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Abstract

Understanding cloud-circulation coupling in the Trade wind regions, as well as addressing the grey zone problem in convective

parameterization, requires insight into the genesis and maintenance of spatial patterns in cumulus cloud populations. In this

study a simple toy model for recreating populations of interacting convective objects as distributed over a two-dimensional

Eulerian grid is formulated to this purpose. Key elements at the foundation of the model include i) a fully discrete formulation

for capturing binary behavior at small population sample sizes, ii) object demographics for representing life-cycle effects, and

iii) a prognostic number budget allowing for object interactions and co-existence of multiple species. A primary goal is to

optimize the computational efficiency of this system. To this purpose the object birth rate is represented stochastically through

a spatially-aware Bernoulli process. The same binomial stochastic operator is applied to horizontal advection of objects,

conserving discreteness in object number. Implied behavior of the formulation is assessed, illustrating that typical powerlaw

scaling in the internal variability of subsampled convective populations as found in previous LES studies is reproduced. Various

simple applications of the BiOMi model (Binomial Objects on Microgrids) are explored, suggesting that well-known phenomena

from nature can be captured at low computational cost. These include i) subsampling effects in the convective grey zone, ii)

stochastic predator-prey behavior, iii) the down-scale turbulent energy cascade, and iv) simple forms of spatial organization and

convective memory. Consequences and opportunities for convective parameterization in next-generation weather and climate

models are discussed.
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Key Points:5

• An efficient scale-aware stochastic number generator based on a Bernoulli process6

is applied to model object births and advection on Eulerian grids.7

• Discreteness in object number is conserved, while an age dimension is included to8

represent evolution of object demographic strata.9

• Population subsampling effects in the convective grey zone are reproduced, while10

simple applications capture behavior as observed in nature.11
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Abstract12

Understanding cloud-circulation coupling in the Trade wind regions, as well as address-13

ing the grey zone problem in convective parameterization, requires insight into the gen-14

esis and maintenance of spatial patterns in cumulus cloud populations. In this study a15

simple toy model for recreating populations of interacting convective objects as distributed16

over a two-dimensional Eulerian grid is formulated to this purpose. Key elements at the17

foundation of the model include i) a fully discrete formulation for capturing binary be-18

havior at small population sample sizes, ii) object demographics for representing life-cycle19

effects, and iii) a prognostic number budget allowing for object interactions and co-existence20

of multiple species. A primary goal is to optimize the computational efficiency of this21

system. To this purpose the object birth rate is represented stochastically through a spatially-22

aware Bernoulli process. The same binomial stochastic operator is applied to horizon-23

tal advection of objects, conserving discreteness in object number. Implied behavior of24

the formulation is assessed, illustrating that typical powerlaw scaling in the internal vari-25

ability of subsampled convective populations as found in previous LES studies is repro-26

duced. Various simple applications of the BiOMi model (Binomial Objects on Microgrids)27

are explored, suggesting that well-known phenomena from nature can be captured at low28

computational cost. These include i) subsampling effects in the convective grey zone, ii)29

stochastic predator-prey behavior, iii) the down-scale turbulent energy cascade, and iv)30

simple forms of spatial organization and convective memory. Consequences and oppor-31

tunities for convective parameterization in next-generation weather and climate mod-32

els are discussed.33

Plain Language Summary34

Convective clouds in the Trade wind regions play a crucial role in Earth’s climate.35

The way they interact with the atmospheric circulation is not well understood, and is36

associated with long-standing problems in weather forecasting and climate prediction.37

Recent research has suggested that the spatial structure of these cloud fields is a key fac-38

tor in this problem, and that improving our understanding of such convective cloud pat-39

terns is crucial for making progress. This study explores a new model framework for gen-40

erating such cloud patterns, consisting of populations of convective objects on small grids.41

The objects are born in a random way, complete a life cycle, and can freely move around42

on the grid. They can also interact and form larger clusters, obeying certain rules of in-43
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teraction. The way the objects behave and move around features some key innovations44

compared to previous ecosystem models of this kind. These are introduced to optimize45

the performance and reduce run time on a computer. Various experiments are conducted46

to explore the new model, illustrating that observed behavior of convective populations47

is reproduced. These tests also highlight opportunities created for improving convection48

in weather and climate models.49

1 Introduction50

Convective cloud populations in Earth’s atmosphere cover a broad range of spa-51

tial scales. Their occurrence acts on planetary scales, by persistently covering substan-52

tial areas of the marine subtropical Trade wind regions. On the other end, individual clouds53

have dimensions from a few meters up to tens of kilometers. The spatial structure of cu-54

mulus populations acts on the intermediate (meso)scales and can take many forms, in-55

cluding random-like distributions (Nair et al., 1998) but also more organized patterns56

including cold pool structures and convergence lines (Bony et al., 2020).57

Understanding the spatial structure of cumulus populations is important for var-58

ious reasons. Global weather and climate models require parameterizations to represent59

the impact of subgrid-scale processes on the resolved-scale flow. Until recently this still60

fully included cumulus convection, but ongoing advances in supercomputing have grad-61

ually created a “grey zone problem” (Wyngaard, 2004; Honnert et al., 2020) in which62

feasible gridspacings approaches typical neighbor spacings of cumulus clouds (Joseph &63

Cahalan, 1990). This means convective populations are no longer fully sampled in in-64

dividual gridboxes, a situation for which existing convective parameterizations need to65

be adapted (Kwon & Hong, 2017; Brast et al., 2018). A second motivation for study-66

ing the spatial structure of cumulus populations is the role it plays in the cloud-climate67

feedbacks (Vogel et al., 2016; Wing et al., 2018).68

The investigation of spatial patterns in convective cloud fields goes back decades,69

using large-domain covering observations (Sengupta et al., 1990; Weger et al., 1992; Nair70

et al., 1998) and more recently also simulations (Tompkins & Semie, 2017; Feingold et71

al., 2017; Neggers et al., 2019). What is clear is that spatial patterns consist of many72

individual convective objects. Zooming in on any pattern then leads to ever fewer ele-73

ments being contained in the shrinking domain of interest. As a result, bulk population74
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averages go from smoothly behaving for a fully sampled population towards binary be-75

havior for a severely sub-sampled population. The way this happens is strongly affected76

by clustering (Neggers et al., 2019). Understanding and capturing this transition towards77

discrete behavior, including the role played by spatial organization, is key for develop-78

ing scale-aware and stochastic convective parameterizations for next-generation weather79

and climate models.80

Population models including many small convective elements can give useful new81

insights into this problem, and potentially provide new pathways for convective param-82

eterization. For example, rules of interaction can be introduced that reflect known or ob-83

served physics, by which spatial patterns can emerge freely. Such rules are known from84

game theory (von Neumann, 1928; von Neumann & Morgenstern, 1944) and cellular au-85

tomata (von Neumann, 1966; Gardner, 1970). A promising recent example is the lattice86

or microgrid approach (Khouider et al., 2010; Dorrestijn et al., 2013; Peters et al., 2017),87

which allows multiple cloud-scale structures to evolve naturally and gradually on a 2D88

grid. Other cloud-scale stochastic frameworks were recently proposed by Hagos et al. (2018)89

and Sakradzija et al. (2016). One step further down-scale is the Lagrangian particle ap-90

proach of (Böing, 2016), which tracks a multitude of interacting sub-cloud scale elements91

as they form larger clusters on the grid. Although yielding powerful results, what remains92

relatively unexplored is how such systems behave in the grey zone, in particular their93

stochastic and discrete behavior resulting from population subsampling in a too small94

gridbox. One also wonders if the often considerable computational burden of such multi-95

object approaches might limit their use as part of a convective parameterization.96

To gain further insight, in this study a simple toy model is formulated for recre-97

ating populations of interacting convective objects as distributed over a two-dimensional98

grid. A defining principle is its fully discrete formulation, aimed at capturing binary be-99

havior at small population sample sizes. Another primary goal is to achieve a formula-100

tion that is generally applicable to many types of convection and convective object def-101

initions, with a computational efficiency that is as high as possible. Object births are102

represented stochastically as a spatially-aware Bernoulli process, taking the form of a bi-103

nomial number generator. The same operator is applied to horizontal advection of ob-104

jects between gridboxes, making this process similarly stochastic and discrete. Object105

demographics are included, creating age strata and allowing discrete and explicit rep-106

resentation of life-cycle effects. The formulation of the framework allows for multiple co-107
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existing species, as well as interactions to take place between individual convective ob-108

jects. The formulation in terms of a Bernoulli process at multiple points in the model109

considerably enhances the computational efficiency.110

Section 2 presents the basic formulation of the framework. In Section 3 behavior111

as implied by the formulation is briefly discussed, including an interpretation of implied112

scaling behavior, the advection operator, and the computational efficiency of the frame-113

work. Section 4 demonstrates simple applications of the framework on microgrids, in-114

cluding both single-species and multi-species setups. This application on microgrids is115

named BiOMi (Binomial Objects on Microgrids). Opportunities created by introducing116

simple physics-based rules of object interaction are explored, including predator-prey be-117

havior, spatial organization and convective memory. Section 5 interprets these results118

in the context of limitations in the formulation, and compares to other recently proposed119

stochastic frameworks for atmospheric convection. Section 6 then summarizes the main120

conclusions and provides an outlook on future steps inspired by this study.121

2 Formulation122

In this section the framework for describing an evolving population of objects on123

a discretized grid is defined. At its foundation is a prognostic budget for object num-124

ber that is discrete and includes various sources and sinks. We adopt the following guid-125

ing principles in its formulation:126

1. The objects should have a stochastic birth rate and a finite lifespan;127

2. The number of objects present in a gridbox should be both discrete and positive-128

definite, at any time;129

3. The formulation should be general enough to be applicable to any type of convec-130

tion.131

Adopting the first and second principles is motivated by our primary goal of capturing132

the type of stochasticity that is introduced by the sub-sampling of populations in a too133

small gridbox. In this “grey-zone” range of resolutions, only a few objects are present134

at varying stages of their life-cycle, which may lead to binary (i.e. on-off) behavior in135

their averaged properties. Adopting a discrete approach has direct implications for the136

formulation of all terms in the number budget.137
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Figure 1. a) Schematic illustration of a population of objects of species i inside a three-

dimensional space-time gridbox (red) with square horizontal area ∆x∆y and time-step ∆t. b)

Schematic illustration of object demographics for a species i with 5 age strata. The blue ar-

rows indicate external sources and sinks of the demographics budget (2), while the green arrows

indicate the internal aging process. Variables are explained in Section 2.1.

Adhering to the third principle makes it necessary to refrain from defining any clo-138

sures that reflect specific physics behavior, as this by definition would make the frame-139

work no longer generally applicable. Accordingly, in this section the formulation of such140

physical parameterizations is for now left open. However, in Section 4 a few simple ex-141

amples will be explored.142

2.1 A discrete budget for object number143

Consider a three-dimensional space-time gridbox covering a square horizontal area144

∆x∆y and time-step ∆t, as depicted in Fig. 1a. This grid box can contain a population145

of objects, potentially consisting of multiple species. The discrete number of objects of146

species i is indicated as ni, with I being the total number of different species. How ex-147

actly species are defined is left open at this point, to maintain general applicability of148

the framework. Note that the vertical dimension is omitted because the altitude of ob-149

jects is not considered in this framework.150

We now introduce a fourth dimension, which is object age k. The number of ob-151

jects of species i in a gridbox can then be written as ni(x, y, k, t). All four dimensions152

are discretized. As a result, the k-dimension introduces a discrete form of object dem-153
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ographics, with k being an integer number indicating an age-stratum. For simplicity all154

objects of a species i are assumed to have the same life-span τi, by which the number155

of age strata Ki is obtained through156

Ki =
τi
∆t

(1)

In practice, the chosen time discretization determines how many demographics levels are157

maintained. The life times of objects are chosen to be a multiple of ∆t, so that Ki is al-158

ways an integer number.159

The final step is to formulate a prognostic budget for each species i at each age level160

k. This gives161

∆nik = bik − dik + aik + tik. (2)

The left hand side ∆nik represents the change of ni at demographics level k per time162

step ∆t. On the right hand side, bik and dik represent changes in nik due to births and163

deaths respectively, aik represents net advection of objects from neighboring gridboxes,164

and tik represents the process of object aging (demographics). Hereafter, lower-case no-165

tation indicates the property of a gridbox, while upper-case notation reflects the inte-166

gral or average properties of a much larger domain. To shorten the notation only the species167

and age indices i and k are carried as subscripts. Each demographics level k thus has168

its own number budget. Note that all terms in (2) are still integer numbers.169

2.2 Object births as Bernoulli trials170

The first step in the closure of bik is to assume that objects of species i have a unique171

reference birth rate per unit area and unit time when diagnosed over an infinitely large172

area. Let us write this birth rate as Ḃi. Because this rate depends strongly on the def-173

inition of the species, for now we assume this birth rate as a given, known property. By174

adopting this assumption we follow the recent study of Böing (2016).175

Given Ḃi, the next step is to consider a finite but still very large reference domain176

of horizontal size L in which the population of convective objects is still fully sampled.177

The average total number of births of species i within this reference domain during one178

time-step, Bi, can then be written as179

Bi = Ḃi L
2 ∆t (3)
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A convenient choice of a reference domain would be the whole globe, as this represents180

the theoretical upper limit of gridspacing in any General Circulation Model (GCM) used181

for global weather and climate prediction. For smaller scale shallow convection one could182

also choose a smaller domain, for example the subtropical marine Trade wind region. When183

Bi is large and the reference domain is much larger than the individual gridbox, the bi-184

nomial sampling approaches the Poisson distribution used by Sakradzija et al. (2015) to185

determine stochastic cloud births per gridbox.186

Discretizing this reference domain at resolution (∆x,∆y,∆t) results in a number187

of gridboxes N ,188

N =
L2

∆x∆y
. (4)

The total number of birth events in the reference domain, Bi, is spatially distributed over189

the grid, yielding an average number of birth events in a single gridbox, µi,190

µi =
Bi

N
(5)

Let us assume for the moment that the spatial distribution is purely random (we will191

deviate from this condition later). Then for each of these N birth events the probabil-192

ity p that it takes place inside a specific gridbox is193

p = 1/N. (6)

Note that probability p is the same for each species, and is purely a property of the dis-194

cretized grid. In that sense it introduces scale-awareness, or awareness of the gridspac-195

ing. Dependence on species is introduced by Bi.196

The key step in defining the stochastic birth generator is to assume that the num-197

ber of births in an arbitrary gridbox is independent of other gridboxes and timesteps.198

This means that object birth events can be considered as single, independent Bernoulli199

trials, associated with a specific success/failure probability p. With that assumption the200

full set of Bi birth events that takes place within the reference domain then becomes a201

Bernoulli process. Adopting the configuration as defined above this can be written as202

the following probability mass function,203

fi (b) =

(
Bi

b

)
pb (1− p)(Bi−b) (7)

where the binomial coefficient is defined as204 (
Bi

b

)
=

Bi!

b! (Bi − b)!
(8)
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where we assumed for convenience that Bi can be rounded to the nearest integer. Func-205

tion fi(b) can be interpreted as the probability of b births of objects of species i in an206

arbitrary gridbox, given a reference domain with properties Bi and p. The mean µi of207

this binomial distribution, or its expected value, is defined as208

µi = Bi p, (9)

which, according to (5) and (6), corresponds exactly to the average number of object births209

per gridbox. Note that the actual average number of births on the grid might deviate210

from this expected value because each gridbox is sampled independently.211

In practice, in each space-time gridbox the integer number of births of objects of212

species i is determined by randomly sampling the binomial distribution (7). This can213

be written as a binomial number generator,214

bi1 = B (Bi, p) , (10)

where B represents a single random sample of binomial function fi. The number of births215

bi1 thus established for each gridbox can directly be used in budget equation (2), with216

subscript k = 1 reflecting that all newly born objects enter the demographics array at217

the first (youngest) level. The birth rates bik for k > 1 are set to zero for the moment.218

2.3 Object demographics219

The introduction of the age dimension k allows representing object life-cycle effects.220

At the start of every timestep, objects in one demographics level are time-shifted into221

the next (older) level. This process is illustrated in Fig. 1b (green arrows). This process222

of object aging is included in budget (2) through the operator tik, defined as223

tik =


− nik for k = 1

ni,k−1 − nik for 2 ≤ k < Ki

ni,k−1 for k = Ki

(11)

The time-shift out of the top (oldest) level represents object death due to old age ,224

dik = nik for k = Ki (12)

Note that this death rate is automatic and discrete, in that it can not create fractional225

object numbers. In this aspect it is different from Newtonian relaxation, which would226
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Figure 2. Schematic illustration of overlap between a displaced gridbox and the underlying

grid. The arrows represent the displacement over one time step, which is simply the horizontal

wind multiplied by the time step duration. Grey crosses mark the mid of the gridbox before and

after displacement. See section 2.4 for full description.

be an alternative (but non-discrete) formulation. Futhermore, the amount of deaths per227

turn is not determined by the amount of objects currently alive, but is directly deter-228

mined by the amount of births Ki time steps earlier. The death rates dik for k < Ki,229

which represent deaths caused by processes other than ageing, are set to zero for the mo-230

ment.231

2.4 A discrete advection operator232

If horizontal advection is to be taken into account an advection approach must be233

chosen which preserves the total number of objects and their discrete nature. No frac-234

tions of objects are permitted.235

The same Bernoulli process we use to distribute the number of births over a two-236

dimensional domain can be used to create a stochastic upwind advection scheme for dis-237

crete objects. At the core of this scheme is the assumption that the objects are randomly238

spatially distributed within each gridbox. From this assumption the probability of an239

object to be advected from one gridbox to another can be determined from the overlap240

area as shown in Fig 2. From this principle a conservative advection scheme can be de-241

rived that requires 3 sequenced Bernoulli trials per advected gridbox, age strata, and species.242
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The first step is to determine the arrival point ~x1 of the gridbox mid point after243

translation from its original location ~x0 due to advection by the horizontal wind ~v,244

~x1 = ~x0 + ~v∆t (13)

The new gridbox is centered around the arrival point ~x1, making it overlap with 4 grid-245

boxes. When the displacement is smaller than the grid box there is chance objects will246

remain in the original gridbox, if the displacement is larger all objects will move outside.247

The overlap areas Aj are labeled in clockwise direction from the topleft one, and obey248

A =

IV∑
j=I

Aj (14)

where A = ∆x∆y. For each age level k, we now randomly select objects from the to-249

tal number of objects in the original gridbox, nik, to arrive in each of these four areas250

Aj . To this purpose the binomial operator B as defined before is used,251

aik,I = B(nik,
AI

A
) (15)

aik,II = B(nik − aik,I,
AII

A−AI
) (16)

aik,III = B(nik − aik,I − aik,II,
AIII

A−AI −AII
) (17)

The number of objects advected into AIV is then simply obtained as the residual,252

aik,IV = nik −
III∑
j=I

aik,j (18)

Doing this separately for each age level k means that age is conserved as objects are ad-253

vected across the grid254

For large number of objects per gridbox this discrete advection operator behaves255

as a continuous first-order upstream approach with high gradient smoothing and fast dis-256

persion. For low object numbers the stochastic nature becomes more visible, with the257

mean over all objects no longer smoothly tracking the wind. These aspects will be fur-258

ther illustrated in Section 3.2.259

2.5 Object interactions260

The framework allows introducing interactions between objects in two different ways.261

The first option is to make birth probability p appearing in (7) dependent on the pres-262

ence of other objects in the vicinity of the gridbox. These could be locally present, in-263

side the gridbox, but also in a wider area, covering multiple adjacent gridboxes. The spa-264

tial extent of such impacts depends on the physical/dynamical nature of the interaction265
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Figure 3. a) Examples of binomial probability density f(b) as defined by (7) for various

grid-spacings ∆x = ∆y, using a birth rate Ḃi = 10−10 m−2 s−1, a reference domain of size

L = 1000 km and an integration timestep ∆t = 60 s. Results represent 106 independent draws.

b) Associated functional form of the normalized standard deviation of the binomial distribution

σ/µ, as defined by (22). A pure powerlaw (black dotted) and modified powerlaw (black dashed)

functional form are also shown, for reference.

process of interest. The second option is to make the birth and death rates bik and dik266

dependent on the presence of other objects. This method is particularly suited to intro-267

duce inter-species interactions. For example, predator-prey dynamics can be introduced268

by making the death rate of one (prey) species dependent on the presence of another (preda-269

tor) species. In Section 4 simple applications of the framework will be demonstrated that270

include both forms of interaction between objects.271

3 Implied behavior272

With the basic formulation of the framework concluded, some behavior can already273

be understood a priori its application in practice. The most relevant of these implied char-274

acteristics are discussed in this section.275

3.1 Stochasticity due to subsampling276

Describing object births on the grid as independent Bernoulli trials directly con-277

trols the behavior of stochasticity in object number at gridspacings at which the pop-278
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ulation is becoming subsampled. This is illustrated in Fig. 3, showing the binomial prob-279

ability density function f(b) as defined by (7) for various gridspacings. Both the mean280

µi and the width 2σi increase with gridspacing ∆x, which is expected because p increases281

with gridspacing through (6). This results in more births per timestep in larger gridboxes.282

A more useful expression of stochasticity is provided by the relative width of the pdf,283

σi/µi. This can be understood by considering the definition of σi for the binomial,284

σ2
i = Bi p (1− p) = µi

(
1− 1

N

)
(19)

The standard deviation σi normalized by the mean µi can then be written as285

σi
µi

= µ
− 1

2
i

(
1− 1

N

) 1
2

. (20)

Note that µi carries dependence on both spatial (grid) information and species proper-286

ties, because it reflects that Bi births are randomly distributed over a discretized spa-287

tial domain. Through (5) this implies a relation for the average neighbor spacing li be-288

tween objects born in the gridbox within the time-step,289

li =

(
∆x∆y

µi

) 1
2

=

(
1

Ḃi ∆t

) 1
2

. (21)

Here the neighbor spacing is simply calculated as the square root of the area surround-290

ing each object that is free of other objects (on average). Substituting the first part of291

(21) for µi in (20) then yields the following scaling relation,292

σi
µi

=

(
∆

li

)−1(
1− 1

N

) 1
2

(22)

where we introduced ∆ =
√

∆x∆y to shorten notation. On the right hand side only293

the variable li depends on the species, through the reference birth rate Ḃi.294

Each term between brackets in the product on the right hand side of (22) has its295

own specific meaning. The first term introduces a powerlaw dependency (with exponent296

−1) on the ratio of grid-spacing ∆ to the nearest neighbor spacing li, with larger val-297

ues of (∆/li) suppressing the normalized standard deviation. This reflects that the pop-298

ulation of object births of species i is better sampled at larger gridspacings, reducing stochas-299

ticity in object number. The second term depends purely on the grid, and acts to bring300

the standard deviation to zero in the limit of the grid spacing approaching the reference301

domain size.302

This behavior is illustrated in Fig. 3b, showing the functional dependence of the303

normalized standard deviation on gridbox size ∆. In the range of gridspacings typical304
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Figure 4. Example of discrete advection of objects on a 5x5 rectangular 1 km grid using the

same initial conditions and grid but differing time step. The blue and orange objects behave

identically, and differ only in the amount (1000 blue, 4 orange). Note that the individual objects

have no specific x and y location within each gridbox, and are only plotted as such for visualisa-

tion purposes. The red square marks the gridbox in which all objects were initialized at t=0, and

shown are the locations after 12 minutes of diagonal advection. The black line with small black

circles marks the mean location at each time step of the blue objects, the large white circles the

mean of the large orange objects.

of operational GCMs the second term is almost a constant, because N � 1. As a re-305

sult, the dependence of the normalized standard deviation on grid-spacing approximately306

behaves as a powerlaw with exponent −1. When N approaches 1, the grid in effect be-307

comes a slab model, and the variability is squeezed to zero.308

The powerlaw scaling in the normalized standard deviation as implied by this for-309

mulation has recently been encountered in studies of the internal variability of shallow310

cumulus cloud size distributions. Neggers et al. (2019) performed subdomain analyses311

of unorganized shallow cumulus cloud populations in large-eddy simulations, and found312

that the variation across subdomains in the number of convective clouds of a given size313

follows scaling relation (22). This agreement provides support for the applicability of the314

Bernoulli process for reconstructing such unorganized convective populations.315
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3.2 Discrete advection316

To illustrate the numerics of the discrete advection operator we run a highly ide-317

alized experiment in which all objects are initialized in the same gridbox before being318

advected diagonally (Fig 4). Objects do not interact with each other or have a life cy-319

cle, and all differences between the subplots of Fig 4 are due to the differing number and320

duration of the timesteps. This testcase was designed to maximize advective diffusion321

in order to highlight the randomness and discreteness of the stochastic advection oper-322

ator.323

For a large number of objects per gridbox the discrete advection operator behaves324

as a continuous first-order upstream approach with high gradient smoothing and fast dis-325

persion (small blue dots). But in contrast to a continuous upstream approach, the dis-326

crete operator is positive definite and not limited by the Courant–Friedrichs–Lewy con-327

dition. How strong and in which direction the dispersion acts depends on the angle of328

the grid to wind direction, gridbox size, and the timestep. The impact of changing the329

timestep is shown in Fig. 4, illustrating that changing the timestep can not only affect330

the strength of the dispersion, but also the direction. As in the continuous analog, in-331

creasing resolution reduces diffusion (not shown). Despite this numeric diffusion, the mean332

over a sufficient number of objects will follow the wind direction closely. For low object333

numbers the stochastic nature becomes more visible, with the mean over all objects no334

longer smoothly tracking the wind (large white dots). A side effect of the stochastic na-335

ture is that an initially smooth field will become heterogeneous when advected. Simi-336

lar to the stochastic subsampling this effect is more pronounced for low object numbers337

(not shown).338

3.3 Computational viability339

Given that efficiency is one of the core concepts of the introduced framework, this340

subsection briefly discusses the required processing cost and memory requirements of the341

framework and how they compare to Lagrangian approaches.342

3.3.1 Processing343

The binomial operator (10) is a cornerstone of the framework, being applied to rep-344

resent both object births and object advection. A computational benefit of this oper-345
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Figure 5. Results of a speed test of the binomial operator (10) as executed in Python on

a single Intel i5-6400 2.7 Ghz CPU. a) Time spent per gridbox as a function of gridsize, for a

vectorized (v) and non-vectorized (nv) application. b) Time spent for the full grid.

ator is that the operational cost becomes independent of the number of samples drawn346

from the distribution. This is a clear distinction from the Lagrangian particle approach347

in population dynamical modeling (Böing, 2016), which computes the evolution and move-348

ment of each particle individually. As a consequence, the cost of Lagrangian approaches349

scales with population size, while that of binomial approaches in principle scales with350

gridsize, species number, and age strata.351

However, thanks to vectorization, the amount of CPU time needed to compute the352

binomial sampling need not scale linearly with gridsize, species number, and age strata.353

The results of the efficiency test shown in Fig. 5 shed some more light on this possibil-354

ity. In the first panel the time spent by the binomial operator for each gridbox is shown355

as a function of gridsize. As can be expected, applying the operator in a non-vectorized356

way (i.e. a sample at each gridpoint) keeps this cost per gridbox more or less indepen-357

dent of gridsize (panel a). As a result, the total cost for the whole grid increases linearly358

with the gridsize (panel b). However, while a vectorized application of the binomial op-359

erator is slower for a 1x1 grid, it strongly reduces the computational cost in regards to360

the gridsize for larger grids. The vectorized version is almost independent of gridsize up361

until 30x30, after which the vectorized version is 100× faster than the non-vectorized ver-362

sion (panel b). We suspect that the precise gridsize when the cost of the vectorized ver-363
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sion begins to increase with gridsize is related to the CPU memory. The boost in effi-364

ciency due to the vectorized application, combined with its independence on population365

size, is what allows the binomial approach to remain computationally viable as part of366

a convective parameterization, even for microgrids of substantial size. How these ben-367

efits hold up in practice will vary with hardware and implementation.368

3.3.2 Memory369

The memory usage of the binomial framework is not determined by the number370

of objects as would be the case for a Lagrangian approach (Böing, 2016). Instead mem-371

ory depends linearly on the amount of species, the number of age strata, and the grid-372

size used. To illustrate memory consumption lets use the advection example shown in373

Fig. 4. A Lagrangian approach would require the age, x, and y location of each of the374

the 1004 objects to be tracked individually, resulting in the storage of 3012 float values.375

Assuming an object lifetime of 24 minutes and a timestep of 12 minutes, as shown in the376

left subplot of Fig 4, the binomial memory footprint would be 25 · 2 · 2 = 50 integer377

values (25 gridboxes, 2 species, 2 age strata). Reducing the timestep to 1 minute while378

retaining a 24 minute lifetime would increase the memory usage to 1200 integers. An ad-379

vantage of the discrete framework is that the memory required is static and evenly spread380

over the grid, which means it can be easily spatially decomposed into individual blocks381

with the rest of the atmosphere model to be run in parallel. In contrast, the memory us-382

age of Lagrangian approaches grows and shrinks with the number of particles tracked,383

and particles moving from one memory domain to the other can complicate the paral-384

lelization process.385

4 Simple applications386

In this section the framework is further explored by means of simple experiments387

with four possible configurations, as applied to grids of small size (“microgrids”). The388

purpose is not to define ultra-realistic systems; instead, the goal is to explore basic be-389

havior and highlight opportunities. Achieving a realistic configuration and calibration,390

including the use of observational datasets, is for now considered a future research topic.391

Most examples are loosely inspired by atmospheric convection, which is reflected in the392

definition of the species.393
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Table 1. Configuration of the four BiOMi experiments discussed in Section 4. Note that Exp

2 is an exception in that it is non-dimensional, age is neglected, and birthrates are derived from

differential equations as explained in Subsection 4.2

Setting Unit Exp 1 Exp 2 Exp 3 Exp 4

Gridsize 1× 1 1× 1 15× 15 100× 100

1000× 1000

∆x,∆y [m] 5000 1 100 100

L [m] 1000000 5 1000000 1000000

∆t [s] 60 1/10 60 60

I 10 2 5 1

τi [s] 60 - 600 600

Ki 1 - 10 5

Ḃi [m−2 s−1] ∝ (100 · i− 50)−2 Ḃ1 = g(n1, n2) Ḃ5 = 5 · 10−6 Ḃ1 = 2 · 10−7

Ḃ2 = f(n1, n2)

Interactions None Inter-species Inter-species Spatial

(u, v)adv [m s−1] (0, 0) (0, 0) (0.3, 0.2) (0, 0)

rf [m] - - - 300

Cf - - - 2000
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The framework as applied on microgrids is hereby named BiOMi (Binomial Ob-394

jects on Microgrids). Using microgrids keeps the examples discussed in this section as395

simple and easy to understand as possible. But another important motivation for using396

microgrids is the associated high computational efficiency, which could allow its appli-397

cation as part of a convection scheme in operational general circulation models used for398

weather forecasting and climate prediction.399

4.1 Exp 1: Single-column random sampler400

The first experiment demonstrates how the BiOMi framework can be used to in-401

troduce stochastic noise in existing convection schemes in operational weather and cli-402

mate models. Spectral convection schemes are perhaps best suited to this purpose. This403

class of convective parameterizations has been around since the early days of numeri-404

cal weather forecasting (Arakawa & Schubert, 1974). A key assumption at the founda-405

tion of spectral schemes is the shape of the size distribution of convective elements that406

do the vertical transport. In the convective grey zone stochastic noise can be superim-407

posed onto this spectrum to represent the impact of subsampling of the population (Neggers,408

2015), for which the binomial number generator as proposed in this study can well be409

used.410

As a demonstration a discretized spectrum of convective objects is considered, con-411

sisting of a histogram with 10 bins ranging linearly in size from 50 to 950 m. The ref-412

erence birth rate of the objects is a power law of of object size with a slope of -2,413

Ḃi = λ (100 · i− 50)
−2
. (23)

The proportionality constant λ is scaled such that the birth rate is on average 256 per414

gridbox for the 50 m objects. A 1×1 grid is adopted with a grid spacing of 5 km, which415

is in the middle of the deep convective grey zone (Arakawa et al., 2011). The reference416

domain is 1000 km, and the object distribution is sampled 50 times independently of each417

other to evaluate the stochasticity. In these 50 random samplings only the three small-418

est and most numerous object species are always present (Fig. 6), with the ratio of sub-419

sampling variance to mean number becoming larger for the rarer object species. This420

dependence of the stochasticity on size follows the implied behaviour as discussed in Sec-421

tion 3.1.422
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Figure 6. a) Scatter plot illustrating all objects of one of the 50 samples included in subplot

b). The x and y position of each object is randomized for visualization. b) Object size distribu-

tion statistics of 50 random samplings of objects with decreasing birth rates as detailed in 4.1

with the parameters listed in 1.

This simple “offline” experiment thus shows how the binomial framework introduced423

in this paper can introduce not only scale-awareness and scale-adaptivity in a spectral424

convection scheme (through dependence on the grid spacing), but also stochasticity due425

to population subsampling in the grey zone. At the same time, the average number of426

objects over the grid is preserved.427

4.2 Exp 2: Stochastic predator-prey system428

This experiment is a translation of the continuous predator-prey system of Lotka429

(1910, 1920); Volterra (1926) to a discrete analog in which births and deaths are deter-430

mined from Bernoulli trials. The intent of this experiment is to highlight the stochas-431

tic nature and to illustrate how the individual species can interact while conserving their432

discreteness. The predator-prey system was chosen as it a widely known problem that433

has been intensively studied in regards to stochasticity (Aguirre et al., 2013) and pre-434

viously translated to a system of stochastic cellular automata by Guinot (2002) who stud-435

ied under which conditions the behaviour of the cellular automata matches that of the436

continuous equations. Predator-prey approaches have also been used in Meteorology to437

describe cloud microphysics (Wacker, 1995) and cloud precipitation interactions (Koren438

& Feingold, 2011; Pujol & Jensen, 2019).439
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According to the classic formulation of the predator-prey equations, the prey x grows440

exponentially with a rate of α but is reduced by the hunting of the predator y which kills441

according to the product of prey and predator and β. The predator’s growth is linked442

to the amount of hunting through δ, and the predator dies off with an exponential de-443

cay of strength γ. The equations have a periodic solution around a stable point when444

the populations of prey and predator, as well as the four parameters, are all positive.445

dx

dt
= +αx −βxy (24)

dy

dt
= −γy +δβxy (25)

To switch to our discrete framework we neglect the age dimension and only look446

at the total number of prey n1 and predators n2, which simplifies equation (2) to:447

∆n1 = b1 − d1, ∆n2 = b2 − d2. (26)

Bernoulli trials are used to determine specific numbers of births and deaths over448

∆t by sampling from a N times larger reference domain with the probability p = 1/N449

that each birth or death of the reference domain occurs in a specific gridbox:450

b1 = B (αn1 ·N∆t, p) d1 = B (βn1n2 ·N∆t, p) , (27)

b2 = B (βδn1n2 ·N∆t, p) d2 = B (γn2 ·N∆t, p) . (28)

Due to the number of deaths being stochastic the populations can become nega-451

tive, which we avoid by introducing a limiter. The introduced stochasticity breaks the452

even cycle of the continuous solution, visible in the peaks and dips of the discrete prey453

in the ensemble quickly dispersing in the example shown in Fig. 7. The discrete nature454

is most visible in the less populous predator population. Once the predator population455

reaches zero the predator is extinct and can no longer recover. Once extinction occurs456

the prey can grow exponentially, as visible in the straight lines leaving the plot domain457

in Fig. 7. Note that extinction can occur in the continuous formulation as well when stochas-458

tic perturbations are added (Aguirre et al., 2013). The prey can also go extinct, though459

it is rarer for the parameters and initial conditions we choose to show.460
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Figure 7. A 36 member of ensemble of the the predator prey system discussed in subsection

4.2 using the parameters α = 1, β = 0.03, γ = 1.5, δ = 0.75 for equation 24. Initial conditions are

64 (prey) and 16 (predator). Continuous solution is integrated numerically, discrete ensemble is

generated using the values listed in table 1.

4.3 Exp 3: A down-scale energy cascade461

In the third experiment the model is configured as an ecosystem consisting of five462

species, without spatial interaction. The goal of this simple experiment is to mimic the463

down-scale energy cascade typical of atmospheric turbulence (Kolmogorov, 1941a, 1941b;464

Frisch, 1995). To this purpose each species represents an individual size-class of turbu-465

lent structures. Only the largest species experiences births, which is conform the idea466

that the turbulent energy in an unstable turbulent layer is injected at the largest pos-467

sible scale. At the end of its life-cycle the object then breaks up into two objects of half468

its size, which are injected as births in the species-category one size-class smaller,469

bcasci1 = 2 di+1,10, (29)

where we used that Ki = 10 for all species. This additional birth process is added to470

the default birth term bi1 in budget (2). This process is applied at all scales (species),471

which in effect establishes a simple form of species interaction in down-scale direction472

across the spectrum. This process is analogous to the flow of energy across the inertial473

subrange in turbulence. When an object of the smallest species dies it is simply removed474
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Figure 8. a) Snapshot during an experiment with BiOMi in the five-species energy-cascade

configuration as described in Section 4.3 with an arrow showing the wind speed direction ad-

vecting the objects. The number of each species per gridbox is shown, with each species having

a different size and color. The position of each object within the gridbox is randomized, for vi-

sualization. b) Associated size density of object number. The y-axis is plotted in log scale to

highlight exponential dependency. The 25-75% range is shaded in red, the maximum and mini-

mum range in blue, and the median is shown as a dotted black line.

from the grid, a process analogous to viscous dissipation of turbulent kinetic energy at475

molecular scales.476

To give the experiment another twist, the births of the largest size-class (i = 5)477

are only allowed to occur in a single specific gridbox (3, 3). For all other species, Ḃi =478

0 everywhere on the grid. This means the other (smaller) species can only form through479

the cascade process described by (29). In addition, a weak mean wind is applied, so that480

the objects are slowly advected in the direction marked by the arrow in Fig. 8. As a re-481

sult of the advective diffusion illustrated in Subsection 3.2, the population starts to re-482

semble a widening plume initiated at a fixed location and being advected down-wind.483

This could be a chimney, a forest-fire, or a convective cell creating a slowly dissipating484

outflow or anvil cloud. All other settings of the BiOMi model as used for this five-species485

experiment are summarized in Table 1.486
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Figure 8a shows a snapshot of the population of objects during this experiment,487

an animation of which is also provided as a digital supplement to this paper (Support-488

ing Information). Similar to Exp 1 multiple species are present, but they now cover mul-489

tiple gridboxes. The results highlight the stochastic nature of both object birth and ad-490

vection. The largest objects (green) are born in a single gridbox. As they age, they are491

advected by the mean wind, but also break up into two objects half their size (red) when492

they complete their life-cycle. This process continues across multiple life-cycles. As a re-493

sult, the distance from the birthing-gridbox becomes proportional to age, on average. How-494

ever, because advective movement contains a random element, this creates a spreading495

plume of particles that “dissipates” when the life cycle of the smallest objects has been496

completed. Figure 8b shows the associated size density of object number, which carries497

a clear exponential dependence. Such exponential functionality in the spectrum is typ-498

ical of a turbulent energy cascade. The spread in object number is caused by the stochas-499

tic birth rate and also decreases exponentially with size (i.e. it is constant on the log-500

arithmic y-axis). This reflects that all objects have the same life span.501

4.4 Exp 4: Spatial organization in a single-species population502

The fourth experiment considers only a single species, here assumed to represent503

the smallest building block of convection: the short-lived bubble or thermal (Scorer &504

Ludlam, 1953; Hernandez-Deckers & Sherwood, 2016; Morrison & Peters, 2018). Sim-505

ple rules of spatial interaction are introduced to let thermals respond to each other’s pres-506

ence, by which they can collaborate or compete to let larger-scale coherent convective507

structures self-organize and emerge on the grid. This behavior introduces convective mem-508

ory that acts on time-scales much longer than the life-time of individual objects. The509

use of such rules is known from cellular automata, there often referred to as “transition510

rules” (Gardner, 1970; Bengtsson et al., 2011).511

Two rules of interaction are adopted, both working through the probability field512

p. These rules reflect atmospheric physics and dynamics, and are inspired by the recent513

study by (Böing, 2016). The first rule reflects the “pulsating growth” behavior as ob-514

served in individual shallow cumulus clouds in nature, consisting of a series of subsequent515

individual pulses (Anderson, 1960; French et al., 1999; Heus et al., 2009). The idea is516

that the first pulse breaks down pre-existing instability, favoring subsequent thermals517

to thrive and thus form “thermal-chains” (Blyth & Latham, 1993; Damiani et al., 2006;518
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Figure 9. a) Snapshot during an experiment with BiOMi in the single-species configuration

with two rules of interaction between objects, as described in Section 4.4. The position of each

object within the gridbox is randomnized, for visualization. The opacity of each object is 0.2, to

highlight clusters. b) Associated size density of cluster number. Log scale is used on both axes

for highlighting powerlaw dependency. The 1-99% and 25-75% ranges are shaded blue and red,

respectively, while the median is shown as dotted black.

Varble et al., 2014). On a microgrid this behavior can simply be introduced by perturb-519

ing the p field at locations where objects already exist. The perturbation-field p′i surround-520

ing a single gridpoint containing nik objects could be modeled as follows,521

p′i = Cf fp
∑
k

nik (30)

where fp is a two-dimensional spatial impact field of radius rf . In this experiment f is522

assumed to be cone-shaped,523

fp =

 1− r/rf for r < rf

0 for r ≥ rf
(31)

where r is the distance to the gridpoint of interest, and Cf is a constant of proportion-524

ality carrying the efficiency of objects in modifying their environment. The perturba-525

tion field p′i is calculated at every gridpoint and added to the spatially uniform reference526

probability p = 1/N , yielding a new cumulative field pc that can be spatially hetero-527

geneous.528
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The second rule is a constraint on the perturbed p field which ensures that aver-529

aged over the whole grid the mean birth rate always equals Ḃi. To this purpose the new530

cumulative probability field including all perturbations, pc, is suitably normalized,531

p =
1

N

pc
〈pc〉

, (32)

where the brackets indicate the average over the grid. Comparison to (6) shows that the532

grid-dependent probability 1/N is multiplied by a spatially varying factor. This means533

that while on average the birth rate of the number of objects on the grid Bi remains con-534

trolled by external forcings, locally strong deviations can develop in the p field. In ef-535

fect, this reduces the probability p in areas where few objects are present. This behav-536

ior can loosely be interpreted as environmental deformation caused by convective objects537

through for example gravity waves and compensating subsidence (Bretherton & Smo-538

larkiewicz, 1989).539

The model settings for this single-species experiment are also summarized in Ta-540

ble 1. An important difference with the third experiment is that the mean wind is zero,541

so that objects stay quarantined in their gridbox. In addition, object births are not lim-542

ited to a specific single gridbox but can freely occur everywhere on the grid. Thermal543

size is implicitly assumed to be on the order of the grid-spacing (∼ 100 m). As a result,544

any coherent spatial structures resulting from object interactions can be resolved. The545

thermals are short-lived while their spatial impact does not exceed beyond 3× their size.546

As a consequence, thermals have to cooperate to let larger-scale structures emerge on547

the grid.548

Animations of Exp 4 for two gridsizes are provided as digital supplements to this549

paper (Supporting Information). Figure 9a shows a snapshot of the 100×100 gridsize550

experiment at 13 hours after initialization. At this time spatial organization is appar-551

ent in the population, featuring dense clusters but also areas that are almost free of ob-552

jects. In those areas the probability of birth is very low. By eye this spatial distribution553

including both dense and sparsely populated areas is not unlike the organization visi-554

ble in high-resolution satellite images of Trade wind cumulus cloud populations (Bony555

et al., 2020).556

Figure 10 shows results from a cluster analysis of this population, using the density-557

based GRIDCLUS algorithm (Schikuta, 1996). The clustering threshold is n > 1, mean-558

ing that only gridboxes are included that have two or more objects in them. Figure 10a559
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Figure 10. Results of cluster analysis using threshold n1 ≥ 2. a) Spatial distribution of the

clusters at the last timestep for the experiment with the 10x10 km domain (100x100 gridsize).

Each cluster is assigned a unique color. b) Time evolution of the size of the largest cluster on

the grid. Results with two domain sizes are shown, 10x10 km (dark blue) and 100x100 km (light

blue).

shows the resulting clusters on the grid, while Fig. 9b shows the associated size density560

of cluster number, with size calculated as the square root of the cluster area. In contrast561

to Exp 3 a clear powerlaw dependency is apparent, featuring a negative exponent. This562

means that small clusters are very frequent and big clusters are rare. Such powerlaw scal-563

ing is frequently observed for shallow cumulus cloud fields in nature (Benner & Curry,564

1998; Neggers et al., 2003; Wood & Field, 2011). The widening spread at large cluster565

sizes shows that the clusters at those sizes become subsampled, which is a defining fea-566

ture of the convective grey zone (Neggers et al., 2019).567

Another important aspect of the clustering behavior is highlighted by Fig. 10b, show-568

ing convective memory on the grid as expressed by the time evolution of the size of the569

largest cluster, lmax. Two gridsizes are compared, one with a mesoscale domain size (D =570

10 km) and one with a macroscale domain (D = 100 km). Both domains feature a grad-571

ual increase in lmax. However, on the mesoscale domain the growth of lmax is markedly572

slower, featuring temporary peaks and failing to grow beyond 1.5 km. This suggests the573

cluster growth becomes limited by the domain size. This is not the case for the macroscale574

domain, where growth is unimpeded and follows a parabolic evolution (see also the pro-575
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vided animation). What these results suggest is that under simple rules of interaction,576

convective memory can be created and carried on the grid. Introducing this behavior in577

convective parameterizations is a long standing ambition that has not yet been achieved578

(Khairoutdinov & Randall, 2006; Grabowski et al., 2006). If population models on two-579

dimensional microgrids can solve this problem is a future research topic.580

5 Discussion581

5.1 Limitations582

The formulation of the framework contains a few important limitations. These were583

consciously introduced, in order to explore a system that is as low-complexity and trans-584

parent as possible. However, it is important to consider these limitations and their im-585

pact on the results. In addition, possible future modifications can be considered that might586

make the system better reflect realistic conditions.587

The first limitation is the assumption of a constant object birth rate Ḃi which is588

sufficient for the purposes of this study. However, what external factors control this birth589

rate remains a fundamental question and depends strongly on the definition of the species590

to be represented by the model. In the case of surface-driven convection in a viscous fluid,591

the number of plumes has been observed to depend on the heating rate at the surface,592

as expressed by the surface Rayleigh number (Zhong, 2005). Dependence of object birth593

rates on thermodynamic conditions can be investigated using large-eddy simulations, for594

example for convective cloud populations (Garrett et al., 2018). Such dependencies can595

easily be implemented in this framework.596

The choice to adopt a discrete formulation introduces opportunities but also makes597

the framework less flexible in some regards. For example, the object lifespan must be598

a multiple of the timestep, which suggests that adaptive time-stepping would no longer599

be possible. However, this could be remedied by applying separate timestepping for the600

microgrid.601

The use of the binomial advection operator introduces some numerical diffusion which602

is an unavoidable side effect of any Eulerian advection scheme. The strength and direc-603

tion of the diffusion is dependent on the horizontal gradients, grid spacing, timestep, and604

the angle between grid orientation and wind. To achieve a controlled and consistent dif-605
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fusion one could easily combine the advection operator with aspects of the classic Gaus-606

sian plume model (Sutton, 1932) that is often used to model dispersion in the atmosphere.607

The rules of interaction between convective objects as adopted in Exp 4 are still608

very simple. While being successful in demonstrating opportunities, important interac-609

tions acting in atmospheric moist convection in nature are still missing. These include610

i) latent heat effects due to cloud formation, ii) impacts of wind shear on spatial organ-611

ization, iii) formation of cold pools due to evaporation of precipitation. Additional rules612

can well be added in the system. But before introducing such rules they should be care-613

fully calibrated and trained against relevant datasets, for example using machine learn-614

ing techniques.615

5.2 Comparisons to other stochastic frameworks616

The BiOMi framework as applied in the previous section shares some features with617

other recently proposed population models, but also differs in some key aspects. These618

similarities, differences and novelties are briefly highlighted here, for reference.619

The STOMP framework (STOchastic Model for Population dynamics of convec-620

tive clouds, Hagos et al. (2018)) is at its core also discrete and stochastic, consisting of621

size distributions of convective cells that interact by exchanging ”convective pixels”. In622

contrast to BiOMi’s predetermined number species that can represent differing convec-623

tive objects, STOMP is explicitly defined in terms of cloud size distributions. BiOMi also624

differs fundamentally by the inclusion of an explicit age dimension, the use of binomial625

sampling to determine births and advection, and the possibility to use a microgrid spa-626

tially. As a result, objects in BiOMi can overlap, allowing in principle the representa-627

tion of thermal chains that are oriented vertically, as illustrated in Exp4.628

Recent studies by Stechmann and Hottovy (2016) and Khouider and Bihlo (2019)629

proposed stochastic models based on principles from statistical mechanics that represent630

convective regimes as phase transitions. BiOMi adheres to this principle, in that spa-631

tial patterns associated with convective regimes can freely emerge on the grid under cer-632

tain rules of transition. A key conceptual difference concerns the main stochastic bud-633

get equation; while these models use integrated humidity, BiOMi considers the evolu-634

tion of object number. These interacting objects can also freely move around on the grid,635

taking object demographics into account as an additional dimension. This in effect com-636
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bines an object-based approach with a microgrid approach, which is a novelty. The rep-637

resentation of horizontal movement is another difference, which in BiOMi takes place through638

stochastic advection instead of stochastic diffusion. Finally, the rules of transition reflect639

different processes. While in the above studies the rules reflect behavior of cloudy ar-640

eas as embedded in open- or closed cell stratocumulus, in BiOMi Exp4 the rules reflect641

the physics and dynamics of individual sub cloud-scale convective thermals in fair-weather642

cumulus cloud fields.643

A cloud population model with a stochastic scale-aware birthrate very similar to644

that of BiOMi was developed by Sakradzija et al. (2015) for use in a shallow convection645

scheme (Sakradzija et al., 2016; Sakradzija & Klocke, 2018). In their approach the cloud646

birth rates are sampled from a Poisson distribution instead of a binomial, and further647

differs from BiOMi in that each cloud has an individual continuous duration and there648

are no fixed species. For a high number of clouds their approach requires a large amount649

of memory as the birth time and duration of each cloud is saved individually.650

6 Conclusions and outlook651

In this study a computationally efficient stochastic binomial framework is formu-652

lated for representing discrete populations of objects on a two-dimensional grid. A defin-653

ing feature of the BiOMi framework (Binomial Objects on Microgrids) is its binomial654

number generator based on a Bernoulli process. This stochastic and scale-aware oper-655

ator is applied to both object birth and object advection, by which discreteness in ob-656

ject number is preserved in both processes. A discrete prognostic budget for object num-657

ber is combined with an age dimension, allowing representation of life-cycle effects and658

object demographics. In addition, multiple co-existing species can be represented, mak-659

ing the framework suitable for multiple modes of application. Interactions between ob-660

jects can be introduced in various ways, by adopting concepts from game theory and cel-661

lular automata. Finally, due to its reliance on binomial sampling the BiOMi system is662

also computationally cheap to operate.663

The BiOMi framework is tested and explored in various simple configurations, de-664

signed to reflect key aspects of atmospheric turbulence and convection. This yielded the665

following main conclusions:666
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• The binomial number generator is effective in introducing stochasticity in object667

number due to population subsampling in the convective grey zone;668

• The binomial operator also introduces stochasticity in advection of objects between669

gridboxes;670

• The framework can successfully reproduce key characteristics of the classic predator-671

prey problem while preserving discreetness and introducing stochastic variations;672

• Behavior as observed in nature can be reproduced by the system, including i) the673

down-scale energy cascade in atmospheric turbulence, and ii) spatial organization674

in convective cloud populations resulting from interactions between objects;675

• The arrangement of binomially generated populations on a microgrid is a form of676

convective memory, evolving on timescales much longer than the lifespan of in-677

dividual objects;678

• The computational efficiency is high enough to allow application as part of con-679

vection schemes in operational weather and climate models.680

While the framework has many possible applications, its potential use as part of681

a convective parameterization for weather and climate models has always been a primary682

motivation behind this study. These opportunities are further explored in an ongoing683

related study, in which the BiOMi system as applied to a population of single-sized, short-684

lived but interacting convective thermals as explored in Exp 4 is implemented in a dis-685

cretized spectral convection scheme (ED(MF)n, Neggers (2015)). BiOMi then acts to pro-686

vide cluster size densities that emerge on its microgrid, replacing one of the existing clo-687

sures at the foundation of the scheme. In effect, this equips ED(MF)n with subgrid con-688

vective memory and introduces awareness of spatial organization - both longstanding bot-689

tlenecks in convective parameterization. For testing the ED(MF)n-BiOMi system is im-690

plemented as a subgrid transport scheme in a simplified circulation model and explored691

for prototype cumulus cases. Impacts on the onset of precipitation in diurnal cycles of692

continental convection are investigated, as well as behavior in the range of resolutions693

spanning the convective grey zone.694

BiOMi offers further opportunities when applied within GCM gridboxes. Firstly,695

existing convection schemes can be equipped with the 1D random sampler as explored696

in Exp 1 to introduce stochastic noise in the grey zone. Secondly, the microgrid can be697

used to make surface-atmosphere interactions more sophisticated. For example, aware-698
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ness of small-scale surface heterogeneity can be introduced by coupling the BiOMi mi-699

crogrid to similarly high-resolution maps of surface properties. Convective triggering can700

then respond in areas which are known to affect this process, such as mountains or ar-701

eas of different vegetation.702

Acknowledgments703

This research was supported by the U.S. Department of Energy’s Atmospheric System704

Research, an Office of Science Biological and Environmental Research program, under705

grant DE-SC0017999. We thank Brian Mapes, Timothy Garrett and Steve Sherwood for706

discussions on early versions of the binomial framework, and Andreas Griewank for ad-707

vice related to the framework definitons. The BiOMi code is publicly accessible through708

GitHub at https://github.com/pgriewank/BioMi. Animations of Exp 3 and Exp 4 with709

the BiOMi framework as discussed in Section 3 are provided as Supporting Information710

to this publication.711

References712
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1. Captions for Movies S1 to S3

Introduction The Supporting Information (SI) provided with this manuscript consists of

three animations of simulations with the BiOMi framework. More precisely, one animation

(S1) shows results for the Exp3 experiment, while two animations (S2 and S3) correspond

to the Exp4 experiment. The main manuscript includes various two-dimensional snapshots

of the population of objects during these experiments (see Figs. 8, 9 and 10). These movies

have the purpose of providing additional information about their time-evolution, which

should help putting these snapshots into better perspective. The movies are designed

to highlight object interactions as well as clustering behavior on the microgrid. The

experiment settings are fully defined in Table 1 and the text in Section 4.
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Movie S1. The first animation (ms01.wmv) shows the evolution of objects on the mi-

crogrid during Exp 3 with the BiOMi framework, as described in Section 4.3 and defined

in Table 1. A 15 × 15 grid is used, with a grid spacing of 100 m and a time step of 60

seconds. Five species are included, each representing a different size-class of convective

objects. The largest objects are shown as light green dots, while the smaller objects are

shown in dark green, red, purple and then blue for the smallest. The radius is propor-

tional to the object size. At the end of a life cycle the objects break up into two smaller

objects, thus in effect creating a down-scale energy cascade. Only the largest objects are

born randomly, exclusively taking place in gridbox (3,3). A weak horizontal advection is

applied, so that objects age as they move away from the point source.

Movie S2. The second movie (ms02.wmv) shows the evolution of objects on the micro-

grid during Exp 4 with the BiOMi framework, as described in Section 4.4 and defined in

Table 1. A 100 × 100 grid is used, with a grid-spacing of 100 m and a time step of 60

seconds. This grid is referred to in the text as the mesoscale domain with horizontal size

D = 10 km. Only a single species is included, representing a small convective bubble or

thermal. The objects are born randomly at a fixed rate and spatially interact under two

rules of transition, as described in detail in the text. In contrast to S1 no advection is

applied, so objects stay in their gridbox. All objects on the grid are shown as filled circles

with slightly reduced opacity. Their color indicates the number of objects in the gridbox,

to highlight clustering. The duration of the experiment is 24 hours.
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Movie S3. The third movie (ms03.wmv) is similar to the S2 movie, but shows the

population of objects during the simulation of Exp4 using a 1000×1000 grid. This grid is

referred to in the text as the macroscale domain with horizontal size D = 100 km. Note

that this time the objects are not shown individually; instead, a two-dimensional mesh

plot is used, with the color indicating the number of objects per gridbox. The duration

of the experiment is also 24 hours.
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