the QTP

has experienced an approximately 3-fold warming increase over the past 50 years

(Wan et al., 2018). Under the influence of this accelerated warming, the permafrost

region adjacent to the seasonally frozen ground is becoming increasingly fragile (Qin

et al., 2017). This part of the permafrost is generally in the process of ice-water phase

transformation. A comparison with Figure 6, reveals that this region is consistent with

the areas in which permafrost will disappear under future RCPs, but it also greatly

affected by the local ground ice content, underlying surface types, and other related

factors (Nelson et al., 2001; Yang et al., 2010c).

The Qinghai-Tibet  Engineering  Corridor  (QTEC, the region that  contains  the

Qinghai-Tibet Highway and Railway, pipelines, electric transmission lines, and so on)

is an important conduit connecting mainland China and the QTP. Under the influence

of intensifying global climate change and frequent human activities, the ecological

environment along the QTEC is fragile, and the permafrost in the QTEC has degraded

significantly and the alpine ecosystem is facing new challenges (Niu et al.,  2018).

Based on  Figure 10, the statistical  results show that 757 km of the QTEC crosses

through the permafrost region (at its maximum extent), accounting for nearly 40% of

its total length (from Xining to Lhasa). Of this, approximately half of the QTEC faces

the risk of the permafrost disappearing, and the other half may experience varying

degrees of permafrost degradation in the future. This will result in huge economic

losses and threaten associated infrastructures along the QTEC.
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Recent  studies  have  shown  that  several  cryosphere  tipping  points  are

dangerously close (IPCC, 2019), and the permafrost in the Arctic has begun to thaw

irreversibly and release carbon dioxide and methane, but the inevitable effects could

still be mitigated by reducing greenhouse gas emissions (Lenton et al., 2019). The

stability and resilience of the QTP permafrost is in peril. We should take urgent action

to reduce greenhouse gas emissions, and put them as the priority of the present and

future work. In order to effectively mitigate the degradation of permafrost,  all  the

emission reduction measures should be reflected in words even in actions.

4.3. Model performance and uncertainty analysis

Our  study  integrated  field  observation  data,  meteorological  data,  geospatial

environmental predictors and multiple statistical  models to study MAGT and ALT

changes in the present and future QTP permafrost regions. Based on the CV analysis,

the reliability of both predictions displayed relatively low uncertainty. For MAGT, the

benefits of using the ensemble modeling approach were obvious, i.e., the average of

the four methods yielded the best simulation result. For ALT, large errors still existed

among the ensemble modeling approach after CV, which indicating that the method

does not always produce the most reliable results. The simulation accuracy of ALT is

lower than that of MAGT, and the result can only represent the general change trend

of ALT. The main reason for this is that, the spatial heterogeneity of ALT on the QTP

is large, with the change rate of ALT per unit (100 m2) reaching 80%, thus resulting in

the relatively low R2 values and large RMSEs (Cao et al., 2017). Additionally, our
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model predicts the equilibrium state of permafrost and does not consider the lag time

associated  with  the  formation  and  degradation  of  permafrost (Xu  et  al.,  2017b).

Compared with previous studies, although our results show great reliability, there are

still  some  uncertainties  embedded  in  the  predictions,  including  the  measurement

accuracy of the data, the equilibrium assumption in the statistical modeling and the

influence of other factors (Aalto et al., 2018).

Due to the limitations of the observation data, we had to use one-year or multi-

year averages to represent the present state and to fit the model. MAGT and ALT

changed during this period, however, in particular, ALT changed greatly at the inter-

annual  scale.  We did  our  best  to  collect  datasets  with  MAGT and ALT,  but  the

number of sample points used for training was still limited, and the model was still

highly sensitive to single observations. To some extent, this also indicates that the

number of observation sites on the QTP is too sparse to represent the present large

spatial heterogeneity of the plateau.

When calculating the input factors of the model, in the future warming scenarios,

the  TDD  and  FDD  were  calculated  based  on  the  monthly  mean  air  temperature

instead of the daily mean air temperature.  This approximate calculation method will

bring some unavoidable errors, especially when the temperature is close to 0  (℃ Wu

et al., 2011; Shi et al., 2019). Additionally, we simply take 0°C temperature as the

critical  temperature  threshold  between  solid  precipitation  and  liquid  precipitation,

while, in most cases, snowfall events even occur in some regions on the QTP when

the air temperature is > 4°C, but not 0  (℃ Wang et al., 2016).
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In  this  study,  some key soil  parameters,  including  soil  texture,  soil  moisture

content  and  bulk  density,  were excluded  from the  analyses  in  the  model  due  to

missing data, which exerted strong influence on water and heat transfer in the active

layer as well as the change in permafrost temperature (Wu et al., 2017b; Du et al.,

2020). The  PISR  and  SOC in  permafrost  region  are  not  static.  However,  it  was

assumed to be the fixed value in our model.  With the further research on the key

predictors of the permafrost region, we will add more dynamic datasets to our model.

In summary, we used statistical and ML models combined with easily accessible data

to simulate the present and future dynamics of permafrost on the QTP. By comparison

and  verification, our  model  can  obtain  high  precision  results  through a  relatively

simple calculation process.

5. Conclusions

In this study, the method combined of statistical and ML was used to obtain the

key permafrost metrics in both the present and a half-century in the future (2061-

2080)  on  the  QTP.  Based  on  the  comparison  with in  situ observation  data  and

previous  researches,  we  found  that  this  method  was  reliable  for  simulating  the

changes in MAGT and ALT. We demonstrated the permafrost degradation from a

quantitative perspective.  Our results can provide a scientific basis for the study of

climate change in permafrost. The main conclusions are listed as follows:

1) A combination method of statistical  and ML models is efficient to capture the

changes in the thermal state of the permafrost on the QTP.
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2) The present (2000-2015) permafrost area on the QTP is approximate to be 1.04 ×

106 km2. The average MAGT and ALT of the permafrost region amount to -1.35 ±

0.42ºC and 2.3 ± 0.60 m, respectively.

3) In the future (2061-2080), the maximum permafrost area may be reduced to 0.44

× 106 km2. The future changes of MAGT and ALT are forecast to be pronounced,

but region-specific.

4) The unstable permafrost mainly distributed at the edge of the permafrost region,

and approximately half permafrost in the QTEC will be at risk of disappearing in

the future. 
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Figure 1. Location of the investigated regions and observation sites. Green dots and

red triangles stand for the mean annual ground temperature (MAGT) and active layer

thickness (ALT) monitoring sites, respectively.  The black polygons depict the five

typical regions.

Figure 2. Observed  vs. simulated mean annual ground temperature (MAGT) for 84

borehole sites based on four statistical techniques (GLM = generalized linear model,

GAM = generalized  additive  model,  GBM = generalized  boosting  method,  RF =

random forest.) and an ensemble method (the average of the four methods). The red

dashed lines are the ±1 ℃ intervals around the 1:1 line (in black solid line).

Figure 3. Observed vs. modeled active layer thickness (ALT) based on four statistical

techniques (GLM = generalized linear model, GAM = generalized additive model,

GBM = generalized boosting method, RF = random forest.) and an ensemble method

(the average of the four methods). The red dashed lines are the ±1 m interval around

the 1:1 line (in black solid line).

Figure 4. Spatial distribution of permafrost on the QTP based on the MAGT.

Figure 5. Distribution of the ALT on the permafrost regions of the QTP.

Figure  6.  Forecast  mean  annual  ground  temperature  (MAGT)  and  active  layer

thickness (ALT) across the study domains under different RCPs (RCP2.6, RCP4.5

and RCP8.5) for the 2070s (average of 20612080).

Figure 7. The uncertainty related to the spatial forecasts of mean annual ground 

temperature (MAGT) and active layer thickness (ALT) in RCP 2.6(a), RCP 4.5 (b), 

RCP 8.5 (c) scenarios. The uncertainty is quantified using a repeated (n = 1,000) 
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bootstrap sampling procedure inside the study domain. The boxplots depict the mean, 

median, 1st and 3rd quartiles and range of variation over 1000 predictions for 

modeling techniques.

Figure 8.  Projections of the changes in permafrost area on the QTP under RCP2.6,

RCP4.5, RCP6.0 and RCP8.5 via 7(a) surface frost index (SFI) and 7(b) Kudryavtsev

method (KUD). The graph is derived from Chang et al. (2018). Shaded areas show

the standard deviations across the CMIP5 models, the black lines show the equivalent

present-day area, and the grey dotted line represent the degraded area in 2070 under

different RCPs.

Figure 9. Spatial differences between our results (2000–2015) and those of Zou et al

(2003–2012; TTOP model). P and SFG represent permafrost and seasonally frozen

ground,  respectively;  Result  is  the  permafrost  distribution  of  this  study.  The

permafrost distribution is obtained from Zou et al. (2017).

Figure 10. Spatial distribution of the permafrost regions prone to degradation.
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Table 1. Model Error statistics of the ALT and MAGT in different typical regions

Region
(WQIR)

East

(XKLIR)

West

(GZIR)

South

(AEJIR)

North

(G109IR)

Central

(QTP)

Entire

MAGT

RMSE ( )℃ 0.60 0.56 0.61 0.73 0.45 0.53

Bias ( )℃ 0.025 0.06 -0.15 -0.14 -0.03 -0.02

ALT
RMSE (m) 0.60 0.62 0.68 0.11 0.76 0.69

Bias (m) 0.24 0.06 -0.46 0.09 0.18 -0.11

Table 2. Key characteristic metrics of permafrost under different RCPs

Present RCP2.6 RCP4.5 RCP8.5

2000-2015 2061-2080

MAGT ( )℃ -1.35 -0.66 -0.14 0.25

ALT (m) 2.3 2.5 2.5 2.7

Area (×106 km2) 1.04 0.91 0.62 0.44

Note: the statistics of mean annual ground temperatures (MAGT) in three scenarios (RCP2.6, RCP4.5, 

RCP8.5) were based on the permafrost range under present status.

Table 3. Discrepancy area of permafrost on QTP

Area discrepancy (×106 km2) Percentage (%)

Both P 0.86 35.41

Result P and Zou SFG 0.18 7.41

Result SFG and Zou P 0.20 8.23

Both SFG

Total

1.19

2.43

48.95

100

Table 4. Compare the statistical errors between different types of models

Numerical model Time period RMSE R Source

MAGT

( )℃

Equilibrium model 2000-2016 1.85 0.20 Obu et al., 2019

Transient model 2007-2010 0.31 0.93 Wu et al., 2018

Statistical and ML 2000-2015 0.53 0.85 This study

ALT

(m)

Equilibrium model Before 2009 0.47 0.46 Pang et al., 2012

Transient model 2007-2010 0.57 0.86 Wu et al., 2018

Statistical and ML 2000-2015 0.69 0.71 This study

Note: bold data represents the best result for each model.
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