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Abstract

Convective mixing in the lower free troposphere (LFT) and its response to climate change are at the heart of low-cloud feedbacks

in projections of future warming, but are challenging to diagnose from observations. The stable isotopic composition of water

vapor in the LFT is a sensitive recorder of shallow convective moistening, and can potentially provide independent constraints on

shallow convective processes. In-situ and remote sensing measurements from the southeast Pacific marine stratocumulus region

and an isotope-enabled general circulation model (GCM) are used along with Gaussian process regression (GPR) to explore

the utility of stable isotope measurements and simulations for improved estimates of shallow convective moistening tendencies

in marine stratocumulus settings. We train the GPR algorithm on conventional and isotopic fields from a GCM (LMDZ5B)

from the SE Pacific marine stratocumulus region and assess the algorithm on out-of-sample GCM output. The GPR trained

on isotopic fields yields better estimates of shallow convective moistening tendencies than GPR trained only on conventional

meteorological fields. Climate change is not well-captured if the GPR is trained only on the control climate, but performs

much better if the training data include samples from both cool and warm climates, and is also reasonably well-captured if the

GPR is only trained on the warm climate. The GPR algorithm is applied to isotopic and conventional measurements from the

SE Pacific and yields realistic estimates of shallow convective moistening tendencies. Linking machine learning with isotopic

simulations and measurements provides a unique and potentially useful framework for bridging GCMs and observations.

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Using Gaussian process regression and stable1

isotopologues of water vapor to estimate shallow2

convective moistening in the southeastern Pacific3

marine stratocumulus region4

Joseph Galewsky1, Camille Risi2, Hélène Brogniez35

1Department of Earth and Planetary Sciences, University of New Mexico6
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Key Points:9

• Gaussian process regression (GPR) trained with water vapor isotopic fields gives10
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provements over purely conventional training datasets.15
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Abstract16

Convective mixing in the lower free troposphere (LFT) and its response to climate change17

are at the heart of low-cloud feedbacks and associated uncertainties in projections of fu-18

ture warming, but are challenging to diagnose from observations. The stable isotopic com-19

position of water vapor in the LFT is a sensitive recorder of shallow convective moist-20

ening, and can potentially provide independent constraints on shallow convective pro-21

cesses. Here, in-situ and remote sensing measurements from the southeast Pacific ma-22

rine stratocumulus region and an isotope-enabled general circulation model (GCM) are23

used along with Gaussian process regression (GPR) to explore the utility of using sta-24

ble isotope measurements and simulations for improved estimates of shallow convective25

moistening tendencies in marine stratocumulus settings. We train the GPR algorithm26

on both conventional and isotopic fields from a GCM (LMDZ5B) from the SE Pacific27

marine stratocumulus region and assess the algorithm on out-of-sample GCM output.28

The GPR trained on isotopic fields yields better estimates of shallow convective moist-29

ening tendencies than GPR trained only on conventional meteorological fields. As in other30

studies, climate change is not well-captured if the GPR is trained only on the control31

climate, but performs much better if the training data include samples from both cool32

and warm climates, and is also reasonably well-captured if the GPR is only trained on33

the warm climate. The GPR algorithm is applied to isotopic and conventional measure-34

ments from the SE Pacific and yields realistic estimates of shallow convective moisten-35

ing tendencies. Linking machine learning with isotopic simulations and measurements36

provides a unique and potentially useful framework for bridging GCMs and observations.37

1 Plain Language Summary38

Understanding the response of low clouds to climate change is at the heart of im-39

proved constraints on future warming. Climate models show a wide range of responses,40

but generally show that a reduction in low-cloud cover can exacerbate greenhouse warm-41

ing. Understanding the processes that impact these low-cloud feedbacks in climate mod-42

els is important, but linking the insights from modeling studies to observations is prob-43

lematic because the governing processes are very difficult to measure in the atmosphere.44

Here we show how a new technique for modeling the stable isotopic composition of wa-45

ter vapor, which can be readily measured in the atmosphere, may yield a reliable proxy46

for the convective processes that are thought to govern low-cloud feedbacks.47
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2 Introduction48

The potential for large changes in low-cloud fractions (LCF) in marine low-cloud49

regions as the climate warms has been identified as one of the leading uncertainties in50

climate change projections (Sherwood et al., 2014; Bony & Dufresne, 2005; Bony et al.,51

2004). The strong inversion at the top of the MBL in these regions limits mixing between52

the MBL and the lower free troposphere (LFT), leading to a more humid and a cloudier53

MBL. A reduction in the strength of the inversion is associated with enhanced export54

of water vapor from the MBL, a drier MBL, a more humid LFT, and reduced cloud cover55

(Brient et al., 2016; Zhang et al., 2013). These effects are modulated by variations in SST.56

In the absence of a change in inversion strength, an increase in SST may lead to a drier57

and less cloudy MBL through increased latent heat fluxes and enhanced buoyancy-driven58

mixing with the free troposphere (Rieck et al., 2012; Chung & Teixeira, 2012). An in-59

crease in SST may lead to a larger humidity contrast between the MBL and the LFT60

as the MBL moistens at a higher rate than the LFT, leading to reduced LCF as the rel-61

atively drier air is entrained into the MBL (Dussen et al., 2015). The mixing processes62

that govern much of the variability of LCF in marine low-cloud regions can be diagnosed63

from climate model output and can be inferred from observations, but such inferences64

remain challenging with conventional meteorological datasets (Lamer et al., 2015; Vo-65

gel et al., 2020). Thus, there is an ongoing need for innovative and complementary tech-66

niques for estimating mixing processes within the LFT.67

Stable isotopes in atmospheric water vapor carry a fingerprint of the history of phase68

changes and mixing between airmasses (Galewsky et al., 2016) and in principle could be69

useful for improved inference of convective mixing. Recent studies (Galewsky, 2018b, 2018a)70

have taken advantage of in situ measurements of water vapor mixing ratio and isotopic71

composition from the lower and middle free troposphere to develop new methods for di-72

agnosing mixing between the MBL and the LFT. The studies of Galewsky (2018b, 2018a)73

used an inverse modeling approach based on genetic algorithms (Galewsky & Rabanus,74

2016) to partition the joint distribution of total mixing ratio (q) and δD into a dry, isotopically-75

depleted airmass associated with a last-saturation temperature in the upper troposphere76

that is mixed with a moist, isotopically-enriched airmass, interpreted to represent wa-77

ter vapor transported from the MBL into the LFT. While those studies yielded results78

that are internally consistent, they relied on nonunique interpretations of isotopic data79
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and did not leverage additional observational datasets that may provide additional con-80

straints on mixing estimates.81

In recent years, there has been substantial interest in the use of machine learning82

(ML) algorithms in climate models, primarily within the context of improving physics83

parameterizations (O’Gorman & Dwyer, 2018; Gentine et al., 2018; Brenowitz & Brether-84

ton, 2018), but ML approaches have also been used for building improved understand-85

ing of underlying physical processes in the climate system (Ukkonen & Mäkelä, 2019; Mon-86

teleoni et al., 2013). Supervised learning is a form of ML in which an algorithm is trained87

on a suite of example input-output pairs to generate a function that can be used for map-88

ping new inputs to outputs of interest. ML algorithms can be trained on different sets89

of inputs, also called features, and the resulting algorithm can be tested on out-of-sample90

data for evaluation. In this way, the relative importance of different features for predict-91

ing outputs can be quantified. In this study, we apply ML techniques to measurements92

and simulations of water vapor isotopic composition and conventional meteorological datasets93

from the SE Pacific marine stratocumulus region to estimate shallow convective moist-94

ening of the LFT.95

Using observations from the SE Pacific, we will explore the links between in-situ96

isotopic measurements from the Chajnantor Plateau in northern Chile and the suite of97

features that will be analyzed in the ML component of the study and use an isotope-enabled98

climate model (LMDZ5B) to explicitly determine the relationships between these fea-99

tures and the shallow convective moistening tendencies output from the model. We then100

train a supervised ML algorithm with conventional as well as isotopic fields from LMDZ5B101

simulations to determine the utility of isotopic fields for estimating shallow convective102

moistening. The ML will be trained on 3 years of model output from an Atmospheric103

Model Intercomparison Project (AMIP) simulation and tested on 2 years of out-of-sample104

AMIP output. An ongoing issue in the application of ML to climate modeling is the gen-105

eralizability of a trained ML algorithm to different climates. We explore this issue in the106

context of stable isotopes by extending the analysis to include preindustrial (PI) and quadru-107

pled CO2 (4X) simulations. We will demonstrate that stable isotopes in water vapor do108

indeed offer important benefits for estimating shallow convective moistening. We then109

apply the ML algorithm that was trained on GCM output to the observations from the110

SE Pacific to generate observationally-constrained estimates of shallow convective moist-111

ening tendencies. The ability to estimate these tendencies from isotopic and other ob-112
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servations may provide a useful link between observations and models for evaluating the113

processes governing marine low-cloud variability.114

3 Methods115

A comprehensive review of the analysis of stable isotopes in atmospheric water va-116

por is provided in Galewsky et al. (2016). We use in-situ measurements of water vapor117

mixing ratio and isotopic composition acquired at an elevation of 5 km at the Atacama118

Large Millimeter (ALMA) Observatory, on the Chajnantor Plateau in northern Chile119

(Figure 1), between 13 July, 2014, and 12 August, 2017 using a Picarro L2130 cavity ring-120

down spectroscopy (CRDS) analyzer. Galewsky (2018a) showed that the in-situ mea-121

surements at this site are coherently linked to offshore inversion strength and cloud cover.122

We estimate the 1-σ uncertainties in the measurements reported here to be 2.5h in δD.123

The humidity measurements from the L2130 were compared to other meteorological in-124

struments on the Chajnantor Plateau (not shown) and no systematic bias in humidity125

measurements was observed. Winds at Chajnantor are predominantly from the west-northwest,126

but about 10% of the data were associated with easterly winds, primarily during the South127

American monsoon. Such periods are not directly influenced by the processes over the128

southeast Pacific that are the focus of the current study and are omitted from this anal-129

ysis. A full description of this dataset is presented in Galewsky (2018a) and the citations130

therein.131

As described in previous studies (Galewsky, 2018a, 2018b) the difference, in per-132

mil, between an isotopic measurement at a given mixing ratio and the δ-value of the ide-133

alized Rayleigh distillation process to the same mixing ratio is a useful metric that can134

be interpreted in terms of moistening processes. This quantity will be referred to here135

as ∆δD, and its utility in the estimation of shallow convective moistening tendencies will136

be quantitatively evaluated here. This metric is similar to the δDq used by Bailey et al.137

(2017). A high value of ∆δD is usually associated with a small degree of moistening of138

a dry, isotopically-depleted airmass by a moist, isotopically-enriched airmass, while low139

values of ∆δD are associated with greater moistening. For the observations, ∆δD is com-140

puted using the temperature profile from the daily soundings for the Rayleigh distilla-141

tion calculation, and for the GCM output, it is computed using daily average temper-142

ature profiles over the region shown in Figure 1.143
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Following Galewsky (2018b) and Galewsky (2018a), the strength of the inversion144

was estimated in terms of the Estimated Inversion Strength (EIS, (Wood & Bretherton,145

2006)) which is given by: EIS = LTS − Γ850
m (z700 − LCL), where LTS is the lower-146

tropospheric stability (defined as LTS = θ700hPa − θsurface), Γ is a moist adiabat at147

850 hPa, z700 is the height of the 700 hPa surface, and the LCL is the lifting condensa-148

tion level. EIS was computed from the daily soundings (noon UTC) at Antofagasta us-149

ing the method of Wood and Bretherton (2006). The time series of EIS was interpolated150

to coincide with the 12-hour averaged isotopic data from Chajnantor. Daily mean cloud151

fraction was retrieved from the Aqua Atmosphere Level 3 Daily Joint Aerosol/Water Va-152

por/Cloud product (Platnick et al., 2003) from the region over the SE Pacific shown in153

Figure 1 and are compared with daily averages of EIS. Daily SST data from the region154

is obtained from the NOAA High Resolution Blended Analysis of Daily SST (Reynolds155

et al., 2007).156

Relative humidity (RH) profiles are derived from the SAPHIR sounder on the Megha-157

Tropiques satellite (Brogniez et al., 2016; Sivira et al., 2015). The satellite samples a given158

point between 3 and 5 times daily, and here we use daily averages of the operational Level159

2 RH product gridded at a 1◦×1◦ resolution, in which we retain data with at least 95%160

valid RH values within each gridbox. Atmospheric RH is determined for multiple pres-161

sure layers, and here we focus on the RH in the 850 hPa to 1000 hPa layer, the 700 hPa162

to 500 hPa layer, and the difference between the two layers (∆RH). The SAPHIR RH163

is useful as an independent measure of humidity because the retrieval does not rely on164

a priori assumptions about temperature profiles or integrated water vapor content.165

For the AMIP simulations, we use nudged 2007-2011 simulations computed by LMDZ5B166

(Hourdin et al., 2013), the most recent isotopically-enabled version of this GCM. Sta-167

ble isotopologues of water are implemented in this version in a way similar to LMDZ4168

(Risi et al., 2010) and other state-of-the-art isotope-enabled GCMs. LMDZ5B is run here169

with 96 points in longitude (3.75◦ resolution at Equator), 72 points in latitude (2.5◦ res-170

olution) and 39 vertical levels (over the oceans, the lowest 5 levels span the surface to171

500m). LMDZ5B is forced by monthly-mean sea surface conditions (SST and sea ice)172

following the AMIP protocol (Gates, 1992). Horizontal winds are nudged towards ERA-173

40 reanalyses (Uppala et al., 2005) to ensure a more realistic simulation. We use 5 years174

(2007-2011) of a simulation that was initialized in 1977 (Risi et al., 2010). For the PI175

simulations, the sea surface conditions come from the pre-industrial simulation run by176
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the IPSL-CM5A-MR coupled model (Dufresne et al., 2013) as part of the CMIP5 exer-177

cise (Taylor et al., 2012). The last 30 years of the coupled simulation is used to calcu-178

late multi-year-averages of monthly-mean sea surface conditions. LMDZ5B is run with179

atmospheric forcing conditions similar to the pre-industrial simulation imposed by CMIP5.180

For example, the CO2 concentration is 280ppm. The simulation is initialized from a pre-181

viously well-equilibrated simulation for present-day (Risi et al., 2010) and run for 15 years.182

The first 10 years of simulation are discarded for spin-up and the last 5 years are ana-183

lyzed. For the 4xCO2 simulation, LMDZ5B is forced by sea surface conditions coming184

from the last 30 years of an abrupt 4x CO2 simulation with IPSL-CM5A-MR as part185

of the CMIP5 exercise. Atmospheric conditions are the same as in the PI simulation ex-186

cept that CO2 concentrations are quadrupled.187

In this study, the GCM output is averaged over the SE Pacific marine stratocu-188

mulus region as shown in Figure 1. The averaging region covers the highest average sim-189

ulated LCF in the SE Pacific and exhibits large day-to-day variability, making it suit-190

able for analyzing the processes governing variability in LCF. Experiments with differ-191

ent averaging regions (not shown) yielded very similar results, although other regions192

with less day-to-day variability in cloud fraction were found to yield less realistic results193

when applied to the observations from Chajnantor. We focus on the SE Pacific region194

because of the opportunity to use the in-situ measurements from Chajnantor. Future195

studies will extend this analysis to other marine low-cloud regions using satellite remote196

sensing of water vapor isotopologues.197

Within LMDZ, there is very little difference between the low-cloud fraction and the198

total cloud fraction in the averaging region, and GPR models that were trained on the199

total cloud fraction yielded nearly identical results to the models trained on the low-cloud200

fractions. In observations from Aqua, 95% of the retrieved cloud-top pressures are above201

650 hPa, and more than 70% are above 800 hPa. Given the dominance of the total cloud202

fraction by low clouds in the SE Pacific marine stratocumulus region, comparisons be-203

tween GCM output and observations in this application are relatively straightforward.204

LMDZ5B has several important advances in model physics over earlier versions.205

Most relevant for this study is that LMDZ5B has separate parameterizations for shal-206

low convection, which is handled by the thermal plume model of Rio and Hourdin (2008),207

and deep convection, which is handled by the scheme of Emanuel (1991). In addition,208

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

LMDZ5B implemented for the first time a parameterization of cold pools generated be-209

low cumulonimbus whose spreading can trigger additional convection (Grandpeix & Lafore,210

2010). LMDZ5B has a self-described ’kludge’ (Hourdin et al., 2013, 2019, 2020), impor-211

tant in marine low-cloud regions, in which the thermal plume model is turned off if there212

is a sharp temperature inversion at the top of the boundary layer. In practice, shallow213

convective moistening in LMDZ5B may be effected by the thermal plume model, the Emanuel214

convection scheme, the cold pool scheme, or by a combination of the three, depending215

on the meteorological conditions. Here, we interpret the sum of these three moistening216

tendencies at the 830 hPa level as a total shallow convective moistening tendency.217

The machine learning algorithm used here is a Gaussian process regression model218

(GPR, Rasmussen and Williams (2006)). GPR models are nonparametric, kernel-based,219

probabilistic supervised learning models. While there are many similar ML algorithms,220

we chose the GPR because it yielded good results in terms of RMS errors and good per-221

formance in terms of computational time. We explore a range of input features, includ-222

ing δD, ∆δD, EIS, SST, mixing ratio, cloud fractions, and relative humidity, and quan-223

titatively evaluate the resulting GPR models against out-of-sample GCM output. We224

seek parsimonious models, which are models that make accurate predictions with as few225

predictor variables as possible.226

4 Results227

4.1 In-situ measurements from Chajnantor and remote sensing of cloud228

and humidity229

Previous studies have shown how EIS and SST control cloud fractions in marine230

stratocumulus regions (Qu et al., 2014), and these parameters are also closely associated231

with stable isotopes and mixing ratios in the LFT. Figure 2A and B shows the the re-232

lationships between mixing ratio and δD from Chajnantor and how they relate to inver-233

sion strength (Fig. 2A) and SST (Fig. 2B). There is an inverse relationship of EIS with234

mixing ratio and δD, and a positive relationship of SST with mixing ratio and δD. Galewsky235

(2018a) previously interpreted this dataset in terms of EIS, but did not consider SST.236

The smallest cloud fractions are associated with high δD values and low values of ∆δD237

(Figure 2C) while large low-cloud fractions are associated with a broad range of δD val-238

ues (−400h to −100h) and high ∆δD. The lowest decile of cloud fraction is 0.57, and239
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the range of δD values corresponding to cloud fractions below 0.57 is 251h, while the240

total range of δD measurements from Chajnantor is 367h. The δD measurements cor-241

responding to the lowest decile of cloud fractions thus span 69% of the total range of δD242

measurements from Chajnantor. The relationships between cloud fraction and the to-243

tal water vapor mixing ratio are more scattered (Figure 2D) than the relationships be-244

tween cloud fraction and δD . While large cloud fractions and high ∆δD are consistently245

associated with low mixing ratios, the mixing ratios corresponding to the lowest decile246

of cloud fraction spans 85% of the total range of mixing ratios measured at Chajnan-247

tor.248

Figure 3 shows the relationships between δD, cloud fractions, and SAPHIR RH in249

the MBL (850 hPa to 1000 hPa), aloft (500 hPa - 700 hPa), and the RH gradient (the250

difference between the RH at those two levels). High δD in the LFT is associated with251

the lowest MBL RH and the smallest cloud fractions (Fig. 3A). For the lowest decile of252

cloud fractions, the MBL RH averages 80%, while for the highest decile of cloud frac-253

tions it averages 88%. Aloft (Fig. 3B), the record is more scattered, with high δD and254

small cloud fractions associated with slightly elevated RH (average RH of 17% for the255

lowest decile of cloud fractions and RH of 14% for the highest decile of cloud fractions).256

The difference between the RH in the MBL and the RH aloft (∆RH) is shown in (Fig.257

3C). For the lowest decile of cloud fractions, ∆RH=63% while for the highest decile, ∆RH=74%.258

The observational data are consistent with the transport of moist, isotopically-enriched259

air from the MBL into the LFT when EIS is low and SST is high. Under these condi-260

tions, the RH in the MBL is reduced while the RH aloft increases, and the cloudy layer,261

deprived of water vapor, experiences reduced cloud fractions. We hypothesize that shal-262

low convective moistening of the LFT is at the heart of these relationships, and that the263

high water vapor δD values measured under low EIS/high SST conditions reflect the ef-264

fects of shallow convection in transporting isotopically enriched water vapor from the MBL265

into the LFT.266

4.2 GCM Simulations267

Figure 4 shows some of the main results from five-year (2007-2011) averages of the268

LMDZ5B AMIP simulation at 830 hPa for the marine stratocumulus region shown in269

Figure 1. The maximum cloud fraction is within the boundary layer, typically at around270
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950 hPa (not shown), and the top of the inversion, when present, is at around 900 hPa.271

Thus, our analysis at 830 hPa is in the lower free troposphere, above the MBL. Figures272

4A and B show how the simulated 830 hPa mixing ratios and δD respond to EIS and273

SST. As expected, there is to first-order an inverse relationship of EIS with mixing ra-274

tio and δD (Fig. 4A) and a positive relationship between these fields and SST (Fig. 4B).275

There are two maxima in the water vapor δD values. One is associated with the high-276

est mixing ratios, lowest EIS, and highest SST and occurs during summer, while the other277

maximum is associated with drier conditions, higher EIS, and lower SST, and occurs dur-278

ing winter. The maxima likely reflect the reorganization of water vapor transport path-279

ways between the summer monsoon and the more zonal wintertime circulation (Galewsky280

& Samuels-Crow, 2015). The smallest low-cloud fractions are associated with a narrow281

band of high δD and low ∆δD (Fig. 4C), while the smallest low-cloud fractions are as-282

sociated with a more scattered band of elevated mixing ratio (Fig. 4D).283

The range of relative humidity in the lowest model level is narrow (Fig. 5A), but284

the smallest cloud fractions are associated with lower RH and the highest δD values. Aloft,285

there is much greater range (Fig. 5B) in RH, with a clear relationship between larger286

830 hPa RH, larger δD values, and smaller cloud fractions. Finally, a reduction (or van-287

ishing) of the difference in RH between the two levels is clearly associated with larger288

δD and smaller cloud fractions.289

Thus far, the relationships shown from the GCM are similar to, if much less scat-290

tered than, the same sets of relationships we saw from the observations. A link between291

these relationships and the transport of water vapor from the MBL into the LTS is cer-292

tainly in line with our expectations, but now, using the GCM output, we can directly293

investigate this process by analyzing the shallow convective moistening tendencies. Scat-294

terplots of the relationships between δD and shallow convective moistening tendencies295

(Figure 6A) are skewed, with the highest δ-values associated with low RH gradients and296

high moistening tendencies. In contrast, the relationships between mixing ratio and shal-297

low convective moistening tendencies exhibit larger scatter, with maxima in dq/dt oc-298

curring at intermediate mixing ratios, further illustrating that δD responds differently299

to shallow convective moistening than mixing ratio. Along the same lines, Figure 7A shows300

how the smallest low-cloud fractions are associated with the highest δD and dq/dt val-301

ues, with more scatter in the relationships between dq/dt and cloud fraction with mix-302
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ing ratio (Fig. 7B). Small low-cloud fractions are also associated with elevated values303

of dq/dt and small values of ∆δD (Figure 7C).304

The suite of relationships described here are consistent with the nonlinear mixing305

between dry, isotopically depleted air masses and moist, isotopically enriched air masses306

(Galewsky and Hurley (2010), Bailey et al. (2017), and see Figure 1 in Galewsky (2018b)).307

A dry, isotopically depleted airmass lowers the mixing ratio of a moist airmass more than308

it isotopically depletes it, which means that the isotopic composition of a moisture source309

derived from the MBL will be largely preserved even as that source mixes with dry, isotopically-310

depleted air from the LFT. It is this preservation of the isotopic composition of MBL311

water vapor in the LFT that allows us to quantitatively diagnose moistening from iso-312

topic observations in the LFT.313

4.3 GPR modeling of AMIP simulation314

In the previous sections, we demonstrated how water vapor isotopic composition315

in the LFT over the SE Pacific marine stratocumulus region responds to shallow con-316

vective moistening tendencies. Now we use a machine learning technique to gain further317

insight into the potential utility of water vapor isotopic composition for estimating shal-318

low convective moistening tendencies. We train the GPR algorithm using three years of319

the AMIP simulation (2007-2009) and use the remaining two years (2010-2011) for out-320

of-sample evaluation of the algorithm.321

A key step in supervised learning algorithms is the selection of the input data (fea-322

tures). While there is wide latitude in the selection of features, we focused on features323

that readily translate into field or remote sensing observations. We focused on different324

combinations of EIS, SST, LCF, δD, ∆δD, q, and RH. The outputs are the shallow con-325

vective moistening tendencies at 830 hPa. The training dataset was the time series of326

GCM output averaged over the SE Pacific marine stratocumulus region shown in Fig-327

ure 1.328

For cross-validation, the training data was divided into 5 disjoint folds. For each329

fold, the model was trained on out-of-fold data and was assessed using in-fold data. The330

average test error over all of the folds was used to assess the model. Once the best-fitting331

model was determined using the 2007-2009 GCM output, it was applied to the output332

from 2010-2011 for the out-of-sample results presented in Table 1.333
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The results shown in Table 1 show that there is remarkable predictive value in the334

use of isotopic fields. The combination of EIS, δD, ∆δD, and q (the EIS ISO model) pro-335

vide very nearly the same quality of fit as those same fields supplemented with relative336

humidity at the surface and at 830 hPa (RHsurf , RHLFT , respectively), SST, and LCF337

(the FULL ISO model). The best-fitting model that uses only non-isotopic fields (EIS,338

RHsurf , RHLFT , q, SST, LCF; the NO ISO model) is less parsimonious than the EIS ISO339

model and has metrics that are less favorable than most of the models that use isotopic340

fields. Figure 8 shows scatterplots of the estimates of 830 hPa dq/dt from (A) the EIS ISO341

model and (B) the NO ISO model and (C) the FULL ISO models compared to the GCM342

output. The slope of the best-fitting line in EIS ISO is 0.9, while the slopes of the best-343

fitting lines in NO ISO and FULL ISO are 0.70 and 0.76, respectively.344

The time series of the 830 hPa shallow convective moistening tendency from the345

GCM is superimposed on the time series derived from the FULL ISO GPR model in Fig-346

ure 9 for the out-of-sample years 2010-2011. The GPR model clearly captures the sea-347

sonal variability in dq/dt and matches most of the variability on shorter time-scales as348

well. The GPR model also captures the main relationships between dq/dt, EIS, δD, ∆RH,349

δD, q, and cloud fraction (not shown)350

4.4 Generalization to Different Climates351

An important question in ML studies of climate models is the extent to which the352

ML algorithm trained in one climate works in another climate, either warmer or cooler.353

We first explore how well the GPR model trained on AMIP output predicts the shallow354

convective dq/dt in the LMDZ5B preindustrial simulation (PI) and the quadrupled CO2355

simulations (4X). In neither case is the performance very good (see Table 2 for details),356

although the FULL ISO model applied to the PI simulation yields the best performance357

with RMS error of 0.347 and an R2 of 0.686. The AMIP-trained models are especially358

poor at estimating the shallow convective dq/dt for the quadrupled CO2 simulation, with359

the EIS ISO simulation coming in with a remarkably low R2 of 0.002, and the other re-360

sults displaying very large negative biases in the estimates of dq/dt.361

This result is in line with O’Gorman and Dwyer (2018), who showed that ML al-362

gorithms trained in one climate may perform reasonably well in a cooler climate, but quite363

poorly in a warmer climate. Their study showed that a given latitude within a cooler364
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climate may be predicted by a higher latitude within a warmer climate, but not vice-365

versa. They also showed that training an ML algorithm on features from multiple cli-366

mates can yield better results than training on a single climate state. We trained the GPR367

algorithms on 3 years each from the PI and 4X CO2 simulations, and then applied it to368

the two out-of-sample years for each, as well as the 2010-2011 AMIP simulations. These369

results are summarized in Table 2. The models trained only on the quadrupled CO2 sim-370

ulation do better in the cooler climates (AMIP and PI) than the AMIP-trained mod-371

els did on the 4X CO2 simulation, but in neither case are the results very good. The mod-372

els trained on the 4X simulations do very well for the out-of-sample years in the 4X sim-373

ulations, with the FULL ISO model performing better than either EIS ISO or NO ISO374

models, indicating the value of water vapor δD in the LFT for estimating shallow con-375

vective moistening in the warmer climate. The blended models that were trained on both376

PI and 4X simulations do very well on the out-of-sample PI and 4X years, with the FULL ISO377

model yielding the best results. The blended models are less successful on the AMIP cli-378

mate, probably because the PI and 4X simulations share systematic SST biases that are379

not present in AMIP, but nevertheless yield better results than the models trained ex-380

clusively on the 4X simulation.381

When evaluating these climate change simulations, it is the differences in dq/dt be-382

tween PI and 4X that are of particular importance, rather than the absolute values for383

either climate state. The average difference in dq/dt as simulated by the GCM (4X-PI)384

is -0.166 g/kg/day, and the average difference as simulated by the blended FULL ISO385

GPR is -0.150 g/kg/day, or a difference of about 10%. Given the complexity of the phys-386

ical processes that are involved, these results suggest that the use of isotopic fields in con-387

junction with machine learning algorithms may be a promising avenue for evaluating changes388

in shallow convective moistening in a changing climate.389

4.5 Application to Observations390

The GPR models described above were broadly successful in reproducing GCM shal-391

low convective moistening tendencies in the lower free troposphere given a relatively sim-392

ple input dataset of easily measurable quantities. These quantities are all readily avail-393

able from the Chajnantor dataset described earlier, suggesting the possibility of using394

a GCM-trained algorithm to estimate dq/dt from observations. Given the challenges of395

estimating mixing process from observations (Lamer et al., 2015; Vogel et al., 2020), an396
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isotopically-based method for estimating moistening tendencies may be useful as a com-397

plementary approach to other methods.398

We computed dq/dt using the FULL ISO model, and the time series is shown in399

Figure 10. The estimated dq/dt range from zero up to just over 1.5 g/kg/day and shows400

the expected seasonal cycle in dq/dt, with higher dq/dt during Austral summer. The401

1−σ uncertainties vary with the estimated dq/dt, ranging from around 0.6 g/kg/day402

for the highest values of dq/dt, and up to more than 1 g/kg/day for the lowest values403

of dq/dt. It is possible that larger training datasets may sample a broader range of con-404

ditions and could lower the estimated uncertainties, and future studies will focus on how405

to reduce these uncertainties.406

Figure 11 shows the relationships between measured δD, mixing ratio, ∆δD and407

cloud fractions with the estimated dq/dt from the GPR. The GPR generates relation-408

ships that are consistent with the GCM results, with higher dq/dt associated with higher409

δD and smaller cloud fractions (Fig. 11A), and larger scatter between dq/dt and mix-410

ing ratios (Fig. 11B). The smallest cloud fractions are associated with higher dq/dt than411

the largest cloud fractions, and area associated with smaller ∆δD (Fig. 11C). Similar412

results are obtained for the relationships between dq/dt, δD, and RH (Fig. 12), with high413

values of dq/dt associated with small values of ∆RH.414

Finally, we can use the output of this GPR model to estimate how EIS modulates415

shallow convective moistening based on the Chajnantor dataset (Figure 13). While there416

is quite a bit of scatter in the results, there is a negative relationship between EIS and417

dq/dt and between dq/dt and cloud fraction. For the lowest quartile of EIS, correspond-418

ing to EIS below 10.5K, the GPR estimates the average shallow convective dq/dt to be419

0.58 g/kg/day, while for the highest quartile of EIS, corresponding to EIS above 14.5K,420

the GPR estimates shallow convective dq/dt to be 0.29 g/kg/day.421

5 Discussion422

There have been a number of studies that have attempted to quantify convective423

moistening tendencies, including indirect approaches using models (Hohenegger & Stevens,424

2013), sounding networks (Schumacher et al., 2008), or satellites (Masunaga, 2013). Bellenger425

et al. (2015) used a variety of observations collected during the Cooperative Indian Ocean426

Experiment on Intraseasonal Variability/ Dynamics of the MJO (CINDY/DYNAMO)427
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campaign to directly estimate shallow convective moistening tendencies across a range428

of time scales. On time scales of a few minutes, they identified moistening tendencies of429

10-20 g/kg/day, while on time scales of several hours, the moistening tendencies were430

1-4 g/kg/day. Our estimates of shallow convective moistening tendencies based on the431

isotopic observations from Chajnantor are 0-1.5 g/kg/day, which are consistent with the432

longer time-scales of Bellenger et al. (2015) and the studies cited therein. Furthermore,433

the approach used by Bellenger et al. (2015) could potentially be complemented by iso-434

topic measurements to build a machine learning algorithm for estimating dq/dt based435

entirely on observations.436

One of the most striking outcomes of this analysis is the extent to which the use437

of isotopic fields improves GPR estimates of dq/dt. There has been a vigorous debate438

in recent years about the utility of isotopic measurements for providing additional in-439

formation about the atmospheric hydrologic cycle beyond measurements of total mix-440

ing ratio (Risi et al., 2019; Duan et al., 2018), and the present analysis demonstrates the441

value of such measurements for estimating shallow convective moistening in a marine stra-442

tocumulus setting. The application of the GPR model to observations yielded physically443

consistent results, but any biases in the GCM’s relationship between convective moist-444

ening and the input variables will be mapped onto any GCM-trained algorithm for es-445

timating dq/dt from observations. In principle, there should be no problem extending446

this analysis to other marine low-cloud regions, and one could potentially train a GPR447

with the model output from all marine low-cloud regions. Remote sensing datasets of448

water vapor isotopic composition could provide the necessary observational inputs, but449

the uncertainties in remote sensing datasets are larger than the in-situ measurements used450

here, and the suitability of such datasets for this application will require further anal-451

ysis that is well beyond the scope of the present study. It would also be interesting to452

apply this isotope-enabled ML approach to output from an isotope-enabled cloud-resolving453

model or large-eddy simulations of marine stratocumulus clouds, as this is the approach454

used in studies seeking to improve convective parameterizations (O’Gorman & Dwyer,455

2018; Gentine et al., 2018). The use of isotopic measurements and simulations with ML456

techniques may provide an avenue for improved ML-based parameterizations of shallow457

convection.458

The studies of Galewsky (2018b, 2018a) used an inverse modeling approach to par-459

tition the joint distribution of mixing ratio and isotopic composition into two reservoirs,460
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a dry, isotopically-depleted airmass associated with a last-saturation temperature in the461

upper troposphere, and a moist, isotopically-enriched airmass associated with an MBL462

moistening source. This technique provided internally consistent results that were sta-463

tistically indistinguishable from the observations, but extensive testing of this framework464

with GCM output (not shown) failed to yield results that consistently scaled with con-465

vective moistening tendencies in out-of-sample testing. The processes governing the joint466

distribution of mixing ratio and isotopic composition are highly non-unique, and the ad-467

ditional constraints used here with the GPR algorithm yielded much more reliable re-468

sults.469

Finally, the model used here, LMDZ5B, does indeed show expected relationships470

between changes in EIS, LCF, and lower-tropospheric moistening, but we must note that471

this response is partially hard-wired into the model. As outlined by Hourdin et al. (2013),472

this version of the model is set to turn off the thermal plume model if there is a sharp473

temperature inversion at the top of the planetary boundary layer, although shallow con-474

vective moistening may still be effected by the Emanuel convection and cold pool wake475

schemes even when the thermal plume model is deactivated. It remains to be seen if a476

model with free-running shallow convection would yield similar results. We will be able477

to test this when an isotope-enabled version of LMDZ6 is available (Hourdin et al., 2019,478

2020).479

6 Conclusions480

We have investigated how a GPR algorithm applied to shallow convective moist-481

ening tendencies in the SE Pacific marine stratocumulus region behaves when trained482

with the stable isotopic composition of water vapor in addition to more routine mete-483

orological fields. Encouragingly, the use of isotopic fields was found to lead to parsimo-484

nious, robust, and accurate estimates of shallow convective moistening tendencies in AMIP485

simulations with better metrics than GPR algorithms trained without the isotopic fields.486

Climate change was accurately simulated only when training data from both a cool and487

warm climate were used. When applied to isotopic and conventional measurements from488

the SE Pacific region, the GPR trained on the AMIP simulations yielded physically re-489

alistic estimates of shallow convective moistening tendencies that showed the expected490

inverse relationship with EIS.491
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The setting we have used here is restricted to the SE Pacific and to a relatively coarse492

GCM with conventional convective parameterizations. It would be interesting to extend493

this study to include training of the GPR across other marine stratocumulus settings,494

possibly using satellite remote sensing of isotopic fields as part of the training dataset.495

It would also be interesting to apply similar machine learning approaches to simulations496

of resolved convection in cloud-resolving models or large-eddy simulations. When com-497

bined with intensive isotopic and conventional measurements, such as were obtained in498

the EUREC4A field campaign (Bony et al., 2017), such an approach may yield useful,499

independent constraints on shallow convection and, ultimately, better understanding of500

low-cloud feedbacks.501
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Features RMSE Adjusted R2 R

EIS+q 0.486 0.265 0.52

EIS 0.477 0.292 0.54

δD+q 0.459 0.346 0.59

EIS+δD 0.426 0.435 0.66

EIS+δD+∆δD 0.426 0.424 0.66

δD+∆δD 0.42 0.452 0.68

EIS+δD+q 0.412 0.471 0.69

EIS+rhsurf+rhft+q+SST+LCF (NO ISO Model) 0.31 0.701 0.84

EIS+rhsurf+δD+∆δD+q 0.301 0.719 0.85

EIS+SST+δD+∆δD+q 0.299 0.722 0.85

EIS+rhsurf+rhft+δD+∆δD+q+LCF 0.297 0.726 0.86

EIS+rhsurf+rhft+δD+∆δD+q 0.293 0.733 0.86

EIS+rhft+δD+∆δD+q 0.29 0.739 0.86

δD+q+∆δD 0.284 0.749 0.87

EIS+LCF+δD+∆δD+q 0.282 0.752 0.87

EIS+rhsurf+rhft+δD+∆δD+q+SST 0.27 0.772 0.88

EIS+δD+∆δD+q (EIS ISO Model) 0.267 0.778 0.88

EIS+rhsurf+rhft+δD+∆δD+q+SST+LCF (FULL ISO Model) 0.263 0.784 0.89

Table 1. Metrics for GPR models applied to the estimation of 830 hPa convective moistening

tendencies for out-of-sample GCM output from 2010-2011, sorted by RMS error. Each model was

trained on output from 2007-2009 with the features indicated. q is the mixing ratio, ∆δD the

difference between the δD at a given mixing ratio and Rayleigh distillation to the same mixing

ratio, rhsurf is the relative humidity in the lowest model level, rhft is the relative humidity in

the lower free troposphere at 830 hPa, LCF is the low-cloud fraction. NO ISO, EIS ISO, and

FULL ISO models indicated.
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Model Training Set Test Set RMSE ADJ Rˆ2

EIS ISO AMIP PI 0.405 0.571

NO ISO AMIP PI 0.392 0.599

FULL ISO AMIP PI 0.347 0.686

EIS ISO AMIP 4X 0.591 0.002

NO ISO AMIP 4X 0.412 0.516

FULL ISO AMIP 4X 0.413 0.513

EIS ISO 4X AMIP 0.424 0.439

NO ISO 4X AMIP 0.411 0.475

FULL ISO 4X AMIP 0.444 0.387

EIS ISO 4X PI 0.327 0.721

NO ISO 4X PI 0.38 0.622

FULL ISO 4X PI 0.349 0.683

EIS ISO 4X 4X 0.3 0.743

NO ISO 4X 4X 0.204 0.881

FULL ISO 4X 4X 0.202 0.883

EIS ISO PI+4X AMIP 0.407 0.484

NO ISO PI+4X AMIP 0.345 0.63

FULL ISO PI+4X AMIP 0.367 0.58

EIS ISO PI+4X PI 0.283 0.791

NO ISO PI+4X PI 0.273 0.805

FULL ISO PI+4X PI 0.234 0.856

EIS ISO PI+4X 4X 0.31 0.726

NO ISO PI+4X 4X 0.208 0.876

FULL ISO PI+4X 4X 0.192 0.895

Table 2. Metrics for GPR models trained on different climates as indicated and applied to

AMIP, PI, and 4X simulations. Descriptions of EIS ISO , NO ISO, and FULL ISO provided in

the text.
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Figure 1. Location map of study area. Star and triangle indicate location of Chajnantor

Plateau and Antofagasta, respectively. Solid box indicates averaging region for satellite cloud,

SST, and humidity data. Dashed box indicates analysis region for LMDZ output.
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Figure 2. Scatterplot of relationships between in-situ water vapor isotopic measurements from

the Chajnantor Plateau in northern Chile with (A) EIS, (B) SST, and cloud fraction and ∆δD

with (C) δD and (D) mixing ratio.
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Figure 3. Scatterplot of relationships between in-situ water vapor isotopic measurements from

the Chajnantor Plateau in northern Chile with SAPHIR relative humidity. (A) δD versus the RH

from the 850 hPa to 950 hPa level; (B) δD versus the RH from the 650 hPa to 750 hPa level; (C)

δD versus the difference in RH between (A) and (B).
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Figure 4. As in Figure 2 for LMDZ output from averaging region shown in Figure 1.
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Figure 5. As in Figure 3 for LMDZ output from averaging region shown in Figure 1. Water

vapor δD is from 830 hPa for all panels.
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Figure 6. Scatterplots of water vapor δD versus shallow convective moistening tendencies

(top) and mixing ratio versus shallow convective moistening tendencies (bottom). Colors are the

RH gradient (∆RH)
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Figure 7. Relationships between GCM shallow convective moistening tendencies (dq/dt) and

(A) water vapor δD and LCF; (B) mixing ratio and LCF; (C) LCF and ∆δD.
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Figure 8. Scatterplots and metrics of estimated 830 hPa dq/dt from (A) the EIS ISO model,

(B) the NO ISO model compared to the GCM output of dq/dt and (C) the FULL ISO model
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(black) and from the FULL ISO GPR model.
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Figure 10. Time series of estimated shallow convective dq/dt from FULL ISO model trained

on AMIP simulations, based on input data from in-situ measurements on Chajnantor, soundings

from Antofagasta, and remote sensing data from offshore. The gray band shows ±1σ uncertainty.
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Figure 11. As in Figure 7, except for Chajnantor dataset, with dq/dt derived from GPR

model.
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Figure 12. As in Figure 6, except for Chajnantor dataset, with dq/dt derived from GPR

model.
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Figure 13. Relationships between EIS, GPR-derived moistening tendencies, and cloud frac-

tion.
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