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Abstract

The COVID-19 pandemic led to a widespread reduction in aerosol emissions. Anecdotal effects on air quality and visibility were

widely reported. Less known are the impacts on the planetary energy balance. Using satellite observations and climate model

simulations, we 15 study the underlying mechanisms of the large, precipitous decreases in solar clear-sky reflection (3.8 W m-2

or 7%) and aerosol optical depth (0.16 or 32%) over the East Asian Marginal Seas in March 2020. By separating the impacts

due to meteorology and emissions in the model simulations, we find that about one-third of the anomalies can be attributed

to pandemic-related emission reductions, and the rest to weather variability and long-term emission trends. The 20 current

observational and modeling capabilities will be critical for monitoring, understanding, and predicting the radiative forcing and

climate impacts of the ongoing crisis.
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Abstract: The COVID-19 pandemic led to a widespread reduction in aerosol emissions. 
Anecdotal effects on air quality and visibility were widely reported. Less known are the impacts 
on the planetary energy balance. Using satellite observations and climate model simulations, we 15 
study the underlying mechanisms of the large, precipitous decreases in solar clear-sky reflection 
(3.8 W m-2 or 7%) and aerosol optical depth (0.16 or 32%) over the East Asian Marginal Seas in 
March 2020. By separating the impacts due to meteorology and emissions in the model 
simulations, we find that about one-third of the anomalies can be attributed to pandemic-related 
emission reductions, and the rest to weather variability and long-term emission trends. The 20 
current observational and modeling capabilities will be critical for monitoring, understanding, 
and predicting the radiative forcing and climate impacts of the ongoing crisis. 

One Sentence Summary: The COVID-19-related aerosol emissions reduction caused a 
significant perturbation to the energy balance over East Asia in March 2020. 

Main Text: The lockdown measures instituted to control the spread of COVID-19 caused 25 
unprecedented disruptions to many economic sectors, among which manufacturing and 
transportation were particularly hard hit. The consequent decrease in emissions of anthropogenic 
aerosols and their precursors generally led to improvements in air quality and visibility (1-3), 
with notable exceptions (4). These emissions reductions may have had an influence on Earth’s 
radiation budget, and by extension weather and climate, as short-lived aerosol particles have long 30 
been postulated to provide a net cooling by scattering/absorbing insolation (direct effects) under 
clear-sky conditions (5-7) and brightening clouds (indirect effects) under cloudy conditions (8, 
9). 

Satellite observations (detailed in Materials and Methods) offer some indications. For 
March 2020, one month after China implemented a strict lockdown, the Moderate Resolution 35 
Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) (10) exhibited large negative 
anomalies relative to the climatological (2003–2019) mean, not only over much of East Asia, but 
also extending downwind over the Pacific (Fig. 1A). The average decrease over the East Asian 
Marginal Seas (EAMS) (defined as the oceanic region in 117°–132°E and 26°–41°N) was 0.16, 
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or 32% of the climatological mean (Fig. 1B). We choose EAMS as the main analysis region for 
its proximity to the upwind source regions, more reliable satellite retrievals over ocean than over 
land (11), and absence of surface snow/ice cover. The concurrently measured Clouds and the 
Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) shortwave clear-
sky top-of-the-atmosphere (TOA) radiative flux (!"#$, upward defined as positive) (12) was also 5 
greatly reduced during March 2020 (Fig. 1C). The average decrease over EAMS was 3.8 W m-2, 
or 7% (Fig. 1D). Both anomalies exceed their respective 90% confidence intervals (Figs. 1B and 
1D), and the two quantities are strongly correlated on interannual timescales (Fig. S1A). This 
suggests that a substantial emissions reduction, presumably caused by COVID-19, gave rise to 
lower aerosol loading, resulting in more solar absorption by Earth’s surface. 10 

There are, however, inherent difficulties in interpreting the observations. Besides 
emissions, meteorology plays a prominent role in modulating AOD and !"#$, especially outside 
of source regions, via multiple pathways (e.g. long-range transport, hygroscopic growth, and wet 
removal). For instance, the negative anomalies over EAMS in March 2005, when there was no 
anomalous emissions reduction, were comparable to those in March 2020 (Figs. 1B and 1D). 15 
Therefore, a confident attribution of the observed decreases in AOD and !"#$ to the emissions 
reduction hinges on a reliable approach for isolating the non-COVID-19 factors. It is even more 
challenging to discern possible impacts on shortwave all-sky TOA radiative flux (!%##) due to the 
complexities involving clouds. 

We address these issues by using the latest GFDL atmosphere global climate model 20 
(GCM) AM4 (13), which participated in the World Climate Research Programme (WCRP) 
Coupled Model Intercomparison Project Phase 6 (CMIP6) (14) and forms the basis of a climate 
prediction system (15). Instead of generating its own meteorology (typical of climate 
simulations), the model is nudged to re-analysis data (winds, air temperature and surface 
pressure) at all levels to create a meaningful comparison with observations at synoptic scales. 25 
Still, aerosols, water vapor, and clouds are computed interactively and subject to the same 
dynamical and physical processes as in a free-running simulation, posing a stringent test for 
model physics. The time evolution of anthropogenic emissions over China is depicted in Fig. S2. 
After peaking in 2007, SO2 has been decreasing steadily due to air pollution control measures, 
while black carbon (BC) and organic matter (OM) diverged after 2015, compensating each other 30 
to some extent. (The model setup and experimental design are detailed in Materials and 
Methods.) 

The nudged control simulation shows considerable skill in reproducing the observed 
interannual variations of AOD and !"#$ for March over EAMS; the correlation coefficients (&) 
between model and observations are 0.83 and 0.72, respectively (Fig. 2). [The model 35 
performance is comparable for the other months (Fig. S3).] This suggests that the nudged AM4 
provides an effective way to quantify the non-COVID-19 influence. The most notable deficiency 
is that the simulation does not capture the full extents of the negative anomalies in March 2005. 
However, the model-simulated AOD and !"#$ anomalies are strongly correlated (Fig. S1B), with 
a slope that is very close to the observationally-based counterpart (Fig. S1A). This lends support 40 
to the fidelity of the model’s representation of the aerosol direct effects. Both observed 
anomalies emerge from the lower bounds of the detection limits, meaning that they are likely to 
contain forced components [estimated at -0.06 for AOD (1.9 standard deviations) and -1.3 W m-2 
for !"#$ (1.3 standard deviations) by subtracting the control values from the respective 
observations]. The likelihood is 92% for AOD, and 80% for !"#$. When compared with the 45 
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perturbation simulations, the observations are consistent with a 40-60% anthropogenic emissions 
reduction over China (relative to 2020), which roughly translates into a reduction of 31-47% in 
SO2 emissions relative to 2015, as the baseline SO2 emissions in 2015 are 28% higher than in 
2020 (Fig. S2A). Note that SO2 is the major contributor to the forced change in !"#$ (see 
Supplementary Text). Further, it is important to note that this top-down estimate is obtained in a 5 
way that is fundamentally different from, but complementary to, conventional bottom-up 
approaches based on socioeconomic data. One study of the latter kind (16) suggests that SO2 
emissions over China decreased by about 20% in March 2020 (relative to 2015). Given the 
complicated nature of producing such bottom-up estimates, it is not expected that they should 
agree perfectly with our result. Moreover, the responses of AOD and !"#$ over EAMS are 10 
somewhat sensitive to the location of the emissions reduction (see Supplementary Text). It may 
help reconcile the difference between the two types of estimates to take into account the precise 
spatiotemporal pattern of the emissions reduction, once known��

We choose the 60% perturbation simulation to illustrate the spatial distributions of the 
model-simulated AOD and !"#$ anomalies in Fig. 3. (Fig. S4 is the same plot for the 40% 15 
perturbation simulation.) The simulation exhibits a clear land-sea contrast; the large AOD 
anomaly over mainland China decreases gradually down the prevailing southwesterlies over the 
ocean (Fig. 3A). This pattern is in broad agreement with MODIS (Fig. 1A). The overall anomaly 
can be decomposed into the part due to both the meteorology and long-term emission trends 
(non-COVID-19) and into the part due to the COVID-19-related emissions reduction. The 20 
former is the anomaly in the control simulation (Fig. 3B), and the latter is the difference between 
the 60% perturbation and control simulations (Fig. 3C). The two contributors to the overall 
anomaly are of comparable magnitudes, but show different spatial patterns. For instance, the 
plume cutting across northern China, the Korean Peninsula and northern Japan in the non-
COVID-19 component is not present in the COVID-19 counterpart. The impact of COVID-19 on 25 
AOD is concentrated over southern China. These features largely carry over to !"#$ (Figs. 3D-F). 
The aforementioned decomposition yields insights into the physical mechanisms of regional 
anomalies. An example is the dipole structure immediately north of the northern boundary of 
EAMS (41°N), characteristic of the large positive anomalies over parts of Inner Mongolia and 
Mongolia and the negative anomalies over Northeast China. It can be attributed to meteorology 30 
as it exists only in the non-COVID-19 component, realized through land surface albedo changes 
caused by snow melting or accumulation (not shown). A notable discrepancy is that the model 
projects a large decrease in !"#$ over much of China (Fig. 3D), which is not found in the CERES 
observations (Fig. 1C). Although the underlying cause is not entirely clear, it is difficult to 
reconcile the substantial decrease in MODIS AOD over northern China with the lack of any 35 
significant change in CERES !"#$ over the same region given the strong correlation between 
them (Fig. S1A). 

Excellent agreement (&=0.94) is seen between CERES and AM4-simulated shortwave 
all-sky flux (!%##) (Fig. 4A). This result is somewhat counterintuitive since !%## is under the 
heavy influence of clouds, which GCMs historically have struggled to simulate owing to the 40 
intrinsic difficulties in representing the effects of cloud-scale turbulence in coarse-resolution 
models. We cross-check this result by comparing the modeled cloud fraction with CERES 
observations (Fig. 4B). The equally impressive model skill (&=0.92) affirms the prominent role 
of atmospheric motion in dictating cloud fraction and the quality of AM4’s cloud scheme (17, 
18). (More work is needed to better understand the contributions from different cloud types.) The 45 
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negative anomaly in !%## (-2.1 W m-2) for March 2020 is just within the detection limit, while the 
negative anomaly in cloud fraction is barely outside. Interestingly, MODIS cloud fraction shows 
a much larger negative anomaly than its CERES counterpart (Fig. 4B). Although the sign of the 
model-simulated forced signal in !%## (less reflection) in the 60% perturbation simulation is 
consistent with our expectation for a COVID-19-related emissions reduction, the magnitude (-0.5 5 
W m-2) is well within the detection limit. One may interpret this discrepancy as an indication that 
the model underestimates the strength of the aerosol indirect effects since the clear-sky results 
substantiate the scale of the emissions reduction and the realism of the direct effects. There is, 
however, no clear signal in MODIS-retrieved cloud effective radius ('() (Fig. 4C) or liquid 
water path (LWP) (Fig. 4D). A previous study of the cloud response to volcanic aerosols (19) 10 
found a strong anomaly in MODIS '(, but not in LWP. The main model used in that study 
(HadGEM3), when nudged, did not reproduce the observed interannual variations in '( (see 
Figs. S4.1-S4.4 in that study), so there was no reliable way to separate forced signal from 
weather variability, making it hard to interpret the observed anomaly. The AM4-simulated '( 
does not correlate with MODIS either, but this is not central to our argument. The model has 15 
limited skill for LWP (Fig. 4D), but the anomaly in MODIS LWP for March 2020 falls within 
the detection limit, at least partly owing to the uncertainty in MODIS LWP (20). For instance, 
MODIS ascribes the large positive anomaly in cloud fraction for March 2010 primarily to ice 
clouds, as opposed to liquid clouds. As a consequence, there is little change in MODIS LWP. By 
contrast, the model-simulated cloud fraction and LWP are strongly correlated. Although this is 20 
not ground for a critique of MODIS LWP retrieval, the model result in and of itself should be 
taken seriously in light of AM4’s demonstrated skill and self-consistency. In summary, our all-
sky analyses indicate that the observed negative anomaly in !%## for March 2020 was likely 
caused by weather variability. While nominally consistent with the all-sky radiative impacts of 
an emissions reduction, it was realized through lower cloud fraction, instead of higher '( or 25 
lower LWP, the two main pathways through which the aerosol indirect effects manifest in GCMs 
(including AM4). 

A series of additional simulations and analyses are conducted to assess the robustness of 
the key findings for March 2020. They cover the analysis region, long-term emission trends, and 
locations and speciation of the emissions reduction. Although quantitative differences exist, the 30 
main conclusions remain valid regardless of specific choices or settings (see Figs. S5-S15 and 
Supplementary Text). 

We carry out the same analyses for February and April (Figs. S16-S19). The MODIS 
AOD in February 2020 is the lowest since 2005 (Fig. S16). The control simulation projects a 
negative anomaly in 2020, but of only half of the observed magnitude. The discrepancy can be 35 
accounted for by a 20-40% emissions reduction. In terms of !"#$, the model is less skillful for 
February than for March, resulting in a larger detection limit. Unlike AOD, the observed !"#$ 
falls within the limit. Note that the observed !"#$ is not nearly as variable as the observed AOD 
in the few years before 2020, breaking the tight linkage between the two quantities for March 
(Fig. S1A). Since the physics governing the AOD-!"#$ relationship is simple and robust, more 40 
needs to be done to reconcile the two retrievals. One possibility is compensation between 
scattering and absorbing aerosols. Both the observed !%## and cloud fraction anomalies are 
smaller than those in the control simulation (qualitatively similar to March), but within their 
respective detection limits (Fig. S17).  
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Any sign of AOD decrease is gone by April. Although the MODIS AOD is anomalously 
low in April 2020, the fact that it is very close to the control suggests no significant COVID-19-
related emissions reduction (Fig. S18). This inference is supported by the observed !"#$, which is 
slightly above the upper bound of the detection limit, opposite to the perturbation simulations. In 
stark contrast, the observed !%## shows an outsized negative anomaly of XXX W m-2, the largest 5 
in the entire CERES data record (Fig. S19). This coincides with the largest decrease in CERES 
cloud fraction. The control simulation captures the timing and magnitude of both anomalies, 
allowing us to attribute them to the specific meteorological conditions in April 2020, as opposed 
to the anthropogenic aerosol effects. [NOTE TO EDITOR and REVIEWERS: The preceding 
three sentences in italic are placeholders as the CERES all-sky data for April 2020 have not 10 
been released. They will be re-visited after the data are available in early August.] The 
above findings are consistent with a recent study of CO2 emissions during COVID-19 (21), 
which suggests that the emissions over China decreased substantially in February and March 
2020, but almost fully recovered by April. 

The COVID-19 pandemic provides an opportunity for evaluating the model 15 
representation of the aerosol-cloud-radiation interactions, a major source of uncertainty in global 
weather and climate modeling. The observational evidence for aerosol direct effects is 
unequivocal, and their model representation is satisfactory. In contrast, it is more difficult to 
draw definitive conclusions about aerosol-cloud interactions and indirect effects from the 
observed shortwave all-sky flux. This is fundamentally due to the highly variable, fine-scale 20 
nature of clouds, the challenges in retrieving cloud properties on the observational side, and in 
parameterizing sub-grid cloud processes on the modeling side. Nonetheless, the fact that both the 
model-simulated perturbations and the observations stay within the detection limits leads us to 
conclude that there is no evidence suggesting that the model-simulated aerosol indirect effects 
are too strong. The observations underline the dominant role of cloud fraction in determining the 25 
all-sky flux. Any attempt at discerning the manifestation of the aerosol indirect effects through 
cloud microphysical properties (such as '( and LWP) is contingent on separating out 
interference from the synoptic-scale variations in cloud fraction. 

Running in the nudged mode to separate the effects of meteorology from emissions, AM4 
is skillful at reproducing the observed interannual variations in shortwave TOA radiative fluxes, 30 
clear and cloudy-sky alike. This allows us to distinguish forced signal from weather variability, a 
prerequisite for interpreting observations. We find that about one-third of the observed decrease 
in shortwave clear-sky reflection over East Asian Marginal Seas (1.3 out of 3.8 W m-2 locally) in 
March 2020 was likely caused by COVID-19-related emissions reduction. On the other hand, the 
concurrent decrease in shortwave all-sky reflection (2.1 W m-2) is within the detection limit, and 35 
thus is thought to be caused mainly by weather variability. By leveraging the latest observational 
and modeling capabilities, the framework described here is ideal for studying the radiative 
impacts of the ongoing COVID-19 pandemic, and the resulting perturbations to the energy 
balance, in other parts of the world (such as Europe and North America). 
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Fig. S1. Scatter plots of the anomalies in AOD and !"#$ in March over EAMS. Open dots 
represent the climatological period (2003-2019) and solid dots represent the year 2020. (A) 
Observations from MODIS and CERES. (B) Blue dots are from the control model simulation. 
Orange, green, and red dots correspond to the 20%, 40% and 60% perturbation simulations, 35 
respectively. The regression line is calculated for the climatological period. 

Fig S2. Time series of monthly-mean anthropogenic emissions over China. (A) SO2, (B) black 
carbon (BC), and (C) organic matter (OM). 

Fig S3. Time series of monthly anomalies in (A) AOD, (B) !"#$, and (C) !%##. The black and blue 
lines represent the observations and the control simulation, respectively. The dotted and solid 40 
lines represent the monthly anomalies and 11-month running means, respectively. & is the 
correlation coefficient. 
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Fig S4. Same as Fig. 3, but for the 40% perturbation simulation. 

Fig S5. Same as Fig. 2, but for the expanded oceanic region from 117°–150°E and 26°–41°N. 

Fig S6. Same as Fig. 4, but for the expanded oceanic region from 117°–150°E and 26°–41°N. 

Fig S7. Same as Fig. 2, but for the constant emission simulation (the purple line). The blue line is 
from the control simulation. & is the correlation coefficient for the constant emission simulation. 5 

Fig S8. Same as Fig. 4, but for the constant emission simulation (the purple line). The blue line is 
from the control simulation. & is the correlation coefficient for the constant emission simulation. 

Fig S9. Same as Fig. 2, but for the emission location simulations. NC, CC, and SC represent 
northern China (north of 35°N), central China (25°–35°N) and southern China (south of 25°N), 
respectively. The regional emissions reduction is 60%. 10 

Fig S10. Same as Fig. 3, but for the northern China (NC) emission location simulation. The 
regional emissions reduction is 60%. 

Fig S11. Same as Fig. 3, but for the central China (CC) emission location simulation. The 
regional emissions reduction is 60%. 

Fig S12. Same as Fig. 3, but for the southern China (SC) emission location simulation. The 15 
regional emissions reduction is 60%. 

Fig S13. Same as Fig. 4, but for the emission location simulations. NC, CC, and SC represent the 
northern China (north of 35°N), central China (25°–35°N) and southern China (south of 25°N), 
respectively. The regional emissions reduction is 60%. 

Fig S14. Same as Fig. 2, but for the emission speciation simulations. The emissions reduction is 20 
60%. 

Fig S15. Same as Fig. 4, but for the emission speciation simulations. The emissions reduction is 
60%. 

Fig S16. Same as Fig. 2, but for February. 

Fig S17. Same as Fig. 4, but for February. 25 

Fig S18. Same as Fig. 2, but for April. 

Fig S19. Same as Fig. 4, but for April. 
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Fig. 1. Satellite measurements of AOD and *+,-.	(A) Spatial distribution of the anomaly in 
MODIS aerosol optical depth (AOD) in March 2020. The oceanic region enclosed by the green 
rectangle (117°–132°E and 26°–41°N) is defined as the East Asian Marginal Seas (EAMS). (B) 5 
Time series of the anomaly in MODIS AOD over EAMS in March from 2003 to 2020. The gray 
area denotes the 90% confidence interval over the climatological period. (C) Same as (A), but for 
CERES shortwave clear-sky top-of-the-atmosphere (TOA) radiative flux (!"#$, upward defined 
as positive). (D) Same as (B), but for CERES !"#$. The climatology is defined as 2003–2019. 
 10 
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Fig 2.  Comparison of the observations and simulations under clear-sky conditions. (A) 
Times series of the anomaly in AOD over EAMS in March from 2003 to 2020. The black line is 
from MODIS, and the blue line is from the control simulation. The vertical bar denotes the 
detection limit (one standard deviation of the differences between the observations and the 5 
control simulation from 2003-2019). The orange, green, and red dots denote the perturbation 
simulations of 20%, 40%, and 60% emissions reductions, respectively. & is the correlation 
coefficient. (B) Same as (A), but for CERES !"#$. 
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Fig 3. Model simulation of spatial distribution of AOD and *+,-. (A) Spatial distribution of 
the anomaly in AOD in March 2020 from the 60% perturbation simulation. The green rectangle 
denotes EAMS. (B) Same as (A), but for the control simulation. (C) The difference between (A) 
and (B). (D)-(F) Same as (A)-(C), but for simulated !"#$.  5 
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Fig 4.  Comparison of the observations and simulations in all-sky conditions. (A) Time 
series of the anomaly in shortwave all-sky TOA radiative flux (!%##) over EAMS in March from 
2003 to 2020. The black line is from CERES, and the blue line is from the AM4 control 
simulation. The vertical bar denotes the detection limit (one standard deviation of the differences 5 
between the observations and the control simulation from 2003 to 2019). The orange, green, and 
red dots denote the perturbation simulations of 20%, 40% and 60% emissions reductions, 
respectively. & is the correlation coefficient. (B) Same as (A), but for cloud fraction. The black 
line is from CERES, and the gray line is from MODIS. The detection limit is based on CERES. 
(C) Same as (A), but for cloud effective radius ('(). The black line is from MODIS. (D) Same as 10 
(A), but for liquid water path (LWP). The black line is from MODIS. 
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Materials and Methods 
Satellite observations 

We use the observed shortwave top-of-atmosphere (TOA) fluxes and cloud fraction from 

the Clouds and the Earth’s Radiant Energy System (CERES). Observational data for aerosol and 

cloud properties are retrieved from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument aboard NASA’s Aqua satellite. While similar products are available from 

NASA’s Terra satellite, others have reported the degradation of the on-board MODIS instrument 

over time, specifically with respect to the cloud properties of interest in this work (9, 22). All 

data are Level 3 (L3) monthly products from MODIS Collection 6.1. The L3 monthly product 

(MYD08_M3) are gridded to 1° by 1° and derived from the daily products (MYD08_D3), made 

available through NASA’s Level-1 and Atmosphere Archive and Distribution System (LAADS) 

Distribution Active Archive Center (DAAC). The aerosol optical depth (AOD), cloud fraction, 

cloud effective radius (!"), and liquid water path (LWP) are retrieved from the MYD08_M3 data 

set. AOD is derived from the combined Dark Target and Deep Blue AOD at 0.55 µm over the 

land and ocean. LWP is retrieved from the 3.7 µm band and represents in-cloud properties. To 

compare with model outputs, the in-cloud LWP is converted to a grid-box mean LWP by 

multiplying the in-cloud LWP by the liquid cloud fraction (calculated from the mean cloud 

fraction and cloud phase properties). The observational data are interpolated to the AM4 grid for 

analysis. 

 

Model simulations 

We conduct a suite of nudged simulations from January 2000 to April 2020 with the GFDL 

AM4 (11). The model horizontal winds, temperature, and surface pressure are nudged to the 3-

hourly averaged products from the MERRA-2 reanalysis (23) with a nudging time scale of 6 

hours. The simulations use the monthly sea surface temperatures (SST) and sea ice 

concentrations prepared for the CMIP6 historical AMIP simulations (24), which are extended to 

2020 using the NOAA Optimum Interpolation (OI) SST V2 data (25). 

Aerosol concentrations are calculated interactively based on their emissions, chemistry, 

advection, and dry and wet deposition. The SO2 and black carbon (BC) emissions for 2000-2015 

used in the control simulations are based on the regional Multi-resolution Emission Inventory for 

China (MEIC) (26) in China and the CMIP6 (Coupled Model Intercomparison Project Phase 6) 

historical emissions (27) in the rest of the world. The latter is not used for China because it 

severely underestimates the decline of SO2 after 2007 (28). (Note that MEIC ends in 2015.) The 

SO2 and BC emissions for 2019 are derived by linearly interpolating the CMIP6 SSP (Shared 

Socioeconomic Pathway) 585 emission scenario between 2015 and 2020 (29). Emissions for 

2016-2018 are derived by interpolating between 2015 and 2019, and those for 2020 are kept as 

given by SSP585 for the control simulation. Organic matter (OM) emissions are based solely on 

the CMIP6 historical and SSP585 inventories. Three perturbation simulations are created by 

reducing the anthropogenic SO2, BC, and OM emissions over China for February, March and 

April 2020 by 20%, 40% or 60% to mimic the effects of COVID-19 lockdown. All other 

forcings (such as greenhouse gases, solar irradiance and stratospheric ozone) are based on the 

CMIP6 historical forcings (14) for 2000-2014 and the CMIP6 SSP585 forcings (29) for 2015-

2020. 

Supplementary Text 
Analysis region 
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We more than double the original analysis region by expanding beyond EAMS further to 

the open ocean (the oceanic region in 117°–150°E and 26°–41°N). The results are qualitatively 

the same (Figs. S5 and S6). In fact, the model performs better in terms of the interannual 

variations of AOD and #$%&, reflecting the good agreement between the observed and simulated 

spatial structures (Figs. 1 and 3).  

Long-term emission trends 

As explained in the main text, the anthropogenic emissions over China have been varying 

non-monotonically in the last two decades, and despite our best effort, there are bound to be 

inherent uncertainties in the historical emission inventory used in the control simulation. To 

assess the implications, we re-run all the simulations with the emissions fixed at the 2000 levels. 

Doing so seriously degrades the model skills for AOD and #$%&, as the simulations clearly miss 

the observed long-term trends. These deficiencies tend to inflate the magnitudes of the forced 

signals for March 2020 (Figs. S7 and S8). 

Locations of the emission reduction 

The lockdown first started in Hubei Province before spreading to other parts of China. To 

study how the locations of the emission reduction affects the results, we divide the country 

roughly into northern China (NC, north of 35°N), central China (CC, 25°–35°N, where Hubei is 

located) and southern China (SC, south of 25°N), and reduce the emission by 60% for each 

region independently. AOD and #$%& are more sensitive to the reductions in NC and CC than in 

SC (Fig. S9). The same is true for #'%% and cloud properties (Fig. S13). The spatial distributions 

are given in Figs. S10-12.  

Speciation of the emission reduction 

In the perturbation simulations, all three anthropogenic aerosol emissions, namely SO2, 

BC. and OM, are reduced simultaneously. In a set of sensitivity experiments, we reduce one 

species by 60% at a time. SO2 contributes the most to the reductions in AOD and #$%&. The 

effects of BC and OM on  #$%& roughly cancel (Fig. S14). !" increases most prominently in the 

SO2 case (Fig. S15).  
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Fig. S1. Scatter plots of the anomalies in AOD and #$%& in March over EAMS. Open dots 

represent the climatological period (2003-2019) and solid dots represent the year 2020. (A) 

Observations from MODIS and CERES. (B) Blue dots are from the control model simulation. 

Orange, green, and red dots correspond to the 20%, 40% and 60% perturbation simulations, 

respectively. The regression line is calculated for the climatological period. 
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Fig. S2. Time series of monthly-mean anthropogenic emissions over China. (A) SO2, (B) black 

carbon (BC), and (C) organic matter (OM). 
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Fig. S3. Time series of monthly anomalies in (A) AOD, (B) #$%&, and (C) #'%%. The black and 

blue lines represent the observations and the control simulation, respectively. The dotted and 

solid lines represent the monthly anomalies and 11-month running means, respectively. ( is the 

correlation coefficient. 
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Fig S4. Same as Fig. 3, but for the 40% perturbation simulation. 
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Fig S5. Same as Fig. 2, but for the expanded oceanic region from 117°–150°E and 26°–41°N. 
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Fig S6. Same as Fig. 4, but for the expanded oceanic region from 117°–150°E and 26°–41°N. 
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Fig S7. Same as Fig. 2, but for the constant emission simulation (the purple line). The blue line is 

from the control simulation. ) is the correlation coefficient for the constant emission simulation.  
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Fig S8. Same as Fig. 4, but for the constant emission simulation (the purple line). The blue line is 

from the control simulation. ) is the correlation coefficient for the constant emission simulation.  
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Fig S9. Same as Fig. 2, but for the emission location simulations. NC, CC, and SC represent 

northern China (north of 35°N), central China (25°–35°N) and southern China (south of 25°N), 

respectively. The regional emissions reduction is 60%.  
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Fig S10. Same as Fig. 3, but for the northern China (NC) emission location simulation. The 

regional emissions reduction is 60%. 
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Fig S11. Same as Fig. 3, but for the central China (CC) emission location simulation. The 

regional emissions reduction is 60%. 
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Fig S12. Same as Fig. 3, but for the southern China (SC) emission location simulation. The 

regional emissions reduction is 60%. 
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Fig S13. Same as Fig. 4, but for the emission location simulations. NC, CC, and SC represent the 

northern China (north of 35°N), central China (25°–35°N) and southern China (south of 25°N), 

respectively. The regional emissions reduction is 60%.  
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Fig S14. Same as Fig. 2, but for the emission speciation simulations. The emission reduction is 

60%. 
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Fig S15. Same as Fig. 4, but for the emission speciation simulations. The emission reduction is 

60%. 
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Fig. S16. Same as Fig. 2, but for February. 
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Fig. S17. Same as Fig. 4, but for February. 
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Fig. S18. Same as Fig. 2, but for April. 
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Fig. S19. Same as Fig. 4, but for April. 

 


