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2Univ Rennes, CNRS, Géosciences Rennes - UMR 6118

November 26, 2022

Abstract

Pressure-to-depth conversion is a crucial step towards geodynamic reconstruction but remains strongly debated. Here, we derive

pressure-to-depth conversion models using either one or two pressure data points in conjunction. In the two-point method,

we assume that both peak and retrograde pressure are recorded at the same depth. This method reduces the depth estimate

uncertainty dramatically. We apply the proposed pressure-to-depth conversions to a large set of $P$ data from (ultra)high-

pressure metamorphic rocks. We explore different cases to explain the transition from peak to retrograde pressure by varying

the direction and magnitude of stress components. Our results show that (1) even small deviatoric stresses have a significant

impact on depth estimates, (2) the second principal stress component $\sigma 2$ plays an essential role, (3) several models

can explain the $P$ evolution of the data but lead to different depth estimates, and (4) strain data offer a means to falsify

two-point models. The most commonly used pressure-to-depth conversion method uses one pressure point and the assumption

that pressure is lithostatic. Then, the transition from peak to retrograde pressure is interpreted as the result of deep subduction

($>100$ km), followed by fast exhumation to mid-crustal depth. We show that alternative models where a change in the stress

state at a constant depth triggers the pressure transition explain the data equally well. The predicted depth is then shallower

than the crustal root Moho ($<75$ km) for all data points.
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Key Points:8

• We present and apply different pressure-to-depth conversion models to a dataset9

of metamorphic pressure.10

• The lithostatic pressure assumption results in an upper estimate of depth at peak11

pressure (> 100 km).12

• A change in stress state < 75 km can trigger a peak to retrograde P decrease and13

is consistent with the data.14
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Abstract15

Pressure-to-depth conversion is a crucial step towards geodynamic reconstruction but16

remains strongly debated. Here, we derive pressure-to-depth conversion models using ei-17

ther one or two pressure data points in conjunction. In the two-point method, we assume18

that both peak and retrograde pressure are recorded at the same depth. This method19

reduces the depth estimate uncertainty dramatically. We apply the proposed pressure-20

to-depth conversions to a large set of P data from (ultra)high-pressure metamorphic rocks.21

We explore different cases to explain the transition from peak to retrograde pressure by22

varying the direction and magnitude of stress components. Our results show that (1) even23

small deviatoric stresses have a significant impact on depth estimates, (2) the second prin-24

cipal stress component σ2 plays an essential role, (3) several models can explain the P25

evolution of the data but lead to different depth estimates, and (4) strain data offer a26

means to falsify two-point models. The most commonly used pressure-to-depth conver-27

sion method uses one pressure point and the assumption that pressure is lithostatic. Then,28

the transition from peak to retrograde pressure is interpreted as the result of deep sub-29

duction (> 100 km), followed by fast exhumation to mid-crustal depth. We show that30

alternative models where a change in the stress state at a constant depth triggers the31

pressure transition explain the data equally well. The predicted depth is then shallower32

than the crustal root Moho (< 75 km) for all data points.33

Plain Language Summary34

During the formation of mountain belts, rocks are buried deep in the Earth and35

then exhumed. In this journey, rocks undergo transformations that record the pressure.36

We use the pressure to estimate the depth at which a rock was buried to reconstruct the37

history of mountain belts. The pressure is the sum of the weight of the overlying column38

of rock and tectonic forces. However, since tectonic forces cannot be measured, there has39

been a long-standing debate on how much they influence the record of pressure in rocks.40

Here, we use mathematics and computer code to recalculate the burial depth of a set of41

rock from pressure data. Two extreme scenarios emerge: (1) when ignoring tectonic forces42

(classical approach), we interpret the pressure history as the result of deep burial (up43

to 160 km) followed by fast exhumation (1−10 cm/yr) to approximately 20 km. The44

mechanism of such fast exhumation is itself intensely debated; (2) when considering tec-45

tonic forces, an alternative scenario is that the rock was buried to an intermediate depth46

(< 75 km), followed by a change in tectonic forces without exhumation. If this second47

scenario is verified, then the current history of mountain belts must be re-evaluated.48

1 Introduction49

Geodynamic reconstructions presenting cross-sections, maps, or elaborate large-50

scale plate reconstructions over time are essential to conceptualize lithospheric processes51

such as subduction or mountain building and to reconstruct Earth’s history. These geo-52

dynamic reconstructions are based on quantitative data obtained with a wide range of53

techniques from field mapping to geophysical imaging. Among these data, pressure-temperature-54

time-deformation (P − T − t − ε) paths obtained from petrological, geochronological,55

and mineral deformation studies constitute key constraints. These features are indeed56

the only way to estimate the burial, temperature and deformation evolution of a piece57

of rock and, by extension, of the geological unit to which it belongs. In particular, es-58

timated depths, in conjunction with geochronological data, are used to reconstruct the59

formation process of orogens (e.g., Chopin, 2003; Ernst et al., 2007; Agard et al., 2009).60

The conversion of pressure to depth is crucial in establishing a geodynamic recon-
struction based on petrographic data. Depth can be retrieved from the lithostatic pres-

–2–
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sure Plitho, i.e., the weight of the overlying column of rock, by the formula:

z =
Plitho
ρg

, (1)

where ρ is the average density of the rock column, g is the gravitational acceleration and61

z is depth. However, Plitho cannot be directly estimated from metamorphic rocks; in-62

stead, we can estimate the mean stress, also called the pressure, P (Moulas et al., 2019).63

Therefore, an additional step is required to relate P to Plitho. This additional step in-64

volves information about the three-dimensional deviatoric stress state responsible for rock65

deformation. Unfortunately, deviatoric stresses cannot be measured, and one must, there-66

fore, make assumptions regarding the stress state to retrieve Plitho. Depending on the67

assumption made, the final depth estimate can vary by more than a factor of two. Since68

these crucial assumptions are hard or maybe impossible to falsify, there has been a long-69

standing debate over (1) what is the most adequate stress state assumption to use for70

pressure-to-depth conversion, (2) how deeply were metamorphic rocks buried, and (3)71

how are metamorphic rocks exhumed (e.g., Jamieson, 1963; Ernst, 1963; Brace et al., 1970;72

Mancktelow, 1993; Godard, 2001; Green, 2005; Agard et al., 2009; Wheeler, 2014; B. Hobbs73

& Ord, 2015; Wheeler, 2014; Tajčmanová, 2015; Moulas et al., 2013; Gerya, 2015; B. E. Hobbs74

& Ord, 2017; Moulas et al., 2019; Schmalholz & Podladchikov, 2014; Yamato & Brun,75

2017; Reuber et al., 2016; Schenker et al., 2015).76

The most common assumption is to ignore deviatoric stresses because metamor-77

phic rocks are assumed to be weak at the depths considered (e.g., Guillot et al., 2009;78

Agard et al., 2009; Beltrando et al., 2007; Rubatto et al., 2011). Thus, P = Plitho and79

one can readily use eq. 1. We call this assumption the ”lithostatic case”. In a rock, the80

magnitude of deviatoric stresses can vary from zero to the point of rock failure. Hence,81

the mean deviatoric stress can be of a magnitude comparable to lithostatic pressure, and82

P can vary from 1 to 2 times the value of Plitho in compression for a homogeneous rock83

(Petrini & Podladchikov, 2000). The difference between P and Plitho is referred to as84

”tectonic pressure” (Mancktelow, 2008), ”tectonic overpressure” (Mancktelow, 1993; Schmal-85

holz & Podladchikov, 2013) or simply ”overpressure” when it is positive or ”underpres-86

sure” when it is negative (Moulas et al., 2013). Note that the overpressure model is a87

general model of which the ”lithostatic case” constitutes one special case. Therefore, it88

is essential to consider variations in the stress state when interpreting pressure-temperature89

(P − T ) paths.90

In most cases, the P−T evolution of a (U)HP metamorphic rock can be approx-91

imated by three linear segments. A prograde segment (highlighted in blue in Fig. 1A)92

that shows increases in both P and T and a retrograde part (in green in Fig. 1A) divided93

in two segments: a retrograde stage 1 and a retrograde stage 2 (see Fig. 1A). The first94

stage of the retrograde path generally shows a large decrease in pressure and only mi-95

nor variations in temperature, while the second stage presents decreases in both pres-96

sure and temperature conditions (?, ?, see)]Yamato2017. Hereafter, we use the notations97

Pp and Tp to refer to the pressure and temperature conditions at the peak of (U)HP meta-98

morphism (time t1 in Fig. 1A), respectively. Similarly, Pr and Tr refer to the pressure99

and temperature conditions at the end of retrograde stage 1 (time t2 in Fig. 1A).100

There are arguably two events in the P−T path that cause most of the debate:101

peak metamorphism (Pp, Tp) and retrograde stage 1 (i.e., the transition from Pp to Pr).102

Thermobarometric studies often provide Pp, Tp and Pr, Tr, sometimes in association with103

geochronological dating. We present the dataset of Pp, Tr-Pr, Tr collected from the lit-104

erature in the P − T space in Figure 1B and in the space Pp-Pr in Figure 1C. In Pp-105

Pr space, most data points are contained within a fan centered on 0, which suggests that106

Pp and Pr are proportional, with coefficients of proportionality, Pp/Pr, between 2.4 and107

4.8. A few data points with values Pp < 1.5 have a coefficient of proportionality < 2.4108

as low as 1.4. We term these points ”Others (outliers)”.109
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Figure 1. (A) Typical example of a P − T path. (B) Dataset in P − T space. Colors corre-

spond to the orogenic system from which data come as presented in C. (C) Repartition of the

data (see Suppl. Mat. for references) in a Pp vs. Pr diagram
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To illustrate the consequence of stress state assumptions on geodynamic interpre-110

tations, let us consider a rock presenting a mineral paragenesis equilibrated at 3.0 GPa.111

This rock can be interpreted as having been buried up to 100 km depth under the ”litho-112

static” assumption (using ρ = 3000 kg/m3 and g = 10 m/s2) but only approximately113

50 km when considering a magnitude of deviatoric stresses close to the brittle yield stress114

in compression. While the former corresponds to mid-lithospheric depth, the latter would115

correspond to crustal-root depth. Pleuger and Podladchikov (2014), for example, pro-116

posed a geodynamic reconstruction of the central Alps based on structural arguments117

wherein the Adula nappe, an eclogite-bearing metamorphic unit in the Alps, was buried118

to 50-60 km depth. This depth estimate implies an overpressure of 40-80 % of the litho-119

static pressure and suggests that the burial and exhumation of this unit occurred within120

an orogenic crustal wedge. In alternative models using the ”lithostatic assumption”, the121

nappe was buried to 80 km depth during subduction and then rapidly exhumed by slab122

breakoff (S. M. Schmid et al., 1996; Froitzheim et al., 2003) or subvertical extreme thin-123

ning (Nagel, 2008). The scenario of S. M. Schmid et al. (1996) employs one subduction124

zone in conjunction with a normal fault, while the models of (Froitzheim et al., 2003)125

and Nagel (2008) involve two subduction zones. Thus, different assumptions regarding126

pressure-to-depth conversion lead to different interpretations of the process of mountain127

building. Therefore, it is crucial to understand, compare, and evaluate the implications128

of different assumptions about the stress state when designing geodynamic reconstruc-129

tions.130

Retrograde stage 1, when the pressure decreases from Pp to Pr in a relatively short131

amount of time, is also at the center of heated debate. Using the ”lithostatic assump-132

tion”, the transition from Pp to Pr is interpreted as an exhumation event. In conjunc-133

tion with dating data, this phase of exhumation is generally interpreted as fast, with ex-134

humation rates comparable to subduction rates (1-10 cm/yr) (e.g., Rubatto & Hermann,135

2001; Parrish et al., 2006). Various mechanisms have been proposed to explain these fast136

exhumation rates, such as buoyancy-driven exhumation (Wheeler, 1991; Beaumont et137

al., 2009; Butler et al., 2013, 2014; E. Burov et al., 2014; Schmalholz & Schenker, 2016),138

slab breakoff (Huw Davies & von Blanckenburg, 1995), normal faulting (Platt, 1986; Ring139

et al., 1999; S. M. Schmid et al., 1996), rollback (Brun & Faccenna, 2008), or channel140

flow (e.g., Guillot et al., 2009). These and other mechanisms are discussed in detail in141

several reviews (Guillot et al., 2009; B. R. Hacker & Gerya, 2013; Warren, 2013). In con-142

trast to the fast exhumation interpretation, Yamato and Brun (2017) showed that when143

considering the large deviatoric stresses assumption, the transition from Pp to Pr can144

be explained, for many rock samples, by a switch from a compressional to an extensional145

stress state without exhumation.146

In this contribution, we first review the mathematical background of pressure and147

stress. Then, we formulate a ”one-point method” of pressure-to-depth conversion to es-148

timate depth based on a single pressure data point and a ”two-point method” that uses149

both Pp and Pr with the assumption that zp = zr. We apply these methods to our dataset150

(Fig. 1B) to determine an estimated depth range for each sample. Finally, we discuss151

the consequences of different assumptions for geodynamic interpretation and point out152

ways of falsifying some assumptions. Our goal is both to raise awareness about the is-153

sue of pressure-to-depth conversion and to provide tools allowing one to perform such154

conversion easily. For this reason, we provide computer codes (Jupyter notebooks) as155

supplementary information S2-S10. These scripts allow readers to reproduce most of the156

figures presented in this article readily and to extend the database with their own data.157

The codes can also be used to experiment with stress states and material properties.158

–5–
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Figure 2. Overview of the principal characteristics of the model and definitions. See text for

details concerning notation. ∆σx corresponds to the stress magnitude applied in the x-direction.

Graphics presenting σn vs. τ (i.e., normal stress vs. shear stress) correspond to Mohr diagrams.
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2 One-point method of pressure-to-depth conversion159

2.1 Overview of the model160

2.1.1 Sketch, coordinate system and equations of stress161

Let us consider an ideal and simplified orogen submitted to horizontal tectonic stresses
in a three-dimensional Cartesian orthonormal system (x, y, z) where z is vertical and points
downward and x is the direction in which tectonic loading is applied (Fig. 2A). σx, σy, σz
are the normal components of the stress tensor in this coordinate system, and σ1, σ2, σ3

are the principal stresses. We use the convention that stresses are positive in compres-
sion. We assume, in a first step, that the stress state is Andersonian, that is, one prin-
cipal stress direction is vertical, and the other two are horizontal (Anderson, 1905). We
fix the y-axis in the direction of σ2. Thus, we only consider cases where the stress state
can induce normal or reverse faulting, and we ignore the stress states that would result
in strike-slip faulting. Under these assumptions, the total vertical stress σz corresponds
to the weight of the column of rock above the considered point (or Plitho) and is given
by:

σz = ρgz, (2)

where ρ is the density of the overlying rocks, g is the gravitational acceleration and z
is the depth where the computation is performed. When a tectonic stress of magnitude
∆σx is applied in the x-direction, the following equation applies:

σx = σz + ∆σx (3)

Three tectonic regimes can be considered depending on the horizontal loading con-162

dition (Fig. 2A): (1) lithostatic, when ∆σx = 0; (2) compression, when ∆σx > 0; (3)163

extension, when ∆σx < 0. Equations describing the stress state for these three tectonic164

regimes are presented in Figure 2B.165

2.1.2 Deformation166

The magnitude of the deformation is proportional to ∆σx, and the direction of max-
imum stretch is parallel to the direction of σ3. Thus, there is no deformation in the litho-
static case, and the maximum stretch is horizontal in the extensional case and vertical
in the compressional case. The total stress in the y-direction is always σy = σ2, and
we use the variable α that ranges between 0 and 1 to describe σ2 as a function of σ1 and
σ3 such that:

σ2 = ασ1 + (1− α)σ3. (4)

Figure 2C shows how α is related to the mode of deformation. When α = 0, σ2 =167

σ3 (see eq. 4), and the rock deforms by flattening. When α = 1, σ2 = σ1, and the rock168

deforms by constriction. When α = 0.5, σ2 = (σ1 + σ3)/2 = P , and the deformation169

is plane strain.170

2.1.3 Pressure171

By definition, pressure (P ) corresponds to the isotropic part of the stress tensor
and, in principal stress coordinates, it can be expressed as follows:

P =
σ1 + σ2 + σ3

3
. (5)

Hence, P = σz in the lithostatic case, P < σz in extension (because ∆σx < 0), and
P > σz in compression (because ∆σx > 0). The Mohr diagrams in Figure 2D illus-
trate these relationships. In the diagrams, the horizontal and vertical axes represent the

–7–



manuscript submitted to Geochemistry, Geophysics, Geosystems

normal stress σn and shear stress τ on planes within the rock mass, respectively. Pres-
sure is represented by a cross symbol, where the central vertical bar represents the value
of pressure when the rock deforms under plane-strain conditions (α = 1/2) and the hor-
izontal bar represents the range of pressure associated with values of α between 0 (flat-
tening) and 1 (constriction). The equation for P as a function of α is obtained by sub-
stituting eq. (4) into eq. (5), which yields

P =
(1 + α)

3
σ1 +

(2− α)

3
σ3. (6)

2.1.4 Limit of stress and rock failure172

When tectonic loading is applied, rocks first undergo elastic or viscous deforma-
tion. Stress loading can be increased up to the point where the rock breaks. At this point,
the maximum stresses on a given plane within the rock are given by the Mohr-Coulomb
law as:

τ = tanφσn, (7)

where φ is the friction angle. Rock experiments show that φ ≈ 30◦ for most rock types
(Byerlee, 1978). To simplify the derivation, we ignore cohesion since it is small (order
of 10− 50 MPa) compared to the pressure of metamorphic rocks considered here (or-
der of GPa). The supplementary scripts (supplementary information S2 to S10) also al-
low the reader to reproduce most figures in this publication while taking cohesion into
account (see Yamato and Brun (2017) for the derivation). Mohr’s circle is defined by

σn =
σ1 + σ3

2
− σ1 − σ3

2
sinφ (8)

and

τ =
σ1 − σ3

2
cosφ. (9)

Substituting eq. (8) and eq. (9) into eq. (7) yields

σ1 = Φσ3, with (10)

Φ =
1 + sinφ

1− sinφ
. (11)

Figure 2E illustrates the possible stress states associated with different tectonic regimes.173

This figure presents the whole range of possibilities from the ”lithostatic” case to the brit-174

tle case.175

In extension, σx = σ3, and σz = σ1; therefore, the minimum total horizontal stress176

is min(σx) = σz/Φ (Fig. 2E, middle panel). Conversely, in compression, σx = σ1, and177

σz = σ3; therefore, the maximum total horizontal stress is max(σx) = Φσz (Fig. 2E,178

right panel). The quantity (σ1−σ3)/2, i.e., the radius of the Mohr circle, is also called179

the second invariant of the deviatoric stress tensor or the ”magnitude of deviatoric stresses”.180

2.1.5 Summary181

Finally, Figure 2F presents a Mohr-Coulomb diagram that summarizes the discus-
sion to this point. The diagram is presented in a non-dimensional form where the over-
bar indicates that a quantity is normalized by σz (e.g., σ̄x = σx/σz). The pressure in
the lithostatic case, or lithostatic pressure, is equal to σz (i.e., the weight of the column
of rocks). The nondimensional lithostatic pressure is therefore equal to σ̄z = 1 (Fig.
2F). In compression, the normalized total horizontal stress σ̄x can vary from 1 (no de-
formation) to Φ (onset of brittle deformation), and P > σz. In extension, σ̄x can vary

–8–



manuscript submitted to Geochemistry, Geophysics, Geosystems

from 1/Φ (brittle deformation) to 1 (no deformation), and P < σz. In these three cases,
following eq. (5), the nondimensional pressure P̄ can then be written as:

P̄l = 1, (12)

P̄e =
2− α

3
σ̄x +

1 + α

3
, (13)

P̄c =
1 + α

3
σ̄x +

2− α
3

, (14)

where the subscripts c, e, and l relate to the compression, extension and lithostatic tec-
tonic regimes, respectively (see also Fig. 2F). Another useful result is obtained by solv-
ing the previous equations for σz:

σz =
3P

1 + α+ σ̄x(2− α)
, when σ̄x ≤ 0,

σz =
3P

2− α+ σ̄x(1 + α)
, when σ̄x ≥ 0.

(15)

2.2 Pressure-to-depth conversion ratio z/P182

To convert metamorphic pressure estimates (P ) into depth (z), one can use the sim-
ple relation z = z

P P , where z/P is the gradient of depth as a function of pressure, which
we refer hereafter as the ”pressure-to-depth conversion ratio”, expressed in km/GPa,
and is equal to

z

P
=

1

ρg P̄
,where (16)

P̄ = P/σz. (17)

Figure 3 shows graphs of 1/P̄ and z/P as a function of the horizontal stresses expressed183

by σ̄x (horizontal axis) and α (different lines). The graphs were calculated by substitut-184

ing P̄ in eq. (16) with eq. (13) when σ̄x ≤ 1 (i.e., in extension) or eq. (14) when σ̄x ≥185

1 (i.e., Panels A to E show Mohr diagrams illustrating the stress state for given values186

of σ̄x). Throughout this article, we use ρg = 28000 kg/m2/s2, representing crustal rocks.187

A value of tan(φ) = 0.6 is often used in the literature. This value is the result of fit-188

ting data from rock friction experiments by Byerlee (1978). In the main article, we use189

the value tan(φ) = 0.65 that offers a better fit to the data in the absence of cohesion.190

The difference has only a negligible influence on pressure estimates. Readers can easily191

recompute our results using any value of cohesion, φ, or ρ by using the scripts provided192

in the supplementary material (supplementary information S2 to S10).193

When the pressure is considered lithostatic (σ̄x = 1, Fig. 3C), the pressure-to-194

depth conversion ratio is z/P = 35 km/GPa. However, this ratio varies significantly195

when σ̄x increases (compression) or decreases (extension). For example, in the case where196

σ2 = σ1 and σ̄x is minimum, z/P = 64 km/GPa (Fig. 3A). In contrast, when σ̄x is197

maximum, z/P = 16 km/GPa (Fig. 3E). Small deviations of σ̄x from 1 have signifi-198

cant impacts on the pressure-to-depth conversion ratio. For example, when the applied199

tectonic stress ∆σ̄x = min(∆σ̄x)/4, z/P = 39 km/GPa (Fig. 3B), and when ∆σ̄x =200

max(∆σ̄x)/4, z/P = 25 km/GPa (Fig. 3D). The value of α also exerts a strong con-201

trol on the pressure-to-depth conversion ratio, particularly in extension; e.g., when σ̄x =202

Φ−1, the conversion ratio varies from 45 to 64 km/GPa depending on the value of α.203

2.3 Application of the one-point method204

We now apply the pressure-to-depth conversion ratio derived in the previous sec-205

tion to our dataset of peak (Pp) and retrograde (Pr) metamorphic pressures. Figure 4206

shows the depths estimated from this conversion. Depth estimates at peak pressure (zp)207

–9–
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Figure 3. Pressure-to-depth conversion ratio (z/P ) as a function of normalized horizontal

stress σ̄x = σx/σz. The vertical axis indicates the ratio of vertical stress to pressure (Sz/P , blue

axis) or the pressure-to-depth conversion ratio (z/P , red). We use ρg = 28000 kg/m2/s2, and

tanφ = 0.65. The three lines correspond to different values of α (i.e. σ2). The mode of deforma-

tion associated with α is illustrated by the cartoons on the left, where the white and blue boxes

represent the undeformed and deformed states, respectively. The Mohr diagrams represent the

outer envelope of stress states at points A to E. In these panels, pressure P is represented by a

cross, as in figure ??F.
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Figure 4. Depth estimates at peak pressure (A) and at retrograde pressure (B) for all samples

in our dataset. Colors are coded for areas. The ”normal Moho” depth corresponds to the average

depth of the continental Moho in regions where the crust is neither thickened nor thinned and

is 30 km. The deepest Moho (75 km) corresponds to the current depth of the Moho below the

Tibetan Plateau. This figure can be reproduced using the computer script from supplementary

information S4.
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are shown only for compressive stress states (Fig. 4A), while depth estimates at retro-208

grade pressure (zr) are shown for both compressive and extensional stress states (Fig.209

4B). We indicate two reference depths: (a) 30 km (red dashed line), which is the depth210

of a ”normal continental Moho” defined as the thickness of an isostatically balanced con-211

tinental crust with topography at sea level, and (b) 75 km (thick red line), which is the212

depth of the Moho below the Tibetan Plateau and is the present-day ”deepest Moho”213

on Earth. For each sample, the black horizontal bar indicates the lithostatic pressure case.214

The two columns for each sample indicate the two extreme deformation regimes: flat-215

tening (α = 0, or σ2 = σ3) and constriction (α = 1, or σ2 = σ1).216

At peak pressure conditions, the upper estimate of depth zp (Fig. 4A, black bars)217

corresponds to lithostatic conditions (i.e., with no deformation), with a conversion ra-218

tio z/P = 35km/GPa (Fig. 4A and Fig. 3C). Under this condition, zp values are ap-219

proximately 165 km for samples from the Kokchetav and Sulu-Dabie regions, 140 km for220

the Tso Morari and Caledonides, and 120 km for the Alps and Kaghan valley. The min-221

imum estimate of zp results from assuming constricting deformation at brittle failure un-222

der compression (i.e., α = 1 and σ̄x = Φ). The conversion ratio is then z/P = 16km/GPa223

(Fig.3E) and zp < 75km for all samples, i.e., shallower than the present-day deepest224

Moho on Earth. The uncertainty range for zp for a single data point varies from ≈15 km225

for sample #40 to ≈100 km for samples #16 and #23.226

Under retrograde conditions, the lithostatic case represents an intermediate esti-227

mate because we consider both compressive and extensive tectonic regimes (Fig. 4B).228

The upper estimate for zr results from assuming flattening deformation at brittle fail-229

ure in extension (i.e., α = 0 and σ̄x = 1/Φ). The conversion ratio is then z/P = 64km/GPa230

(Fig. 3A). A few samples from the Alps have a maximum depth estimate of zr > 85231

km. For samples from the Kokchetav and Sulu-Dabie orogens, zr = 75 km, and zr =232

50 km for samples from the Kaghan valley, Tso Morari and Caledonides. The minimum233

estimate of zr results from assuming constricting deformation at brittle failure in com-234

pression (i.e., α = 1 and σ̄x = Φ). zr can be as shallow as 10 to 20 km for all sam-235

ples. The uncertainty range on the estimate of zr for a single data point is up to 70 km236

for sample #11 whose maximum depth is ≈ 90 km. All samples have at least part of237

their range shallower than the deepest present-day Moho at both peak and retrograde238

pressures.239

Figure 5A shows the estimated exhumation calculated as the difference between240

zp and zr. We present six special cases involving different values of σ̄px, σ̄
r
x, αr, and αr241

to illustrate the dependence of the estimated exhumation on the stress state. In Figure242

5(C-H), we present Mohr diagrams for these six cases calculated using Pp and Pr from243

a reference sample.244

The maximum exhumation is predicted when Pp corresponds to lithostatic pres-245

sure and Pr is recorded at brittle failure in compression (Fig. 5A, top of color bars, and246

Fig. 5C). The maximum predicted exhumation in our dataset varies between 20 and 150247

km.248

We use the term ”always lithostatic” for the case where both Pp and Pr are litho-249

static pressures. This case is shown with black horizontal bars in Figure 5A-B and il-250

lustrated in Figure 5D. In this case, exhumation varies between 25 km and 125 km for251

our dataset. Since the ”always lithostatic” case is the most commonly used solution in252

the literature, we use it as a reference to normalize the results. The normalized graph253

(Fig. 5B) allows us to express the exhumation amount as a percentage of a reference case254

and outline similarities between samples.255

The red rectangle symbol (Fig. 5A-B) corresponds to a case where deformation is256

compressive for Pp and extensive for Pr, the magnitude of deviatoric stress is a quarter257

of the maximum value, and deformation is plane strain (Fig. 5E). This stress state rep-258
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Figure 5. (A) Estimated amount of exhumation calculated as the difference between the es-

timated depth at peak and retrograde pressures (zp − zr) for all samples from our dataset. Bar

colors indicate the provenance. (B) Same as (A) but normalized by the amount of exhumation

obtained by considering Pp and Pr as lithostatic pressures (i.e., ”always lithostatic” case). We

calculated six special cases by combining different values of σ̄p
x, σ̄

r
x, αp, αr, i.e., maximum and

minimum exhumation, and four intermediate cases (colored rectangles). The values used are

shown in the table inset in (B). (C-H) Mohr diagrams for the six special cases using Pp, Pr from

a reference sample indicated by red arrows in (A) and (B). The characteristics of the special

cases are (C) maximum exhumation case, (D) ”always lithostatic” case, (E-F) cases with mod-

erate deviatoric stress, (G) exhumation amount close to zero, and (H) minimum exhumation

(negative exhumation, i.e., burial). This figure can be reproduced using the computer script from

supplementary information S5.
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resents a conservative estimate for rocks that deform by viscous deformation at depth.259

This low deviatoric stress has a significant impact on the quantity of exhumation: on av-260

erage, this case results in an estimate of exhumation that is only 60% of that for the ”al-261

ways lithostatic” case (see red line in Fig. 5B). The blue rectangle symbol (Fig. 5A-B)262

represents a case of intermediate stress where the magnitude of deviatoric stress is half263

of the maximum value (Fig. 5F). On average, this case’s results are 35% of the estimate264

for the ”always lithostatic” case (see red line in Fig. 5B). The dark yellow rectangles in-265

dicate the scenario where deformation is brittle in compression at peak pressure, and Pr266

corresponds to lithostatic pressure under plane strain deformation. This scenario pre-267

dicts at most 30 km of exhumation and a minimum of -10 km (i.e., 10 km of additional268

burial). In this case, the predicted exhumation is ≈ 10% of that for the ”always litho-269

static” case, on average. The minimum exhumation estimate is obtained when deforma-270

tion is brittle and constrictive in compression for Pp, and deformation is brittle in ex-271

tension and occurs by flattening for Pr. The minimum exhumation estimate is between272

0 and -50 km.273

For most samples, the normalized amount of exhumation for a specific case, e.g.,274

low stress (red rectangles), is contained within a small range around an average value.275

However, the samples from the category ”Others (outliers)” have significantly different276

values. Although their values of Pp and Pr are not anomalous (e.g., Fig. 1), their com-277

bination clearly differs from other samples (see Fig. 1C). The relatively low dispersion278

of exhumation is related to the apparent proportionality between Pp and Pr (see Fig.279

1C).280

In this section, we show that one can interpret the transition from Pp to Pr as the281

result of exhumation from great depth (Fig. ??C-D). The data are also compatible with282

an opposite interpretation: that this transition is the result of a change in stress state283

while depth is constant (Fig. ??G) or even while burial continues (Fig. ??H).284

3 Two-point method of pressure-to-depth conversion285

In this section, we re-examine our dataset with the additional constraint that zp =286

zr. In this way, we can use Pp and Pr together to reduce the uncertainty range for the287

depth estimate. We call this method ”two-point pressure-to-depth conversion”. In the288

case of a homogeneous rock and ignoring the possible role of fluids, the stress state can289

be modified in only two ways: (1) by modifying the magnitude of the horizontal stress290

or (2) by rotating the stress field. We explore these mechanisms independently, as well291

as a special case, in the following sections.292

3.1 Mechanism 1: change in the magnitude of horizontal stress (S-model1)293

First, we consider the change in pressure triggered by a change in the magnitude294

of the horizontal stress (σ̄x). Figure 6A shows five Mohr circles constructed with var-295

ious values of σ̄x. Note that the Mohr circle with σ̄x = 1 is a point. In Figure 6B-J,296

we represent our dataset as colored circles in the Pp vs. Pr space. These data points are297

placed on top of a colored contour map of σ̄rx computed for given values of Pp, Pr, σ̄
p
x, αp, αr,298

where subscripts or overscripts p and r refer to the peak and retrograde stages, respec-299

tively. The values used are indicated at the top of columns and the beginning of rows300

of panels. A contour map of z = zp = zr is also shown (black horizontal lines). The301

range of values calculated for σ̄rx covers stress states that do not exceed the Coulomb fail-302

ure criterion. Gray areas correspond to areas where σ̄rx has no meaningful solution (i.e.,303

because the stress magnitude would exceed the brittle yield stress). This means that the304

model cannot explain data plotting in the gray area. In contrast, when a data point is305

on top of the colored contour map, the combination of Pp, Pr for this data point can be306

obtained using eqs. 13 to 16, the combination of σ̄px, αp, αr given and the value of σ̄rx and307

z shown by the contour map.308
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Figure 6. Results for the horizontal stress change-driven model. (J) A Mohr diagram illus-

trating the stress states associated with different values of σ̄x. The normal stress (horizontal

axis) and shear stress (vertical axis) are normalized by σz. (B to J) Peak pressure as a func-

tion of retrograde pressure for data (colored circles) and model (colored contour plot). The

estimated depths, in km, for each model are indicated by black contour lines. Gray areas in-

dicate zones where the model does not have a solution (i.e., the deviatoric stress would ex-

ceed the yield stress). The model peak pressure is calculated from eq. (16) with parameters

ρg = 28000kg/m2/s, tan(φ) = 0.65, σ̄x = σ̄p
x, α = αp. The model retrograde pressure uses σ̄r

x, αr.

Each panel in a row uses the value of σ̄p
x indicated in the leftmost panel of the row. Each panel

in a column uses the values of αp and αr indicated at the top of the column. This figure can be

reproduced using the computer script from supplementary information S6.
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When the stress state is lithostatic at peak conditions, i.e., σ̄px = 1, only outliers309

plot in the solution domain (Fig. 6B to D), which means that the transition from Pp to310

Pr observed in the data cannot be explained only by increasing or decreasing the hor-311

izontal stress at constant depth if the stress state is lithostatic under peak conditions.312

When the initial horizontal stress is σ̄px = (1 + Φ)/2, a few data points lie in the solu-313

tion domain for the combinations αp = 0, αr = 1 (Fig. 6E) and αp = αr = 1/2 (Fig.314

6F). However, approximately half of the points lie in the solution domain when αp =315

1, αr = 0 (Fig. 6G). Outliers can be explained by σ̄rx > 1 (i.e., compressive stress state),316

while other points are explained by σ̄rx < 1 (i.e., extensional stress state, Fig. 6G). When317

the initial horizontal stress is σ̄px = Φ (i.e., brittle deformation), few data points lie in318

the solution domain for the combinations αp = 0, αr = 1 (Fig. 6H). When αp = αr =319

1/2, half the points lie in the solution and these points correspond to values of σ̄rx < 1320

(except for outliers, Fig. 6I). When αp = 1, αr = 0, all the points have a solution (Fig.321

6J). Most points have σ̄rx < 1, but a few points are also associated with small values322

σ̄rx > 1. Outliers are characterized by high values of σ̄rx.323

In all models except the one in Fig. 6J, some data points have a higher Pp than324

acceptable within the model bounds. On the other hand, there is no data point with Pp325

lower (or Pr higher) than that predicted by the model. The outlier points also plot within326

the bounds of the model. Overall, each data point is within the model boundaries or close327

to its boundary on at least one graph (e.g., Fig. 6J). Therefore, the model where the tran-328

sition from Pp to Pr is triggered by a change in the stress state at constant depth (zp =329

zr) explains the data. While some points lie within the model boundaries only for a de-330

viatoric stress with a large magnitude, other points can be explained by a change in stress331

with only moderate deviatoric stresses (Fig. 6G). Values of αp, αr are also important to332

explain the data; e.g., some data points can be explained only when αp = 1, αr = 0.333

For these data points, the model predicts a change in the mode of deformation from con-334

striction to flattening during the transition from Pp to Pr. Therefore, analyses of the mode335

of deformation in metamorphic rock samples provide a way to validate or falsify our model.336

We compute the depth depending on the given value of σ̄px and αp from eqs. 14 and337

16. For σ̄x ≥ 1, the pressure-to-depth conversion ratio increases with decreases in both338

σ̄x and α (see Fig. 3). Graphically, this is expressed as the spacing between depth con-339

tours widening towards the right (e.g., from 6B to D) and bottom panels (e.g., from 6B340

to H). The cases where σ̄px = 1 provide the highest pressure-to-depth conversion, but341

only outliers lie within the solution domain. Their maximum depth is approximately 55342

km (Fig. 6D). The deepest depth estimates, approximately 75 km, are obtained when343

σ̄px = (1 + Φ)/2 (Fig. 6F-G). In the case where σ̄px = Φ, many points lie in the solu-344

tion range, but a low pressure-to-depth conversion ratio limits the depth. Thus, the max-345

imum depth is approximately 65 km (Fig. 6I-J). We discuss depth estimates in detail346

in section 3.4.347

3.2 Mechanism 2: stress rotation (S-model2)348

We now consider the change in pressure triggered by a rotation of the stress field.349

We assume that when the rock records Pp, the vertical and horizontal directions are prin-350

cipal stress directions, as in the previous sections. Then, the stress field rotates by an351

angle θ around axis y, and the rock records Pr. Figure 7A shows Mohr circles with five352

different values of θ.353

Graphically, when we apply a rotation to a stress state where σ1 is initially hor-354

izontal (i.e., compressional tectonic regime), the Mohr circle is shifted to the left (Fig.355

7A). The maximum shift corresponds to θ = 90◦, and σ1 is vertical (i.e., extensional356

tectonic regime). Eventually, the Mohr circle may become tangent to the Coulomb yield357

envelope. Since the model does not admit stress states beyond this envelope, the radius358
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Figure 7. Summary of results for the stress rotation-driven model. θ is the counterclockwise

rotation angle. (A) Mohr diagram illustrating the stress states associated with different amounts

of rotation. The normal stress (horizontal axis) and shear stress (vertical axis) are normalized

by σz. (B to H) Peak pressure as a function of retrograde pressure for different parameters (see

text for details). Colored dots correspond to the data from our dataset. The estimated depths,

in km, for each model are indicated by black horizontal lines. Gray areas indicate zones where

the model does not have a solution. We use parameters ρg = 28000kg/m2/s and tan(φ) = 0.65.

Each panel in a row uses the value of σ̄p
x indicated in the leftmost panel of the row. Each panel

in a column uses the values or αp and αr indicated at the top of the column. The colors of the

contour maps are coded for values of θ. This figure can be reproduced using the computer script

from supplementary information S7.
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of the Mohr circle has to decrease upon further rotation to remain tangent to it (see Fig.359

7A, θ ≥ 45◦).360

To formalize this behavior mathematically, we first define the yield function for Mohr-
Coulomb plasticity:

F =
σ1 − σ3

2
− σ1 + σ3

2
sinφ. (18)

Then, the principal stresses σ1 and σ3 as a function of θ are expressed as

when F < 0,

σ3 = σz

(
1 + (σ̄px − 1)

cos 2θ − 1

2

)
,

σ1 = σz + τII(cos 2θ + 1),

(19)

when F = 0,

σ3 =
2σz

1 + Φ− Φ−1
cos2θ

,

σ1 = Φσ3.

(20)

Note that the first equation is only valid for σ̄px ≥ 1. σ2 is calculated using eq. 4, Pp361

is the mean stress for θ = 0, and Pr is the mean stress for a given value of θ.362

Figures 7B-H are constructed in the same way as Figure 6, but the brownish col-363

ored contour map now represents θ.364

A lithostatic stress state is isotropic. Thus, pressure remains constant upon rota-365

tion σ̄px = σ̄rx = Pp = Pr = 1 (Fig. 7B). The resulting line in the Pp, Pr space does366

not cross the data cloud, i.e., does not explain the data. For stress states tangent to the367

Coulomb envelope, the upper limit of the contour map for θ (θ = 90◦) is the same as368

the upper limit of σ̄rx (σ̄rx = 1/Φ) (see Fig. 6), while the lower limit (θ = 0◦) corre-369

sponds to the case σ̄rx = σ̄px in the previous model. Therefore, the boundaries of the model370

are similar for this model (involving θ) and for the previous model (involving σ̄rx). Al-371

though extreme stress states are identical, intermediate cases are different (e.g., compare372

Figs. 6A and 7A). When σ̄px = (1 + Φ)/2, a minimum of θ = 45◦ is required to ex-373

plain the data (Fig. 7C-E). As with the previous model, all data points are consistent374

with a model where σ̄px = Φ, αp = 1, αr = 0 (Fig. 7H). In this case, outliers are ex-375

plained by θ = 0−30◦ and other points by θ = 30−90◦. Since the depth contour map376

is computed based on σ̄px, αp only and the model range is similar to the previous model,377

the remarks concerning depth made in section 3.1 also apply here.378

Since both this model (Fig. 6) and the previous one (Fig. 7) can explain the data,379

there is an ambiguity about which mechanism is responsible for the stress change. Once380

again, the predictions of this model can be validated or falsified using strain data. In-381

deed, the rotation of the principal stress directions implies a rotation of the principal strain382

direction.383

3.3 A special case: compression to extension in the brittle limit (YB-384

model)385

When σ̄px = Φ, depending on the values of αp, αr, the solution for θ = 90◦ (which386

corresponds to the upper limit of the solution domain) can outline the lower extent of387

the data point cloud (Fig. 7F), pass through it (Fig. 7G), or outline its upper extent (Fig.388

7H). In other terms, the data distribution can also be explained by a more restrictive389

model where depth is constant, σ̄px = Φ, θ = 90◦ (or σ̄rx = 1/Φ, cf. Fig. 6) and αp390

and αr are free parameters. This model has previously been employed by Yamato and391

Brun (2017). Here, we extend their analysis by providing the associated pressure-to-depth392

conversion.393

To obtain a mathematical expression for Pp, we substitute eq. (14) with σ̄x = Φ
for P̄ in eq. (16) and solve for P . For Pr, we use eq. (13) with σ̄x = 1/Φ instead of eq.
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Figure 8. Data points in the Pp vs. Pr space. Contours of depth according to (a) the lower

estimate and (b) upper estimate of our model. The model has solutions within the white fan and

no solution in the gray domain. The color of the data points indicates the geographic region.

This figure can be reproduced using the computer script from supplementary information S8.
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(14). This process yields:

Pp =
ρgz

3
(2− αp + Φ(1 + αp)), (21)

Pr =
ρgz

3
(1 + αr + Φ−1(2− αr)). (22)

Similar to previous figures, Figure 8 shows the domain of the solution of eqs. (21)394

and (22) for values of αp and αr between 0 and 1. Data points are also plotted in this395

Pp vs. Pr space. We also show contours of depth obtained by solving eq. (21) or (22)396

for z. The value of ρg influences the distance between depth contours but not the shape397

of the solution domain. The parameter Φ (or φ, cf eq. 11) controls the orientation and398

opening angle of the fan-shaped solution domain. The outlier points (gray) lie outside399

the solution domain, while the other data points (colored) lie within it or close to its bound-400

ary. The location of a point within the solution domain reflects the depth and mode of401

deformation under peak and retrograde conditions (αp, αr). Points along the central line402

αp = αr have the same mode of deformation in the peak and retrograde stages. Points403

below this line deform by flattening under peak conditions and by constriction under ret-404

rograde conditions, and points lying above the central line deform by constriction un-405

der peak conditions and by flattening under retrograde conditions. Samples from one oro-406

gen tend to span a large range of αp, αr that could reflect local differences in the mode407

of deformation.408

For a given depth, a range of Pp, Pr is possible depending on the value of αr, αp409

(see eqs. 21 and 22). The opposite is also true: for a given Pp, Pr, there is a range of pos-410

sible depths. We represent the lower and upper estimates of this range in Figures 8A and411

8B, respectively. In this model, all points lie below the ”deepest Moho” reference depth412

for the lower depth estimate, and only one point is deeper than the ”deepest Moho” when413

using the upper depth estimate.414

3.4 Depth estimates using the two-point method415

Figure 9 shows depth estimates for our data according to the horizontal stress change-416

driven model and the stress rotation model (”S-model”, thin bars) and the compression417

to extension model of the previous section (”YB-model”, thick bars). Depth estimates418

for peak pressure assuming a lithostatic stress state (see section 2.3) are also shown as419

the ”L model” for reference (short bars).420

In the following passage, we use the terms L-depth, S-depth and YB-depth to re-421

fer to the depth estimates according to the L-, S- and YB-models, respectively. The meth-422

ods for computing the depth ranges for the S-model and YB-model are given in Appendix423

A.424

The minimum and maximum YB-depths are equal for points on the border of the425

solution domain fan, while the range is largest for points along the central line (Fig. 8).426

The range of S-depth tends to be larger for points with a low Pp/Pr ratio and decreases427

with increasing Pp/Pr (because fewer solutions exist; see Figs. 6 and 7). For all samples428

except the outliers, the S- and YB-depths are significantly lower than the L-depth. For429

example, one point in Kokchetav and one point in Sulu-Dabie have L-depths > 160 km,430

whereas their S- and YB-depths are 65−70 km and 60−85 km, respectively. For out-431

liers, the upper estimate of the S-depth is close to the L-depth. In the L-model, the depth432

is proportional to the peak pressure. Thus, large differences in peak pressure between433

two samples result in large differences in depth. However, the S- and YB-models take434

both peak and retrograde pressures into account, which can smooth out this difference.435

For example, the two data points with the highest pressures in the Alps have L-depths436

of 95 and 125 km, whereas the maximum S-depth is 70 km for both. Conversely, points437

with the same L-depth (i.e., same peak pressure) can have different YB- and S-depths.438

This contrast is best exemplified by comparing points with the same Pp in Figure 8: points439
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Figure 9. Estimated depth of each sample using the two-point method of pressure-to-depth

conversion. The graph also shows depth estimates using the one-point lithostatic case for ref-

erence. L-model: peak pressure in the one-point lithostatic case. S-model refers to the models

described in sections 3.1 and 3.2. The YB-model refers to the model described in section 3.3.

For the YB-model, filled rectangles indicate depth estimates for points that lie within the model

boundaries, while open rectangles apply to points outside the model boundaries. The depth es-

timates indicated by open rectangles are relevant for points close to the model boundary (e.g.,

samples #1 and #14) but less relevant for points far from the boundary (i.e., category Others

(outliers)). This figure can be reproduced using the computer script from supplementary informa-

tion S9.

in the upper half of the fan (αp > αr) align on a lower depth estimate contour, while440

points in the lower half of the fan (αp < αr) align on the upper depth estimate con-441

tour. Thus, at constant Pp, the mean depth estimate increases with increasing Pr, and442

the uncertainty increases towards the center of the fan (αp = αr line). For example,443

for points at Pp = 3GPa, the mean depth estimate increases from 40 km at Pr = 0.6GPa444

to 60 km at Pr = 1.2GPa. At these two extreme Pr values, the depth estimate has a445

unique value, while at the center of the fan (Pr = 0.85GPa), the depth estimate ranges446

between 40 and 60 km. Overall, the most striking features of the S- and YB-models are447

that all data points have at least part of their range shallower than the ”deepest Moho”448

line and that the deepest S-depth is approximately 90 km compared to 165 km for the449

L-depth.450
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4 Discussion451

Pressure is a function of both depth and deviatoric stresses. However, since devi-452

atoric stress cannot be measured, pressure-to-depth conversions require assumptions. In453

the previous sections, we propose several pressure-to-depth conversion methods involv-454

ing one or two pressure data points. In particular, we show that the proportionality be-455

tween Pp and Pr can be explained by a model where Pp and Pr are recorded by the rock456

at the same depth but under different stress states (Figs. 6 to 8). For simplicity, we only457

present two-point models with either stress rotation or horizontal stress magnitude change458

and no exhumation. Combining rotation and magnitude change may further decrease459

the magnitude of deviatoric stresses required to explain the data. Relaxing the assump-460

tion that zp = zr and accounting for some exhumation would also decrease the mag-461

nitude of deviatoric stresses required.462

4.1 Perspectives on using strain data463

In our formulation of the pressure-to-depth conversion, we use α instead of a stress464

value (see eq. 4). α characterizes the shape of the stress ellipsoid and is thus similar to465

commonly used parameters for characterizing the shape of ellipsoid such as Lode’s ra-466

tio or Flinn’s k-value (Mookerjee & Peek, 2014). Because strain results from applied stress,467

obtaining a value for α using markers of deformation could provide key data to better468

constrain depth. The two-point models relying on a change in the magnitude of hori-469

zontal stress (Fig. 6) or stress orientation (Fig. 7) give ambiguous results since both mod-470

els can explain the data. However, one could falsify the predictions of the model based471

on stress rotation (Fig. 7) by using the directions of the strain ellipsoid or paleostress472

inversion of fault orientations to estimate stress directions.473

4.2 Data distribution and model474

The data suggest that Pp and Pr are proportional (see Fig. 1). However, by us-475

ing the one-point method, because Pp and Pr are considered independently, it is diffi-476

cult to explain this proportionality. In the lithostatic case, for instance, the decompres-477

sion from Pp to Pr is controlled only by the exhumation of rocks. However, the currently478

proposed exhumation mechanisms (e.g., subduction channels and corner flows) do not479

suggest that exhumation would be proportional to maximum depth. On the other hand,480

the two-point model treats both Pp and Pr together. Since we assume that zp = zr,481

the maximum change from Pp to Pr is limited by Byerlee’s law, and the yield stress func-482

tion is linearly dependent on P . Considering reasonable values for the friction coefficient483

(e.g., 0.65), the limits of the model outline the distribution of the data. For example, for484

the models shown in Figures 6J and 7H, the extent of the model domain outlines the up-485

per extent of the distribution, and the lower limit of the model corresponds to the lower486

extent for outliers.487

The YB-model simulates the case where rocks are brittle in both compression and488

extension and thus constitutes a particular case of the two-point model. It is interest-489

ing to note that although the YB-model allows us to largely explain the data, it excludes490

the outliers (Fig. 8). However, all data (including outliers) can be explained consider-491

ing the more general S-models (Figs. 6 and 7).492

The upper extent of the data distribution (Pp/Pr 4.8) can only be explained when493

σ̄px = Φ, αp = 1 (brittle constrictive deformation in compression) and σ̄rx = 1/Φ, αr =494

0 (brittle flattening deformation in extension). The lower extent of the data distribution495

excluding outliers (Pp/Pr 2.4), however, can have several explanations. In the YB-model,496

it corresponds to αp = 0, αr = 1. For S-models (e.g., Figs. 6G, I, J; 7E, G, H), the497

lower bound of the data can be within the solution domain and coincides with different498

values of σ̄rx or θ. Interestingly, the lower limit coincides with Sxr=1 (i.e., lithostatic case)499
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in Fig. 6J. Two-point models can fit all data points from the dataset (or lie very close500

to the model boundary), which suggests that in all orogens, a change in stress state may501

be responsible for the decompression from Pp to Pr. The different predictions in terms502

of the change mode of deformation (αp to αr) bring additional constraints concerning503

the mechanism responsible for the change in the stress state. Monitoring the evolution504

of α in 3D numerical geodynamic models may provide more answers.505

4.3 Inclusion-host system506

The models presented here explain pressure variations in a homogeneous material507

subjected to a change in depth or deviatoric stresses. In a heterogeneous system, the pres-508

sure in one material may be affected by deviatoric stresses in another material. A well-509

studied example is the case of an elliptical inclusion embedded in an elastic or linear vis-510

cous matrix. In this system, the magnitude and sense of deviatoric stresses are functions511

of the relative strength between the matrix and the inclusion, as well as the orientation512

of the inclusion in the stress field (D. W. Schmid & Podladchikov, 2003, 2005; Moulas513

et al., 2014). The pressure in the inclusion is controlled both by the stress state in the514

inclusion and by the stress state in the host rock. An important point is that deviatoric515

stresses in a weak inclusion may be negligible, while the pressure can still be as high as516

σ1 = Φ in a strong host rock. This is very different from a homogeneous material where517

the pressure is lithostatic in the absence of deviatoric stresses. Thus, pressure can vary518

between the values of σ3 and σ1 for the strongest material in the inclusion/host system,519

whereas in a homogeneous material, pressure can vary only between 2/3σ3+1/3σ1 and520

1/3σ3+2/3σ1 (see eq. (6)) (Moulas et al., 2014; Schmalholz & Podladchikov, 2013). Field521

examples of this phenomenon have been documented by Luisier et al. (2019) in the Monte522

Rosa nappe (Alps) and by Jamtveit et al. (2018) in the Bergen Arc (Caledonides).523

4.4 Local vs. regional stress state524

In this paper, we present several methods that can be used to determine possible525

stress states associated with peak and metamorphic pressures. Stress states are by essence526

local. Some researchers even propose that metamorphic pressure may reflect the stress527

state in only a single grain (see the discussion about inclusions in the previous paragraph)528

and that large pressure gradients responsible for pressure differences on the order of GPa529

can be recorded within a single grain (Tajčmanová et al., 2014, 2015). In our dataset,530

samples from the same region have a wide variety of Pp/Pr ratios (see Fig. 1C) and are531

often distributed from one side of the fan to another (between Pp/Pr = 1.4 and Pp/Pr =532

4.8), which indicates differences in the change in stress magnitude, stress orientation or533

relative magnitude of σ2 (α). This could be an indication that pressure data reflect the534

local (grain- to 10 km-scale) rather than regional (100 km) stress state. Thus, using the535

stress states determined in this study to interpret regional-scale processes requires tak-536

ing some caution. For example, the YB-model assumes that the peak to retrograde pres-537

sure can be explained by a transition from a compressional to an extensional stress state,538

with both stress states close to the brittle limit. These stress states reflect km-scale con-539

ditions or are smaller in the sense that the whole system is submitted to convergence (i.e.,540

in Fig. 1). The distance between two points far from the subduction zone, one located541

on the subducting plate and the other located on the overriding plate, is constantly de-542

creasing, but the part undergoing exhumation is locally subjected to extension. This cor-543

responds well with the fact that the exhumation of a coherent metamorphic unit is im-544

possible without a normal fault on top. As we have shown, stress orientation has a strong545

control on pressure changes, and in a complex orogen, stress orientations can vary sig-546

nificantly in space and time, e.g., due to changes in the subduction angle or the friction547

along the plate boundary (Wang & Hu, 2006), the proximity to magma chambers (Gerbault548

et al., 2018) or faults (e.g., Shao & Hou, 2019; Mart́ınez-Dı́az, 2002; Maerten et al., 2002),549

or the position within the orogen (e.g., Kastrup et al., 2004).550
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4.5 Implications for geodynamic models551

Rock strength strongly depends on temperature. Hence, considering classic rhe-552

ological yield stress envelopes (e.g., E. B. Burov, 2011), it seems inadequate to consider553

large deviatoric stresses deep in the lithosphere (> 120 km) due to the temperature in-554

crease with depth. This statement could favor using lithostatic pressure-to-depth con-555

version but remains debatable. Indeed, the depth estimates using the S- and YB-models556

are consistent with the depth of the crustal roots of orogens, and in these places (i.e.,557

at the base of the crust or in the lithospheric mantle), significant deviatoric stresses are558

possible. Significant deviatoric stresses are even more likely at this depth in a subduc-559

tion zone with a cold geotherm.560

Several elements suggest significant deviatoric stresses near the Moho depth: (1)561

earthquakes are not uncommon at such depths in a subduction context and provide ev-562

idence that brittle deformation can occur (e.g., B. Hacker et al., 2003; Hetényi et al., 2007),563

and (2) several field and petrological studies have already evidenced brittle deformation564

associated with HP metamorphism (e.g., Austrheim & Boundy, 1994; John & Schenk,565

2006; Angiboust et al., 2012; Hertgen et al., 2017; Yang et al., 2014).566

Samples with high Pp/Pr require a stress field close to the brittle limit using the567

S-model (e.g., Fig. 7). However, samples with Pp/Pr < Φ are consistent with a stress568

state where the magnitude of the deviatoric stress (second invariant) is only half that569

required for brittle deformation (i.e., σ̄px = (1+Φ)/2) when peak pressure is recorded.570

This means that even in the ductile realm, the effect of the deviatoric stresses should not571

be neglected.572

The release of fluids from dewatering metamorphic reactions can decrease the ef-573

fective pressure. Thus, one might argue that the transition from Pp to Pr is caused by574

fluid pressure. However, this mechanism seems unlikely because fluid pressure would need575

to remain high during exhumation (otherwise, a new peak pressure would be recorded).576

Townend and Zoback (2000) argue that high fluid pressure leads to rock fracturing, which577

creates space and thus causes fluid pressure to decrease.578

5 Conclusion579

In this contribution, we reviewed the basic mathematical formulations of pressure-580

to-depth conversion for a homogeneous rock. First, we derived the standard ”one-point581

method of pressure-to-depth conversion” and applied it to a large dataset of metamor-582

phic pressures to independently estimate a range of depths at which rocks may have re-583

coded their peak (Pp) and retrograde pressures (Pr). Since the most common assump-584

tion in the literature is to consider that metamorphic pressure corresponds to the litho-585

static pressure, we used this ”lithostatic case” as a reference.586

By introducing deviatoric stress components and considering only the compressional587

stress regime (σ1 horizontal) at Pp and both compressional and extensional (σ1 verti-588

cal) stress regimes for Pr, we showed that the deviations from the reference case can be589

significant. For Pp, the estimated depths vary between 40 and 100 % of the reference case.590

For Pr, the estimated depth range is 40−185% of the reference case. Thus, under our591

assumption, the lithostatic case represents an upper bound estimate of depth for Pp and592

an intermediate value for Pr. Moreover, the uncertainty ranges of both peak (zp) and593

retrograde (zr) depths are large enough to lead to overlap for these two depth estimates.594

This means that the transition from Pp to Pr can be triggered by exhumation, a change595

in the stress state at constant depth, or a combination of both processes.596

Second, we presented ”two-point methods of pressure-to-depth conversion” that597

use both Pp and Pr to estimate depth under the hypothesis that zp = zr. For the two-598

point method, we considered two mechanisms of stress change between Pp and Pr: (1)599
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change in the magnitude of horizontal stresses and (2) rotation of the stress state. We600

also treated a particular case where the magnitude of deviatoric stresses is maximum,601

and the stress regime varies from compression at Pp to extension at Pr. The two-point602

method greatly decreases the uncertainty range of depth estimates and yields stricter603

constraints on the possible stress state. Remarkably, all Pp, Pr points in our dataset are604

consistent with a change in the stress state at a constant depth.605

In our dataset, the maximum depth estimates under the ”lithostatic assumption”606

are approximately 160 km for Pp and 50 km for Pr. Thus, the lithostatic assumption re-607

quires deep burial and exhumation from great depth. On the other hand, the two-point608

models reveal that points in our dataset are consistent with depths shallower than 75609

km (i.e., the current deepest Moho). This suggests instead that all metamorphic rocks610

in our dataset have been buried at crustal depths with no (or only minor) exhumation611

between Pp and Pr. The validity of either of these models cannot be assessed based only612

on pressure and temperature data. However, the principal stress directions and the rel-613

ative magnitude of σ2 (i.e., α) may be estimated from the strain ellipsoid or paleostress614

analysis. Thus, a precise analysis of the deformation in association with the P estimates615

in metamorphic rocks could validate or falsify depth estimates from the two-point model616

and further decrease the depth estimate uncertainty.617

Appendix A Depth estimates for the two-point model618

A1 S-model619

The depth estimate range for S-models is calculated numerically by testing a large
array of combinations of σ̄px, αp and αr for each sample. The ranges considered are 1 ≤
σ̄px ≤ Φ and 0 ≤ αp, αr ≤ 1, and we use 50 values to discretize the range of each pa-
rameter for a total of 503 = 125, 000 parameter combinations. We proceed in two steps.
First, we compute σz using eq. (15) with P = Pp, σ̄x = σ̄px, and α = αp, and we com-
pute z = σz/ρg. Second, we need to test whether the previous solution is within the
acceptable bounds of the model (i.e., not in the gray area of Figs. 6 to 8). For this pur-
pose, we compute σ̄rx using the following equation:


σ̄x =

3P/σz − 2 + α

1 + α
, when σ̄x ≤ 0,

σ̄x =
3P/σz − 1− α

2− α
, when σ̄x ≥ 0,

(A1)

with P = Pr, σ̄x = σ̄rx, and α = αr. Then, we test whether 1/Φ ≤ σ̄rx ≤ Φ and up-620

date the range of depth if the test is successful.621

A2 YB-model622

To compute the range of depth for the YB-model, we use the minimum and up-623

per estimates of depth whose contours are plotted in Figures 8A and 8B, respectively.624

In practice, we compute σz using eq. (15) with parameters [P, α, σ̄x]. For data points625

where Pp/Pr > Φ (i.e., above the line marked αp = αr in Fig. 8), we use parameters626

[Pp, 1,Φ] to compute min(σz), and [Pr, 0, 1/Φ] for max(σz). For data points where Pp/Pr ≤627

Φ, we use [Pr, 1, 1/Φ] for min(σz) and [Pp, 0,Φ] for max(σz). Then, we compute z =628

σz/ρg. In this algorithm, depth is calculated using either [Pp, αp, σ̄
p
x] or [Pr, αr, σ̄

r
x]. If629

αp is used as input, αr can be computed back from σz, and we can perform the test 0 ≤630

αr ≤ 1 to verify that the solution is within the bounds of the model. If αr is used as631

input, αp is computed instead. If the test is successful, we plot the range as a colored632

box in Figure 9 or as an open box otherwise.633

–25–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Acknowledgments634

The database and computer code (Jupyter notebooks) allowing the reproduction of most635

figures are available as supplementary information and will be made available in a pub-636

lic repository once the paper is accepted for publication. This work was supported by637

the Japanese Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific638

Research no. JP18K13643.639

References640

Agard, P., Yamato, P., Jolivet, L., & Burov, E. (2009, jan). Exhumation of641

oceanic blueschists and eclogites in subduction zones: Timing and mechanisms642

(Vol. 92) (No. 1-2). Elsevier. doi: 10.1016/j.earscirev.2008.11.002643

Anderson, E. M. (1905, jan). The dynamics of faulting. Transactions of the Edin-644

burgh Geological Society , 8 (3), 387–402. doi: 10.1144/transed.8.3.387645

Angiboust, S., Agard, P., Yamato, P., & Raimbourg, H. (2012, aug). Eclogite brec-646

cias in a subducted ophiolite: A record of intermediatedepth earthquakes? Ge-647

ology , 40 (8), 707–710. doi: 10.1130/G32925.1648

Austrheim, H., & Boundy, T. M. (1994). Pseudotachylytes generated during seismic649

faulting and eclogitization of the deep crust. Science, 265 (5168), 82–83. doi:650

10.1126/science.265.5168.82651

Beaumont, C., Jamieson, R. A., Butler, J. P., & Warren, C. J. (2009, sep). Crustal652

structure: A key constraint on the mechanism of ultra-high-pressure rock ex-653

humation. Earth and Planetary Science Letters, 287 (1-2), 116–129. doi:654

10.1016/j.epsl.2009.08.001655

Beltrando, M., Hermann, J., Lister, G., & Compagnoni, R. (2007, apr). On the evo-656

lution of orogens: Pressure cycles and deformation mode switches. Earth and657

Planetary Science Letters, 256 (3-4), 372–388. doi: 10.1016/j.epsl.2007.01.022658

Brace, W. F., Ernst, W. G., & Kallberg, R. W. (1970, may). An Experimental659

Study of Tectonic Overpressure in Franciscan Rocks. GSA Bulletin, 81 (5),660

1325–1338. doi: 10.1130/0016-7606(1970)81[1325:aesoto]2.0.co;2661

Brun, J. P., & Faccenna, C. (2008, jul). Exhumation of high-pressure rocks driven662

by slab rollback. Earth and Planetary Science Letters, 272 (1-2), 1–7. doi: 10663

.1016/j.epsl.2008.02.038664

Burov, E., Francois, T., Yamato, P., & Wolf, S. (2014, mar). Mechanisms of con-665

tinental subduction and exhumation of HP and UHP rocks. Gondwana Re-666

search, 25 (2), 464–493. doi: 10.1016/j.gr.2012.09.010667

Burov, E. B. (2011, aug). Rheology and strength of the lithosphere. Marine and668

Petroleum Geology , 28 (8), 1402–1443. doi: 10.1016/j.marpetgeo.2011.05.008669

Butler, J. P., Beaumont, C., & Jamieson, R. A. (2013, sep). The Alps 1: A working670

geodynamic model for burial and exhumation of (ultra)high-pressure rocks in671

Alpine-type orogens. Earth and Planetary Science Letters, 377-378 , 114–131.672

doi: 10.1016/j.epsl.2013.06.039673

Butler, J. P., Beaumont, C., & Jamieson, R. A. (2014, jul). The Alps 2: Controls674

on crustal subduction and (ultra)high-pressure rock exhumation in Alpine-675

type orogens. Journal of Geophysical Research: Solid Earth, 119 (7), 5987–676

6022. Retrieved from http://doi.wiley.com/10.1002/2013JB010799 doi:677

10.1002/2013JB010799678

Byerlee, J. (1978, jul). Friction of rocks. Pure and Applied Geophysics PAGEOPH ,679

116 (4-5), 615–626. doi: 10.1007/BF00876528680

Chopin, C. (2003, jul). Ultrahigh-pressure metamorphism: Tracing continental crust681

into the mantle. Earth and Planetary Science Letters, 212 (1-2), 1–14. doi: 10682

.1016/S0012-821X(03)00261-9683

Ernst, W. G. (1963). Significance Of Phengitic Micas From Low-Grade Schists684

— American Mineralogist — GeoScienceWorld. American Mineralogist , 48 (11-685

–26–



manuscript submitted to Geochemistry, Geophysics, Geosystems

12), 1357–1373. Retrieved from https://pubs.geoscienceworld.org/msa/686

ammin/article-abstract/48/11-12/1357/542168687

Ernst, W. G., Hacker, B. R., & Liou, J. G. (2007). Petrotectonics of ultrahigh-688

pressure crustal and upper-mantle rocks—Implications for Phanerozoic colli-689

sional orogens. Geol. Soc. Am., 433 , 27–49.690

Froitzheim, N., Pleuger, J., Roller, S., & Nagel, T. (2003, oct). Exhumation of high-691

and ultrahigh-pressure metamorphic rocks by slab extraction. Geology , 31 (10),692

925–928. doi: 10.1130/G19748.1693

Gerbault, M., Hassani, R., Novoa Lizama, C., & Souche, A. (2018, mar). Three-694

Dimensional Failure Patterns Around an Inflating Magmatic Chamber. Geo-695

chemistry, Geophysics, Geosystems, 19 (3), 749–771. Retrieved from http://696

doi.wiley.com/10.1002/2017GC007174 doi: 10.1002/2017GC007174697

Gerya, T. (2015, oct). Tectonic overpressure and underpressure in lithospheric tec-698

tonics and metamorphism. Journal of Metamorphic Geology , 33 (8), 785–800.699

Retrieved from http://doi.wiley.com/10.1111/jmg.12144 doi: 10.1111/700

jmg.12144701

Godard, G. (2001, aug). Eclogites and their geodynamics interpretation: A history.702

Journal of Geodynamics, 32 (1-2), 165–203. doi: 10.1016/S0264-3707(01)00020703

-5704

Green, H. W. (2005). Psychology of a changing paradigm: 40+ Years of high-705

pressure metamorphism. International Geology Review , 47 (5), 439–456. doi:706

10.2747/0020-6814.47.5.439707

Guillot, S., Hattori, K., Agard, P., Schwartz, S., & Vidal, O. (2009). Exhumation708

Processes in Oceanic and Continental Subduction Contexts: A Review. In Sub-709

duction zone geodynamics (pp. 175–205). Springer Berlin Heidelberg. doi: 10710

.1007/978-3-540-87974-9 10711

Hacker, B., Peacock, S., Abers, G., & Holloway, S. (2003). Subduction factory 2.712

Are intermediate-depth earthquakes in subducting slabs linked to metamorphic713

dehydration reactions? J. Geophys. Res., 108 , 2030.714

Hacker, B. R., & Gerya, T. V. (2013, sep). Paradigms, new and old, for ultrahigh-715

pressure tectonism (Vol. 603). doi: 10.1016/j.tecto.2013.05.026716

Hertgen, S., Yamato, P., Morales, L. F., & Angiboust, S. (2017, jun). Evidence717

for brittle deformation events at eclogite-facies P-T conditions (example of718

the Mt. Emilius klippe, Western Alps). Tectonophysics, 706-707 , 1–13. doi:719

10.1016/j.tecto.2017.03.028720
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