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Abstract

A long-standing question in geomorphology concerns the applicability of statistical models for elevation data based on fractal or

multifractal representations of terrain. One difficulty with addressing this question has been the challenge of ascribing statistical

significance to metrics adopted to measure landscape properties. In this paper, we use a recently developed surrogate data

algorithm to generate synthetic surfaces with identical elevation values as the source dataset, while also preserving the value

of the Hölder exponent at any point (the underpinning characteristic of a multifractal surface). Our primary data are from

an experimental study of landscape evolution. This allows us to examine how the statistical properties of the surfaces evolve

through time and the extent to which they depart from the simple (multi)fractal formalisms. We also study elevation data

from Florida and Washington State. We are able to show that the properties of the experimental and actual terrains depart

from the simple statistical models. Of particular note is that the number of sub-basins of a given channel order (for orders

sufficiently small relative to the basin order) exhibit a clear increase in complexity after a flux steady-state is established in the

experimental study. The actual number of basins is much lower than occur in the surrogates. The imprint of diffusive processes

on elevation statistics means that, at the very least, a stochastic model for terrain based on a local formalism needs to consider

the joint behavior of the elevations and their scaling (as measured by the pointwise Hölder exponents).
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Abstract19

A long-standing question in geomorphology concerns the applicability of statistical models20

for elevation data based on fractal or multifractal representations of terrain. One difficulty21

with addressing this question has been the challenge of ascribing statistical significance to22

metrics adopted to measure landscape properties. In this paper, we use a recently devel-23

oped surrogate data algorithm to generate synthetic surfaces with identical elevation values24

as the source dataset, while also preserving the value of the Hölder exponent at any point25

(the underpinning characteristic of a multifractal surface). Our primary data are from an26

experimental study of landscape evolution. This allows us to examine how the statistical27

properties of the surfaces evolve through time and the extent to which they depart from28

the simple (multi)fractal formalisms. We also study elevation data from Florida and Wash-29

ington State. We are able to show that the properties of the experimental and actual ter-30

rains depart from the simple statistical models. Of particular note is that the number of31

sub-basins of a given channel order (for orders sufficiently small relative to the basin or-32

der) exhibit a clear increase in complexity after a flux steady-state is established in the ex-33

perimental study. The actual number of basins is much lower than occur in the surrogates.34

The imprint of diffusive processes on elevation statistics means that, at the very least, a35

stochastic model for terrain based on a local formalism needs to consider the joint behav-36

ior of the elevations and their scaling (as measured by the pointwise Hölder exponents).37

1 Introduction38

A landscape is an assemblage of individual, identifiable features that can be clas-39

sified and explained by the geomorphologist [Arrell et al., 2007; Ehsani and Quiel, 2008;40

Passalacqua et al., 2010; Clubb et al., 2014], and also the parts in between that are a palimpsest41

of current and past processes [Jerolmack and Paola, 2010]. A focus on individual land-42

scape features can be key to unlocking the geological history of a region [Gasparini et al.,43

2014], while consideration of the landscape as a whole using measures such as the hyp-44

sometric integral [Strahler, 1952; Boon III and Byrne, 1981; Brocklehurst and Whipple,45

2004; Keylock et al., 2020b], or statistical scaling laws topography [Hack, 1957; Tokunaga,46

1978; Willgoose, 1994; Lague and Davy, 2003; Zanardo et al., 2013] gives an insight in47

to how uplift, erosion and deposition interact to shape our landscapes. From the perspec-48

tive of this latter approach, the question remains as to the extent that statistical models for49

topography can adequately represent observed elevation statistics. Expressed another way,50

do the particular dynamics of geomorphic processes leave an imprint on the terrain that51

makes simple statistical models inadequate?Addressing this question forms the goal of this52

paper.53

The complex configuration and environmental history of a landscape make a formal,54

mathematical or statistical description of terrain regularity problematic. Attempts to do55

this have commonly adopted methods based on the notion of fractal dimension [Klinken-56

berg and Goodchild, 1992; Lifton and Chase, 1992; Outcalt and Melton, 1992; Gagnon57

et al., 2006]. However, the generalization of the description of landscape from mono-58

fractal to one where more than a single fractal dimension is present has resulted in signif-59

icant terminological confusion. In order to try to resolve this, we propose the definitions60

given in Table 1. Our table incorporates two commonly adopted descriptions of the statis-61

tical scaling of terrain elevations: fractal (here, monofractal) [Klinkenberg and Goodchild,62

1992] and multifractal [Lavallée et al., 1993; Gagnon et al., 2006]. Unifying both these63

descriptions is the principle that a description of elevation statistics may be accomplished64

in terms of pointwise Hölder regularity [Jaffard, 1997]. This is by far the most common65

form of regularity used to describe time-series or surface data, although other possibil-66

ities exist [Arnéodo et al., 1998; Seuret and Lévy Véhel, 2003]. Monofractality assumes67

that the Hölder exponent describing the terrain is constant everywhere (it is a Hurst ex-68

ponent), while multifractality is used in a general sense to mean that the Hölder exponent69

varies. Here, we use the term “multi-Hölder” rather than “multifractal” for this general no-70
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Table 1. Terminology used in this paper concerning the regularity classes and descriptions of topography85

Name Description

Monofractal surface A surface described effectively by a Hurst exponent.
There is no significant difference in the Hölder exponent
in space. A fractional Brownian surface with constant
Hölder exponent [Mandelbrot and van Ness, 1968].

Multi-Hölder surface A surface described by multiple Hölder exponents.
Multi-fractional Brownian Surface A multi-Hölder surface where the variability in Hölder

exponent is given by a continuous function as seen with
multi-fractional Brownian motion [Peltier and Lévy
Véhel, 1995].

Multifractal surface A multi-Hölder surface where the Hölder exponents
are imbricated, leading to either a non-continuous or a
random description of their variation.

Conditional multi-Hölder surface A multi-Hölder surface of either type where the varia-
tion in the Hölder exponent exhibits significant associa-
tion with another variable.

Self-regulating multi-Hölder surface A special case of a conditional multi-Hölder surface,
where the conditioning variable is the elevation. Hence,
the statistics of the elevation derivatives are not indepen-
dent of the elevations [Lévy Véhel, 2013].

tion of a terrain where the Hölder exponents vary. This allows us to contrast a “multifrac-71

tal” surface with a “multi-fractional Brownian surface” in terms of how the variability is72

structured. A multifractal surface is one that is the outcome of a hierarchical process such73

that individual Hölder exponents are imbricated in a non-continuous fashion [Benzi et al.,74

1993], while a multi-fractional Brownian surface is one where the variability is given by75

a continuous function [Peltier and Lévy Véhel, 1995]. Self-regulating processes are rela-76

tively recent development in regularity theory where the regularity is coupled to the values77

of the signal [Echelard et al., 2015]. This concept underpins the velocity-intermittency78

method for extracting information on flow structures from turbulence time series [Key-79

lock et al., 2012; Ali et al., 2019; Keylock et al., 2020a]. In addition to this idea of self-80

regulation, Table 1 also includes the more general category of a “conditional multi-Hölder81

surface”, where the Hölder exponents are a function of some other terrain property, with82

the self-regulating process being a special case where this conditioning is on the elevation83

itself.84

While previous work has shown that geomorphic surfaces are not monofractal [Evans86

and McLean, 1995; Perron et al., 2008], the nature and extent to which a multi-Hölder87

description of landscape is appropriate is still unclear. While some authors have sug-88

gested that a multifractal model is suitable [Gagnon et al., 2006], others have been more89

cautious. Of particular importance in this context is a study by Veneziano and Iacobellis90

[1999] that not only critiqued the methodologies adopted in some previous works, but also91

showed that for various terrains, there was evidence of consistent self-similar relations for92

both the channel network part of the terrain where fluvial incision was dominant, and the93

hillslopes dominated by diffusive processes. In other words, landscapes are a conditional94

multi-Hölder surface, dependent on a categorization into hillslope and channel network.95

A difficulty with all previous investigations of this phenomenon is the absence of96

an appropriate control that may be used to compare extracted statistical quantities from97

topographic surfaces and determine their statistical significance. Given that some of these98
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phenomena are rather subtle in nature, as well as the error in any statistical curve-fitting99

exercise used for deriving a scaling relation, this is important. In this study, we develop100

a framework that permits analysis of landscape scaling properties relative to appropriate101

control models for the topography. We apply this framework to investigate the extent to102

which elevation statistics contain a signature from geomorphic processes that cannot be103

represented adequately by simple multi-Hölder models for terrain statistics. To accomplish104

this, we make use of a laboratory experiment on terrain evolution [Singh et al., 2015], as105

well as digital elevation models (DEMs) from Florida and Washington State.106

2 Experimental set-up107

Figure 1. Illustration of the eXperimental Landscape Evolution (XLE) facility at the University of Min-
nesota.

108

109

Experiments were performed at the eXperimental Landscape Evolution (XLE) fa-110

cility of the St. Anthony Falls Laboratory at the University of Minnesota (Fig. 1). XLE111

consisted of a 0.5 x 0.5 x 0.3 m3 erosion box with two opposing sides able to slide up112

and down at variable rates mimicking changes in the base level. The facility includes a113

rainfall simulator consisting of 20 ultrafine misting nozzles which were able to generate114

rain droplets of sizes less than 10 µm. The experimental setup was also equipped with a115

laser scanner able to scan the experimental topography at resolution of 0.5 mm in a few116

seconds. This was done every 300 seconds for over nine hours. In this study we report117

results in time increments corresponding to this 300 s interval. Thus, t = 30 equates to118

9,000 seconds. The experimental landscapes discussed here were evolved under constant119

uplift, U = 20 mm h−1, and precipitation intensity, P = 45 mm h−1. The erodible material120

was a homogeneous mixture of fine silica (specific density ∼ 2.65) with a grain size distri-121

bution of D25 = 10µm, D50 = 25µm, and D75 = 45µm, mixed with 35% water by volume122

in a cement mixer; see Singh et al. [2015]; Tejedor et al. [2017] for more details. The key123

changes that arose in the evolution of the topography were the establishment of a drainage124

basin at t ∼ 30 (150 minutes), the main drainage divide at t ∼ 45 (225 minutes), a steady-125

state landscape in terms of sediment flux at t ∼ 75 (375 minutes), and a final evolution126

towards a morphometric steady-state for t & 95 (475 minutes).127
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3 Methodology128

Previous work has had difficulty discriminating between the various descriptions of129

terrain provided in Table 1 because of the absence of a suitable testing framework that can130

permit differences between cases to be assessed with statistical confidence. Thus, to make131

progress in this field, a new methodology is required. Our formulation of this problem is132

based on the concept of surrogate data, which have been used for about thirty years for133

hypothesis testing for non-linear processes in time-series signal processing [Theiler et al.,134

1992]. This field, including geophysical applications of the salient methods, was recently135

reviewed by Keylock [2019]. In brief, the most well-known approach is to employ an al-136

gorithm that preserves the Fourier amplitudes of a signal and the values of the signal it-137

self, but randomizes the Fourier phases. This is known as the iterated, amplitude adjusted138

Fourier transform (IAAFT) method [Schreiber and Schmitz, 1996]. Given a linear version139

of the original signal (i.e. a realization of an autoregressive process), comparison of the140

original data to the surrogates allows various forms of non-linearity to be detected. In ad-141

dition, one can determine if the variation in Hölder exponents is sufficient for a signal to142

be significantly different to monofractal and exhibit statistical intermittency [Poggi et al.,143

2004; Venema et al., 2006; Basu et al., 2007; Keylock, 2009].144

Given the rejection of such a hypothesis of linearity, gradual reconstruction [Key-145

lock, 2010] can then be used to determine how complex a signal is. For example, Keylock146

et al. [2014b] used gradual reconstruction to show how the complexity of river bed topog-147

raphy was a function of discharge, with the superposition of intermediate scale bedforms148

driving this complexity. Schwenk and Foufoula-Georgiou [2017] used this approach to149

show that the planform of river meanders encodes information on process nonlinearities,150

with the behavior of pre-cutoff and post-cutoff meander bends contrasted. Keylock et al.151

[2015] applied this approach to a multi-Hölder model for turbulence and were able to152

show the statistical significance of relatively small coefficients in a Fokker-Planck model153

for the velocity increments.154

Analysis using surrogate data generated with the IAAFT algorithm is highly suited155

to distinguishing between mono-fractal signals and any of the class of multi-Hölder sig-156

nals described in Table 1. However, it cannot be used to discriminate between multi-157

Hölder surfaces, which is the focus of this study. An algorithm for this class of problem158

was presented by Keylock [2017] and developed in to a gradual reconstruction framework159

by Keylock [2018]. Before we describe this technique we briefly review the definition of160

pointwise Hölder regularity, as this underpins the characterization of the various multi-161

Hölder surfaces we defined in the introduction.162

3.1 Hölder exponents163

Given a DEM containing elevations, z(x, y), the increments (the elevation differences164

between points at separation, r) are:165

δz = z(x, y) − z(x + rcosθ, y + rsinθ), (1)

where θ is a direction selected for analysis and r is the separation distance between points.
The statistical moments of order n for δz are given by ⟨δzn⟩, where the angled braces in-
dicate an averaging operation. The scaling relation

⟨|δz |n⟩ ∝ rξn, (2)

is then found from a log-log plot of ⟨|δz |n⟩ against r . A fractal form for the distribution166

of elevations implies that ξn increases linearly with n [Frisch and Parisi, 1985]. In the167

well-known case of classical turbulence theory, the Kolmogorov [1941] theory gives ξn =168

1
3 n.169

A multi-Hölder signal exhibits a convex relation between n, and ξn [Frisch and170

Parisi, 1985], but is more formally concerned with the set of pointwise Hölder scaling ex-171
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ponents, Sh that characterize the properties of the surface. At a particular position, z(x =172

X, y = Y ) we can evaluate the local scaling behavior of z to determine the Hölder expo-173

nent, h, in a fashion that is similar to the statistical moments of the increments, above, but174

without the averaging operator:175

|z(X,Y ) − Z(X + rcosθ,Y + rsinθ)| ∼ C |r |h(x,y) (3)

where C is a constant (see Venugopal et al. [2006] for a review). Having applied (3) to the176

whole DEM, the singularity spectrum, D(h), is given by the set of values for h for which177

Sh is not empty. The Frisch-Parisi conjecture states that178

D(h) = min
n
(hn − ξn + 1). (4)

Thus, the structure functions and the Hölder exponents are related via a Legendre trans-179

form [Jaffard, 1997]. Therefore, a mono-fractal landscape has a constant degree of propor-180

tionality between n and ξn, giving a single constant value for D(h): the Hurst exponent, d.181

The fractal dimension of the surface would then be D = 2 + (1 − d).182

3.2 Hypothesis testing with surrogate data183

Figure 2. The original DEM at t = 100 is shown in (a), while (b), (c) and (d) show three surrogate DEMs
for this surface generated with the IAAFT algorithm with the minimum, median and maximum root-mean-
squared differences in the elevations, z, of 19 surrogates.

184

185

186

Figure 2 shows one DEM from our experiment [Singh et al., 2015], together with187

three example surrogates generated by the Fourier amplitude-preserving IAAFT algorithm.188

The chosen three DEMs are those with the minimum, median and maximum root-mean-189

squared differences in elevation between the surrogate DEM and the original DEM at190

t = 100. Note that this does not imply one synthetic DEM is better than another; it just191

shows the degree of variation intrinsic to the randomization process. The strong visual192

constrast between the actual terrain and the surrogates implies straightaway that a mono-193

fractal description is inappropriate for describing this surface. This qualitative assessment194

may be formalized by generating a total of b surrogate datasets and, assuming a two-tailed195

statistical test, if the value for the original data on some measure are greater than or less196

than that for all b surrogates, the null hypothesis may be rejected at a significance level of197

α = 2/(b + 1), and this is what we do below.198
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Figure 3. The original DEM at t = 100 is shown in (a), while (b), (c) and (d) show three surrogate DEMs
for this surface generated with the IAAWT algorithm with the minimum, median and maximum root-mean-
squared differences in the elevations, z, of 19 surrogates.

199

200

201

Rather than using the IAAFT method, in this study we generate surrogate surfaces202

with exactly the same elevation values as the original surface and the same Hölder regu-203

larity at a given point in the terrain using the iterated, amplitude adjusted wavelet trans-204

form (IAAWT), which was first presented by Keylock [2017]. A description of this al-205

gorithm and the associated gradual reconstruction methodology is provided in the Ap-206

pendix. In brief, the IAAWT algorithm is conceptually similar to the IAAFT algorithm207

but replaces Fourier phase-randomization with a wavelet phase-randomization based on208

the dual-tree complex-valued wavelet transform [Kingsbury, 2001]. As a consequence,209

the algorithm produces surrogate data that fix in place the Hölder exponents for the orig-210

inal surface, as well as sampling the elevations from the same set of values as contained211

in the original DEM. Figure 3 is similar to Fig. 2 but uses the IAAWT as the surface-212

generating algorithm. Even though the terrain elevations are randomized (panel (d) has a213

valley where the original DEM has its main ridge), it is visually clear that this algorithm214

generates much more realistic topographies.215

The differences between the IAAFT and IAAWT methods are formalized in Fig.225

4. The left-most panels show the mean of the absolute part of the Fourier transform of226

all 512 horizontal and 512 vertical profiles extracted from the DEM as a function of fre-227

quency, ω in radians as a black line, together with the results for the surrogates for the228

IAAFT (a) and IAAWT (d) algorithms. A power-law fit is also shown as a dashed line,229

indicating that there is ‘mono-fractal-like’ behavior exhibited by these data. Because the230

IAAFT algorithm preserves the Fourier amplitudes, not surprisingly there is no visible231

difference between data and surrogates on this measure. The IAAWT algorithm also repli-232

cates the observed behavior of the Fourier amplitudes to a good level of accuracy but, in233

addition, it preserves the multi-Hölder properties as can be seen in the difference in the234

histograms for the pointwise Hölder exponents, h in (b) and (e). This is summarized more235

effectively by the boxplots in (c) and (f), where the former examines the mean value for h236

for data and surrogates, and the latter the standard deviation.237

Gradual multifractal reconstruction (GMR) introduces a control parameter for the238

surrogate data generation, 0 ≤ η ≤ 1, where η = 0 equates to surrogates generated by the239

IAAWT algorithm (full wavelet phase randomization) and η = 1 is the original data (no240
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Figure 4. Statistical properties of the original DEM at t = 100 and the surrogate data. Panels (a) and (b)
show results using the IAAFT algorithm and panels (d) and (e) are for the IAAWT algorithm. In each of these
four panels, results for the original data are shown in black and for the surrogates in gray. Panels (a) and (d)
illustrate the spectral properties of the DEMs with a best-fit power-law shown as a dashed line (displaced
vertically). Panels (b) and (e) are the histograms of the pointwise Hölder exponents, h. Panels (c) and (f)
show boxplots of the values of the mean and standard deviation for h, respectively, for nineteen surrogates
DEMs generated with the IAAFT and IAAWT algorithms. The values from the original DEM are shown by
a horizontal dot-dashed line. The box delimits the lower and upper quartiles with the central bar the median.
Whiskers extend for up to 1.5 times the inter-quartile deviation, with outliers shown as crosses.

216

217

218

219

220

221

222

223

224

wavelet phase randomization) [Keylock, 2018]. Having selected a value for η, appropriate241

surrogates are generated by fixing in place a subset of the wavelet coefficients based on an242

energy criterion as described in the Appendix. With this framework it is then possible to243

define a threshold value for, η, denoted η∗ above which there is no significant difference244

between data and surrogates. This can be used as a measure of the complexity of the to-245

pography [Keylock et al., 2014b] and is employed in this study as a way of summarizing246

our results.247

3.3 Geomorphometric measures248

In this study, we draw upon three basic classes of geomorphometric analysis. The249

first is based on the slope-area relation, which Willgoose [1994] showed was highly rele-250

vant to the study of evolving topographies with both tectonic and climatological forcing.251

The second class utilizes the notion of Horton-Strahler channel ordering to classify sub-252

catchments in the DEM into different basin orders, Ω. For all of the basins of a given253

order, we then derived the number of basins at that order, NB(Ω), and the average total254

channel length for a given order, ⟨∑ L(Ω)⟩. Typically, power-law relations for these quan-255

tities are found [Rodgriguez-Iturbe and Rinaldo, 1997]. However, here we focus on the raw256

values rather than the fitted exponent to contrast with the approach taken with slope-area257

scaling. These first and second class of geomorphometric measures are similar to those258

adopted in related work [Singh et al., 2015; Tejedor et al., 2017]. Our third method is a259

recently proposed variant of terrain hypsometry [Strahler, 1952], but modified to include260

simultaneous consideration of the Hölder regularity of a landscape [Keylock et al., 2020b].261
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Figure 5. Boxplots showing values of dS/dA for the original DEM (horizontal, dashed line) and sur-
rogates (boxplots) as a function of η. The threshold, η∗ is obtained by working from right to left until
the last case is found for which there is no signficant difference between data and surrogates. This gives
η∗ = {0.8, 0.6, 0.8, 0.9} for t = 30, t = 46, t = 71, and t = 100, respectively. The boxplots are formulated in
the same way as in Fig. 4.

269

270

271

272

273

For the analysis of the experiment we employed seven η values (η ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99})262

and generated 19 surrogate DEMs for each of twenty-two experimental DEMs using grad-263

ual multifractal reconstruction (i.e. 22 original and 2,926 synthetic DEMs were analyzed).264

These spanned the times from when the drainage basin was first established at t ∼ 30,265

through the attainment of a flux equilibrium at t ∼ 70, to beyond the development of a266

morphometric steady-state at t ∼ 95.267

4 Results268

4.1 Slope-area relations282

Figure 5 shows how the threshold values, η∗ are determined for the slope-area scal-283

ing, dS/dA, for DEMs obtained at four instances that span the experimental duration. All284

DEMs clearly have values for dS/dA that depart from those obtained from a simple multi-285

Hölder representation of the terrain at η = 0. Once the central drainage divide is estab-286

lished in the experiment, i.e. for t & 30, the surrogate landscapes differ from the actual287

DEM for η ≤ 0.4. With 19 surrogates generated and a directional, one-tailed hypothesis288

that dS/dA for the surrogates is not significantly greater than for the original DEM, our289

analysis indicates a significant difference at the 5% level up to η = 0.8 for most cases.290

Given values for η∗(dS/dA) for all 22 DEMs, Fig. 6b shows how these vary as a291

function of the evolution of the catchment. All values are high and there is a possible292

weak tendency in these results with random variability in the range 0.6 < η∗(dS/dA) ≤ 0.9293

up until a flux equilibrium is established at t ∼ 70, followed by a gradual increase in294

η∗(dS/dA) beyond this point. Figure 6a shows the values for dS/dA as a function of time,295

with a quadratic decay illustrated by a red line. The vertical lines extending from each296

symbol show a form of confidence interval that is possible using surrogate data analysis297

[Keylock, 2012]; one based on the range of values for the surrogates at the appropriate298

η∗(t), rather than quality of fit to one set of data. It is clear that: (a) the one instance of299

η∗(dS/dA) = 0.6, at t = 45, is a consequence of a great range to the fitted slopes at this300

time; and, (b) the change in dS/dA with time is significant.301
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Figure 6. The slope-area scaling exponent as a function of the DEM number (time, t) is shown in panel (a)
as a circle, with a best-fit quadratic as a red curve. The vertical dark gray lines show the range of values for
the gradual multifractal reconstruction (GMR) surrogates at the value for η∗(dS/dA), with η∗(dS/dA) = 0.6
(solid), η∗(dS/dA) = 0.8 (dash-dotted), and η∗(dS/dA) = 0.9 (dashed). The variation for η∗(dS/dA) = 0.99
is little greater than the size of the circles. Panel (b) shows these values for η∗(dS/dA) as a function of time.
Panels (c) and (d) show the relation between basin slope and upstream contributing area for the surrogate data
at t = 100 for η = 0.6 (c) and η = 0.8 (d). Results are shown on semi-logarithmic axes for clarity, although all
fits are of a power-law form.
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Figure 7. The DEM extracted at t = 100 in plan view, together with accompanying surrogate data. In each
of six cases, two panels are shown with the left-hand cases illustrating the elevations, z, and the right-hand
the Hölder exponents. Panel (a) is the original DEM with a white box showing the region extracted in the
other panels. Panel (b) is this extracted region, (c) is the surrogate DEM at η = 0.6 with the median value
for dS/dA, while (d), (e) and (f) are the surrogate DEMs at η = 0.8 with the median value, maximum and
minimum values for dS/dA, respectively. The arrow highlights a feature discussed in the text.
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In order to understand why the η∗(dS/dA) values are generally high, in Fig. 6c and308

d we plot the fitted power-laws for the surrogates using the DEM for t = 100 as an exam-309
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ple. For η = 0.6 and η = 0.8 the slopes for the small area basins are the same (∼ 1.4),310

while they are significantly lower for the large basins at η = 0.8. Hence, we can explain311

why the surrogates cannot replicate the dS/dA values at low η: the slopes of the larger312

basins are too steep. As small basins are typically located in the headwater catchments,313

the true landscape has a stronger coupling between lower elevations and reduced gradi-314

ents, implying some degree of self-regulation as defined in Table 1, and as considered315

in section 5. Thus, the shortcomings of a simple multi-Hölder model are less in the rep-316

resentation of the dissected, upper basins but rather in the correct representation of the317

deposition-dominated, larger catchments.318

To illustrate the difficulty of detecting these differences by observation and, thus, the319

difficulty of evaluating the verisimilitude of a multi-Hölder model by qualitative assess-320

ment, we show in Fig. 7 the detail of the original data and various surrogate DEMs for321

t = 100. Panel (a) shows a plan view of the original DEM, while panel (b) highlights the322

region in the white box in panel (a). From Fig. 5d, the surrogate DEM at η = 0.6 with the323

median value for dS/dA and that at η = 0.8 with the maximum for dS/dA shown in pan-324

els (c) and (e), respectively, are in error, while the surrogate at η = 0.8 with the median325

and minimum for dS/dA shown in (d) and (f), respectively, are very close to the original326

case. The highlighted area of the DEM is one containing a large basin consisting of low327

elevations and high values for h. The primary visible difference is that the spine of high328

h values in (c) indicated by the arrow is too broad and diffuse relative to the cases seen329

in panels (b), (d) and (f). This results in high h values being associated with somewhat330

higher z values than in the original DEM, causing reduced values for dS/dA at η = 0.6331

compared to the true case. Clearly, a surrogate data framework is needed to extract such332

subtleties with statistical confidence.333

4.2 Average total channel length334
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Figure 8. Boxplots showing the determination of η∗(L) for the DEM at t = 30 for basin orders
Ω ∈ {1, 2, 3, 4}. The values of ⟨∑ L(Ω)⟩ for the surrogates are shown as boxplots a function of η, with the
dashed lines showing the value for the data itself. From these plots, η∗(L) = {0.8, 0.6, 0.8, 0.0} for ascending
values of Ω. The boxplots are formulated in the same way as in Fig. 4.
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Figure 9. Boxplots showing the determination of η∗(L) for the DEM at t = 100 for basin orders
Ω ∈ {1, 2, 3, 4}. The values of ⟨∑ L(Ω)⟩ for the surrogates are shown as a function of η, with the dashed
lines showing the value for the data itself. From these plots, η∗(L) = {0.4, 0.0, 0.99, 0.0} for ascending values
of Ω. The boxplots are formulated in the same way as in Fig. 4.

339

340

341

342

Figures 8 and 9 show the average channel length for basins of four Horton-Strahler343

orders at two different times as a function of η. These results contrast with the slope-area344

scaling as a simple multi-Hölder model with no additional constraints (η = 0) can repli-345

cate the observed channel lengths in many cases, even though η∗ itself is often greater.346

Furthermore, in neither case do the fourth order basins indicate any significant differences.347

These are the largest in the system and are integrating information over a sufficiently large348

area that the preservation of the elevations and the approximate preservation of the h is349

sufficient to get the average channel length statistics correct. However, at t = 30 and before350

the drainage divide is firmly established, the values of ⟨∑ L(Ω)⟩ for Ω = 3 are a sensi-351

tive measure, implying that the properties of third order basins are highly dependent on352

the structure of the main divide. While η∗ is also high for Ω = 3 for t = 100, the η = 0353

case can attain the requisite values by chance. In contrast, in this case, it is the Ω = 1354

basins where additional structure is required to get the correct channel length statistics,355

with the surrogates producing lengths that are too short. The implication of the slopes be-356

ing matched very well for small basins at t = 100 (Fig. 6c) but ⟨∑ L(Ω = 1)⟩ being too357

small is that a simple multi-Hölder model cannot adequately represent either basin shape358

or valley sinuosity effects correctly.359

4.3 Total number of basins360

Three classical scalings for drainage basins as a function of stream order are the365

laws of stream number, stream length and basin area [Rodgriguez-Iturbe and Rinaldo,366

1997]. Because we found that the behavior for basin area was similar to that for stream367

length, we do not report those results here, focusing instead on the stream number results,368

which in terms of our analysis we state as the number of basins of a given order, NB(Ω)369

and present the results for t = 100 in Fig. 10. Here a much stronger effect was found in370

terms of significant differences at η = 0 for different stream orders less than Ω = 4. Thus,371

NB(Ω) is a more sensitive metric than ⟨∑ L(Ω)⟩ for studying landscape complexity. In372

Fig. 11 we plot η∗(NB) for all four stream orders as a function of time. As with the re-373

sults for dS/dA in Fig. 6b, a transition seems to emerge after about t = 70, but the effect374

is much more marked here: complexity measured by η∗ really only increases once the flux375
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Figure 10. Boxplots showing the determination of η∗(NB) for the DEM at t = 100 for different basin or-
ders, Ω. The values of NB for the surrogates are shown as a function of η in each panel, with the dashed lines
showing the value for the data itself. From these plots, η∗(NB) = {0.9, 0.6, 0.6, 0.0} for stream orders, 1 to 4,
respectively. The boxplots are formulated in the same way as in Fig. 4.
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steady-state is established for t > 70; it is only in the early stages of landscape that a sim-376

ple multi-Hölder model is effective. Given that flux steady state was defined as the condi-377

tion where the erosional fluxes balanced out the sediment provided by the rock uplift and378

was obtained by direct measurement during the experiment [Singh et al., 2015], the con-379

gruence between the attainment of this state and the increase in η∗ is rather remarkable.380

The implication is that complexity increases once diffusive forces gain greater prominence381

in the landscape dynamics.382
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Figure 12. Probability contours for the joint distributions of the elevations, z, and Hölder exponents, h, for
the DEM obtained at t = 100 for the original data (a) and three surrogate datasets at the value for η stated
in each panel. Each surrogate DEM shown is that with the median RMSE between data and surrogates for
the joint PDF. The dashed construction lines in panel (a) are the transects examined in Fig. 13 and the arrow
identifies a feature discussed in the text.
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5 The joint distribution of elevation and regularity384
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A recent extension to the classic hypsometry measure of Strahler [1952] examines395

the joint probability distribution function (PDF) between the elevations, z and the Hölder396

exponents, h [Keylock et al., 2020b]. In other words, it captures the coupling that under-397

pins the nature of a self-regulating landscape as defined in Table 1. The top-left panel398

of Fig. 12 shows this PDF for the original DEM at t = 100. The other panels show the399

results for the surrogate DEM with the median RMSE for different choices of η. Recall400

that our algorithm uses exactly the same z values. Hence, there is no difference in the401

marginal distribution for z and the hypsometries for all of these data are identical. How-402

ever, there are clear differences in the shape of the joint PDFs and, as η increases, rel-403

atively subtle features of the original PDF, such as the outlying region identified by the404

arrow in the top-left panel, begin to be captured in the surrogates. Here we focus on two405

conditional distributions given by the transects through the joint distribution shown by406

the dashed lines in the upper left panel. These pass through the mode of the distribution407

at z = 25 mm, h = 0.95 and are given by the black line in each panel of Fig. 13. The408

gray lines in this figure are the equivalent conditional distributions for the surrogates at409

the stated value for η. It is clear that at low η, the surrogate data cannot replicate this410

mode, which is too large in magnitude for p(z |h = 0.95) given in the right-hand col-411

umn and is located at too high a value for h for p(h|z = 25) in the left-hand column. A412

threshold value of η∗ = 0.4 is appropriate from this analysis. Hence, once more, a simple413

multi-Hölder model cannot serve, and the key difficulty for such a model in terms of self-414

regulation is to have a sufficient number of intermediate elevations that are as smooth as415

h = 0.95.416

Physically, this means that diffusive processes, which increase h at intermediate ele-417

vations, gain in geomorphic significance once the landscape attains a flux equilibrium, and418

are more important to the landscape structure than a simple multi-Hölder model can cap-419

ture. This result is consistent with the earlier results that the simple multi-Hölder model420

produces too many basins of a given order (incision is excessive relative to diffusion) and421

has slopes that are over-steepened within the largest basins. Significant diffusive action on422

the intermediate slopes will result in fewer basins of intermediate order and will promote423

a reduction in average slopes for the larger watersheds of which these slopes are a part.424

6 Application to two distinct topographies425

While the experimental surfaces allow us to examine the evolution of a topography’s429

response to a particular forcing, the idealized boundary conditions mean that there is not430

necessarily a relation to any specific observed terrain. As a consequence, in this section431

of the paper we examine the geomorphometry of two contrasting regions of the conter-432

minous United States, Florida and Washington State, focusing on the slope-area scaling433

properties. The two DEMs were obtained from the USGS National Elevation Dataset at434

https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned and both cover an area435

of 20.48 × 20.48 km at a 1/3 arc-second (10 m) resolution. The particular drainage basins436

are the Ochlockonee River basin in Florida and the Cowlitz River basin in Washington437

State and these are shown in Fig. 14. The elevation range in the former is 0.5 m to 105438

m, and is 263 m to 4100 m in the latter, while in the extracted regions, elevation ranges439

from 33.3 m to 100.8 m for the Florida case, and 361 m to 2274 m for the Washington440

case.441
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Figure 15. Values for the slope-area scaling exponent for the surrogate data as a function of η for Florida
(a) and Washington (b), with the actual value shown as a horizontal, dashed line. Panel (c) shows the propor-
tion of fixed wavelet coefficients as a function of 1 − η for the Washington and Florida DEMs. Vertical dotted
lines highlight the values at, from left to right, η = 0.999, η = 0.5, η = 0.2 as discussed in the text.
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Figure 16. The joint probability distribution function of the difference in elevations between the DEMs
reconstructed from the fixed wavelet coefficients at η = 0.5 and η = 0.2 versus the elevations in the original
DEM. The marginal distribution for the former variable is shown in the inset panel.

446

447

448

Panels (a) and (b) in Fig. 15 show that the slope-area scaling for these two topogra-449

phies is significantly different, with the scaling exponent nearly double in magnitude for450

the Florida case. Despite this difference, both basins have η∗ = 0.999, although while451

the surrogates for the Washington DEM have a slope-area scaling exponent that converges452

on the true values in an approximately linear fashion, the Florida data exhibit a rapid de-453

crease in the value of dS/dA for 0.2 < η ≤ 0.5 and a small increase for 0.8 < η ≤ 0.95.454

To investigate this further we examined the fixed wavelet coefficients at these choices for455

η. The proportion of fixed coefficients as a function of η is given in Fig. 15c. It is notable456

that for both DEMs, η = 0.999 equates to about 20% of the coefficients being fixed, but457

that for lower values for η (to the right in this panel) there is a clear divergence in the pro-458

portion of coefficients fixed between the two DEMs, with energy spread among a greater459

number of coefficients for the Florida case. We reconstructed the Florida DEM from the460

fixed coefficients at η = 0.2 and η = 0.5, and then found the difference between these461

DEMs. Thus, we examined how the topography fixed in place in the algorithm changed462

over this range of values for η. The inset in Fig. 16 shows the histogram of the elevation463

change between these two DEMs formed from the fixed coefficients. Clearly, the typical464

change is an increase by 5 m to the DEM elevations from η = 0.2 to η = 0.5. The main465

panel of Fig. 16 shows the joint PDF of the change in the elevations against the elevations466

in the original DEM. The modal change of +5m is concentrated between 60m and 80m467

although there are also two other modes: an incision mode where the elevation change is468

∼ −5m, concentrated in the lowest elevations (≤ 40m), and another constructive mode469

where the elevation increases by ∼ 5m at low elevation (45 m). Consequently, we can con-470

clude that the key difficulty for a multi-Hölder model in replicating the slope-area scaling471

for the Florida case-study is in allocating sufficient heights to these intermediate eleva-472

tions. In other words, these regions in the terrain are dissected too much in the low η sur-473

rogates, while in nature the greater preponderance of diffusive processes preserves these474

elevations. This is consistent with the earlier analysis of the number of Ω = 1 basins and475

of the slope-area scaling for the experimental surfaces. Preserving mass in the topography476
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in the 60m-80m elevation range at η = 0.5 results in greater slopes in the smaller area477

basins, changing the median slope-area scaling for the surrogates from -0.026 for η = 0.2478

to -0.162 at η = 0.5.479

7 Conclusion480

In this paper we have formalized the nonlinear analysis of digital elevation models481

using the gradual multifractal reconstruction (GMR) framework. In particular, we have482

used experimental, evolving landscapes to show that a simple multi-Hölder model for ter-483

rain, even with the set of elevations, z, constrained to the original values and the pointwise484

Hölder exponents located correctly in the terrain, is not sufficient to replicate several mea-485

sures of geomorphometry. Our analysis framework has shown that the slope-area scaling486

relation, dS/dA and, particularly, the number of basins for a given Horton-Strahler stream487

order (when this is less than the scale of the system studied) are sensitive measures of488

landscape structure. The slope-area scaling was also applied to regions of the same area489

from Florida and Washington State with an order of magnitude difference in elevation490

range. Despite very different values for dS/dA, the values for the GMR control parameter491

at which there was no significant difference between data and surrogates was very similar492

(η∗ = 0.999) and very different to the value of η∗ = 0 expected if a simple multi-Hölder or493

multifractal model is sufficient to describe the topography.494

What was particularly notable in our experimental results was that once the land-495

scape attained an equilibrium in terms of flux, the morphology was still evolving, and496

becoming more complex according to our significance testing framework. Indeed, it was497

only once this flux equilibrium was established that such an effect was clear. This was as-498

sociated with the relative preponderance of diffusive phenomena such that, when a topog-499

raphy is in the early stages of evolving from a perturbation, a simple multi-Hölder stochas-500

tic process may be able to replicate most geomorphically relevant measures of landscape501

structure. However, when changes in flux become negligible, it is the subtle re-working of502

a landscape by more diffusive processes that results in an increase in landscape complex-503

ity as measured by η∗. This was particularly associated with the coupling between low or504

intermediate elevations and large Hölder exponents (smooth regions).505

Our observations raise the question of which class of stochastic processes provides506

a potential guide to modeling mature landscape surfaces effectively. Our results in Figs.507

12 and 13 are explicitly about the coupling between the Hölder exponents and the ele-508

vations themselves and that they demonstrate an association implies that self-regulating509

multi-Hölder surfaces [Lévy Véhel, 2013; Echelard et al., 2015] may have some potential.510

It also lends support to the recent suggestion that hypsometric analysis can be usefully ex-511

tended by simultaneous consideration of elevation and Hölder regularity [Keylock et al.,512

2020b]. However, our results also reveal no simple relation between elevation and Hölder513

regularity, implying further conditioning is necessary as alluded to in Table 1. As noted in514

the introduction, Veneziano and Iacobellis [1999] proposed that differing Hölder regularity515

could be associated with the channel network and the hillslope and their hypothesis may516

have some potential based on our analysis. However, such an approach takes us full circle517

as the introduction began by contrasting geomorphic studies that focus on extracted land-518

scape features with those that attempt to characterize the landscape as a whole, with the519

latter philosophy guiding the work presented here. Advances in digital terrain processing,520

[e.g. Passalacqua et al., 2010], simplify the process of DEM classification and the next521

stage of our work is to form a set of landscape regimes and determine the Hölder con-522

ditioning for each, potentially also as a function of elevation. This will lead to a means523

to determine a statistical modeling framework for natural terrains. The hypothesis testing524

framework introduced here, or one similar in nature, will be needed to examine the func-525

tional relations between landscape regimes and Hölder regularity and, thus, the statistical526

significance of particular landscape regimes for such a model.527
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A: The IAAWT algorithm and gradual reconstruction528

The IAAWT algorithm is based on a dual-tree complex wavelet transform (DTCWT)529

[Kingsbury, 2001; Selesnick et al., 2005]. A pair of dyadic wavelet trees may be con-530

structed to form a Hilbert pair [Selesnick, 2002], resulting in a complex transform. This531

can be achieved for orthogonal wavelets by offsetting the scaling filters by one half sam-532

ple. The naïve approach would then be to deploy two trees of linear phase filters, of even533

length in one tree and odd in the other. However, such filters lack orthogonality and the534

sub-sampling structure is not particularly symmetric. Thus, Kingsbury [2001] formulated535

the Q-shift dual tree where, below the coarsest scale, all filters are even length, but no536

longer linear in phase. By designing the filters to have a delay of 1
4 sample and by using537

the time reverse of one set of filters in the other tree, the required 1
2 sample delay can be538

achieved. In this paper we use symmetric, biothorgonal filters with support widths of 13539

and 19 values for the first level of the algorithm and Q-shift filters with a support of 14540

values for all other levels on the dual tree (case C in Kingsbury [2001]). The Q-shift dual541

tree approach retains properties that make undecimated transforms advantageous for use542

in surrogate generation, such as shift invariance, but at a computational cost that is merely543

double that for a standard discrete wavelet transform. In addition, although we do not use544

it in this study, the transform also has enhanced directional selectivity compared to a clas-545

sic discrete wavelet transform.546

The IAAWT algorithm for a DEM containing elevations, z(x, y), where x = y = 2J ,547

and where J is an integer, proceeds as follows:548

1. Store the original elevations z(x, y);549

2. Apply the two-dimensional DTCWT and obtain wavelet amplitudes, Ak,ℓ, j,p and
wavelet phases, ωk,ℓ, j,p over all j = 1, . . . , J scales for the p = 1, . . . , 6 planes at
each scale and for wavelet coefficient, w, with coordinates, (k, ℓ), where at each j
there are 6 × 22(J−j) coefficients:

Ak,ℓ, j,p = |wk,ℓ, j,p |

ωk,ℓ, j,p = tan−1 ℑ(wk,ℓ, j,p)
ℜ(wk,ℓ, j,p)

, (A.1)

where ℑ is the imaginary part and ℜ is the real part of the wavelet coefficients, w;550

3. Randomly sort the original elevations to give an initial elevation surface, z(0);551

4. Take its two-dimensional DTCWT to derive randomised wavelet phases, ω(0)
k, j

for552

each scale and position;553

5. Produce new w
(1)
k, j

by combining the original amplitudes with the randomised phases:554

w
(1)
k, j
= Ak, jexp(iω(0)

k, j
) (A.2)

6. Iterate the following steps until a convergence criterion is met, where at each step,555

s:556

(a) Take the inverse DTCWT to give a new DEM, z(s)(x, y) and then apply the am-557

plitude adjustment step where a mapping is established between the original ele-558

vations, z(x, y), and the z(s)(x, y) by rank-order matching to permit the values of559

z(s) to be replaced by the value in z(x, y) with the same rank;560

(b) Take the DTCWT and obtain the new phases, ω(s)
k, j

. Combine these with the561

original amplitudes, Ak, j to give the w
(s+1)
j,k

using the s’th iterated variant of eq.562

(A.2).563

Gradual multifractal reconstruction (GMR) generates synthetic data based on the564

IAAWT algorithm between limits of η = 0 (the original IAAWT algorithm) and η = 1565

(the original dataset). Randomization is constrained between these limits to populate the566
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continuum with surrogate data. To do this we first define an energy measure that needs567

to account for the decimated nature of the dual tree complex transform by weighting the568

coefficients by a factor 2j (i.e. we adopt an L1 norm):569

Eη =

J∑
j=1

6∑
p=1

K∑
k=1

L∑
ℓ=1

|wk,ℓ, j,p |2

2j
(A.3)

That is, with j = 1, . . . , J scales, there are K × L coefficients, where K, L = 2J−j in each570

of six orientation planes at each scale, meaning that more energy will be associated with571

each coefficient on average at the larger j, necessitating the introduction of the denomina-572

tor. We then place the absolute values for the wk,ℓ, j,p in descending rank order and fix the573

first r coefficients such that
∑K×N

r=1 |wr |2
Eη

≥ η. This selected set of coefficients are fixed in574

place on the wavelet coefficient template, while the others are phase randomized using eq.575

(A.2).576

Acronyms577

DEM Digital elevation model578

DTCWT Dual-tree complex wavelet transform579

GMR Gradual multifractal reconstruction580

GWR Gradual wavelet reconstruction581

HECAS Hölder exponent-catchment area scaling582

IAAFT Iterated amplitude-adjusted Fourier transform583

IAAWT Iterated amplitude-adjusted wavelet transform584

PDF Probability distribution function585

RMSE Root-mean-squared-error586

XLE Experimental Landscape Evolution587
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