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Abstract

The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors

2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred

from June-October 2019. The purpose of the study is to examine how the atmospheric boundary layer responds to spatial

heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured

by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven

methods for scaling surface energy fluxes, with the aim to improve model-data comparison and integration. To address these

questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10×10 km domain

of a heterogeneous forest ecosystem in the Chequamegon-Nicolet National Forest in northern Wisconsin USA, centered on the

existing Park Falls 447-m tower that anchors an Ameriflux/NOAA supersite (US-PFa / WLEF). The project deployed one

of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network

was coupled with spatial measurements of EC fluxes from aircraft, maps of leaf and canopy properties derived from airborne

spectroscopy, ground-based measurements of plant productivity, phenology, and physiology, and atmospheric profiles of wind,

water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These

observations are being used with large eddy simulation and scaling experiments to better understand sub-mesoscale processes

and improve formulations of sub-grid scale processes in numerical weather and climate models.

2
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ABSTRACT 55 
 56 
The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density 57 
Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science 58 
Foundation project based on an intensive field campaign that occurred from June-October 2019. 59 
The purpose of the study is to examine how the atmospheric boundary layer responds to spatial 60 
heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of 61 
energy balance closure measured by eddy covariance (EC) towers is related to mesoscale 62 
atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface 63 
energy fluxes, with the aim to improve model-data comparison and integration.  64 
 65 
To address these questions, an extensive suite of ground, tower, profiling, and airborne 66 
instrumentation was deployed over a 10×10 km domain of a heterogeneous forest ecosystem in 67 
the Chequamegon-Nicolet National Forest in northern Wisconsin USA, centered on the existing 68 
Park Falls 447-m tower that anchors an Ameriflux/NOAA supersite (US-PFa / WLEF). The 69 
project deployed one of the world’s highest-density networks of above-canopy EC measurements 70 
of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC 71 
fluxes from aircraft, maps of leaf and canopy properties derived from airborne spectroscopy, 72 
ground-based measurements of plant productivity, phenology, and physiology, and atmospheric 73 
profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, 74 
infrared interferometers, and radiosondes. These observations are being used with large eddy 75 
simulation and scaling experiments to better understand sub-mesoscale processes and improve 76 
formulations of sub-grid scale processes in numerical weather and climate models.  77 
 78 
CAPSULE SUMMARY 79 
 80 
A regional-scale observational experiment designed to address how the atmospheric boundary 81 
layer responds to spatial heterogeneity in surface energy fluxes. 82 
 83 
INTRODUCTION 84 
 85 
Land-atmosphere exchanges of energy, water, and carbon influence weather and climate. The 86 
biological processes that mediate these exchanges with the atmosphere occur at multiple spatial 87 
and temporal scales, necessitating a variety of cross-scale observational platforms. Accurate 88 
accounting of land-atmosphere interactions is critical for improving the predictive performance 89 
of numerical weather and climate models. Unfortunately, there is a persistent mismatch between 90 
the scales of observations and models. This scale mismatch is problematic because natural 91 
environments exhibit substantial heterogeneity in their surface characteristics, which means that 92 
observations are not always accurate reflections of the entire model grid cell. Furthermore, the 93 
atmosphere is strongly influenced by nonlinear two-way interactions with radiation, land cover, 94 
and soil, so that the spatial and temporal scaling of surface fluxes is fundamental to assessing the 95 
parameterizations used in atmospheric models to represent land-atmospheric interactions.  96 
 97 
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The notion that land surface heterogeneity influences the surface energy balance, and the 98 
resulting atmospheric responses, emerged from early model simulations showing the importance 99 
of soil moisture, vegetation, albedo, roughness, and heating on the atmosphere (Garratt 1993; 100 
Mahrt 2000; Betts et al. 1996; Charney 1975; Avissar 1995; Pielke et al. 1998). Theories on how 101 
land surface variations drive atmospheric boundary layer (ABL) growth vary (e.g., Desai et al. 102 
2006; Reen et al. 2014; Platis et al. 2017; Gantner et al. 2017), with no consensus on whether 103 
responses scale linearly or non-linearly and whether they differ for dry versus moist dynamics 104 
(Raupach and Finnigan 1995). Modeling studies on this topic have been developed from limited 105 
sets of observations of prior field experiments and from specialized modeling domains using 106 
simplified boundary conditions (e.g., Kang et al., 2007; Hill et al., 2008, 2011; Zhu et al., 2016). 107 
From these previous studies, scaling laws have been derived based on numerical simulations 108 
(van Heerwaarden et al. 2014; Rihani et al. 2015), but a systematic regional-scale observational 109 
experiment that quantifies the multi-scale nature of sub-grid scaling and patterning has never 110 
been fully realized (Steinfeld et al. 2007).  111 
 112 
An issue related to how heterogeneity influences transport processes in the ABL is the energy 113 
balance closure problem. This refers to an observed tendency in eddy covariance (EC) flux 114 
measurements, where the sum of incoming available energy (net radiation [RN] minus ground 115 
heat flux [G]) exceeds surface turbulent sensible and latent heat fluxes (HS and HL) over sub-116 
hourly time scales (Foken et al. 2011). Systematic studies have ruled out instrument errors as the 117 
primary cause (Twine et al. 2000; Frank et al. 2013; Liu et al. 2011). Incomplete observation of 118 
sub-measurement height storage flux accounts for only some of this lack of closure (Leuning et 119 
al. 2012; Xu et al. 2018). Advection terms are not expected to have a systematic direction that 120 
would always lead to lack of closure (e.g., Aubinet et al. 2010; Barr et al. 2013; Nakai et al. 121 
2014; Zitouna-Chebbi et al. 2012), while topography contributes mostly in extreme cases 122 
(Mcgloin et al. 2018).  123 
 124 
EC sites with more variable land cover tend to have larger closure imbalances (Stoy et al. 2013; 125 
Xu et al. 2017b). One proposed hypothesis for lack of closure in the energy budget is that surface 126 
heterogeneity generates mesoscale features not adequately resolved by traditional EC methods 127 
(e.g., Charuchittipan et al. 2014; Gao et al. 2016; Foken et al. 2011; Mauder et al. 2007b). An 128 
intensive suite of energy flux measurements between surface and atmosphere at the mesoscale 129 
(on the order of tens of kilometers) can help address this key uncertainty in land-atmosphere 130 
exchange (Xu et al. 2020). 131 
 132 
EXPERIMENTAL GOALS 133 
 134 
CHEESEHEAD19 was designed to provide a new level of observation density and 135 
instrumentation reliability to test hypotheses on spatial heterogeneity and atmospheric feedbacks. 136 
The two main research objectives for the CHEESEHEAD19 experiment were to 1) investigate 137 
causes of energy balance non-closure over heterogeneous ecosystems and 2) to address the 138 
problem of scaling surface energy fluxes.  139 
 140 
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There is currently no definitive answer as to what is responsible for energy balance non-closure. 141 
The project was designed specifically to test the hypothesis that heterogeneity is responsible for 142 
generating organized (sub-)mesoscale structures that are not resolved by traditional EC methods.  143 
 144 
Various theories suggest that “spatial” EC, where multiple towers are combined to estimate the 145 
mesoscale contribution to the total flux, could be used to analyze this contribution and “close” 146 
the energy balance (Steinfeld et al. 2007; Mauder et al. 2008b). To calculate spatial fluxes, 147 
CHEESEHEAD19 deployed an EC tower network and airborne EC measurements. These 148 
measurements provide spatial patterns of surface energy fluxes across various vegetation and 149 
surface types in the heterogeneous landscape. Alongside this EC flux network, multiple 150 
platforms were deployed to characterize the atmospheric environment by profiling relevant 151 
atmospheric characteristics across a range of scales. This allows us to determine the existence 152 
and to characterize the nature of organized mesoscale structures. We can investigate the degree 153 
to which mesoscale eddies are responsible for energy balance non-closure in EC measurements, 154 
and whether land surface energy partitioning and atmospheric responses differ from the sum of 155 
their individual components. 156 
 157 
To systematically address surface energy balance variability in the heterogeneous forested 158 
landscape, a pre-campaign large eddy simulation (LES) analysis of the study domain was 159 
conducted. It was found that, while 12 flux towers would be sufficient to adequately sample land 160 
cover variation, >15 flux towers are required to sample mesoscale eddy structures and close the 161 
energy budget (a similar result to Steinfeld et al., 2007). Therefore, the CHEESEHEAD19 field 162 
campaign deployed 20 flux towers, a marked increase over many previous experiments. 163 
 164 
CHEESEHEAD19 asks how we can optimally observe and simulate the terms of the surface 165 
energy balance and the corresponding atmospheric responses to heterogeneous surface forcings. 166 
The objective is to evaluate methods for scaling surface energy fluxes, with the aim of improving 167 
model-data comparisons. To this end, we conduct LES and machine-learning scaling 168 
experiments to simulate sub-mesoscale responses. These will be compared to measured 169 
quantities to test existing theoretical concepts and to improve our understanding of how scale-170 
dependent transport processes in the lower atmosphere respond to surface heterogeneity.  171 
The dataset collected during this study will help test multiple scaling methodologies across 172 
heterogeneous land cover. Specifically, it aims to test the environmental response function - 173 
virtual control volume (ERF-VCV) approach (Metzger 2018; Xu et al. 2018), which combines 174 
the strengths of both data-driven and mechanistic strategies. 175 
  176 
Several additional research objectives are addressed by using the unique data resources of 177 
CHEESEHEAD19. These include a separately funded study to use CO2 fluxes of Integrated 178 
Surface Flux System (ISFS) towers and hyperspectral imagery of canopy functional traits to 179 
determine the principal drivers of variation in NPP and carbon use efficiency across a broad 180 
array of forest ecosystems. Additionally, concurrent measurements of ozone (O3) mixing ratios at 181 
30- and 122-m on the tall tower were made using a chemical ionization time-of-flight mass 182 
spectrometer (CI-ToFMS; TOFWERK AG and Aerodyne Research Inc.) and a photometric 183 
analyzer (Model 49i; Thermo Fisher) to obtain vertical O3 profiles above the forest canopy 184 
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(Bertram et al. 2011; Novak et al. 2020). These measurements were accompanied by flights of a 185 
sUAS-mounted lightweight O3 monitor (POM; 2B) that obtained vertical concentration 186 
gradients. These measurements are being used to determine the relative contributions of stomatal 187 
uptake and other nonstomatal loss pathways to O3 deposition within a mixed forest canopy. 188 
 189 
 190 
THE EXPERIMENT 191 
 192 
Overview 193 
 194 
CHEESEHEAD19 investigators deployed an extensive suite of ground, tower, profiling, and 195 
airborne instrumentation over a 10 × 10 km domain in a forested and aquatic landscape in 196 
northern Wisconsin USA (Fig. 1; Table 1), centered on the existing Park Falls 447-m tower 197 
Ameriflux/NOAA supersite (US-PFa / WLEF). The main components of the CHEESEHEAD19 198 
field campaign were:  199 

a) ground-based fluxes and meteorology 200 
b) airborne fluxes and meteorology 201 
c) atmospheric profiling 202 
d) surface environment characterization 203 

 204 
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 205 
Fig. 1. Map and schematic diagram of CHEESEHEAD19 domain. Map shows the 206 
location of all measurements made during the field campaign. Insets show 207 
Lakeland and Prentice airports where SURFRAD (in addition to the one in ISS 208 
field), radar wind profilers with RASS, and CLAMPS systems were installed. 209 
Schematic diagram shows instrument location and a conceptual model of airborne 210 
data collection. (Wisconsin Department of Natural Resources 2019) 211 
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 212 
The EC tower network consisted of 17 towers from the NSF Lower Atmosphere Observing 213 
Facility (LAOF) ISFS, two additional towers, and the central tall Ameriflux tower. Ground-214 
based measurement of vegetation occurred at 41 plots in the domain, plus an additional 10 plots 215 
for measuring phenology. Airborne spectroscopy imaging was used to map leaf chemistry and 216 
canopy properties.  217 
 218 
The suite of atmospheric profiling instruments included the LAOF Integrated Sounding System 219 
(ISS; Fig. 2c) and the UW SPARC system (Fig. 2a). Additional instrument systems were brought 220 
by collaborators, including the combined ATMONSYS lidar for measuring aerosol, T, and H2O 221 
profiles and two Doppler wind lidars brought by Karlsruhe Institute of Technology (KIT), two 222 
Collaborative Lower Atmospheric Profiling Systems (CLAMPS – NOAA NSSL), two 915 MHz 223 
radar wind profilers with radio acoustic sounding systems (RASS) with MWRs (NOAA PSL), 224 
and the Surface Radiation Budget Network (SURFRAD – NOAA GML) systems for measuring 225 
incoming and outgoing radiation and cloud properties. While many of these instruments were 226 
located within the 10 ×10 km CHEESEHEAD19 domain, some instruments were located at the 227 
Prentice and Lakeland airports, located approximately 45 km south and east of the WLEF tower 228 
respectively, to provide information on the spatial variability of boundary layer structure and 229 
cloud and radiation fields. 230 
 231 
Three seven-day intensive observation periods (IOP) occurred on July 7 – 13, August 18 – 24, 232 
and September 22 – 28. During these IOPs the University of Wyoming King Air (UWKA) flew 233 
transects over an extended 30 × 30 km domain to measure EC fluxes, ABL depth, and 234 
atmospheric profiles of water vapor and temperature. These observations will be used to test flux 235 
tower scaling, observe atmospheric mesoscale patterning, and evaluate large eddy simulations 236 
(LES). Also, during the IOPs, a team from NOAA ARL ATDD brought multiple sUASs for 237 
measuring profiles of meteorological variables (T, H2O, U, P – see appendix for a list of 238 
variables used in this paper) and land surface temperature. Additional information on the spatial 239 
variations of surface meteorology was obtained using mobile observing systems operated in 240 
pedestrian, boat, and car modes. 241 
 242 
The four-month deployment spanned the summer to fall transition, capturing the shift in surface 243 
energy balance from a more uniform evapotranspiration (latent heat flux) dominated landscape to 244 
a patchy sensible heat flux dominated landscape. These energy balance shifts arise from seasonal 245 
changes in plant phenological phases, ecosystem water use for photosynthesis, and available net 246 
radiation. These shifts also provide a “natural experiment” with which to test hypotheses on how 247 
heterogeneity influences energy balance closure and spatial scaling. 248 
 249 
The study domain was partly chosen due to the history of atmospheric science research in the 250 
region. Since 1995, University and NOAA investigators have sampled greenhouse gas profiles, 251 
meteorology, and EC flux measurements (energy, carbon, momentum) at 30 m, 122 m, and 396 252 
m above ground level (AGL; Fig. 2b) on the WLEF tall tower (Bakwin et al. 1998; Davis et al. 253 
2003). The site also includes an FTIR solar-pointing spectrometer (TCCON) for total greenhouse 254 
column observations operated by CalTech and NASA JPL. Two additional EC towers (US-WCr, 255 
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30 m in mature forest, and US-Los, 10 m in shrub fen wetland) have been operating for 20 years, 256 
approximately 20 km from the tall tower (Cook et al. 2004; Desai et al. 2005; Sulman et al. 257 
2009). 258 
 259 
CHEESEHEAD19 builds upon previous tower mesonet experiments, including BOREAS 260 
(Sellers et al. 1995), CASES99 (Poulos et al. 2002), SGP97 (Desai et al. 2006), IHOP (Kang et 261 
al. 2007), LITFASS-2003 (Beyrich et al. 2006), EBEX (Oncley et al. 2007), BEAREX 262 
(Anderson et al. 2012), HiWATER-MUSOEXE (Wang et al. 2015), SCALE-X (Wolf et al. 263 
2017), that were aimed at understanding scaling of non-linear land-atmosphere interaction.  264 
 265 

 266 
Fig. 2. (a) HSRL beam next to WLEF tall tower, (b) EC instruments at 396 m AGL 267 
on the WLEF tall tower, and (c) the ISS field with modular wind profiler, sodar-268 
RASS, ceilometer, SURFRAD, EC and meteorological towers with UWKA flying 269 
overhead and WLEF tall tower in the distance. 270 



This work has been submitted to the Bulletin of the American Meteorological Society. 

Copyright in this work may be transferred without further notice. 

Instrumentation & Measurements 271 
 272 
Table 1. List of instruments and data collected during CHEESEHEAD19. For 
explanation of the variable abbreviations please see the appendix. 

Data source Data provider Location(s) Measured Variables  Period 
Ground-based Measurements 

Ameriflux/NOAA tall tower (US-
PFa/WLEF) UW AOS WLEF HS, HL, FCO2, τ, Rn, meteorology Continuous 

ChEAS Ameriflux towers: US-
WCr / US-Los / US-Syv / US-
Alq 

UW AOS Ameriflux sites (4) HS, HL, FCO2, τ, Rn, meteorology Continuous 

ISFS Eddy covariance towers  NCAR EOL ISFS 10x10 km (17 sites) HS, HL, FCO2, τ, Rn, meteorology, soil 
G, Q, Cv, T profile, precip (5 sites) June-Oct 

MSU Eddy covariance towers Montana State U 
& UW BSE 

NW5 (ISS) and 
SE1 

HS, HL, FCO2, τ, Rn, soil G, 
meteorology June-Oct 

Surface meteorology NCAR EOL ISS ISS field T, RH, P, precip, wind, sky images July-Oct 

SURFRAD  
& TWST 

NOAA GML ISS field1 

Prentice Airport2 

Lakeland Airport2 

Downwelling SW/LW1,2, direct SW1,2, 
diffuse SW1,2, upwelling SW/LW1, 
PAR1, sky images1, cloud optical 
depth1, cloud fraction1,2, cloud base 
height2, mixed layer depth2, 
meteorology1 

July-Oct 
(TWST: 
Sep-Oct) 

Vehicle/ Pedestrian/ Boat 
transects Jackson State U 10x10 km – Roads/ 

Trails / Hay Lake 
T, RH, P, total downwelling SW, IR 
brightness temperature, water T  IOP 1, 2, 3 

Chemical ionization mass spec 
& ozone photometric analyzer UW Chem WLEF Ozone concentration and flux IOP 1 

Tall tower greenhouse gases NOAA GML WLEF CO2, CH4 concentration & 
CO2, CH4 profiles 

Continuous 
& Biweekly 

Tree temperature Chequamegon 
HS 5 sites, 10 trees T at breast height (1.37 m AGL) Oct 

Atmospheric Profiling 
449 MHz modular wind profiler  NCAR EOL ISS ISS field 3D wind profiles July-Oct 
Sodar / RASS NCAR EOL ISS ISS field 3D wind, Tv and θv profiles July-Oct 

Ceilometer NCAR EOL ISS ISS field Attenuated backscatter profiles, cloud 
base height, ABL height July-Oct 

Daily radiosonde  NCAR EOL ISS ISS field 18Z (1pm local) July-Oct 
3-hourly daytime radiosondes  NCAR EOL ISS ISS field 4-5 per day for 5 days per IOP IOP 1, 2, 3 

AERI UW SSEC 
SPARC WLEF Downwelling IR radiance, profiles of 

T, H2O, and cloud properties July-Oct 

HALO Lidar (1) – vertical stare UW SSEC 
SPARC WLEF Profiles of 3D wind (virtual tower) July-Oct 

HSRL UW SSEC 
SPARC WLEF Backscatter, depolarization July-Oct 

Micro Rain Radar (MRR) UW SSEC WLEF Precipitation rate, reflectivity, particle 
size distribution (PSD) July-Oct 

Precipitation Imaging Package UW SSEC WLEF PSD, fall speed, rain rate July-Oct 
ATMONSYS:  
Backscatter, Raman, and 
Differential Absorption Lidar 

KIT IMK-IFU WLEF Vertical profiles of aerosol 
backscatter, T, H2O July-Sep 

HALO Lidars (2,3) – RHI scans KIT IMK-IFU WLEF Profiles of 3D wind (virtual tower)  July-Sep 
915 MHz radar wind profiler w/ 
radio acoustic sounding system NOAA PSL Prentice Airport, 

Lakeland Airport 
Profiles of U, Tv, Convective ABL 
height July-Oct 

MWR NOAA PSL 
ISS field1 
Prentice Airport2 
Lakeland Airport3 

Downwelling microwave radiance, 
profiles of T, H2O, and liquid water 
path 

July-Oct3 

July-Sep2 

Sep-Oct1 
CLAMPS (MWR, AERI, 
Doppler wind lidar) NOAA NSSL Prentice Airport, 

Lakeland Airport Profiles of U, T, H2O Sep-Oct 

Airborne Measurements 
Airborne eddy covariance UWKA 30x30km, 24 flights 3D wind, T, H2O, CO2 (25 Hz; ~3 m) IOP 1, 2, 3 
Airborne met. and radiation UWKA 30x30km, 24 flights Meteorology (1 Hz; ~80 m) IOP 1, 2, 3 
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Compact Raman Lidar (CRL) UWKA 30x30km, 24 flights H2O and T cross sections IOP 1, 2, 3 
Wyoming Cloud Lidar (WCL) UWKA 30x30km, 24 flights ABL height IOP 1, 2, 3 
Meteodrone SSE sUAS NOAA ARL ATDD WLEF and SW2 T, H2O, U IOP 1, 2, 3 
Ozone sUAS UWEC WLEF O3 profiles IOP 1 

Surface Environment 

HySpex UW FWE 10x10 km, 4 flights hyperspectral imagery (474 bands), 
foliar functional traits June-Aug 

DJI S-1000 (sUAS) NOAA ARL ATDD WLEF and SW2 LST, Hs IOP 1, 2 
sUAS leaf-on canopy LiDAR UW Geog 11 tower sites Ground and canopy height June 
QL2 leaf-off LiDAR USFS 30x30 km Ground and canopy height Fall 2018 
Vegetation/phenology sampling UWM Geog 10x10 km (10 plots)  Leaf color / fall level Sep-Oct 

Vegetation Sampling UW FWE 10x10 km (41 plots) 
inventory, root growth, NPP, 
biometry, leaf spectra, foliar tissue 
chemistry, LMA 

June-Oct 

Soil bulk density and heat 
capacity NCAR EOL 17 tower sites Qsoil, ρsoil July-Oct 

Soil samples UW AOS 16 tower sites Soil carbon, nitrogen Oct 
Soil samples Butternut Schools 7 sites Soil and water chemistry July 
ECOSTRESS, GEDI, OCO3 NASA JPL 30x30 km LST, emissivity, evapotranspiration Oct 8 

 273 

Ground-based Measurements 274 
 275 
Towers sampled three-dimensional wind velocity, temperature, moisture, and CO2 at 20 Hz to 276 
measure land-atmosphere fluxes (τ, HS, HL, FCO2). Each tower also measured net radiation, soil 277 
heat flux at 5 cm depth (and soil temperature profile, heat capacity, and moisture to determine 278 
soil heat storage), and a 3-level air temperature and humidity profile to estimate canopy heat 279 
storage. A majority of the sites were forested and had flux instruments mounted 33 m AGL (Fig. 280 
3; Table S1). Instruments for wetland, grass, and lake sites were mounted between 1 – 3 m AGL 281 
to maintain consistent vegetation within the flux footprint. Tower placement within the 10 × 10 282 
km study domain followed a stratified random grid pattern, taking into account practical 283 
considerations including distance to road, suitable gap in trees for a tower, USFS-owned land, 284 
etc. Individual towers were an average of 1.4 km from their nearest neighboring tower and an 285 
average of 3.5 km from the tall tower. This meant that under certain conditions (e.g., high wind 286 
speeds, stable stratification) several of the towers shared overlapping flux footprints; a favorable 287 
condition for applying some of the data-driven scaling methods used in the project. Additionally, 288 
the semi-random placement meant that the towers were not chosen by distributing the towers in 289 
the centers of the most homogeneous areas of the various land cover types. Thus, within the 290 
individual footprint of each tower there was often spatial variability in vegetation height and type 291 
(deciduous vs. evergreen). While this can complicate analyses of flux measurements, it generates 292 
more representative data from these types of mixed forests. Furthermore, we expect it will 293 
enhance the ability of the data-driven methods for estimating domain-wide fluxes. 294 
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 295 
Fig. 3. (a) EC tower SW1 – an example of the 33 m AGL telescoping towers 296 
deployed by NCAR ISFS and (b) EC instruments mounted at the top of tower 297 
SW2. 298 
 299 
A suite of high-quality radiation sensors was deployed in the ISS field as a complement to the 300 
net radiometers installed on each flux tower. The full suite included high-quality upwelling and 301 
downwelling broadband surface radiation measurements to determine the surface radiation 302 
budget, as well as ancillary measurements of meteorological parameters, photosynthetically 303 
active radiation (PAR), and clouds as described in Table S2. Radiation measurements are 304 
manually screened and then processed through an automated data quality procedure (Long and 305 
Shi 2008). Clear sky radiation fluxes are estimated using the Radiative Flux Analysis method 306 
(Long and Ackerman 2000; Long and Turner 2008), from which derivation of cloud radiative 307 
effects as well as other data products such as fractional sky cover (Long et al. 2006; Dürr and 308 
Philipona 2004) and cloud optical depth (Barnard and Long 2004; Niple et al. 2016) are 309 
calculated. Measurements of cloud properties will allow us to quantify their impacts on the 310 
radiative and turbulent heat fluxes to better understand the two-way coupling between cloud-311 
radiative interactions and boundary layer evolution, and to investigate the effect on EC non-312 
closure.  313 
 314 
A smaller suite of radiation, cloud, and surface meteorological measurements were deployed at 315 
the Prentice and Lakeland Airports, approximately 45 km south and east from the ISS field, 316 
respectively (Fig. 1), to characterize the larger spatial scale inhomogeneities. These 317 
measurements include downwelling shortwave and longwave irradiance as well as diffuse and 318 
direct components of shortwave irradiance (Table S2); sufficient information to derive cloud 319 
radiative effects and fractional sky cover using the Radiative Flux Analysis method described 320 
above.  Ceilometers deployed at the two airport sites provided additional cloud and boundary 321 
layer information. 322 
  323 
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Airborne Measurements 324 
 325 
During each IOP the UWKA flew over the study area to measure spatial EC fluxes of heat, water 326 
vapor, and CO2. The purpose of the observations was to test flux tower scaling and observe 327 
atmospheric mesoscale patterning. The UWKA also measured cross-sectional profiles of water 328 
vapor and temperature below the flight level using a downward pointing Compact Raman Lidar 329 
(CRL, Wu et al. 2016) and ABL depth with the upward looking Wyoming Cloud Lidar (WCL, 330 
Wang et al. 2009). 331 
 332 
Flights over the domain occurred on four days during each of the three IOPs (Table S3). On each 333 
day there were two three-hour flights, one in the morning (1400 – 1700 UTC) and one in the 334 
afternoon (1900 – 2200 UTC). Flights consisted of ten 30-km down-and-back transects across 335 
the domain. The first leg of each transect was flown at 400 m AGL, while the return leg was 336 
flown at 100 m AGL. Flight transects alternated between straight and diagonal passes.    337 
 338 
Three different flight patterns were determined prior to the experiment (oriented SE→NW, 339 
SW→NE, and W→E). Flying them either in forward or reverse order resulted in six distinct 340 
flight sequences that maximize data coverage under different wind conditions (see sidebar 341 
Continuity through Environmental Response Functions). The main objectives were to maximize 342 
1) the number of independent atmospheric eddies and 2) surface flux footprint observed by the 343 
aircraft EC measurements, while 3) ensuring crew safety. This was achieved by designing a 344 
parsimonious set of only three flight patterns that allowed the UWKA to fly perpendicular to the 345 
prevailing winds within a range of ±45° on any given day (Metzger et al., in preparation). The 346 
30-km flight legs extended an average of 10 km beyond the domain to compute a robust 347 
mesoscale eddy flux (Mauder et al. 2007a, 2008a) by capturing enough eddies and mesoscale 348 
variation to properly compute statistics for fluxes using the wavelet decomposition method.  349 
 350 
The low-altitude legs were primarily used to measure EC fluxes. The altitude 100 m AGL was 351 
chosen to ensure flux measurements were made in the surface layer, as well as to minimize flux 352 
footprint errors over the 10 × 10 km sampling domain. It was also the lowest altitude deemed 353 
safe to fly, as canopy height extended up to 35 m. The low-altitude legs were also used to 354 
identify ABL depth with the upward pointing 355 nm WCL. The primary purpose of the high-355 
altitude legs (400 m AGL) was to map temperature and moisture profiles of the atmosphere with 356 
the CRL. These data were collected to estimate mesoscale development and calculate flux 357 
divergence and storage terms.  358 
 359 
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 360 
Fig. 4. The location (superimposed) of all 480 flight legs completed during the 361 
CHEESEHEAD19 field campaign. The yellow square represents the study domain 362 
and the red dots indicate the flux tower locations. 363 

 364 
Atmospheric Profiling  365 
 366 
Characterizing the mesoscale environment over the study domain was accomplished with a range 367 
of platforms and instruments to measure profiles of wind, water vapor, temperature, aerosols, 368 
and gases at different temporal and spatial scales (Fig. 1; Table 1).  369 
 370 
The NCAR ISS was located in a field 1.6 km west of the tall tower (45.946°N, 90.294°W). It 371 
deployed a radar wind profiler, sodar-RASS, ceilometer, all-sky camera, and a surface 372 
meteorology station to measure ABL depth, winds, water vapor, and temperature. The 449 MHz 373 
modular wind profiler measured 30-minute wind profiles with 150 m vertical resolution up to 374 
several km AGL, while the sodar-RASS was capable of higher resolution (20 m; 10-minute), but 375 
only penetrated to ~400 m AGL. Meteorological profiles were also measured with 172 376 
radiosonde launches (daily 18Z soundings and 3 – 4 additional soundings on IOP days). These 377 
instruments characterized the ABL from nocturnal boundary layer (sunrise sounding), through 378 
ABL development (mid-morning and afternoon), to peak ABL (late afternoon sounding).  In 379 
mid-September, one of the MWRs located at the Prentice Airport was relocated to this location, 380 
due to the failure of the AERI at the tall tower site in early September. 381 
 382 
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Several profiling systems were deployed at the base of the tall tower. SPARC (Wagner et al. 383 
2019) was located 50 m north of the WLEF tower and was equipped with an Atmospheric 384 
Emitted Radiance Interferometer (AERI, a zenith-pointing infrared radiometer [Knuteson et al. 385 
2004]), a High-Spectral Resolution Lidar (HSRL [Eloranta 2005]), and a ceilometer. Profiles of 386 
boundary layer temperature and humidity were retrieved from the AERI radiance observations 387 
(Turner and Löhnert 2014; Turner and Blumberg 2019). The HSRL sampled ABL aerosol 388 
backscatter and depolarization ratio at 532 nm and 1064 nm. The ceilometer provided an 389 
additional measure of ABL depth.  390 
 391 
The ATMONSYS system was placed beside the SPARC system, measuring atmospheric water 392 
vapor, temperature, and aerosol. The primary light source of the ATMONSYS lidar is a 100 Hz 393 
diode pumped Nd:Yag laser with the harmonic generation of 532 nm and 355 nm. The 532 nm 394 
light (P ≃ 27 W) is used for optical pumping a Ti:Sapphire laser, generating 817 nm (P ≃ 2 W) 395 
for water vapor profiling with the high resolving DIAL (Differential Absorption Lidar) method 396 
as well as for profiling aerosol backscatter. The 355 nm light is used for temperature profiling 397 
from rotational Raman backscatter. The system setup as installed during CHEESEHEAD19 398 
(Vogelmann et al. 2020) allows for spatial sampling of 7.5 m and integration times of 20 s for 399 
aerosols and water vapor measurements and 300 s for temperature profiling. 400 
 401 
In the field to the east of the trailers were three Doppler wind lidars. One lidar (LVS) measured 402 
in vertical stare mode throughout the measurement campaign. The other two lidars (LA, LB) 403 
were placed 90 meters away from the LVS and made range–height indicator (RHI) scans (66º – 404 
87º elevation angle) pointing towards the LVS. This setup constitutes a virtual tower that 405 
provides vertical wind speed measurements and calculates average horizontal wind speed at 406 
multiple height levels above the LVS (Calhoun et al. 2006; Klein et al. 2015; Wulfmeyer et al. 407 
2018). Additionally, the collocation of lidars for measuring 3D winds, temperature, and water 408 
vapor facilitates calculation of flux profiles of τ, HS, and HL, as well as flux divergence 409 
(Wulfmeyer et al. 2016). 410 
 411 
Two precipitation instruments (a Precipitation Imaging Package [PIP] and a Micro Rain Radar 412 
Pro [MRRPro; Metek GmbH]) were installed at WLEF. The PIP is a video disdrometer system 413 
that records information about hydrometers and produces end user products such as particle size 414 
distributions, fall speeds, and rain rate at one-minute resolution (Newman et al., 2009; Pettersen 415 
et al., 2020a; Pettersen et al., 2020b). The MRRPro is a 24-GHz, frequency modulated 416 
continuous wave, vertically profiling Doppler radar (Klugmann et al. 1996) that is used for 417 
observations of both rain (i.e., Peters et al. 2002) and snow (Kneifel et al. 2011). 418 
 419 
Additional thermodynamic profiling systems were operated at the Prentice and Lakeland airports 420 
throughout the experiment to characterize the boundary layer variability and evolution around 421 
the CHEESEHEAD19 domain. The primary motivation of these two profiling sites was to 422 
characterize the mesoscale transport and role of advection on the ABL mass balance of the 423 
CHEESEHEAD19 domain.  At each location, a 915 MHz wind profiler with radio acoustic 424 
sounding system was deployed together with a multi-channel MWR.  These instruments 425 
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provided profiles of horizontal wind and temperature, and low vertical resolution profiles of 426 
water vapor.     427 
 428 
Prior to IOP3, two mobile CLAMPS facilities (Wagner et al. 2019) were deployed at Prentice 429 
and Lakeland. The systems contained a Doppler lidar wind profiler, an AERI, and a microwave 430 
radiometer (MWR). The information content in the AERI observations is higher than in the 431 
MWR, and thus the retrieved water vapor and temperature profiles have better vertical resolution 432 
and accuracy (Löhnert et al 2009; Blumberg et al. 2015). The Doppler lidars complemented the 433 
radar wind profilers by providing higher temporal and vertical resolution measurements than the 434 
radars, but the radars were able to profile winds several km higher than the lidars.    435 
 436 
Two small unoccupied aircraft systems (sUAS) were flown to characterize surface and near-437 
surface conditions (Fig. S1). During IOP1 (IOP2), a DJI S-1000 (e.g., Lee et al. 2019) was flown 438 
adjacent to the SW2 tower (WLEF tall tower) to quantify the variability in surface sensible heat 439 
flux (e.g., Lee et al. 2017). During all three IOPs, the Meteomatics Meteodrone SSE sUAS was 440 
used to sample the evolution of near-surface profiles of temperature, moisture, and wind up to 441 
213 m AGL, which was the maximum altitude to which we could operate our sUAS per our 442 
cooperative agreement with the FAA. Additionally, the Meteodrone SSE was used to sample the 443 
horizontal variability in temperature, moisture, and wind fields over a ~ 100 × 100 m box 444 
surrounding the SW2 and WLEF towers. Over all IOPs, 26 (103) flights were conducted with the 445 
DJI S-1000 (Meteodrone SSE). 446 

 447 
Surface Environment 448 
 449 
Data on the ecological environment were collected to provide the boundary conditions of canopy 450 
type, activity, and stress, needed for estimating scaling properties. This was done with a variety 451 
of methods, including airborne imaging spectroscopy, ground-based phenological 452 
characterization, and tree growth measurements. 453 
 454 
Foliar functional traits such as leaf mass per area (LMA) and nitrogen concentration strongly 455 
influence photosynthetic capacity and plant growth (i.e., net primary production, NPP) 456 
(Niinemets 2001; Kattge et al. 2009), and can be mapped using imaging spectroscopy (aka 457 
hyperspectral remote sensing, Singh et al. 2015). To map foliar functional traits across the 458 
domain a full-range imaging spectroscopy system comprising two co-aligned imagers (VNIR-459 
1800 and SWIR-384; HySpex, Skedsmokorset, Norway) was operated from a Cessna 210 at 460 
1400 m AGL on four days (6/26, 7/11, 8/4, 8/30), producing images with 1 m spatial resolution. 461 
The HySpex collects 474 bands with a spectral resolution of 3.26 nm in the VNIR (400-1000 462 
nm) and 5.45 nm in the SWIR (1000-2500 nm). 463 
 464 
Extensive ground-based vegetation samples were collected to support the hyperspectral image 465 
analyses. These included 41 plots in the domain for measuring tree species (400+ trees), root 466 
growth, tree height, diameter at breast height (DBH), net primary production (NPP), biometry, 467 
leaf area index (LAI). This also included 122 top-of-canopy foliar samples to estimate leaf level 468 
function traits following the protocol from Serbin et al. (2014).   469 



This work has been submitted to the Bulletin of the American Meteorological Society. 

Copyright in this work may be transferred without further notice. 

 470 
In combination with an existing extensive database of foliar traits and image spectra (Wang et al. 471 
in press), we will use the 122 foliar samples to develop and validate 1 m resolution maps for all 472 
four dates of numerous foliar functional traits hypothesized to influence NPP, including LMA, 473 
nitrogen concentration, chlorophyll and other pigments, phosphorus, non-structural 474 
carbohydrates, fiber and lignin, and phenolics). From this, we will test the relationship between 475 
functional traits and GPP (as derived from towers) and peak-season integrated NPP (early-July to 476 
early-September, derived from the 41 plots). We will generate 1 m maps of NPP and GPP, and 477 
identify the foliar factors that most influence each.    478 
 479 
Additional plots were used to measure vegetation phenology as it changed through the season, 480 
building upon several years of previous phenological observations collected in the domain. 481 
Autumn tree leaf color and fall phenology levels were visually observed and recorded at least 482 
twice weekly over six weeks during the senescence period (Sep 1 to Oct 25) for a group of 214 483 
individual trees (at ten sites distributed over the 10 ×10 km area) that were representative of the 484 
major species.   485 
 486 
Forest canopy structure was characterized using an sUAS-based lidar system (Routescene; 487 
Edinburgh, Scotland) acquiring high density point clouds (500 pts m−2) within footprints from 11 488 
CHEESEHEAD19 flux tower sites including aspen, pine, poplar, larch, cedar, and hardwood 489 
forests. Areas surveyed ranged between 0.25 – 1 km2 per site. Additional canopy information for 490 
the entire domain came from leaf-off LiDAR from USFS sampling (1 m2 resolution) conducted 491 
for the three counties that comprise the study area between 2014 and 2017.  492 
 493 
Land surface temperature (LST) is a key environmental driver of the surface energy balance 494 
(e.g., Metzger et al., 2013; Xu et al. 2017a). Spatially explicit LST can be acquired from satellite 495 
remote sensing (Fig. 5). However, there are tradeoffs in space and time resolutions such that no 496 
single sensor provides sufficient resolution for use as a land surface driver to map heat fluxes 497 
across space at sub-kilometer and hourly time steps required for the hypotheses here. Also, 498 
remote sensing methods may not be able to distinguish between true surface temperature and 499 
upper canopy temperature. Here, we are investigating multi-sensor fusion using a combination of 500 
in situ thermal drone and infrared camera imagery, ECOSTRESS, Landsat, VIIRS and/or GOES 501 
(Wu et al. 2013).  502 
 503 
  504 
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 505 
Fig. 5. Land surface temperature on June 15, 2019 from (a) ERA5 reanalysis  and 506 
(b) derived from Landsat 8, where sub-grid spatial resolution is present, but 507 
temporal resolution is low (Gerace et al. 2020; Landsat 8 data courtesy of the U.S. 508 
Geological Survey; ERA5 data generated using Copernicus Climate Change Service 509 
Information 2020). 510 

 511 
 512 
Data Analysis & Modeling 513 
 514 
Two analytical methods have been proposed to test the hypotheses of this study. The first is the 515 
application of ERF-VCV – a data driven approach that can be used to account for the dispersive 516 
fluxes missed by single-tower EC measurements, and to upscale fluxes across the 517 
CHEESEHEAD19 domain (Metzger, 2018, Xu et al., 2018, Xu et al., 2020). ERF-VCV uses a 518 
machine learning algorithm to find relationships between measured fluxes and their 519 
meteorological and surface drivers within the flux footprints (see sidebar).    520 
 521 
We will perform LES for the IOP days using the Parallelized LES Model PALM (Raasch and 522 
Schröter 2001; Maronga et al. 2015; 2020). In the LES we will emulate airborne- and tower-523 
mounted flux observations to compare them against the ‘real-world’ observations with the ability 524 
to also evaluate flux footprints using Lagrangian particle modelling, radiation footprints, storage 525 
fluxes at various locations and points in time. To accurately simulate the physical processes as 526 
observed during the IOPs of the field experiment as realistically as possible, we will assume 527 
realistic topography for the experiment site, and apply a Land Surface Model (LSM) with a 528 
coupled soil and radiation model, as well as a Plant Canopy Model (PCM). The use of the LSM 529 
and PCM runs instead of prescribed surface fluxes will allow us to study land-atmosphere 530 
feedbacks such as self-reinforcement of mesoscale circulations over the heterogeneous study 531 
domain. The LSM will be set up for each IOP test case, with land use classes, soil, and 532 
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vegetation data as observed during the field experiment. Further, in order to account for 533 
synoptic-scale processes during the IOPs (e.g., advection of air masses with different 534 
characteristics) we will nest the LES domain into a larger-scale model. 535 
 536 
One proposed goal is to derive a parametric heterogeneity correction of dispersive fluxes 537 
by setting up virtual towers within the LES, applying it to CHEESEHEAD19 tower flux field 538 
data, and evaluating it with ERF-VCV flux grids. Therefore, tower-level turbulence 539 
characteristics will be simulated as observed during the field campaign to investigate the energy 540 
balance non-closure problem. Additionally, by emulating 'real-world' measurements we intend to 541 
help interpret the observations – such as giving hints where secondary circulations occur or how 542 
far heterogeneity signals extend downwind. 543 
  544 
 545 
 546 
SIDEBAR: CONTINUITY THROUGH ENVIRONMENTAL RESPONSE FUNCTIONS  547 
 548 
CHEESEHEAD19 disentangles how land surface heterogeneity relates to atmospheric transport 549 
in mesoscale eddies, which contributes to the discrepancy between EC flux observations and 550 
model predictions. We strive to create a new class of observational flux data product that 551 
reconciles resulting biases on orders of 10% (Chen et al. 2011; Foken et al. 2011) and reveals 552 
actual surface emissions. For non-uniform exchange surfaces such as in CHEESEHEAD19, this 553 
requires us to evaluate the conservation of mass and energy continuously in time and space 554 
throughout the study domain (e.g., Finnigan 2008). However, even intensive field 555 
instrumentation campaigns such as CHEESEHEAD19 cannot produce observations everywhere, 556 
all the time. Here, Environmental Response Functions (ERF; Metzger et al. 2013; Metzger 2018) 557 
can help attain the necessary information continuum from individual observation plots to model 558 
grid scale. To achieve this, ERFs complement information across disciplines and observation 559 
types by using a machine learning algorithm to find relationships between measured fluxes and 560 
their meteorological and surface drivers within the flux footprints (Fig. 6A). This provides a 561 
powerful approach not only for post-field data synthesis, but already in the experiment planning 562 
stage e.g. in combination with Large Eddy Simulations (Fig. 6B). Maximizing scientific return 563 
on experimental investment (Fig. 6C; Metzger et al., in preparation) is one example of how ERFs 564 
can help close the circle among obtaining “knowledge from data” and “data from knowledge” 565 
(Reichstein et al. 2019).  566 
 567 
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 568 
Fig. 6. Panel A: Environmental Response Functions (ERFs) augment sparse 569 
response observations (e.g., tower and aircraft EC) with abundant driver 570 
observations (e.g., meteorological stations and satellites). High-rate time-frequency 571 
decomposition and source area modeling facilitate data joins among these 572 
response and driver observations at minute- and meter-scale. Machine learning 573 
then extracts a driver-response process model from the resulting space- and time-574 
aligned dataset. Ultimately, this driver-response process model complements the 575 
properties of response and driver observations in the response data product. In the 576 
present example these are meter-scale sensible heat flux maps, which can be used 577 
to more reliably evaluate the conservation of energy across the non-uniform 578 
CHEESEHEAD19 experiment domain.  579 
 580 
Panel B: During the experiment planning stage we used Large Eddy Simulations 581 
(LES) to create synthetic atmospheres over the CHEESEHEAD19 domain for 582 
different synoptic conditions. We simultaneously sampled the synthetic 583 
atmospheres as observed by different virtual experiment designs. Each experiment 584 
design resulted in a separate set of virtual observations which we independently 585 
processed through the ERFs in Panel A.  586 
 587 
Panel C: We benchmarked the different experiment designs against their ability to 588 
reproduce the LES reference in the form of flux grids that ERF reconstructed from 589 
the virtual observations alone. Identifying the optimal experiment design not only 590 
allowed us to double the scientific return on experimental investment, but also to 591 
simplify flight plans and increase crew safety. For additional detail see the full study 592 
by Metzger et al. (in preparation). 593 
 594 
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PRELIMINARY RESULTS 595 
 596 
Over the course of the four-month study period the region exhibited light winds (diurnal means 597 
from 1 – 4 m s−1) from all directions, with the most prevalent direction being southwesterly (Fig. 598 
7). Air and soil temperatures decreased over the period, while soil moisture increased (Fig. 7b,c). 599 
Daily mean net radiation decreased over the course of the study, which showed a direct 600 
relationship with ABL height (measured as the height of the inversion on the diurnal radiosonde 601 
launches [Fig. 7d]). One of the most relevant seasonal changes with respect to energy balance 602 
was the change in the daytime Bowen Ratio (HS / HL) which averaged 0.5 in the summer and 1.0 603 
in the fall, with the latter period having more variability than the former. Diurnal cycles of 604 
sensible and latent heat flux show that latent heat flux is much larger in the summer when the 605 
canopy is fully evapotranspiring compared to the fall, when senescence of broadleaf trees 606 
reduces HL, allowing HS to comprise a larger share of the total heat flux over the region (Fig. 7f 607 
– i). 608 
 609 



This work has been submitted to the Bulletin of the American Meteorological Society. 

Copyright in this work may be transferred without further notice. 

 610 
Fig. 7. Daily mean (a) wind speed and direction, (b) temperature and relative humidity, (c) soil 611 
moisture, (d) net radiation and ABL height, and (e) Bowen ratio averaged across all ISFS towers. 612 
Aerial view of site NE2 on (f) July 12, 2020 and (g) October 9, 2020. Diurnal cycles of sensible 613 
and latent heat averaged across all ISFS sites for the weeks of (h) Oct. 4 – 11 and (i) July 7 – 14. 614 

 615 
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Continuous data collection throughout the campaign linked the energy balance components to 616 
the remotely sensed atmospheric environment (Fig. 8). As is typical for EC measurements, we 617 
observed energy fluxes that were lower in magnitude than the net incoming energy (RN – G), 618 
when averaged across all sites. The magnitudes of the energy balance residual (CEB) was largest 619 
during the daytime, when incoming solar radiation was highest. The opposite sign of CEB from 620 
day to night in part can be attributed to heat storage in the canopy. However, the magnitudes of 621 
the daytime values are larger than the nighttime values, which results in a daily mean imbalance. 622 
 623 

 624 
Fig. 8. (a) Stacked energy balance components: net radiation minus ground heat 625 
flux (RN - G), sensible and latent heat flux (HS and HL), and energy balance residual 626 
(CEB) on Sep 24, 2019; (b) radiosonde profiles of potential temperature (θ); and (c) 627 
time series of wind speed profile with overlaid ABL height from ceilometer (black 628 
dots) and radiosondes (colored diamonds and dashed lines correspond to 629 
radiosonde launches in (b)). 630 

 631 
The energy balance residual peaked under conditions of low turbulence (Fig. 9). It is during such 632 
periods of calm wind and strongly unstable stratification in which thermally-induced mesoscale 633 
eddies resulting from landscape-scale heterogeneity are expected (Steinfeld et al. 2007). This 634 
lends support to the hypothesis that mesoscale eddies are responsible for the energy balance non-635 
closure.     636 
 637 
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 638 
Fig. 9. Daily mean energy balance residuals (CEB) normalized by net radiation minus 639 
ground heat flux (RN - G) plotted against friction velocity (u*) for all ISFS EC towers 640 
for the entire CHEESEHEAD19 dataset (excludes individual towers on days 641 
without complete quality-controlled data). 642 

 643 
Tower measurements, combined with in-situ measurements of air temperature and land surface 644 
temperature from the DJI S-1000, were used to quantify variability in surface HS following Lee 645 
et al. [2017], as shown in an example from 12 Jul 2019 (Fig. 10). On this day, as well as others, 646 
there was significant temperature and HS variability; temperature (HS) differences were ~ 10°C 647 
(100 W m−2) over the ~ 500 × 500 m area surrounding the SW2 tower. Fig. 10 illustrates even 648 
finer scale resolution of surface temperature than the measures shown in Fig. 5. Such spatial 649 
variation is directly related to underlying surface characteristics. 650 
 651 
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 652 
Fig. 10. Surface temperature (a) and Hs (b) from a downward-pointing infrared 653 
camera flown on the DJI S-1000 sUAS surrounding the SW2 tower between 1504 654 
and 1518 UTC 12 Jul 2019. Same for panels (c) and (d), but between 1614 and 1628 655 
UTC 12 Jul 2019. Hs computed following Lee et al. (2017).  As the technique 656 
requires an initial Hs to derive the variability in Hs and Hs was unavailable from 657 
SW2 on 12 Jul, Hs at SW2 was estimated using a linear regression with data from 658 
nearby towers. Mean ± 1 standard deviation shown at the bottom of each panel. 659 

  660 
Landscape heterogeneity was observed for a range of environmental variables, including 661 
vegetation spectral characteristics and canopy height captured from downward-looking airborne 662 
remote sensing instruments (Fig. 11). False color HySpex imagery is being used to differentiate 663 
plant functional types at 1 m2 resolution. Additional information on leaf-on canopy structure, 664 
obtained from the Routescene LiDAR at 11 flux sites and across the entire domain from the State 665 
of Wisconsin leaf-off LiDAR dataset, are being used to identify surface roughness in the flux 666 
footprints of the EC towers. In addition, these spatial data are being used as input drivers within 667 
the ERF-VCV machine learning approach.  668 
 669 
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 670 
Fig. 11. Surface maps showing spatial variation around tower site SW2 in (a) 671 
surface temperature measured by the DJI S-1000 (same as Fig. 10a), (b) vegetation 672 
spectral characteristics measured by the HySpex shown as a false color image (849 673 
nm – red, 1650 nm – green, 2217 nm – blue), and (c) surface/canopy height 674 
measured by the sUAS Routescene lidar.  675 

 676 
There is also spatial variation in the energy balance components across the domain on a typical 677 
day (Fig. 12a). This variability includes the relative weighting of latent and sensible heat fluxes, 678 
as well as the magnitude of the energy balance residual. The mean energy balance closure 679 
(calculated as [HS + HL]/[RN – G]) across all the sites over the entire study period was 0.8 This is 680 
typical for EC towers and supports the need for the advanced methods put forth by this study.  681 
 682 
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 683 
Fig. 12. Average daily mean energy balance pie charts for the flux towers over the 684 
entire study period.  The pie chart with the cyan outline (bottom center) was a 685 
buoy EC system deployed on a small lake. 686 
 687 
To address this spatial and temporal variability we are testing different types of spatial EC 688 
techniques, which have been suggested as a means of mitigating errors arising from single-site 689 
EC (Steinfeld et al. 2007; Mauder et al. 2008b). Using LES, Xu et al. (2020) found that standard 690 
spatial EC improved closure over standard temporal EC, while a combined spatio-temporal 691 
method performed better still. Further, by applying the ERF-VCV approach, the energy balance 692 
was found to be almost completely closed.  693 
 694 
Here we had the ability to calculate spatial fluxes from two different sources. First, the spatial 695 
fluxes were calculated using a wavelet decomposition on the aircraft EC datasets. This dataset 696 
has good spatial coverage but limited temporal resolution, though, with 72 flight hours spread 697 
across 12 days, it is one of the largest airborne EC datasets ever collected.  698 
 699 
The second data source for spatial EC was the set of 20 flux towers spread across the domain. 700 
Calculations for flux footprints on Sep 26, 2019 (Fig. 13) show that spatial coverage of the 701 
towers (including WLEF) covered roughly 8% of the domain (using Kljun et al. [2015]). This is 702 
a significant increase compared to a single tower set up (typically <<1% of a 10 × 10 km area). 703 
An additional benefit from the experiment design is that the towers cover a range of physical 704 
environments. These data are being used to confirm the LES model results for improvements to 705 
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energy balance closure. By combining the tower and aircraft EC datasets we have excellent 706 
coverage (~80%) of the study domain on flight days (Fig. 13).  707 
 708 

 709 
Fig. 13. Flux footprint climatologies from the 20 flux towers and aircraft on the 710 
morning of September 26, 2019. Tower footprints extend to the 90% footprint with 711 
10% contour lines shown down to 10% (calculated based on Kljun et al. [2015]). The 712 
heat map shows aircraft flux footprints with areas of strongest flux contribution in 713 
red, grading to blue where there was no contribution (calculated based on Metzger 714 
et al. [2013]). UWKA flight tracks shown as dashed black lines. 715 

 716 
The characterization of the ABL and identification of mesoscale eddies will be performed using 717 
lidar measurements of wind, water vapor, temperature, and backscatter. Figure 14 shows an 718 
example of this on September 24. Increasing water vapor through the day is representative of a 719 
large-scale warm, wet airmass entering the domain (Fig. 14c,d; Fig. S2a). This characterizes the 720 
variation in water vapor throughout the collection of the morning UWKA CRL dataset (Fig. 721 
14a). The afternoon CRL dataset (Fig. 14b) shows a more evenly mixed ABL, with variation in 722 
water vapor due to local pockets of relatively moist and dry air. These two examples show the 723 
varying applications of the CRL data depending on the atmospheric environment, with the 724 
afternoon flight illustrating the potential of the dataset for determining the degree of ABL 725 
heterogeneity arising from surface heterogeneity. Further analysis will investigate relationships 726 
with underlying vegetation and LST. 727 
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  728 
Around 1200 UTC (7am local time) net radiation becomes positive (Fig. 8a) and soon after we 729 
see the breakup of the surface inversion (Fig. 14d). Around 1400 – 1500 UTC we see the ABL 730 
grow (Fig. 8c) followed by development of large-scale structures revealed by strong oscillations 731 
in vertical wind speed (±2 m s−1; Fig. 14e). During peak hours the angle of attack of the wind 732 
vectors oscillate between roughly -30º to 50º degrees on time scales of 10 minutes to an hour. 733 
These angles far exceed those of the underlying terrain, suggesting that these periodic updrafts 734 
and downdrafts are the result of mesoscale eddies.  735 
  736 
Around 1900 UTC the domain clouds over, seen in RN and backscatter (Fig. 8a; Fig. 14f; Fig. 737 
S2b). This causes the strength of the oscillation in vertical wind to decrease (Fig. 14e), which 738 
coincides with a change in the relative weighting of the different energy balance components, 739 
with both RN and HS decreasing strongly, while HL decreases only slightly (Fig. 8a). An increase 740 
in RN around 2000 UTC corresponds to strengthening vertical wind speed oscillations. Further 741 
analyses will investigate the prevalence of this result across the entire dataset and examine 742 
specific drivers and possible implications for EC energy balance closure. These datasets show 743 
that changes in ABL development are closely tied to changes in the surface energy fluxes, 744 
highlighting the potential research applications of the CHEESEHEAD19 data.  745 
 746 
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 747 
Fig. 14. (a) and (b) show CRL cross sections of H2O mixing ratio (cut to domain 748 
size; panel c colorbar represents panels a - c) for each of 10 legs on Research Flights 749 
17 and 18 (Sep 24 at 13:51 - 16:26 and 19:11 - 21:31 UTC);  time series profiles of 750 
(c) H2O mixing ratio and (d) T measured by the ground-based MWR, (e) vertical 751 
wind speed calculated using the ground-based RHI scanning wind lidars (LA, LB) for 752 
the column above LVS, and (f) 532 nm backscatter from the ground-based HSRL at 753 
WLEF tall tower on Sep 24, 2019. 754 
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EDUCATIONAL OUTREACH 755 
 756 
Several public events were conducted to introduce and communicate the science goals and 757 
objectives of the project.  These include a pre-experiment community-wide public presentation at 758 
the Park Falls Public Library and a summer open house at several sites, enabling members of the 759 
community to visit data collection locations, meet CHEESEHEAD19 team members, and 760 
participate in demonstrations of the instruments. CHEESEHEAD19 team members also 761 
participated in surveys and in training on fieldwork bullying and sexual harassment prevention 762 
(Fischer et al. in review). 763 
 764 
The project also worked with two local school groups, one from Butternut, Wisconsin K-12 765 
School and another from Chequamegon High School of Park Falls, WI, to include them as 766 
supporting data collectors.  The GLOBE (Global Learning and Observations to Benefit the 767 
Environment) program trained Butternut K-12 students and a teacher to collect land cover 768 
classification data, soil properties, and atmospheric data at seven of the tower sites at multiple 769 
times throughout the summer. The high school group installed ten tree temperature sensors at 770 
five of the forest flux tower sites, which are being used to estimate biomass heat storage.  We 771 
also hosted two undergraduate university field classes (UW-Madison and U-South Carolina), 772 
which conducted independent research projects on micrometeorology and carbon cycling. 773 
 774 

 775 
Fig. 15. Bill Brown (just right of the radiosonde balloon) describing the capabilities 776 
of the ISS facility during the community open house. 777 

 778 
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DATA AND CODE AVAILABILITY 779 
 780 
The database of observations and models is currently online and freely available to the 781 
community and public for general use or for further scientific investigation. The datasets and 782 
supporting information have been gathered together in the NCAR Earth Observatory Laboratory 783 
(EOL) data repository which can be accessed through the project web page at 784 
https://www.eol.ucar.edu/field_projects/cheesehead. The project has open data and code policies, 785 
in which other researchers are encouraged to use CHEESEHEAD19 resources for their own 786 
research. The policies can be accessed through the above web page. 787 
 788 
Additionally, data are stored and are being used for in-depth analysis and modeling purposes on 789 
the NSF-funded cloud computing platform CyVerse, with the goal of having a central location 790 
for users to bring their code to the data in a way that maintains data and code provenance for 791 
collaborative, multi-user projects. Additional information about the project, including 792 
descriptions of the sites, photographs, and data plots can be found on the CHEESEHEAD19 793 
website, located at www.cheesehead19.org. 794 
 795 

CONCLUSIONS 796 
 797 
The data collected during the CHEESEHEAD19 field campaign show a distinct seasonal shift in 798 
surface energy fluxes, as well as spatial patterning that appears to be directly related to the 799 
characteristics of the underlying surface environment. Consequently, the imbalance in the energy 800 
budget displays both temporal and spatial variability, with the imbalance becoming larger under 801 
periods of low turbulence. The broad coverage of the measured fluxes using the 20-tower 802 
network and airborne EC, combined with the collection of spatial data of surface characteristics 803 
like LST, vegetation type, and canopy structure, will enable thorough investigation of the causes 804 
of energy balance non-closure. Additionally, the suite of atmospheric profiling instrumentation 805 
characterizes the mesoscale structure of atmospheric flows over the study domain to an 806 
unprecedented degree, helping to determine how mesoscale eddies contribute to measured 807 
imbalances. The observational dataset provided by CHEESEHEAD19 will also enable the use of 808 
machine-learning approaches and LES for testing hypotheses on scaling and parameterization of 809 
sub-grid processes in mesoscale meteorological models. Findings emerging from this project are 810 
expected to have broad implications for heterogeneous terrestrial regions beyond the specific 811 
study domain.  812 
 813 
 814 
APPENDIX: LIST OF ACRONYMS 815 
AGL – above ground level 816 
ARL - Air Resources Laboratory (NOAA) 817 
ATDD – Atmospheric Turbulence and Diffusion Division (NOAA) 818 
CHEESEHEAD19 – Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled 819 
by a High-density Extensive Array of Detectors 2019 820 
CLAMPS – Collaborative Lower Atmospheric Mobile Profiling System (NOAA NSSL) 821 
CRL – Compact Raman Lidar 822 
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EC – Eddy Covariance 823 
GML – Global Monitoring Laboratory (NOAA) 824 
IOP – Intensive Observation Period 825 
LES – Large Eddy Simulation 826 
lidar – light detection and ranging 827 
LSM – Land Surface Model 828 
NCAR – National Center for Atmospheric Research 829 
NOAA – National Atmospheric and Oceanic Administration 830 
NSF – National Science Foundation 831 
NSSL – National Severe Storms Laboratory (NOAA) 832 
PALM – Parallelized LES Model 833 
PSL – Physical Sciences Laboratory (NOAA)  834 
radar – radio detection and ranging 835 
RASS – Radio Acoustic Sounding System 836 
sodar – sonic detection and ranging 837 
sUAS - small Unmanned Aircraft System 838 
SURFRAD – Surface Radiation Budget Network 839 
UWKA – University of Wyoming King Air 840 
 841 
APPENDIX: LIST OF VARIABLES 842 
FCO2 – CO2 flux (μmol m−2 s−1) 843 
G – Ground heat flux (W m−2) 844 
H2O – water vapor mixing ratio (g kg−1) 845 
HS – sensible heat flux (W m−2) 846 
HL – latent heat flux (W m−2) 847 
LST – land surface temperature (C) 848 
P – Pressure (mbar) 849 
RN – Net surface radiation (W m−2) 850 
T – temperature (C) 851 
Tv – virtual temperature (C) 852 
U – horizontal wind speed (m s−1) 853 
u* – friction velocity (m s−1) 854 
w – vertical wind speed (m s−1) 855 
θ – potential temperature (C) 856 
θv – virtual potential temperature (C) 857 
τ – momentum flux (N m−2) 858 

 859 
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SUPPLEMENTAL MATERIAL 1247 
 1248 
 1249 

 1250 
Fig. S1. The (a) DJI S-1000 and (b) Meteodrone SSE. 1251 

 1252 
Table S1. List of the flux towers in operation during the CHEESEHEAD19 field campaign. 

Site 
# 

Site 
Name 

Ameriflu
x ID 

Latitude 
(° N) 

Longitud
e 

(° W) 

Tower 
height 

(m) 
Canopy height 

(m) Vegetation Contact 

1 NW1 US-PFb 45.97200 90.32317 32 25 pine Oncley 
2 NW2 US-PFc 45.96773 90.30878 12 3 aspen Oncley 
3 NW3 US-PFd 45.96892 90.30103 3 0.3 wetland Oncley 
4 NW4 US-PFe 45.97925 90.30042 32 20.1 lake Oncley 
5 NW5 US-PFf 45.94583 90.29437 2 0 grass Stoy 
6 NE1 US-PFg 45.97348 90.27230 32 33.2 pine Oncley 
7 NE2 US-PFh 45.95573 90.24060 32 19.2 pine Oncley 
8 NE3 US-PFi 45.97490 90.23273 32 18.3 hardwood Oncley 
9 NE4 US-PFj 45.96187 90.22703 32 18.3 maple Oncley 
10 SW1 US-PFk 45.91490 90.34250 32 24.4 aspen Oncley 
11 SW2 US-PFl 45.94090 90.31773 25 19.2 aspen Oncley 
12 SW3 US-PFm 45.92067 90.30990 32 15 hardwood Oncley 
13 SW4 US-PFn 45.93922 90.28232 32 25.9 hardwood Oncley 
14 SE1 US-PFo 45.92288 90.27283 1.5 0 lake Stoy 
15 SE2 US-PFp 45.93652 90.26408 32 24.4 hardwood Oncley 
16 SE3 US-PFq 45.92715 90.24750 32 14.3 aspen Oncley 
17 SE4 US-PFr 45.92448 90.24745 3 0.3 wetland Oncley 
18 SE5 US-PFs 45.93808 90.23818 12 3.1 aspen Oncley 
19 SE6 US-PFt 45.91973 90.22883 32 21.6 pine Oncley 
20 WLEF US-PFa 45.94590 90.27230 396 n/a mixed Desai 
21 WCR US-WCr 45.80600 90.07980 30 24 hardwood Desai 
22 LOS US-Los 46.08270 89.97920 10 2 wetland Desai 
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Table S2. Instrumentation deployed at the CHEESEHEAD19 campaign by the NOAA Global 1256 
Monitoring Laboratory 1257 

Instrument Measurement Dates (2019) Resolution 

Central ISS Station 

Eppley Pyrgeometer ⇵ LW broadband hemispheric irradiance 06/29 - 10/22 1 min avg. 

Eppley Precision Spectral 
Pyranometer (PSP) 

⇵ SW broadband hemispheric irradiance 06/29 - 10/22 1 min avg. 

Shaded Eppley Black and White 
Pyranometer 

Diffuse hemispheric broadband SW irradiance 06/29 - 10/22 1 min avg. 

Eppley Normal Incidence 
Pyrheliometer (NIP) 

Direct normal broadband SW irradiance 06/29 - 10/22 1 min avg. 

Total Sky Imager (TSI) Images/movies of sky cover, fractional sky cover 07/05 - 10/22 15 sec 

Vaisala CL51 Ceilometer Cloud base height, boundary layer height 06/29 - 10/22 16 sec 

Multi Filter Rotating 
Shadowband Radiometer 
(MFRSR) 

↓ hemispheric total and diffuse spectral irradiance 
at 6 bands: 415, 500, 670, 868, 940, 1625 nm; 
retrievals of aerosol optical depth 

06/29 - 10/22 20 sec 

Multi Filter Radiometer (MFR) ↑ hemispheric total spectral irradiance at 6 bands: 
415, 500, 670, 868, 940, 1625 nm.  Spectral surface 
albedo and NDVI (with MFRSR). 

06/29 - 10/22 20 sec 

LICOR Quantum 190R Photosynthetically Active Radiation 06/29 - 10/22 1 min avg. 

Aerodyne Three-Waveband 
Spectrally-agile Technique 
(TWST) 

Cloud optical depth, spectral SW zenith radiance 
(350-1000 nm, ~2.5 nm resolution) 

09/20 - 10/22 1 sec 

Vaisala HMP60 Temperature and Relative Humidity 06/29 - 10/22 1 min avg. 

RM Young, Model 05103  Wind direction and speed at 10 m 06/29 - 10/22 1 min avg. 

Prentice and Lakeland Airports 

Eppley Pyrgeometer ↓ LW broadband hemispheric irradiance 06/28 - 10/23 1 min avg. 

Kipp & Zonen CMP11 
Pyranometer 

↓ SW broadband hemispheric irradiance 06/28 - 10/23 1 min avg. 

Delta-T SPN-1 Radiometer ↓ SW diffuse and total broadband hemispheric 
irradiance 

06/28 - 10/23 1 min avg. 

Vaisala HMP60 Temperature and Relative Humidity 06/28 - 10/23 1 min avg. 

Vaisala CL-51 Ceilometer Cloud Base Height (CBH)  06/28 - 10/23 16 sec  
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 1259 

Table S3. The dates, times, and flight patterns of the UWKA flights. 

Date 
Flight 

Number 
Takeoff 
(UTC) 

Landing 
(UTC) 

Entered 
Domain 
(UTC) 

Exited 
Domain (UTC) 

Flight 
Pattern 

7/9/19 RF01 13:57 16:47 14:06 16:16 WE2 
7/9/19 RF02 19:02 21:32 19:11 21:22 WE2 
7/11/19 RF03 14:10 17:00 14:22 16:36 WE1 
7/11/19 RF04 19:00 21:40 19:15 21:28 WE1 
7/12/19 RF05 13:40 16:45 13:49 16:06 WE2 
7/12/19 RF06 17:52 21:00 18:04 20:46 WE2 
7/13/19 RF07 14:05 16:52 14:22 16:32 SE2 
7/13/19 RF08 18:56 21:30 19:12 21:16 SW1 
8/20/19 RF09 13:40 16:23 13:51 16:12 SE1 
8/20/19 RF10 19:12 22:22 19:23 21:51 SE1 
8/21/19 RF11 13:54 16:50 14:08 16:36 SW1 
8/21/19 RF12 18:55 21:50 19:11 21:38 SW1 
8/22/19 RF13 13:57 17:15 14:11 16:55 SW2 
8/22/19 RF14 19:00 22:01 19:13 21:46 SW2 
8/23/19 RF15 13:57 16:48 14:07 16:38 WE2 
8/23/19 RF16 19:07 22:03 19:17 21:46 WE2 
9/24/19 RF17 13:37 17:00 13:53 16:24 SE1 
9/24/19 RF18 18:57 21:49 19:10 21:39 SE1 
9/25/19 RF19 14:20 17:22 14:41 17:09 SW1 
9/25/19 RF20 19:12 22:06 19:29 21:53 SW1 
9/26/19 RF21 13:52 16:46 14:05 16:35 SE1 
9/26/19 RF22 18:31 21:40 18:45 21:14 SE1 
9/28/19 RF23 14:14 17:30 14:37 17:17 WE1 
9/28/19 RF24 18:50 21:50 19:07 21:36 WE1 
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 1262 
Fig S2. Preliminary profiles of (a) H2O and (b) backscatter  measured by the ATMONSYS 1263 
lidar. These are complementary, collocated datasets with the HSRL, AERI, and MWR at 1264 
WLEF. The high resolution data (vertical resolution of 110 m and 7.5 m for H2O and 1265 
backscatter, respectively; 20 second temporal resolution for both) are capable of being 1266 
combined with collocated Doppler wind lidar data to calculate flux profiles. 1267 
 1268 
 1269 
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