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Abstract

The evolution of tropical anvil clouds from their origin in deep convective cores to their slow decay determines the climatic

effects of clouds in tropical convective regions. Despite the relevance of anvil clouds for climate and responses of clouds to

global warming, processes dominating their evolution are not well understood. Currently available observational data reveal

instantaneous snapshots of anvil cloud properties, but cannot provide a process-based perspective on anvil evolution. We

therefore conduct simulations with the high resolution version of the Exascale Earth System Model in which we track mesoscale

convective systems over the Tropical Western Pacific and compute trajectories that follow ice crystals detrained from peaks

of convective activity. With this approach we gain new insight into the anvil cloud evolution both in present day and future

climate. Comparison with geostationary satellite data shows that the model is able to simulate maritime mesoscale convective

systems reasonably well. Trajectory results indicate that anvil cloud lifetime is about 15 hours with no significant difference in

a warmer climate. The anvil cloud ice water content is larger in a warmer climate due to a larger source of ice by detrainment

and larger depositional growth leading to a more negative net cloud radiative effect along detrained trajectories. However, the

increases in sources are counteracted by increases in sinks of ice, particularly snow formation and sedimentation. Furthermore,

we find that the mean anvil cloud feedback along trajectories is positive and consistent with results from more traditional cloud

feedback calculation methods.
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Key Points:8

• E3SM is able to reproduce many features of the observed albedo-OLR histogram9

representing anvil cloud decay.10

• Three dimensional air parcel trajectories reveal anvil cloud lifetime of 15 hours11

in both present and future warmer climate.12

• Thick anvil clouds contain more ice and have a larger optical depth in a warmer13

climate, while thin anvil clouds do not change substantially.14
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Abstract15

The evolution of tropical anvil clouds from their origin in deep convective cores to their16

slow decay determines the climatic effects of clouds in tropical convective regions. De-17

spite the relevance of anvil clouds for climate and responses of clouds to global warm-18

ing, processes dominating their evolution are not well understood. Currently available19

observational data reveal instantaneous snapshots of anvil cloud properties, but cannot20

provide a process-based perspective on anvil evolution. We therefore conduct simulations21

with the high resolution version of the Exascale Earth System Model in which we track22

mesoscale convective systems over the Tropical Western Pacific and compute trajecto-23

ries that follow air parcels detrained from peaks of convective activity. With this approach24

we gain new insight into the anvil cloud evolution both in present day and future climate.25

Comparison with geostationary satellite data shows that the model is able to sim-26

ulate maritime mesoscale convective systems reasonably well. Trajectory results indi-27

cate that anvil cloud lifetime is about 15 hours with no significant change in a warmer28

climate. The anvil ice water content is larger in a warmer climate due to a larger source29

of ice by detrainment and larger depositional growth leading to a more negative net cloud30

radiative effect along detrained trajectories. However, the increases in sources are coun-31

teracted by increases in sinks of ice, particularly snow formation and sedimentation. Fur-32

thermore, we find that the mean anvil cloud feedback along trajectories is positive and33

consistent with results from more traditional cloud feedback calculation methods.34

Plain Language Summary35

Clouds can have both a cooling and warming effect on climate. Storm clouds in the36

tropics preferentially cool the climate as they reflect a large fraction of sunlight back to37

space. Remains of storm clouds, also known as anvil clouds due to their typical shape,38

reside at very high altitudes and can persist for many hours after the initial intense rain39

events and extend over vast regions. They keep part of the terrestrial radiation within40

the atmosphere and therefore warm the climate, similarly to greenhouse gases. The tran-41

sition from a very reflective storm cloud to a thin anvil cloud is not yet well understood42

despite playing an important role for tropical climate. We study such transitions with43

the help of climate model simulations in which we follow anvil clouds from their origin44

in storm clouds as they develop into thin anvil clouds and eventually disappear. The cli-45

mate model allows us to study this process both in present-day as well as a warmer fu-46

ture climate. We find that in a warmer climate the storm clouds contain more ice and47

reflect more sunlight, which leads to more cooling, while the thin anvil clouds do not change48

much with warming.49

1 Introduction50

Tropical cloud radiative effects (CRE) are in deep convective regions determined51

by the relative proportions of thick, freshly detrained anvil clouds, and the thin anvils52

they evolve into. For thick anvil clouds, shortwave (SW) effects prevail over longwave53

(LW) effects, leading to a net climatic cooling effect. In contrast, LW effects prevail for54

thin anvil clouds with cloud optical depth (COD) smaller than 4, leading to a net warm-55

ing effect (Kubar et al., 2007; Berry & Mace, 2014; Hartmann & Berry, 2017). Thick anvils56

occur adjacent to deep convective towers and form a reflective cold cloud shield. While57

most of the detrained ice that forms fresh anvils is removed from the atmosphere within58

a few hours, thinning anvil clouds persist for much longer, often extending for hundreds59

of kilometers beyond the areas of active convection (Mapes & Houze, 1993; Mace et al.,60

2006; Protopapadaki et al., 2017). Any response of anvil cloud properties (e.g. occur-61

rence, extent, or lifetime) to global warming could therefore lead to a significant radia-62

tive feedback.63
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The tropical troposphere is to first order controlled by an interplay between radia-64

tive cooling from the emission of thermal radiation by water vapor and latent heating65

in convective updrafts. The peak of convective detrainment therefore occurs just below66

the altitude where the radiative cooling becomes inefficient, at a temperature of about67

220 K. This relation will not change in a warmer climate with anvil clouds shifting to68

higher altitudes while remaining at a ”fixed” temperature as proposed by the ”fixed anvil69

temperature” (FAT) hypothesis (Hartmann & Larson, 2002). FAT has since been refined70

to take into account small cloud temperature changes associated with the presence of71

ozone, well-mixed greenhouse gases or changes in relative humidity (Zelinka & Hartmann,72

2010; Harrop & Hartmann, 2012). It has been confirmed by cloud resolving model (CRM)73

and general circulation model (GCM) studies studies (Kuang & Hartmann, 2007; Har-74

rop & Hartmann, 2016; Hartmann et al., 2019; Boucher et al., 2013; Zelinka et al., 2016),75

and satellite observations (Zhou et al., 2014; Marvel et al., 2015; Norris et al., 2016; Mace76

& Berry, 2017).77

Several modeling studies showed a decrease in high cloud fraction with increased78

sea surface temperatures (SSTs) (Tompkins & Craig, 1999; Zelinka & Hartmann, 2010;79

Khairoutdinov & Emanuel, 2013). Bony et al. (2016) proposed a thermodynamic mech-80

anism connecting the decrease in cloud fraction to increases in static stability. The mech-81

anism involves FAT, static stability, and the reduction of convective outflow (and thus82

anvil cloud fraction) in a warmer world. The upper tropospheric static stability is bound83

to the moist adiabatic lapse rate. As the troposphere expands vertically, the decrease84

in pressure leads to an increased saturation specific humidity at a fixed temperature, which85

consequently warms the upper troposphere and increases its static stability (Zelinka &86

Hartmann, 2010; Hartmann et al., 2020). Consequently, based on the FAT hypothesis,87

a higher stability leads to a smaller convective detrainment, reducing the anvil cloud frac-88

tion and therefore limiting the tropical high cloud positive feedback.89

Despite the arguments above that high cloud fraction should decrease in a warmer90

Earth, preliminary results from the Radiative-Convective Equilibrium Modeling Inter-91

comparison Project show a large spread of modeled responses to increases in SSTs (Wing92

et al., 2019) including anvil cloud fraction changes. Moreover, various versions of the NICAM93

global and limited area CRM that represent convective cloud procesess using fewer pa-94

rameterizations than GCMs (and thus may be more realistic) show an increase in trop-95

ical high clouds with global warming (Satoh et al., 2011; Tsushima et al., 2015; Ohno96

et al., 2019). If the mechanism proposed by Bony et al. (2016) is present, an increase in97

high cloud fraction with warming simulated by some models implies that additional un-98

known feedbacks should play an important role. High clouds fraction increases with warm-99

ing were shown to be connected to changes in deposition and ice crystal sedimentation,100

which were in turn driven by increases in upper tropospheric environmental relative hu-101

midity and radiative heating within cloudy parcels (Ohno & Satoh, 2018). Many of these102

processes are represented crudely in today’s models, and Ohno et al. (2019) addition-103

ally pointed out the important role of turbulent mixing, which strongly depends on ver-104

tical grid spacing.105

Several observational studies show that tropical outgoing longwave radiation (OLR)106

increases with surface warming more than predicted by the Planck response to warm-107

ing (Lindzen & Choi, 2011; Choi et al., 2017). Lindzen et al. (2001) proposed a contro-108

versial hypothesis based on geostationary satellite observations, stating that the cover-109

age of anvil clouds in the tropics will decrease with warming due to increased precipi-110

tation efficiency and consequent decreased convective detrainment, allowing a higher OLR.111

They named it the ”Iris effect”, after the iris of the human eye, which expands in con-112

ditions of weak light to let more light pass, similarly to the putative tropical OLR re-113

sponse to the surface temperature in letting more OLR out in a warmer climate by re-114

ducing the high cloud cover. The Iris effect was proposed as a negative climate feedback,115

counteracting the greenhouse gas warming effect. The work was soon criticized for method-116

ological reasons and lack of a clear physical mechanism (e.g. Fu et al. (2002); Hartmann117

and Michelsen (2002)). However, the idea has recently gained more interest following the118
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modeling study of Mauritsen and Stevens (2015) that implemented a temperature-dependent119

convective autoconversion rate, which resulted in a decreased climate sensitivity.120

Hence, our understanding of tropical high clouds and the responses of their amount121

and optical depth to global warming are highly uncertain (Sherwood et al., 2020), some-122

times leading to diametrically different conclusions. The role of specific microphysical123

processes, their interaction with radiation, and their changes due to surface warming and124

greenhouse gas increase are still unclear. This study’s goal is to provide a better under-125

standing of some of the processes controlling anvil cloud decay and their responses to126

global warming with the help of a Lagrangian approach in which we track air parcels de-127

trained from regions of active deep convection. We show that the Lagrangian approach128

can, coupled to a high resolution model that is skillful in simulations of relevant climatic129

processes, reveal a process based view on the evolution of high clouds and their responses130

to global warming that is complementary to the standard climate model analysis.131

1.1 Lagrangian perspective on anvil evolution132

Atmospheric models can be separated into two categories based on their treatment133

of fields’ evolution related to the wind flow. Eulerian models treat the field evolution as134

a function of fixed space coordinates and time. In contrast, Lagrangian models describe135

fields following particles or air parcels along the flow. The Lagrangian perspective is par-136

ticularly useful for studies of dynamic, quickly changing phenomena, giving a natural per-137

spective on air parcel evolution. Lagrangian tracking of detrained clouds and water va-138

por has provided new insights into the lifecycle of tropical high clouds. For example, stud-139

ies by Salathé and Hartmann (1997) and Soden (1998) highlighted the importance of the140

warming by large scale subsidence in decreasing the relative humidity of air masses de-141

trained by deep convection. Soden et al. (2004) in addition showed that convection moist-142

ens the upper troposphere primarily by direct detrainment of water vapor, not through143

evaporation of anvil clouds. Luo and Rossow (2004) found that about 50% of tropical144

cirrus clouds originate from deep convection. Mace et al. (2006) used a combination of145

ground-based radar data with satellite feature tracking to show that tropical anvil cloud146

systems are long-lived with lifetimes of about 12 hours. Gehlot and Quaas (2012) were147

the first to apply a similar tracking method on GCM model output to verify the model148

against observations and look at the changes in anvil cloud lifecycle in a simulation with149

increased SSTs. The Lagrangian analysis suggested that a combination of increased cloud150

fraction and cloud altitude was the driving force behind a positive cloud feedback, de-151

spite increases in cloud albedo. Jensen et al. (2018) followed trajectories of ice crystals152

detrained from a midlatitude thunderstorm driven by a CRM simulation. They simu-153

lated the first 3 hours of the microphysical evolution of detrained ice crystals and showed154

the large importance of gravitational settling and depositional growth for the anvil evo-155

lution. So far, three-dimensional Lagrangian tracking has never been applied to stud-156

ies focusing on deep convective outflow and the transition between deep cumulus to thick157

and thin anvil clouds. The tracking of detrained air parcels allows us to determine the158

lifetime of anvil clouds and estimate sources and sinks of ice during the cloud evolution159

and their changes with global warming.160

The study focuses on the region between 130◦-180◦E and 20◦S-20◦N, which we call161

Tropical Western Pacific (TWP) and is typical of regions with warm and uniform SST162

and frequent deep convection. Only anvil clouds that originate from maritime deep con-163

vective cores are considered as the continental/island deep convection is controlled by164

different processes and is less important for the tropical radiation balance. Section 2 in-165

troduces the satellite and model data used and describes the details of the used MCS166

tracking and air parcel tracking methods. Section 3.1 briefly assesses the model perfor-167

mance in the TWP. The Lagrangian perspective on the simulated anvil cloud evolution168

in present climate is presented in Section 3.2. Mean climate responses to warming are169

presented in Section 4.1, followed by a description of mesoscale convective systems’ (MCS)170

responses to global warming in Section 4.2. Finally, Section 4.3 presents changes of anvil171
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properties along detrained trajectories due to global warming and their radiative impli-172

cations. A discussion on the implications and limitations of the model simulations is pro-173

vided in Section 5. Conclusions are given in Section 6.174

2 Methods175

2.1 Model176

We use the Exascale Earth System model (E3SM), a new GCM developed by the177

US Department of Energy (J. Golaz et al., 2019). The model consists of interacting com-178

ponents simulating atmosphere, land surface, ocean, sea ice and rivers. The atmospheric179

component of E3SM (Rasch et al., 2019) is a descendant of the CAM5 model (Neale et180

al., 2012), including new ways of coding, improved model performance, increased reso-181

lution, and numerous additional physical parameterizations related to clouds and aerosols.182

The model uses a spectral finite element dynamical core (Dennis et al., 2012) with 72183

vertical layers. The upper tropospheric resolution of about 500 m is significantly higher184

than most state-of-art GCMs, and allows for a more realistic representation of upper tro-185

pospheric clouds. E3SM performs well compared to other CMIP5 models (J. Golaz et186

al., 2019), despite known model biases (Xie et al., 2018; Y. Zhang et al., 2019). In par-187

ticular, the model underpredicts clouds in the tropical warm pool area by about 10-20%,188

which was found to be related to the increase of the vertical resolution from 30 to 72 lay-189

ers (Xie et al., 2018).190

We use the high resolution (about 0.25◦) version of the model (Caldwell et al., 2019),191

in which the large tropical MCS are better resolved. E3SM uses a convective parame-192

terization by G. J. Zhang and McFarlane (1995) with the dilute plume closure by Neale193

et al. (2008). Turbulence, shallow convection and cloud macrophysics are simulated by194

the third order turbulence closure Cloud Layers Unified By Binormals (CLUBB) param-195

eterization (J.-C. Golaz et al., 2002; Larson & Golaz, 2005). The model uses an updated196

version of Morrison and Gettelman (2008)’s scheme for stratiform cloud microphysics197

(Gettelman & Morrison, 2015) and is coupled with the RRTMG radiative transfer model198

(Mlawer et al., 1997; Iacono et al., 2008). The COSP version 1.4 satellite simulator (Bodas-199

Salcedo et al., 2011) is run in parallel to the model. The atmospheric component of the200

model was coupled with the land model only, using prescribed SSTs.201

2.2 Simulations202

We perform two simulations representing present day climate (REF, climREF, see203

also in Table 1) and two simulations representing a possible warmer future climate state204

(4K, clim4K). SSTs and sea ice extent were prescribed using a monthly present-day cli-205

matology (simulations REF,climREF) based on the Smith/Reynolds EOF dataset (Hurrell206

et al., 2008). Simulations 4K and clim4K use the same SST pattern assuming a uniform207

4K warming. The simulations used for calculation of the mean climatic properties and208

cloud feedbacks with monthly output frequency (climREF and clim4K) were run for only209

3 years due to the large computational expense.210

The simulations REF, NUDGE, and 4K, used for both MCS tracking and trajec-211

tory calculations last 3 months (Jun 1 - Aug 31) with a 7 day spin-up period (May 24212

- May 30) that is not considered in the analysis (Table 1). Because many fields were archived213

hourly for subsequent analysis, longer simulations were not possible due to storage space214

limitations. The NUDGE simulation uses a linear interpolation nudging technique de-215

veloped by Sun et al. (2019). The model horizontal wind fields were nudged at every model216

timestep to an interpolated value based on 6 hourly ERA-Interim reanalysis data (Dee217

et al., 2011), with a relaxation timescale of 6 hours. The simulation NUDGE uses monthly218

mean SSTs for the months of June-August 2016 from the same dataset for a better com-219

parison with MCS observations from the same period.220

–5–



manuscript submitted to JGR: Atmospheres

Table 1. A list of performed simulations.

Simulation Length Output frequency Description

NUDGE 3 months 1 hour winds nudged to reanalysis data, SSTs from 2016
REF 3 months 1 hour free running experiment with climatologic SSTs
4K 3 months 1 hour same as REF but with SSTs increased by 4K

climREF 3 years 1 month same as REF, but initialized in January
clim4K 3 years 1 month same as 4K, but initialized in January

In addition we estimate cloud feedbacks based on Zelinka et al. (2016), which uses221

cloud radiative kernels (Zelinka et al., 2012a) and output from the ISCCP satellite sim-222

ulator (Klein & Jakob, 1999; Webb et al., 2001) separated into cloud top pressure and223

COD bins. The feedback calculation allows one to separately account for the contribu-224

tion of changes in cloud altitude, cloud amount, and cloud optical depth to the total cloud225

feedback. We calculate both the cloud feedback of all clouds as well as the cloud feed-226

back for clouds with cloud top pressures smaller than 440 hPa.227

2.3 CERES satellite data228

We use the CERES-derived top-of-atmosphere radiative fluxes (Wielicki et al., 1996)229

from the CALIPSO-CloudSat-CERES-MODIS (CCCM) data set (Kato et al., 2011) for230

the months of June-August 2007–2010 in the TWP (20◦S to 20◦N, 130 to 180◦E). The231

horizontal resolution of CERES pixel data is approximately 30 km. To avoid problems232

at large solar zenith angles, we limit the analysis to CERES pixels for which the solar233

zenith angle and the CERES viewing angle zenith are smaller than 40◦. Given that the234

data in the CCCM data set are collocated with the CloudSat-CALIPSO radar-lidar mea-235

surements, that limits the observations to the 1.30 pm (afternoon) overpass of the A-236

Train satellite constellation.237

2.4 Geostationary satellite data238

We use the Himawari-8 geostationary satellite observations (Bessho et al., 2016)239

of brightness temperature (BT) at the infrared channel (11.2 µm) between 1 June - 31240

August 2016. The downloaded Himawari data product only includes every fourth pixel241

and scan line, making the effective horizontal resolution about 8 km at nadir and 12 km242

at the edge of the study domain. These data were subsequently regridded to 0.25◦ (about243

25 km) to match the model output. Regridded pixels were computed by averaging the244

native grid pixels within the new grid boundaries. The datasets’ temporal resolution of245

1 hour allows individual MCS to be tracked throughout their lifecycle.246

2.5 Lagrangian methods247

Our work largely relies on two distinct tracking methods: MCS tracking, based on248

Himawari BT measurements, and the three dimensional air parcel tracking, based on the249

resolved model wind fields. The MCS tracking follows the parent deep convective sys-250

tem throughout all stages of its evolution, from the convective initiation to its decay, pro-251

viding a good overview of the convective processes and the adjacent thick anvil clouds,252

while missing the decaying thin anvil clouds.253

In contrast, the air parcel tracking follows cloudy parcels as they leave the MCS254

region and become thin cirrus. It is initialized at the point of maximum MCS activity255
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as determined by the MCS tracking algorithm. Air parcel tracking provides an estimate256

of the decay timescale of an anvil cloud, following its evolution from a fresh thick anvil257

to a thin cirrus cloud, and provides a detailed understanding of the evolution of cloud258

processes. A more detailed description of each tracking mechanism, their strengths, and259

weaknesses can be found in the subsections 2.5.1 and 2.5.2. The animation of a 2 week260

long segment of the simulation provides an intuitive view of both tracking mechanisms261

(Movie S1).262

2.5.1 MCS tracking263

We apply an MCS tracking algorithm to the 11.2 µm BT measurements from the264

Himawari and to the 10.5 µm simulated BT retrieval using the COSP satellite simula-265

tor. The small difference in the BT wavelength of the two channels does not affect our266

findings. Both Himawari and E3SM data are tracked in 1 hour intervals, enabling an ac-267

curate MCS tracking. The tracking algorithm is based on Fiolleau and Roca (2013) and268

is described in detail in Wall et al. (2018). It consists of two steps:269

1. Detection step: The cold core is detected based on the BT threshold (between 200270

and 214 K depending on the specific case - see Tab. 2). The cold core must cover271

at least 17 pixels and last for at least 2 hours to be considered by the algorithm.272

2. Spreading step: The cold cloud shield is incrementally increased from the BT thresh-273

old to the warm limit in both space and time (ranging between 235 and 240 K as274

listed in Tab. 2).275
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Figure 1. A snapshot of the region of interest for July 2 at 2.00 UTC. (a) visible Himawari

satellite image; (b) the equivalent BT measurement; (c) the NUDGE model simulation at the

same timestep. Blue contours represent tracked MCSs, green contours represent MCSs that are

tracked but removed from the analysis as they touch the edge of the domain or land. Yellow

contours represent boundaries of land masses.

The tracking algorithm is able to track MCS throughout their lifecycle, from the276

growth to the decay stage (Wall et al., 2018). However, once the clouds become optically277

thinner, the BT signal of cold clouds is mixed with the signal from warmer, lower lying278

levels. The algorithm reliably tracks upper tropospheric clouds to the warm BT limit279

of 235-240 K, which corresponds to a COD of about 3-10. The tracking algorithm there-280

fore cannot account for the thin anvil clouds that spread beyond the region detected by281

the cloud mask. The altitude of cloud top does not change by more than 1 km within282

the tracked region as suggested by the Fig. 6a and confirmed in other studies (Bouniol283

et al., 2016; Sokol & Hartmann, n.d.). An example of the cold cloud shield output of the284

–7–



manuscript submitted to JGR: Atmospheres

tracking algorithm is shown in Fig. 1 b and c. The blue and green contours outline the285

limits of the detected cold cloud shield which we take as the MCS boundaries. The green286

contoured MCSs are removed from the analysis as they either cross land at some point287

in their lifetime or touch the domain boundaries. The MCS lifetime is defined as the time288

between the first and last detection of an MCS based on the cold cloud shield. No merge289

or split events are allowed, as the algorithm partitions the cold cloud shield on the ba-290

sis of proximity to the cold cores.291

We use two separate ways of setting the BT threshold for tracking the MCS. The292

first method relies on fixed BT thresholds of 210 K for cold core detection and 240 K293

for the warmest contours that are tracked as part of the cold cloud shield (see Wall et294

al. (2018) for details). However, fixed BT thresholds propagate mean climatic errors into295

the object-oriented MCS tracking analysis. Those errors will be discussed below in the296

evaluation of BT PDFs in Fig. 3. The work by Rempel et al. (2017) and Senf et al. (2018)297

suggests that it can also be useful to apply a BT correction before the object-based MCS298

tracking analysis, so we therefore also use a prescribed lower and upper BT percentile299

to define the cold cloud shield used to track the detection and spread of cold cloud shield300

area instead of a fixed BT limit. A percentile-based metric also helps estimating the im-301

pacts of global warming driven changes of MCS properties and the anvil cloud evolution,302

as described in Sections 4.2 and 4.3. Similar percentile based comparison metrics are fre-303

quently used in studies of extreme precipitation responses to global warming (Fischer304

& Knutti, 2015, 2016; Pendergrass & Knutti, 2018).305

We chose the 0.4 and 8.15 BT percentiles as the cold core detection limit and the306

upper BT limit, which correspond to the BT values of 200 K and 235 K in the full res-307

olution Himawari dataset for consistency with the work by Wall et al. (2018). The cho-308

sen lower percentile limit corresponds to a BT of 201.4 K in the regridded Himawari dataset309

used in this analysis, to 210 K in the nudged, and 213.5 K in the free running E3SM model310

simulation as stated in Table 2. The reasons for the large modeled BT bias are described311

in Section 3.1.2.312

2.5.2 Lagrangian analysis of anvil clouds313

1. Determination of trajectory starting locations: High frequency (1 hour)314

model output from June 1 to August 31 from simulations REF and 4K is used for cal-315

culating forward trajectories. The forward trajectory calculation is designed to moni-316

tor and capture the decay of anvil clouds from their early thick stage until dissipation317

as thin cirrus. Monitoring starts at the peak of MCS convective activity, defined as the318

point in the MCS evolution when the detected cold cloud shield occupies the largest area319

(Roca et al., 2017). At this point the model columns covered by the cold cloud shield320

(blue contours in Fig. 1) are selected to determine the right vertical launch level for the321

trajectories. The vertical launch level is chosen to be the first model level from the model322

top downward to have an ice water content (IWC) larger than 3 10−5 kg kg−1 and a de-323

trainment tendency from the parameterized convective updrafts larger than 10−9 kg kg−1
324

s−1. Launch levels are limited to temperatures colder than -35◦C, as the study is focused325

on cold portions of anvil clouds.326

2. Trajectory calculation: Trajectories are computed in a post processing step327

with the Lagrangian Analysis Tool (LAGRANTO) (Wernli & Davies, 1997; Sprenger &328

Wernli, 2015). Trajectories are computed forward in time for 40 hours. Microphysical329

and radiative quantities are traced by identifying the value of those quantities from an330

archived model dataset followed by a bilinear interpolation of the neighboring grid val-331

ues in the horizontal dimension (latitude, longitude) and a linear interpolation in the ver-332

tical dimension (model level) (Sprenger & Wernli, 2015). This tracking uses resolved three333

dimensional wind fields that allows us to track the changing microphysical and radia-334

tive properties after detrainment. The analysis neglects snow particles due to their larger335
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sedimentation velocity that leads to a rapid removal from the atmosphere and therefore336

a smaller climatic influence compared to the longer lived detrained ice crystals.337

In a second post processing step we remove the trajectories that encountered a sub-338

sequent significant episode of detrained ice (i.e. detrainment larger than 0.3 10−9 kg kg−1
339

s−1) after the initial 4 hours of the development. This allows us to study cloud decay340

of anvils that are not influenced by new occurrence of convection. The additional cri-341

terion reduces the number of selected trajectories by 35%, from a total number of 190000342

to about 125000, while not affecting the main conclusions of our study. We define a tra-343

jectory as containing ”ice cloud” if the local cloud fraction (output field CLOUD) ex-344

ceeds 10% and at the same time IWC exceeds 0.1 mg kg−1. The IWC limit was chosen345

to be close to the minimum detection limit by CALIOP lidar, roughly corresponding to346

COD of 0.01 (Avery et al., 2012). The anvil cloud lifetime is defined as the point in time347

when the fraction of trajectories containing cloud decreases below 50%. Note that the348

total column cloud fraction could still be large as air parcels containing ice can be de-349

trained from multiple levels below and above the tracked one. Due to lateral mixing the350

cloud properties along trajectories in the later stage of anvil evolution represent a mix351

of air from anvil and non-anvil air masses. We omit the radiatively active and prognos-352

tic snow from the trajectory analysis due to its larger sedimentation velocity compared353

to cloud ice (X. Zhao et al., 2017) and storage space limitations. The vertical compo-354

nent of the trajectory calculation does not include the convective mass flux term as that355

contribution is small compared to the grid box average updraft velocity.356

3 Results - present climate357

3.1 Model evaluation358

3.1.1 Mean climate in the Tropical Western Pacific359
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Figure 2. Albedo-OLR histogram for the Tropical Western Pacific from 4 years of CERES

radiative flux observations for months June-August (a), the equivalent from the REF model

simulation (b), and the anomalies between the two (c).

Figure 2 shows the probability density function (PDF) of OLR-albedo pairings ob-360

served by CERES for the months of June-August, similarly to Fig. 2 in Hartmann and361

Berry (2017), and the equivalent fields simulated by the model. The model output is lim-362

ited to grid boxes with insolation values exceeding 1000 W m−2, which approximately363

corresponds to the zenith angle limit of 40◦ used to filter the CERES data. The general364

shape of the histogram describes the evolution of anvil clouds: their lifecycle begins in365

very reflective deep convective cores at low OLR and high albedo values. The detrained366

anvil clouds gradually thin, decrease their albedo, and allow more OLR to escape to space367

until reaching the modal point of the distribution at albedo values of about 0.08 and OLR368
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of 270-290 W m−2 which corresponds to nearly clear sky conditions. The model is able369

to reproduce the general shape of the distribution and therefore anvil decay remarkably370

well, with the exception of the missing highest albedo and lowest OLR points and a mi-371

nor albedo overestimation at OLR values between 200 and 300 W m−2. E3SM there-372

fore shows good skill in simulating the process of anvil thinning, that is on one hand cru-373

cial for the radiative balance of tropical deep convective regions, while on the other hand374

traditionally challenging for GCMs to correctly simulate (Wall & Hartmann, 2018).375

3.1.2 Mesoscale convective systems376

Figure 3. BT histogram for the Tropical Western Pacific in JJA 2016 from Himawari observa-

tions and model simulations.

Figure 3 shows the PDF of BT in the Tropical Western Pacific region observed by377

Himawari and modeled by E3SM with the help of a satellite simulator. We focus for now378

on the NUDGE and REF simulations and refer back to the figures to examine climate379

change effects in the 4K simulation only in Section 4. The Himawari distribution sharply380

peaks at about 295 K, while the nudged and free running model simulations show a peak381

at a few K warmer temperatures. This BT peak corresponds to clear sky regions, clear382

sky regions with thin cirrus clouds, or regions covered by low clouds. The simulated warm383

bias in BT peak is likely caused by the underprediction of thin low clouds (Y. Zhang et384

al., 2019). The observed and simulated distributions are negatively skewed with a long385

tail extending down to 190 K. BT values colder than 240 K correspond to cold cloud tops;386

we define such gridboxes as cold cloud fraction. These BT values include deep convec-387

tive cores and anvil clouds of visible COD greater than about 5, and do not include thin388

anvil cloud and other in-situ formed cirrus clouds. E3SM simulates a cold cloud fraction389

of 9.7% in the nudged simulation (NUDGE) and 8.5% in the free running simulation (REF).390

This is close to the observed value of 9.8 %. The model substantially underestimates the391

occurrence frequencies of BT colder than 220 K (represented by the highest albedo and392

lowest OLR values in Fig. 2), and overestimates BT in the range between 225 and 250393

K. This is a signal of a too low (and consequently too warm) cloud top, caused by a deep394

convective detrainment level bias and the underestimation of the strongest overshoot-395
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Table 2. Tracked MCS properties. The numbers represent mean values with the respective

standard deviations. The median values are in brackets.

Himawari NUDGE REF 4K

1. Fixed BT

BT limit [K] 210-240 210-240 210-240 210-240

MCS number 1762 1243 853 1354

Lifetime [h] 12.7±5.4 (11) 18.8±6.1 (18) 16.9±5.4 (16) 15.9±5.4 (15)

Equiv. diameter [km] 247±97 (223) 260±75 (248) 267±68 (257) 264±81 (250)

2. Percentile based BT

BT limit [K] 201.4-238.1 209.9-236.7 213.5-239.3 209.0-237.3

MCS number 794 1234 1285 1178

Lifetime [h] 14.5±5.0 (13.5) 17.9±6.0 (17.0) 16.2±6.0 (15.0) 15.6±5.4 (15.0)

Equiv. diameter [km] 302±90 (290) 247±73 (235) 248±69 (237) 260±80 (246)

ing convective cores, as already noted by Y. Zhang et al. (2019). The bias, which existed396

in the predecessor model CAM5 (Wang & Zhang, 2018), has not been solved in the E3SM397

model, in spite of increased vertical resolution and efforts to address the bias through398

tuning (Xie et al., 2018). Qualitatively the biases are also visible by comparing BT snap-399

shots in panels b and c in Fig. 1. Moreover, despite efforts to evaluate the fields at the400

same nominal resolution, the model lacks the fine structures observed by Himawari. This401

is not surprising, as the effective model resolution is about 3-4 times larger than a sin-402

gle gridbox cell for the spectral element dynamical core used here.403

When MCS are defined using fixed BT thresholds, the model underestimates the404

number of MCS and overestimates their lifetime (Table 2 and Fig. 4 a,c), while simu-405

lating MCS of comparable size. The maximum MCS equivalent diameter is close to 250406

km in both Himawari and E3SM. The MCS mean lifetime from Himawari observations407

is found to be 12.7 hours, which is comparable to Wall et al. (2018). The simulated MCS408

are more persistent, with average lifetimes of 19 hours (NUDGE) and 17 hours (REF).409

The excessive lifetime of the model clouds can at least in part be attributed to a series410

of parameterization choices made in the development of the atmospheric component of411

E3SM (Rasch et al., 2019). The effective radius of ice crystals detrained from deep con-412

vection was set to 12 µm, which is smaller compared to observations (Van Diedenhoven413

et al., 2016), in order to increase the amount of cloud ice in the atmosphere (Xie et al.,414

2018). This choice, in conjunction with a decision to use the Meyers et al. (1992) ice nu-415

cleation parameterization (known to produce unrealistically high nucleation rates) in the416

high resolution version of E3SM (Caldwell et al., 2019) produces too many ice crystals417

that consequently remain small during vapor deposition. Finally, as mentioned in the418

previous subsection, the effective model resolution is larger than its nominal resolution.419

Regridding the Himawari observations to 0.5◦ and 1◦ increases the MCS lifetime for 1420

and 2 hours, respectively, explaining part of the model bias.421

Results using the percentile based masking give a different perspective on simu-422

lated MCSs: in this case the model overestimates the MCS number but underestimates423

the cold cloud shield area, with a comparable MCS lifetime (Fig. 4 b,d). This is expected,424

as the percentile-based BT MCS detection threshold of 201.4 K for Himawari observa-425

tions is significantly lower than 209-213.5 K for the model simulations. MCS with colder426

BT indicate a stronger convective activity with higher and colder cloud tops. The higher427
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convective activity is also connected to a longer MCS lifetime and larger MCS cold cloud428

shield area (Machado et al., 1998; Protopapadaki et al., 2017; Strandgren, 2018).429
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Figure 4. Lifetime and maximum diameter distribution of tracked MCS. The boxplot area

is shaded between the 25th and 75th percentiles, while its whiskers represent the 10th and 90th

percentiles. The olive lines represent the mean values of the distributions.
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Figure 5. Diurnal cycle of peak MCS extent for (a) the fixed BT threshold and (b) the per-

centile based BT threshold.

Figure 5 shows the diurnal cycle of the number of MCS at peak extent in each of430

the 3-hourly bins. The peak MCS extent was previously shown to correlate with the peak431

in convective activity and with the lowest BT that is achieved in the course of an MCS432

lifecycle (Roca et al., 2017). When using a BT threshold of 210 K for the detection of433
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cold cores, the observations show a double peak in MCS activity: the first peak occurs434

in early morning hours (3-5 local time), the second peak occurs in the afternoon hours435

(15-17 local time). However, when using the colder percentile-based BT threshold for436

the detection of cold convective cores, the afternoon peak disappears. This result is con-437

sistent with Nesbitt and Zipser (2003) that showed an early morning peak in MCS ac-438

tivity, followed by a weaker afternoon peak of warmer BT features representing weaker439

deep convection. The model simulates a similar double peak in MCS activity when us-440

ing the fixed 210 K cold core detection threshold in both the REF and NUDGE simu-441

lation. The percentile based model results still show the secondary afternoon peak, which442

is not surprising, given that the percentile based cold core detection threshold does not443

change much from a fixed threshold of 210 K.444

In summary, the model can reproduce the simulated cold cloud fraction despite some445

biases in the simulation of MCS evolution, which originate from the underestimation of446

the coldest BT. The performance of the model in simulating large tropical MCS is sat-447

isfactory, given the use of convective parameterization and a resolution of 0.25◦×0.25◦,448

which is barely able to dynamically resolve MCS. For a more extended evaluation of E3SM449

using traditional evaluation metrics, the reader is referred to Xie et al. (2018); Y. Zhang450

et al. (2019); Rasch et al. (2019); Caldwell et al. (2019).451

3.2 A Lagrangian perspective on anvil cloud evolution452

Figure 6 displays the cloud fraction in the vertical column at the trajectory loca-453

tion following air parcels from the tops of deep convective clouds. The trajectory launch-454

ing points occur at different altitudes, ranging from 10 to 13 km, with a median eleva-455

tion of about 11 km. The trajectories start in regions of active convection with resolved456

vertical winds that are strong enough to loft the detrained air parcels and ice for about457

2 km within the first 5-8 hours after the trajectory is initialized. After the initial ascent458

the trajectories remain at roughly constant altitude. The trajectories follow the upper459

tropospheric peak in cloud fraction that represents gradually thinner anvil clouds. The460

convective scheme is not only detraining condensed water but also vapor, which enhances461

the humidity in the detrained layers for at least 40 h after the initial convective event.462

The relative humidity with respect to ice on average exceeds 100% near areas of active463

detrainment, and is maintained at values beyond 70% in the MCS outflow in the trop-464

ical tropopause layer between 14 and 17 km altitude (not shown). The increased rela-465

tive humidity in the convective outflow layer offers an alternative explanation for an anvil466

cloud fraction maximum near the trajectory altitude, given the dependence of the cloud467

fraction scheme to the total humidity that includes specific humidity contributions from468

both vapor and ice condensate (Gettelman et al., 2010).469

Figure 7 shows the gradually decreasing fraction of cloud-containing trajectories,470

reaching 50% about 15 hours after detrainment. We separate the anvil evolution in three471

stages: thick (IWC > 30 mg kg−1), intermediate (30 mg kg−1 > IWC > 3 mg kg−1),472

and thin (IWC< 3 mg kg−1).Thick anvils quickly decay within the first 3-4 hours, in-473

termediately thick anvils dominate the cloud distribution between hour 4-10, and thin474

anvil clouds are dominant about 10 hours after the trajectories are initialized. A cloud475

decay sensitivity test that considers all calculated trajectories, including those that en-476

counter significant detrainment events after the first 4 hours of the evolution is shown477

in Fig. S1. A sensitivity study using different minimum IWC and cloud fraction limits478

can be found in the supplement in Fig. S2 and is described in Text S1.479

3.2.1 Lagrangian anvil cloud ice mass balance480

We present the dominant sources and sinks of ice during the evolution of the anvil481

cloud from its thick (hour 0-4) to thin stage (hour 10 and beyond) using trajectories. The482

trajectories start at locations with IWC median values of about 55 mg kg−1, decreas-483

ing to below 5 mg kg−1 over the course of the first 10 hours of the cloud evolution (Fig.484
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cloud fraction

Figure 6. Altitude of a random sample of 5000 trajectories (in orange) as a function of time

after the launch of trajectories. Plotted in the background is the mean cloud fraction in columns

containing trajectories. The red line represents the median trajectory altitude, the brown lines

the 25th and 75th percentile values, the green lines 5th and 95th percentile values.
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Figure 7. Fraction of trajectories that are containing a cloud for REF and 4K simulations (in

black), divided into thin (IWC< 3 mg kg−1), intermediate (30 mg kg−1 > IWC > 3 mg kg−1),

and thick (IWC > 30 mg kg−1) categories (in red, green, and blue, respectively). The sum of the

three cloud categories is equal to the ”all clouds” line.

8a). The median in-cloud ice crystal number decreases with evolution from about 4000485

g−1 (or about 800 L−1 at the detrainment level) to 1000 g−1 (Fig. 8d). The ice crystal486

number subsequently decreases to about 300 g−1 (approximately 60 L−1) at hour 20. The487

ice crystals initially grow slightly from 32 to 35 µm, and rapidly decrease in size until488

reaching a plateau at 15-20 µm between hour 5 and 15 of the evolution, after which the489

size decreases again, reaching about 5 µm at hour 20 (Fig. 8c).490

The net water vapor deposition (which includes both growth by deposition and shrink-491

ing by sublimation) is the dominant source of ice over the whole anvil cloud lifetime (Fig.492

9). The net deposition is particularly large initially as most of the trajectories are su-493

persaturated with respect to ice, supporting ice crystal growth (not shown). The direct494

detrainment of ice mass (with an assumed effective ice radius of 12 µm) from the con-495
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Figure 8. Median in-cloud ice water content (IWC) (a), ice rate (diffQI) (b), in-cloud ice

crystal effective radius (REFFI) (c), and in-cloud ice crystal number concentration (ICNC) (d)

in detrained trajectories. diffQI is defined as the sum of all ice sources and sinks of ice plotted

separately in Fig. 9. Shaded area represents the spread between the 25th and 75th percentile

values for REF.

vective cores represented by the convective parameterization is an important source of496

ice in the first 2 hours of the anvil evolution, indicating the presence of active deep con-497

vection. Despite focusing on trajectories at temperatures colder or near the homogeneous498

freezing temperature of water, the growth of ice crystals at the expense of water droplets499

(Bergeron-Findeisen process) cannot be fully neglected in the first 5 hours of the evo-500

lution as some of the trajectories experience temperatures near -35◦C where part of the501

detrained condensate is in liquid form. Finally, the contribution of new ice crystal nu-502

cleation to the ice mass tendency is generally negligible and is therefore omitted from503

Fig. 9. On the other hand, snow formation via ice crystal aggregation is the dominant504

sink of ice throughout the full lifecycle of anvil clouds. Aggregation moves ice crystals505

that cross the temperature dependent threshold size to snow and therefore increases with506

the growth of ice crystals. Accretion is the removal of ice crystals by collisions with snowflakes507

and is an important sink of ice in the precipitating stage of the anvil cloud, i.e. in the508

first 5 hours of the anvil evolution, after which it becomes negligible, due to absence of509

snow particles in thin anvil clouds. Interestingly, ice crystal sedimentation is only of sec-510

ondary importance compared to aggregation even in the thin anvil stage, beyond hour511

10 of the trajectories.512

3.2.2 Radiative evolution513

Anvil ice microphysical properties are tightly related to the radiative effects and514

climatic effects of anvil clouds. Freshly detrained thick anvil clouds that contain large515

IWC are very reflective to visible radiation and have therefore a large shortwave cloud516

radiative effect (SWCRE). They also effectively prevent LW radiation from escaping to517
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Figure 9. Lagrangian mass budget along trajectories containing ice cloud during the first 30

hours of evolution from the REF simulation. The shaded area represents the spread between the

25th and 75th percentile values.

space from lower lying, warmer layers of the atmosphere, resulting in a large LWCRE.518

Interestingly, the averaged radiative effects along the trajectories start with a positive519

net CRE, which gradually decreases in the first 5 hours of the anvil evolution (Fig. 10a),520

despite decreasing IWC, ice crystal number, and consequently cloud albedo. This can521

be explained by the average insolation that the tracked clouds receive over the course522

of their lifetime (Fig. 10b). The mean insolation starts at values of about 300 W m−2,523

increasing to 500 W m−2 at hour 10. The peak in MCS activity, where trajectories start,524

on average occurs during early morning hours just before sunrise (Fig. 5b). Within a few525

hours, most of the trajectories are exposed to higher insolation values near mid day, lead-526

ing therefore to a larger SWCRE causing the net CRE to shift to negative values (Fig.527

10a,b). At this point both SWCRE and LWCRE start decaying significantly. The av-528

eraged CRE along trajectories for 24 hours of cloud evolution exceed values of 80 W m−2
529

in terms of LWCRE and SWCRE, with a small negative net CRE term (Tab. 3). These530

results are not very sensitive to the trajectory selection criterion, as shown by comput-531

ing radiative fluxes along all computed trajectories (Tab. S1).532

4 Results - future climate533

4.1 Mean climate responses to warming534

We first evaluate mean climate responses to warming for the Tropical Western Pa-535

cific. The model simulates a 40% increase in precipitable water and a 20% increase in536

liquid water path for the clim4K simulation (not shown) with very little change in rel-537

ative humidity (Fig. 11f). IWC increases significantly with global warming (Fig. 11g)538

at all temperatures, particularly in the 230 to 250 K range and is discussed in Section539

5.1. Interestingly, cloud liquid decreases in the boundary layer but increases near the melt-540

ing layer, possibly due to increased melting of ice (Fig. 11d). The peak in anvil cloud541

amount remains at temperatures between 220 and 212 K in both simulations (Fig 11a).542
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Figure 10. (a) CRE along detrained trajectories for the two simulations. Shaded area rep-

resent one standard deviation for REF. (b) Mean insolation values along tracked trajectories for

the two simulations. Shaded area represent one standard deviation for REF.

The anvil cloud fraction decreases with warming, which is consistent with a decrease in543

the upward mass flux by the convective scheme (Fig. 11c). In contrast to the convec-544

tive mass flux, the resolved mean vertical velocity increases in the global warming sim-545

ulation (Fig. 11b). This is due to an increase in fully convective grid boxes (intense storms546

with resolved circulation features), as suggested by the increase in relative importance547

of large scale precipitation (not shown). The upper tropospheric ice crystal effective ra-548

dius does not change with warming (Fig. 11h), while the ice crystal number concentra-549

tion significantly increases in the uppermost troposphere (Fig. 11i).550

The domain-mean COD, dominated particularly by changes in high clouds, increases551

by 8% in the clim4K simulation. The changes in ice clouds lead to a small and negative552

net CRE change of about 2 W m−2. The cloud feedback decomposition using Zelinka553

et al. (2016) method shows a strong positive feedback attributed to the increase in cloud554

altitude (Fig. 12a). However, the aforementioned increases in COD lead to a negative555

feedback that counteracts about half of the altitude feedback.556

Figure 12b shows the decomposition of cloud feedback for high clouds (<440 hPa)557

only. The net feedback is near zero, despite large SW and LW components. In the case558

of high clouds, the positive altitude feedback is fully counteracted by the negative op-559

tical depth feedback. The cloud amount feedback has significant SW and LW compo-560

nents that are nearly equal in size. The increased COD does not lead only to a strong561

SW feedback, but also to a significant positive LW feedback. This is expected due to near562

neutral net CRE of anvil clouds where an increase in COD would also lead to a signif-563

icant increase in LWCRE (Berry and Mace (2014); Hartmann and Berry (2017) and also564

Fig. 10). Additional discussion on the computed cloud feedbacks and the associated changes565

in ISCCP cloud histograms, on which the cloud feedback calculation is based, is given566

in Text S2.567

4.2 MCS responses568

The cold cloud shield representing very thick and moderately thick high clouds in-569

creases from 8.5% (REF) to 9.4% (4K) which is expected from the increase in vertical570

velocity, domain average cloud ice (Fig. 11b,d) and the negative high cloud optical depth571

feedback (Fig. 12b). This should be distinguished from the small decrease in total model-572

simulated high cloud fraction (Fig. 11a) as the decrease in very frequent thin high clouds573

dominates over the increase in thicker high cloud shields. If MCS are tracked by using574

fixed BT thresholds of 210 and 240 K, the number of MCS increases by 60% in the 4K575
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Figure 11. Domain-averaged cloud fraction (a), vertical velocity (b), convective mass flux

from the convective parameterization (c), cloud liquid (d), clear sky heating rates (e), the relative

humidity with respect to water (for T>273 K), ice (for T<253 K), or a mixture between the two

(for 273>T>253 K) (f), cloud ice (g), in-cloud ice crystal effective radius (h), and in-cloud ice

crystal number concentration (i). The quantities are plotted in function of temperature between

the surface and approximately the tropopause level. Shaded areas cover the space between all 3

annually averaged values for each of the simulations.

simulation in spite of no change in their lifetime (Tab. 2). The simulated increase in MCS576

number is consistent with studies of MCS responses to global warming over the conti-577

nental United States (Prein et al., 2017; Diffenbaugh & Giorgi, 2012). On the other hand,578

a percentile-based MCS selection criteria approach does not indicate a much higher MCS579

number in the 4K simulation. The maximum MCS extent and lifetime remain approx-580

imately the same between REF and 4K simulations with both MCS selection methods.581

The tracked MCS show increases in precipitation, which is expected given the increase582

in precipitable water under global warming (not shown). Moreover, a warmer climate583

increases the saturation deficit of the tropical atmosphere, leading to a larger buoyancy584

of deep convection and consequently an increase in convective available potential energy585

(CAPE) (Seeley & Romps, 2015). The BT-based detection limits do not allow for a good586

estimate of changes to the evolution and thinning of anvil clouds. In order to study such587

changes we return to an analysis along trajectories.588
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Figure 12. (a) Total net cloud feedback decomposition for the Tropical Western Pacific

(TWP) using the Zelinka et al. (2012a) method. (b) Same but for high clouds only (defined as all

clouds with a cloud top pressure (CTP) < 440 hPa), showing also the LW (red) and SW (blue)

cloud feedback components, using a modified version of Zelinka et al. (2016) method. 440 hPa

corresponds to an altitude of about 6.7 km and temperature of about 260 K in the TWP.

4.3 Cloud and radiative responses to warming along detrained trajec-589

tories590

4.3.1 Responses of anvil cloud lifetime and cloud properties591

The IWC increases with warming along the trajectories, particularly in the initial592

thick anvil stage (Fig. 8a). The ice crystal number concentration also increases, while593

the ice crystal effective radius remains initially roughly unchanged and decreases slightly594

with respect to REF only in the late stage of the anvil evolution (Fig. 8c). The lifetime595

of the anvil cloud remains roughly constant (Fig. 7). However, the larger initial IWC596

leads to a 1 hour increase in the lifetime of the thick part of the anvil cloud, or a 35%597

relative increase in the thick anvil cloud lifetime. The result does not change if we in-598

clude in the analysis also trajectories influenced by new occurrence of convection in later599

stages of their evolution (Fig. S1).600
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Figure 13. (a) Median sources and sinks of ice in the two simulations. Shaded area represents

the spread between the 25th and 75th percentile values for REF. (b) Anomalies of median values

of source and sinks of ice with respect to REF.

The microphysical process rate evolution shows a different behavior between the601

early and late stage of anvil evolution (Fig. 13):602
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• in the early stage of anvil evolution (hour 0-6) both sources and sinks of ice in-603

crease in amplitude with respect to REF604

• in the late stage of anvil evolution (from hour 7 onward) sources and sinks of ice605

are similar with respect to REF.606

The trajectories indicate that the 4K simulation starts at larger IWC values, which607

is a result of tendencies before the start of the trajectory calculation, most likely due to608

increases in detrainment of ice and vapor by the deep convective scheme. This finding609

is reinforced by a 40% increase in detrainment of ice and a 80-100% increase in the net610

deposition flux (Fig. 13) in the initial two trajectory timesteps, that are representative611

of regions of active convection. A large part of the changes in microphysical process rates612

is in the early anvil stage attributed to the 20% higher initial value of ice water content.613

In addition, specific humidity near the deep convective detrainment level increases as the614

anvil cloud peak shifts to higher altitudes at lower air densities, while remaining at the615

roughly constant temperature (not shown). This decrease of the average detrainment level616

pressure from about 235 to about 200 hPa leads to a 5-10% increase in the deposition617

flux based on a temperature and pressure dependent depositional growth equation (Lohmann618

et al., 2016), which explains part of the deposition tendency increase. Moreover, a larger619

static stability near detrainment level in a warmer world may decrease the mixing of de-620

trained air parcels with environmental air, therefore additionally increasing the IWC in621

the early stage of anvil cloud development.622

The rate of loss of atmospheric ice increases proportionally with the increase in IWC623

to first order, which results in only a small increase in thick anvil cloud lifetime in a warmer624

world (Fig. 7). Ice crystal aggregation transfers the larger crystals to snow when they625

cross a temperature dependent ice crystal effective radius threshold, which spans between626

100 - 125 µm for the relevant range of temperatures. Since the trajectories invariably627

originate near convective events, the initial ice crystal radii are close to the prescribed628

ice crystal effective radius detrained from the convective parameterization which is set629

to a constant value of 12 µm, leaving little opportunity for early changes by aggregation630

between the control and warming runs. The aggregation rate increases by about 20-30%631

between hours 1-5 of the anvil development, probably due to a general increase in IWC.632

This is also the likely cause of an increase in both accretion and sedimentation tenden-633

cies. In the late stage of anvil evolution the net deposition slightly decreases compared634

to REF. This may be connected with a 10% decrease in ice crystal effective radius (Fig.635

8) leading to a 20% decrease in surface area available for deposition, given no simulated636

change in relative humidity and comparable IWC between REF and the warming sim-637

ulation (Fig. 11f).638

4.3.2 Radiative responses and climatic implications639

The increase in IWC and ice crystal number with warming leads to a larger SWCRE640

as shown in Fig. 10a. At the same time clouds become more opaque to LW radiation,641

resulting in an increased LWCRE. The average net CRE for the whole lifecycle of tracked642

anvil clouds is slightly more negative (Tab. 3), partially due to increases in COD, con-643

sistent with the domain average increases in COD (see Section 4.1). In addition, net CRE644

is more negative also due to an increase in mean anvil cloud insolation between hour 3645

and 11 of cloud development. This is caused by a small shift in the diurnal cycle of MCS646

(Fig. 10b) that peaks at a later hour in the 4K simulation (Fig. 5). The insolation-driven647

changes in SWCRE are partially compensated by the insolation anomalies of the oppo-648

site sign at the late stage of the anvil cloud development (after hour 13). However, at649

that point in the lifecycle, the anvil clouds are not as reflective as in their initial stage,650

leading only to a minor modulation of the incoming SW radiative flux. In summary, the651

increases in SWCRE dominate over increases in LWCRE and lead to a more negative652

net CRE balance over the course of the anvil cloud lifecycle (Tab. 3 and Fig. 10a). This653

negative CRE anomaly is consistent with the domain-averaged negative high cloud op-654
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Table 3. Mean changes in cloud radiative effects (CRE) along trajectories averaged during the

first 24 h. The SWCRE is in the last column calculated using a constant insolation value of 390

W m−2 instead of the model simulated insolation.

REF 4K-REF 4K-REF ConstInsol

LW CRE [W m−2] 81.0 8.2 4.3

SW CRE [W m−2] -85.4 -10.3 -4.1

NET CRE [W m−2] -4.4 -2.2 0.2

NET feedback [W m−2 K−1] / 0.5 1.0

tical depth feedback (Fig. 12) and an increased insolation due to a small shift in the MCS655

diurnal cycle (Figs. 10b and 5b).656

5 Discussion657

5.1 Changes in upper tropospheric ice properties658

5.1.1 Ice water content increase659

The deep convective detrainment, represented by the G. J. Zhang and McFarlane660

(1995) convective scheme, is proportional to the cloud water and convective mass flux661

at the base of the cloud. The cloud base convective mass flux is in turn proportional to662

the rate of consumption of convective available potential energy (CAPE), which is ex-663

pected to increase in a warmer climate (Seeley & Romps, 2015; Singh et al., 2017). The664

cloud liquid increases in a warmer climate due to the increased saturation specific hu-665

midity. Both of these factors will, due to the approximately constant temperature at the666

level of deep convective detrainment, lead to a larger upper tropospheric ice water con-667

tent due to increases of both detrainment of water vapor and ice. Moreover, the deep668

convective scheme assumes proportionality between the cloud condensate and the con-669

densate removed by precipitation, leading to an additional reason for the increase of the670

detrained condensate with warming. Other deep convective parameterizations often use671

a fixed condensed water threshold, which determines the amount of condensate that is672

removed by precipitation. Such scheme may respond differently to global warming, pos-673

sibly leading to no enhancement in detrainment. However, despite the importance of the674

formulation of convective precipitation formation for climate sensitivity (M. Zhao, 2014;675

M. Zhao et al., 2016), it is currently not possible to determine which of the two descrip-676

tions of precipitation production is more realistic.677

Moreover, a recent study by Hartmann et al. (2020) provides a fundamental phys-678

ical argument in favor of the simulated increased of cloud ice. In a warmer climate, the679

troposphere expands and lifts the main emission level to lower pressure levels. Assum-680

ing a constant temperature and relative humidity at the emission level, the water vapor681

cooling rate increases with decreasing pressure levels, leading to a more top heavy ra-682

diative cooling profile, similarly to what is simulated by the E3SM model (Fig. 11e). As683

the climate in the tracking region can be to a large degree approximated by radiative684

convective equilibrium, the additional radiative cooling must be compensated by increases685

in latent heating (Jakob et al., 2019). The increase in cloud ice provides this additional686

heat (Fig. 11g).687
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5.1.2 Changes in ice crystal effective radius and ice crystal number con-688

centration689

The upper tropospheric ice crystal effective radius was previously found to be de-690

creasing with temperature and altitude (Hong & Liu, 2015; Kahn et al., 2018; Krämer691

et al., 2020), which was associated with the strong temperature dependence of the va-692

por deposition that limits ice crystal growth (van Diedenhoven et al., 2020). The model693

is able to reproduce this behaviour (Fig. 11h), together with the observed decrease in694

ice crystal effective radius at temperatures warmer than 250 K (van Diedenhoven et al.,695

2020). Note that the warmer end of the considered temperatures is dominated by snow,696

which is not included in our analysis.697

The simulated upper tropospheric ice crystal effective radii do not change signif-698

icantly in a warmer climate (Figs. 11h and 8c), which is probably due to the near con-699

stant temperature of deep convective detrainment level (Hartmann & Larson, 2002). More-700

over, the possible change of radii with warming is limited by the model assumption of701

a constant ice crystal effective radius size of 12 µm at detrainment, due to the very sim-702

ple, 1-moment convective microphysics. This is in contrast with the observed change in703

cloud top ice crystal effective radius between 2002 and 2016 by the Atmospheric Infrared704

Sounder observations (Kahn et al., 2018) and and a recent GCM modelling study (Zhu705

& Poulsen, 2019), both showing an increase in ice crystal size.706

Given the increase in ice mass detrained by deep convection but an assumed con-707

stant detrainment particle size, the model is bound to simulate a higher number of de-708

trained ice crystals, which is a possible reason for the observed ice crystal number con-709

centration increase both in domain average (Fig. 11i) and along the tracked trajecto-710

ries (Fig. 8d). The basic thermodynamics of climate change can, however, lead both to711

an increases in CAPE and updraft velocities in tropical MCS (e.g. Seeley and Romps712

(2015); Singh et al. (2017)) and an increase in upper tropospheric static stability (Zelinka713

& Hartmann, 2010; Bony et al., 2016). The first effect may due to stronger deep con-714

vective updrafts on one hand lead to a larger number of smaller newly nucleated ice crys-715

tals and on the other hand provide additional support to carry larger ice crystals towards716

the cloud top. In addition, the increase in static stability implies a decrease in turbu-717

lence and the associated updrafts, possibly leading to a smaller number of in-situ nucle-718

ated ice crystals that can grow to larger size. It is currently not clear which of the pro-719

posed effects may dominate the changes in microphysical properties of anvil clouds and720

what could be the climatic role of such changes.721

5.2 Implications for tropical high cloud feedbacks722

Figure 14 summarizes the main findings of the previous section. The IWC in thick723

anvils increases due to increased detrainment tendency from deep convective cores and724

increased deposition flux. The increase in vapor deposition may also be connected to in-725

creased detrainment as the detraining air is assumed to be saturated. This leads to an726

increased COD and a negative net CRE anomaly in the early stage of the anvil lifecy-727

cle. The changes are smaller in aged thin anvil clouds, as the sinks of ice, particularly728

snow formation, becomes more efficient in removing the excess IWC. At this point we729

take a step further to transform the net CRE values of Table 3 into climate feedbacks730

by dividing the change in net CRE along trajectories by the increase in globally aver-731

aged surface temperatures and adding a derived cloud masking correction term, as ex-732

plained in Appendix A. The computed climate feedback along detrained trajectories is733

small and positive for the 4K simulation and consistent with the results of the 3 year long734

clim4K simulation (Fig. 12a) as well as with the literature finding a robust positive trop-735

ical cloud feedback (Zelinka & Hartmann, 2010; Zelinka et al., 2012b, 2013; Boucher et736

al., 2013) with the dominant cloud altitude LW feedback component due to a 1-1.5 km737

increase in high cloud altitude.738
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Figure 14. Summary sketch highlighting major changes with global warming. The increase in

cloud altitude is omitted from the sketch.

Our simulations reveal in addition an increase in precipitable water and large-scale739

updraft velocities with global warming that lead to increasing condensed water content740

at temperatures below freezing, despite a counteracting decrease in the convective mass741

flux. The anvil cloud peak stays at approximately the same temperature level consistent742

with the FAT theory (Hartmann & Larson, 2002). When clouds shift in altitude, they743

shift to an environment with higher static stability, which according to Bony et al. (2016)744

implies a decreased convective detrainment and a decrease in anvil cloud fraction. In our745

simulations anvil cloud fraction decreases, but domain-averaged cloud ice content increases,746

leading to a larger optical depth of remaining anvil clouds and a negative optical depth747

feedback.748

We also observed increases in ice removal rates with warming (Fig. 13) due to an749

increase in anvil cloud precipitation efficiency by ice crystal aggregation and accretion750

of ice crystals by snow. However, most of this increase in precipitation (snow) forma-751

tion is due to a higher IWC at the starting points of anvil trajectories near the main de-752

trainment level. Moreover, it is not only the sinks but also the sources of ice that increase,753

in particular the net deposition flux, leading to no change in anvil cloud lifetime nor any754

substantial shifts of the proportion of thick vs. thin anvil clouds (Fig. 7). The simulated755

changes in anvil clouds are therefore different from the microphysical Iris hypotesis and756

its negative anvil cloud feedback proposed by Lindzen et al. (2001).757

5.3 Potential changes of anvil cloud diurnal cycle and the associated ra-758

diative impacts759

The average local time of peak cold cloud shield area of tracked MCS shifts from760

about midnight in REF simulation to 4 am in the 4K simulation, because more MCS peak761

in the morning hours (Fig. 5). This increases the SWCRE and leads to an additional762

negative (diurnal) cloud feedback component that cannot be evaluated with the cloud763

feedback decomposition method used here, because the ISCCP simulator, which it is based764

on, represents daytime average cloud fraction computed from 3-hourly instantaneous snap-765
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shots in sunlit gridboxes, meaning that it is in current form not suitable for studying vari-766

ations in the diurnal cycle of clouds. We additionally compute CRE by assuming diur-767

nally averaged insolation of 390 W m−2, representative of the domain mean insolation768

during the months June-August in the tracking region, which increases the net CRE bud-769

get by 2.4 W m−2, implying a 0.5 W m−2 K−1 larger net cloud feedback (Tab. 3). In770

other words, the more negative SWCRE balance when using model calculated insolation771

instead of its diurnal average leads to a negative diurnal cycle component of cloud feed-772

back of 0.5 W m−2 K−1, confirming the role of changes in insolation presented in Sec-773

tion 4.3.2. The magnitude of the diurnal cycle component of the cloud feedback is com-774

parable to the net cloud feedback for the TWP region, so feedbacks associated with the775

diurnal cycle could be substantial and are worth investigating in future studies.776

5.4 Study limitations777

The goal of this study is to provide a better understanding of the anvil cloud evo-778

lution in present and future warmer climate by using an intuitive, ice crystal following779

Lagrangian perspective. Models are currently the only possible way to provide such in-780

sights into cloud lifecycles due to limitations in in-situ and satellite observational data.781

While the method applied indeed provides valuable insights into the behavior of the model,782

the reader should be aware of its possible limitations as outlined below.783

5.4.1 Statistical robustness and study region784

The core part of the study (MCS tracking and trajectory analysis) relies on a 3 month785

simulation following a 7 day spin up period. 92 simulated days are enough to represent786

part of the tropical intraseasonal variability at the synoptic timescale with disturbances787

of sizes of about 1000 km and timescales of 1-10 days encompassing typical convectively788

coupled equatorial waves (Kiladis et al., 2009). The length of the simulation is not long789

enough to encompass a whole possible cycle of the Madden-Julian oscillation with a typ-790

ical period of 30-70 days. However, while this may influence the number of tracked MCS,791

it is not expected to have a large impact on the anvil cloud lifecycle itself. The anvil de-792

cay is primarily driven by processes that operate on a fast timescale like microphysics793

and radiation, and we have sampled many occurrences of the anvil decay process. In-794

terannual variability, e.g. ENSO, could be an issue, but the simulations use prescribed795

SST, which prevents the model drift into a different ENSO phase allowing for a better796

comparison between the simulations. Nevertheless, the simulations used for computing797

mean climatic values in the region of interest in Section 4.1 are run for only 3 years, which798

is not enough for computing reliable climatologies. The short simulations therefore in-799

troduce uncertainties in CRE and cloud feedback calculations, and suggest an interan-800

nual variability in mean June-August net CRE of about 0.5 W m−2 in the tracking re-801

gion, computed from the 3 years of available model output, which is smaller than the802

magnitude of the net CRE anomalies listed in Table 3. The qualitative features of the803

analysis are therefore probably quite robust, while the uncertainty in the quantitative804

amplitude may be considerable.805

Our study focuses on changes in only one of the tropical regions of frequent deep806

convection. However, as shown by Fig. S4, changes in the tracking region (Fig. 11) are807

in all plotted quantities but one (vertical velocity) consistent with the zonally averaged808

responses, giving more weight to our results.809

5.4.2 Trajectory calculation810

We use an offline method for calculating trajectories from model resolved large-scale811

motions. The E3SM model time step is set to 15 minutes while the output time step is812

archived at 1 hour intervals because of storage space limitations. E3SM therefore evolves813

on timescales that are shorter than resolved from the archived data (4 updates of veloc-814
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ity and microphysical fields are performed online within the archival time interval), which815

introduces minor biases in trajectory calculations. A study by Miltenberger et al. (2013)816

based on a regional weather prediction model shows only minor horizontal and vertical817

biases in the offline trajectory calculation when comparing offline calculated trajecto-818

ries using 1-hourly model output with the online calculated trajectories for the model819

resolution of 14 km with the model timestep of 40 s.820

5.4.3 Simulated interaction of convective and large-scale cloud processes821

A large part of the presented results strongly depends on the way E3SM simulates822

deep convection with the help of a modified version of the G. J. Zhang and McFarlane823

(1995) convective scheme, described in Xie et al. (2018). The scheme is meant to reduce824

CAPE over the course of a timescale that can be tuned. The model was found to un-825

derestimate BT of the strongest convective events, and at the same time overestimate826

the frequency of intermediate BT. These biases indicate a too shallow convective cloud827

top layer and/or a too small convective mass flux above about 10 km altitude which is828

consistent with findings by Y. Zhang et al. (2019) and Xie et al. (2018). This may be829

caused by a too large convective entrainment (Wang & Zhang, 2018) and/or a low mid830

tropospheric humidity bias (Xie et al., 2018). Moreover, convection is typically found831

to be shallower in models with higher vertical resolution (like E3SM) compared to those832

with coarser resolution (e.g. CESM) as a higher vertical resolution can lead to stronger833

vertical gradients in humidity, heating, and static stability (Rasch et al., 2019).834

The deep convective scheme uses a simple thermodynamical treatment of clouds,835

with a temperature dependent partitioning of detrained condensate between liquid and836

ice. Besides condensate it also detrains vapor, leading to a moistening of the upper tro-837

posphere. The convective microphysics is very simplified and only 1-moment in contrast838

to the 2-moment stratiform cloud microphysical scheme. The convective part of the code839

therefore does not explicitly calculate ice crystal radii, while the 2-moment stratiform840

cloud microphysics requires a mass and size or number of detrained ice particles. The841

convective scheme provides this information in an arbitrary way - the detrained ice crys-842

tal effective radius is a tunable parameter, set to 12 µm in the model version used here.843

This is inconsistent with observational evidence, which shows that the ice particle size844

in convective cores decreases with altitude (Van Diedenhoven et al., 2016; van Dieden-845

hoven et al., 2020) and may therefore lead to an underestimation of the lifetime of the846

detrained ice crystals at the convective cloud tops and overestimation at lower levels. Nev-847

ertheless, despite the use of parametrized convection and its associated problems, we found848

E3SM to reproduce the observed albedo-OLR histogram in the tracking region remark-849

ably well and to simulate MCS in a reliable way compared to geostationary observations850

of tropical maritime convection.851

6 Conclusions852

Tropical net CRE is determined by anvil clouds at various stages of evolution. In853

this study we first used a cold cloud tracking algorithm to follow the evolution of MCS854

in the Tropical Western Pacific. The MCS simulated by E3SM were compared with the855

observed MCS from 3 months of Himawari geostationary satellite data. The compari-856

son showed that the model is, despite some deficiencies, able to reproduce many features857

of the observed albedo-OLR pairings representing anvil cloud decay as well as MCS and858

their diurnal cycle. We find that cloud ice amount increases on a warmer Earth, which859

leads to a negative cloud optical depth feedback. However, the net cloud feedback is pos-860

itive due to the dominant positive cloud altitude feedback.861

In a second analysis step, we diagnosed anvil properties following trajectories launched862

from gridboxes with active convection at the peak of the MCS lifecycle in the E3SM sim-863

ulations. These trajectories follow air parcels from the top of deep convective clouds through-864

out the evolution of the anvil clouds, from their initial thick to final thin stage. We use865
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the trajectories to estimate the anvil cloud lifetime, which was found to be about 15 hours.866

The anvil properties and their CRE initially evolve very quickly, with the thick anvil stage867

lasting only about 2-4 hours, despite a supporting dynamical forcing in the form of the868

strong updraft velocity. The anvil gradually continues to decay with decreasing IWC and869

ice crystal number concentration, resulting in decreases of both SWCRE and LWCRE.870

The dominant source of ice mass is ice crystal growth by deposition, while the dominant871

sinks are snow formation by ice crystal aggregation (ice is converted to snow when cross-872

ing the aggregation cutoff size) and in the first 5 hours of evolution also accretion (ice873

is removed when scavenged by falling snow). Sedimentation of ice crystals plays only a874

secondary role.875

We evaluated changing anvil cloud properties using present day SSTs, and SSTs876

incremented by a uniform 4K increase to identify changes that might occur in anvils with877

global warming. Figure 14 represents a summary of the main simulated changes in clouds.878

In general, we observe an increase in COD for thick high clouds due to an increase in879

detrained IWC and vapor. Ice mass sources and sinks increase, leaving the anvil cloud880

lifetime roughly unchanged. Changes to anvil microphysics lead to more negative SWCRE881

in the thick and intermediately thick anvil cloud stage in the first 10 hours of anvil cloud882

evolution. The changes in the thin anvil stage are small, which leads to a net negative883

CRE response along the full anvil lifecycle.884

The estimation of cloud feedbacks along trajectories indicated a feedback of about885

0.5 W m−2 K−1. This result is consistent with the mean climate feedback computed with886

the help of radiative kernels in which the positive altitude feedback dominates over a smaller887

contribution due to the COD increase. The feedback may also have a negative compo-888

nent due to a shift in peak deep convective activity occuring at a later time in the morn-889

ing, leading to more reflected SW radiation.890

Our study shows how a Lagrangian approach can provide an in-depth and more891

intuitive perspective on anvil cloud evolution and its changes with global warming. Our892

approach is complementary to the standard global or regionally averaged climate feed-893

back decompositions. In particular, it offers the following advantages over the standard894

mean climate perspective:895

• It gives a direct estimation of cloud lifetimes896

• It offers an intuitive perspective on microphysical processes that control anvil evo-897

lution and radiative properties. It also allows computing Lagrangian mass bud-898

gets899

• It provides a straightforward and unbiased way of separating cloud responses based900

on cloud development stage901

Such Lagrangian approaches are needed if we want to fully understand the mech-902

anisms of the anvil cloud lifecycle and how they respond to global warming. A Lagrangian,903

air parcel or hydrometer following approach can provide new insights into the evolution904

of cloud and other climate processes. The use of Lagrangian methods in high resolution905

models is still limited and should be made a priority, particularly by the implementa-906

tion of online trajectory modules (Miltenberger et al., 2013). Follow-up studies using La-907

grangian methods could consider extending their simulations from months to years to908

better control noise due to natural variability. An increased statistical significance of the909

tracked features would for example open up new opportunities for studying potential ra-910

diative feedbacks caused by changes in the diurnal cycle of clouds, which currently can-911

not be captured by cloud feedback decomposition methods.912
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Table A1. 3 year JJA average net cloud radiative effects (CRE) anomalies with respect to ref-

erence simulation, net cloud feedback calculated by using Zelinka et al. (2012a) radiative kernels

for Tropical Western Pacific. The adjustment term is computed as a difference between the cloud

feedback and normalized CRE value.

clim4K

∆ NET CRE [W m−2] -2.03

∆ temperature [K] 4.31

∆NETCRE
∆temperature [W m−2 K−1] -0.47

calculated feedback [W m−2 K−1] 0.52

estimated CRE adjustment [W m−2 K−1] 0.99

Appendix A Cloud feedback estimation from changes in net CRE along913

detrained trajectories914

CRE are defined as a difference between all-sky and clear sky radiative fluxes. A915

change in CRE between the reference and a warmer climate is not equivalent to the change916

in cloud feedbacks, although the patterns of change generally resemble each other (e.g.917

Fig. 11 in Soden et al. (2008)). While cloud feedbacks refer only to the radiative effects918

of changes in cloud properties with warming, CRE are defined as a difference between919

full and clear sky radiative fluxes and therefore depends both on changes in clouds and920

their radiative properties as well as changes in clear sky radiation. In simulations with921

increased SSTs the atmospheric opacity increases mainly due to increased water vapor922

concentrations. This effect is stronger in clear sky regions and thus leads to a more neg-923

ative CRE response compared with cloud feedbacks (Ceppi et al., 2017).924

An accurate way of estimating cloud masking adjustments is to use technically chal-925

lenging partial radiative perturbation methods (Colman, 2003; Soden et al., 2004) , which926

goes beyond the scope of our work. We therefore estimate a cloud masking correction927

term by using the difference between the computed CRE values for months June-August928

in the 3-year long simulation (row 1 in Table A1), normalized by the change in global929

surface temperature in the respective simulation (row 2 in Table A1), and the cloud feed-930

back calculations with the help of radiative kernels (Zelinka et al., 2012a) (row 4 in Ta-931

ble A1). The derived cloud masking agrees well with the masking terms computed from932

offline radiative calculations with a series of GCMs (Soden et al., 2008; Zelinka et al.,933

2013; Yoshimori et al., 2020).934

Appendix B Calculation of ice crystal effective radius935

The ice size distribution is represented by a gamma function as936

Φ(D) = N0Dexp
−λD (B1)

where D is the diameter, N0 the intercept parameter, and λ is the slope parameter that937

is defined as:938

λ =

[
πρN

q

]− 1
3

(B2)

where ρ is the assumed bulk ice density of 500 kg m−3, q is the ice mass mixing ratio,939

and N is the ice number concentration.940
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The effective radius is defined as the ratio of the third and second moments of the941

ice distribution, which can be expressed as942

re =
3ρ

2λρi
(B3)

ρi is the bulk density of pure ice (917 kg m−3). More details on the assumed ice distri-943

bution can be found in Morrison and Gettelman (2008).944
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Lohmann, U., Lüond, F., & Mahrt, F. (2016). An introduction to clouds: From the1133

microscale to climate. Cambridge University Press.1134

Luo, Z., & Rossow, W. B. (2004). Characterizing Tropical Cirrus Life Cycle, Evolu-1135

tion, and Interaction with Upper-Tropospheric Water Vapor Using Lagrangian1136

Trajectory Analysis of Satellite Observations. J. Clim., 17 , 4541–4563. Re-1137

trieved from http://journals.ametsoc.org/doi/pdf/10.1175/3222.1 doi:1138

10.1175/3222.11139

Mace, G. G., & Berry, E. (2017). Using Active Remote Sensing to Evaluate Cloud-1140

Climate Feedbacks: a Review and a Look to the Future. Curr. Clim. Chang.1141

Reports, 819 . Retrieved from http://link.springer.com/10.1007/s406411142

-017-0067-9 doi: 10.1007/s40641-017-0067-91143

Mace, G. G., Deng, M., Soden, B., & Zipser, E. (2006). Association of Tropical1144

Cirrus in the 10–15-km Layer with Deep Convective Sources: An Observational1145

Study Combining Millimeter Radar Data and Satellite-Derived Trajectories. J.1146

Atmos. Sci., 63 (2), 480–503. doi: 10.1175/JAS3627.11147

Machado, L. A., Rossow, W. B., Guedes, R. L., & Walker, A. W. (1998). Life cycle1148

variations of mesoscale convective systems over the Americas. Mon. Weather1149

Rev., 126 (6), 1630–1654. doi: 10.1175/1520-0493(1998)126〈1630:LCVOMC〉2.01150

.CO;21151

Mapes, B. E., & Houze, R. A. (1993). Cloud clusters and superclusters over the1152

oceanic warm pool. Mon. Weather Rev., 121 (5), 1398–1415. doi: 10.1175/15201153

-0493(1993)121〈1398:ccasot〉2.0.co;21154

–31–



manuscript submitted to JGR: Atmospheres

Marvel, K., Zelinka, M., Klein, S. A., Bonfils, C., Caldwell, P., Doutriaux, C., . . .1155

Taylor, K. E. (2015). External influences on modeled and observed cloud1156

trends. J. Clim., 28 (12), 4820–4840. doi: 10.1175/JCLI-D-14-00734.11157

Mauritsen, T., & Stevens, B. (2015). Missing iris effect as a possible cause of muted1158

hydrological change and high climate sensitivity in models. Nat. Geosci., 8 (5),1159

346–351. Retrieved from http://www.nature.com/doifinder/10.1038/1160

ngeo2414 doi: 10.1038/ngeo24141161

Meyers, M. P., Demott, P. J., & Cotton, W. R. (1992). New primary ice-nucleation1162

parameterizations in an explicit cloud model. J. Appl. Meteorol., 31 (7), 708–1163

721. doi: 10.1175/1520-0450(1992)031〈0708:NPINPI〉2.0.CO;21164

Miltenberger, A. K., Pfahl, S., & Wernli, H. (2013). An online trajectory1165

module (version 1.0) for the nonhydrostatic numerical weather prediction1166

model COSMO. Geosci. Model Dev., 6 (6), 1989–2004. doi: 10.5194/1167

gmd-6-1989-20131168

Mlawer, E. J., Taubman, J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997).1169

Radiative transfer for inhomogeneous atmospheres: RRTM, a validated corre-1170

latedk model for the longwave. J. Geophys. Res., 102 (D14), 16663–16682. doi:1171

doi:10.1029/97JD002371172

Morrison, H., & Gettelman, A. (2008). A new two-moment bulk stratiform cloud1173

microphysics scheme in the community atmosphere model, version 3 (CAM3).1174

Part I: Description and numerical tests. J. Clim., 21 (15), 3642–3659. doi:1175

10.1175/2008JCLI2105.11176

Neale, R. B., Gettelman, A., Park, S., Chen, C.-c., Lauritzen, P. H., Williamson,1177

D. L., . . . Taylor, M. A. (2012). Description of the NCAR Community Atmo-1178

sphere Model (CAM 5.0) (Tech. Rep. No. November). NCAR.1179

Neale, R. B., Richter, J. H., & Jochum, M. (2008). The impact of convection on1180

ENSO: From a delayed oscillator to a series of events. J. Clim., 21 (22), 5904–1181

5924. doi: 10.1175/2008JCLI2244.11182

Nesbitt, S. W., & Zipser, E. J. (2003). The Diurnal Cycle of Rainfall and Convective1183

Intensity according to Three Years of TRMM Measurements. J. Clim., 16 (10),1184

1456–1475. doi: 10.1175/1520-0442-16.10.14561185

Norris, J. R., Allen, R. J., Evan, A. T., Zelinka, M. D., O’Dell, C. W., & Klein,1186

S. A. (2016). Evidence for climate change in the satellite cloud record. Nature,1187

536 (7614), 72–75. Retrieved from http://dx.doi.org/10.1038/nature182731188

doi: 10.1038/NATURE182731189

Ohno, T., & Satoh, M. (2018). Roles of Cloud Microphysics on Cloud Responses to1190

Sea Surface Temperatures in Radiative-Convective Equilibrium Experiments1191

Using a High-Resolution Global Nonhydrostatic Model. J. Adv. Model. Earth1192

Syst., 10 , 1970–1989. doi: 10.1029/2018MS0013861193

Ohno, T., Satoh, M., & Noda, A. (2019). Fine vertical resolution Radiative-1194

Convective Equilibrium Experiments: roles of turbulent mixing on the High-1195

Cloud Response to Sea Surface Temperatures. J. Adv. Model. Earth Syst., 11 ,1196

1–18. doi: 10.1029/2019ms0017041197

Pendergrass, A. G., & Knutti, R. (2018). The Uneven Nature of Daily Precipita-1198

tion and Its Change. Geophys. Res. Lett., 45 (21), 11,980–11,988. doi: 10.1029/1199

2018GL0802981200

Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland, G. J., &1201

Clark, M. P. (2017). Increased rainfall volume from future convective storms1202

in the US. Nat. Clim. Chang., 7 (12), 880–884. Retrieved from http://1203

dx.doi.org/10.1038/s41558-017-0007-7 doi: 10.1038/s41558-017-0007-71204

Protopapadaki, S. E., Stubenrauch, C. J., & Feofilov, A. G. (2017). Upper Tro-1205

pospheric Cloud Systems Derived from IR Sounders: Properties of Cirrus1206

Anvils in the Tropics. Atmos. Chem. Phys., 17 , 3845–3859. Retrieved from1207

www.atmos-chem-phys.net/17/3845/2017/ doi: 10.5194/acp-17-3845-20171208

Rasch, P. J., Xie, S., Ma, P.-l., Lin, W., Wang, H., Tang, Q., & Burrows, S. M.1209

–32–



manuscript submitted to JGR: Atmospheres

(2019). An Overview of the Atmospheric Component of the Energy Exascale1210

Earth System Model. J. Adv. Model. Earth Syst., 11 (8), 2377–2411. doi:1211

https://doi.org/10.1029/2019MS001629Received1212

Rempel, M., Senf, F., & Deneke, H. (2017). Object-based metrics for forecast ver-1213

ification of convective development with geostationary satellite data. Mon.1214

Weather Rev., 145 (8), 3161–3178. doi: 10.1175/MWR-D-16-0480.11215

Roca, R., Fiolleau, T., & Bouniol, D. (2017). A simple model of the life cycle of1216

mesoscale convective systems cloud shield in the tropics. J. Clim., 30 (11),1217

4283–4298. doi: 10.1175/JCLI-D-16-0556.11218
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The supporting material includes 4 additional figures that either show more support

of the study’s main findings (Fig. S1, S2, S4, Table S1) or reveal additional information

that help interpret some of the study’s results (Fig. S3).
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Text S1. The decay of anvil cloud fraction is not significantly biased by our decision to

consider only trajectories not encountering any significant ice detrainment tendency after

the initial 4 hours of the evolution (Fig. S1). Interestingly, the lifetime slightly decreases

with the inclusion of such trajectories, most likely due to stronger resolved vertical veloc-

ities near regions of active convection, which loft the trajectories, often ending above the

cloud top.

The standard set of trajectories uses a minimum IWC limit of 0.1 mg kg−1 for the

determination of a cloud. The lifetime decreases by about 2.5 hours when using an order

of magnitude larger ice mixing ratio limit in the definition of a cloud lifetime, similar to

that used by Mace, Deng, Soden, and Zipser (2006), while a lower ice limit would not

change the cloud lifetime (Fig. S2a). The lifetime was also found to be sensitive to the

minimum cloud fraction allowed for calling an air parcel cloudy. The lifetime increases

by about 2.5 hours when using a limit of 1% cloud fraction instead of the default value

of 10%. On the other hand, the lifetime decreases by 2 hours when increasing the limit

from 10% to 30% (Fig. S2b).

Text S2. We provide additional discussion in support of the cloud feedback calculation

presented in Fig. 12. The discussion is supported by the cloud fraction histograms based

on the instantaneous cloud fraction values computed by the ISCCP cloud simulator (Fig.

S3), which are used in the cloud feedback calculations. The model-derived cloud fraction

shows a clear maximum above 310 hPa for all COD bins (Fig. S3a). The high cloud

fraction computed by the ISCCP simulator shifts to higher pressure levels (Fig. S3d) and
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shows a small cloud fraction increase in warmer climate (Fig. S3e,f). In contrast, the low

level cloud fraction decreases with warming in all COD bins (Fig. S3d-f).

Note that the cloud fraction values based on ISCCP simulator can differ from the model

simulated ones (Pincus et al., 2012). For example, ISCCP simulator indicates an increase

in high cloudiness for the clim4K with respect to the climREF simulation, whereas E3SM

alone indicates a decrease (Fig 11a). The ISCCP estimate is used in the cloud feedback

calculation and results in the positive LW and negative SW high cloud amount feedback

(see Fig. 12b) as expected in the case of the high cloud fraction increase. When consider-

ing the amount feedback for all clouds (Fig. 12a), the LW and SW feedback components

change sign, with the LW amount feedback being negative and the SW feedback being

positive. This is typical of a decrease in high cloud fraction, in the apparent contrast to

the results of Fig. 12b and is an artifact of the cloud amount feedback calculation, which

assumes a fixed cloud distribution in pressure and optical depth levels. In particular,

the proportion of high vs. low clouds has to remain constant, which is in violation of

the simulated cloud differences, leading to a biased total cloud amount feedback (for a

more complete discussion please refer to Zelinka, Klein, and Hartmann (2012) and the

supplementary material of Zelinka, Zhou, and Klein (2016)).

High clouds have a strong effect on the OLR and are therefore expected to dominate

the changes in altitude feedbacks, with only a small contribution from low clouds. It is

therefore surprising to see the high cloud altitude feedback resulting in only about 50%

of the total altitude cloud feedback (confront Figs. 12b and 12a). However, as a dif-
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ference from the amount feedback, the calculation of cloud altitude feedback considers

the non-proportionate change in cloud fraction, i.e. the residual between the actual and

proportionate cloud fraction change. The residual (and therefore the altitude feedback) is

large when considering clouds of all altitudes, due to the differences in the proportionality

of high vs. low clouds in the warmer simulation (high cloud fraction increases, low cloud

fraction decreases). The difference between the actual and proportionate cloud fraction

changes decreases when considering high clouds only, leading to a smaller altitude feed-

back (Fig. 12b).

Finally, the optical depth feedback is large and negative for high clouds, which is consis-

tent with the observed shift of the high cloud distribution in Fig. S3c towards larger COD

bins. In contrary, low clouds exhibit no large optical depth shifts. The total optical depth

cloud feedback is therefore as expected dominated by the high cloud feedback component,

caused by an increase in ice water content (Fig. 11g).

Text S3. The values of both SW and LW CRE averaged along detraining trajectories are

larger when, as a difference from the main manuscript (Table 3), the trajectories experi-

encing detrainment after the first 4 hours of the evolution are included in the statistical

analysis (Table S1). This is an expected result: the additional detrainment leads to direct

injections of ice and vapor, which increase the thick and intermediately thick anvil cloud

fraction. While the impact of detrainment events encountered by trajectories after the

first 4 hours of the cloud evolution is not negligible, these late detrainment events are

not strong enough to change the qualitative picture of anvil cloud evolution including the

relative importance of source and sink processes, ice cloud properties, or radiative effects.
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Movie S1. 2-week long animation of the OLR simulated by the REF simulation (in filled

contours). Tracked MCS are delineated by red contour lines. The plotted trajectories are

colored based on their ice water content. Trajectories are plotted only as long as their

ice water content is larger than 0.1 mg kg−1. Each trajectory segment gradually fades

through time, becoming fully transparent 12 hours after the trajectory overpass. The

starting locations of trajectories are represented by red crosses.
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Table S1. Mean changes in cloud radiative effects (CRE) during 24 h along all computed

trajectories. This includes also trajectories that experienced significant detrainment tendencies

after the first 4 hours of the evolution, which were excluded from the analysis considered in the

main part of the manuscript.

REF 4K-REF
LW CRE [W m−2] 87.2 8.1
SW CRE [W m−2] -94.5 -11.0
NET CRE [W m−2] -7.4 -2.9
NET feedback [W m−2 K−1] / 0.3
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Figure S1. As Fig. 6 but with all trajectories considered (i.e. including those affected by

subsequent detrainment of ice after hour 4 of the evolution).
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Figure S2. Sensitivity tests of anvil cloud decay when using different in-cloud IWC limits for

cloud definition and a constant minimum cloud fraction limit of 10% (a). Sensitivity tests with

different minimum cloud fraction limits considered in the definition of anvil cloud and a constant

minimum in-cloud IWC limit of 0.1 mg kg−1 (b).
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Figure S3. ISCCP cloud fraction histograms for (a) climREF, (b) clim4K simulations, and

their anomaly (d). c) shows the changes in high and non-high cloud fraction as a function of

cloud optical depth, averaged along cloud top pressure axis. Panel e) shows the changes in cloud

fraction binned by cloud top pressure and averaged along optical depths. f) shows the respective

cloud fraction anomalies.
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Figure S4. (a) Cloud fraction, (b) vertical velocity, (c) convective mass flux from the convective

parameterization, (d) cloud liquid, (e) clear sky heating rates, (f) relative humidity with respect

to water (for T>273 K), ice (for T<253 K), or a mixture between the two (for 273>T>253

K), (g) cloud ice, (h) in-cloud ice crystal effective radius, and (i) in-cloud ice crystal number

concentration averaged for all gridpoints between 20◦S and 20◦N. The quantities are plotted as

a function of temperature between the surface and approximately the tropopause level. Shaded

areas cover the space between all 3 annually averaged values for each of the simulations.

October 28, 2020, 8:58pm


