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Abstract

Gravity waves play an essential role in driving and maintaining global circulation. To understand their contribution in the

atmosphere, the accurate reproduction of their distribution is important. Thus, a deep learning approach for the estimation of

gravity wave momentum fluxes was proposed, and its performance at 100 hPa was tested using data from low resolution zonal

and meridional winds, temperature, and specific humidity at 300, 700, and 850 hPa in the Hokkaido region (Japan). To this

end, a deep convolutional neural network was trained on 29-year reanalysis datasets (JRA-55 and DSJRA-55), and the final

5-year data were reserved for evaluation. The results showed that compared to ground truth data, the fine-scale momentum

flux distribution of the gravity waves could be estimated at a low computational cost. Particularly, in winter, when gravity

waves are stronger, the median RMSE of the maximum momentum flux in the target area was 0.06–0.13 mPa.
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Key Points: 10 

• A deep learning approach was proposed to estimate the parameters of orographic gravity 11 
waves using 29-year reanalysis data. 12 

• Gravity wave momentum fluxes at 100 hPa were directly converted from lower 13 
atmospheric data with a spatial resolution of 60 km. 14 

• Using the proposed method, the maximum amplitudes of the strong momentum flux in 15 
the target area could be estimated quite well. 16 

  17 
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Abstract 18 

Gravity waves play an essential role in driving and maintaining global circulation. To understand 19 
their contribution in the atmosphere, the accurate reproduction of their distribution is important. 20 
Thus, a deep learning approach for the estimation of gravity wave momentum fluxes was 21 
proposed, and its performance at 100 hPa was tested using data from low resolution zonal and 22 
meridional winds, temperature, and specific humidity at 300, 700, and 850 hPa in the Hokkaido 23 
region (Japan). To this end, a deep convolutional neural network was trained on 29-year 24 
reanalysis datasets (JRA-55 and DSJRA-55), and the final 5-year data were reserved for 25 
evaluation. The results showed that compared to ground truth data, the fine-scale momentum 26 
flux distribution of the gravity waves could be estimated at a low computational cost. 27 
Particularly, in winter, when gravity waves are stronger, the median RMSE of the maximum 28 
momentum flux in the target area was 0.06–0.13 mPa. 29 

Plain Language Summary 30 
Deep learning has been proven to be a powerful tool in the atmospheric sciences and weather and 31 
climate prediction applications. In this study, it is used to obtain physical parameters of fine-32 
scale mountain waves in the lower stratosphere (~18km), which drive global circulations in the 33 
middle atmosphere (10–100km), based on large-scale low-level (1–9km) atmospheric flows, 34 
temperature, and humidity. By training a convolutional neural network using 29-year 35 
atmospheric reanalysis dataset, the large-scale inputs are well down-scaled into the fine-scale 36 
wave parameters, significantly saving computational costs of weather and climate predictions. 37 

1 Introduction 38 

Atmospheric gravity waves are small-scale waves that originate from different sources, 39 
including high mountains, jet-front systems, and convection. They propagate momentum 40 
vertically and play an important role in driving and maintaining general circulation in the 41 
stratosphere and mesosphere (Fritts and Alexander, 2003). Thus, it is essential to quantitatively 42 
evaluate their contribution when estimating momentum fluxes. Since the 1980s, with the 43 
advancements in meteorological observations and numerical modeling, a great deal of studies 44 
related to gravity waves have been conducted, and theoretical advances in understanding them 45 
have been achieved (Tsuda et al., 1990; Sato, 1994; Hertzog et al., 2008; Wright et al., 2017; Ern 46 
et al., 2008; Alexander et al., 1995; Chun and Baik, 1998; Sato et al., 2009; Sato et al., 2012; 47 
Geller et al., 2013; Plougonven et al., 2013; Laura et al., 2017; Plougonven and Zhang, 2014). 48 

The spatial scales of gravity waves are smaller than the resolution of typical atmospheric 49 
models, most of which capture the effects of sub-grid-scale gravity waves by parameterizing 50 
them in the computational grid (Palmar et al., 1986; Alexander et al. 2010). To directly simulate 51 
the propagation of gravity waves without parameterization, Watanabe et al. (2008) developed an 52 
atmospheric general circulation model that is characterized by a fine vertical resolution. The 53 
gravity wave-resolving model showed superior accuracy; however, it was associated with high 54 
computational costs. Therefore, new low-cost statistical methods for the estimation of sub-grid-55 
scale gravity wave momentum fluxes, which are based on grid-scale meteorological elements, 56 
are needed to perform long-term integration at global scales (Bushell et al., 2015). 57 

Recently, image pattern recognition using deep learning has attracted a lot of attention in 58 
various fields (Krizhevsky et al., 2012). Deep learning, which uses multi-layered neural networks 59 
to learn image features from large amounts of data, has demonstrated high performance in a 60 
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variety of tasks, including image transformation, in which an input image is transformed into 61 
another image. In the field of atmospheric science, deep learning techniques have also been used 62 
in tropical cyclone and atmospheric river detection (Kurth et al., 2018), stationary front detection 63 
(Matsuoka et al., 2019), precipitation bias correction (Tao et al., 2016), and ozone dry deposition 64 
velocity parameterization (Silva et al., 2019). Particularly, Shilva et al. (2019) used deep neural 65 
networks to estimate sub-grid processes, rendering the computational process 10 times faster. 66 
Deep learning has the advantage that once an estimation model has been built using the training 67 
dataset, the computational cost associated with running the model on further data is much lower 68 
than that associated with directly resolving the sub-grid scale process. 69 

Therefore, the aim of this study was to perform a low-computational-cost estimation of 70 
the momentum fluxes associated with the fine-scale gravity waves in the lower stratosphere 71 
based on the lower resolution data in the troposphere using deep learning techniques that are 72 
based on a statistical downscaling method. Additionally, the preliminary momentum flux 73 
estimation results due to the orographic gravity waves over the Hokkaido region in Japan were 74 
also described. 75 

2 Data and Methods 76 

2.1 Reanalysis data and training data preparation 77 

 Our model could learn the relationship between coarse-resolution atmospheric fields and 78 
high-resolution wind fluxes. As input, the Japanese 55-year Reanalysis (JRA-55) (Kobayashi et 79 
al., 2015; Harada et al., 2016), which is a global reanalysis data, was used, and for output 80 
(ground truth), the corresponding regional downscaling data (DSJRA-55) (Kayaba, 2016), 81 
provided by the Japan Meteorological Agency (JMA), was used (JRA-55 and DSJRA-55 had 82 
horizontal resolutions of ~60 and 5 km, respectively). 83 

 The lower resolution (60 km) physical quantities used as input data were the zonal wind 84 
(u), meridional wind (v), air temperature (T), and specific humidity (q) at 300, 700 and 850 hPa 85 
of JRA-55 as shown in Figures 1a–1l. The finer resolution (5 km) orography of DSJRA-55 was 86 
also used as input data; thus, the total number of input channels was 13. As the fine scale (5 km) 87 
ground truth corresponding to the input data, 3-D wind fluctuations (𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱ) with 88 
horizontal scales approximately less than 1000 km at 100 hPa of DSJRA-55 as shown in Figures 89 
1m–1p were used.  90 

 The analysis domain was a rectangular area (~1,000 km × 1,000 km), which included the 91 
Hidaka Mountains as shown in Figure 1m. The DSJRA-55 data was cut out into 128 × 128 92 
uniform grids to fit its grid system, and to better facilitate the deep learning process, the JRA-55 93 
data was converted into the same grids using bicubic interpolation. 94 
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 95 

Figure 1. (a)–(m) Input data and (n)–(p) Ground truth of output data for the deep convolutional 96 
neural network. 97 

2.2 Deep convolutional neural network 98 

Using the dataset described above, our model was designed to learn the transformation of 99 
the physical quantities in the troposphere (300, 700, and 850 hPa) to the small-scale 3-D wind 100 
fluctuations (𝑢ᇱ, 𝑣ᇱ and 𝑤ᇱ) in the lower stratosphere (100 hPa). The training for each of 𝑢ᇱ, 𝑣ᇱ, 101 
and 𝑤ᇱ was done independently. Additionally, to convert the input data to the corresponding 102 
output data, a U-Net convolutional neural network which was originally designed for image 103 
segmentation/partitioning tasks, was used (Ronneberger et al., 2015). In the U-Net, the model 104 
was automatically trained to learn the relationship between the input data and the corresponding 105 
output data using a contracting path to capture the context information for each image and a 106 
symmetric expansive path to enable precise localization as shown in Figure 2. The contracting 107 
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path was composed of convolutional operations that captured local features (feature maps) using 108 
3 × 3 convolutional filters (“Conv 3×3”, dark blue arrows in Figure 2) and downsampling 109 
operations that reduce the size of each feature map using 2 × 2 pooling filters (“Max pool 2×2”, 110 
red arrows in Figure 2). The expansive path consisted of the deconvolutional operation, which 111 
used the convolutional filters and upsampling operations to recover the size of the feature maps 112 
with the help of unpooling filters (“Up-conv 2 × 2”, green arrows in Figure 2). Additionally, the 113 
context information from the contracting path was combined with the location information in the 114 
expansive path using skip-connections (“copy and crop”, grey arrows in Figure 2). At the end of 115 
the operation, the output value of each grid was calculated using the convolutional filters (“Conv 116 
1 × 1”, cyan arrow in Figure 2). The hyper parameter settings such as the number of layers and 117 
filters, as well as the filter size were the same as those reported by Matsuoka et al. (2019). 118 

 119 

Figure 2. U-net architecture. The multi-channel feature maps in each layer are represented using 120 
blue boxes. The number of channels and the sizes of the feature maps are listed on top and left of 121 
the box. Each operation is illustrated using arrows. 122 

As with general supervised machine learning, our method consisted of a training and 123 
validation phase for model fitting, and an estimation phase for performance measurement. For 124 
the training and validation, 29-year JRA-55 and DSJRA-55 data (time interval, 6 h; total time 125 
step, 42,364) from the 1979–2007 period was used, and for the performance tests, 5-year data 126 
(7,308 steps) from the 2008–2012 period was used. During the training and validation phase, the 127 
error between the output from the U-Net and the ground truth (previously stated as the correct 128 
output data) was measured, and the model was repeatedly optimized using this training data until 129 
its predictive error on the validation data converged to a certain threshold. Here, the error 130 
function (called the loss function) was defined using the Tanimoto coefficient (Tanimoto, 1958), 131 
which represents the similarity between the two groups, as follows: 132 𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 = 1 − 𝑦 ∙ 𝑦ො (𝑦ଶ + 𝑦ොଶ − 𝑦 ∙ 𝑦ො⁄ )  (1), 133 

where 𝑦 ∙ 𝑦ො = ∑ 𝑦௜𝑦ො௜௜ , 𝑦ଶ = ∑ 𝑦௜ଶ௜ , and 𝑦ොଶ = ∑ 𝑦ො௜ଶ௜ . Here, 𝑦௜ and 𝑦ො௜ represent the target physical 134 
quantities, such as 𝑢ᇱ, 𝑣ᇱ and 𝑤ᇱ, of the i-th grid in ground truth and output of the validation data, 135 
respectively. The Tanimoto coefficient error is usually applicable when the values concerned are 136 
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positive, and it ranges from 0 to 1. However, its application can also be extended to negative 137 
values without any contradiction. Additionally, it may exceed 1, when the signs of the estimated 138 
value and the ground truth are different. After the training and validation phase, the reserved test 139 
data were then fed into the trained U-Net for the evaluation phase. 140 

 The source code for deep learning was implemented in Python 3.6.3 using Keras 141 
(TensorFlow 2.1 backend) (Chollet, 2015), which runs on an NVIDIA DGX station with four 142 
Tesla V100 graphical processing units (GPUs). The training of the 29-year data over one epoch 143 
lasted ~89 s, and the number of iterations of the training for 𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱ that were required to 144 
converge the errors were 33, 46 and 93, respectively, and their errors with respect to the test data 145 
were 0.764, 0.835 and 0.696, respectively. 146 

3 Results and Discussion 147 

In this section, the results of the evaluation of the test data for a period of over five years 148 
are presented and discussed. Primarily, as an example of the test, the results of the estimation 149 
obtained using the trained U-Net on the test data are shown in Figure 1 (11/22/2011 0:00:00 150 
UTC) and described in Figure 3. The ground truth and estimation results for 𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱ are 151 
shown in Figures 1n–1p and Figures 3a–3c, respectively. Comparing the ground truth with the 152 
estimation results, 𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱ appeared to be qualitatively consistent on land and off the south 153 
coast. Particularly, the positive and negative stripes stretching from the Hidaka Mountains in 154 
central Hokkaido to the southeast were well reproduced in the estimation results. Conversely, the 155 
strong amplitudes of 𝑢ᇱ and 𝑣ᇱ were not well reproduced on the sea, except on the south side. 156 

Secondly, the ground truth and estimation results of the momentum flux (i.e., the vertical 157 
flux of the zonal momentum, 𝜌𝑢ᇱ𝑤ᇱ; the vertical flux of the meridional momentum, 𝜌𝑣ᇱ𝑤ᇱ; and 158 
their vector fields) are shown in Figures 3d–3f and Figures 3g–3i, respectively. Here, the 159 
atmospheric density, 𝜌, at a pressure level of 100 hPa was 0.141515 kg m–3. Similar to 𝑢ᇱ, 𝑣ᇱ and 160 𝑤ᇱ, the pattern of negative values extending from the Hidaka Mountains to the southeast also 161 
agreed well with the ground truth and estimation results. For the horizontal vectors, the regions 162 
with strong momentum fluxes and their directions (southwestward) appeared to coincide with 163 
each other, as seen on the southern side of the Hidaka Mountains. 164 



Confidential manuscript submitted to Geophysical Research Letters 

 

 165 

Figure 3. (a)–(c) Estimation results of 𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱon 0:00:00 11/22/2011 UTC. Their ground 166 
truth are shown in Figures 1(n)–(p). (d)–(f) Estimation results of 𝜌𝑢ᇱ𝑤ᇱ, 𝜌𝑣ᇱ𝑤ᇱ, and their vector 167 
fields, and (g)–(i) their corresponding ground truth. 168 

Figure 4 shows the plot of each component in the direction orthogonal to the strong wave 169 
vector seen on the southeast side of the analysis region. The location of the A–A’ direction is 170 
depicted as the black dotted line in Figure 3(a). For 𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱ, the shape of the fine-scale 171 
waves appeared to be consistent with the ground truth and the estimation results, meaning that 172 
the estimation of both the wave strength and the downscaling from the 60 km mesh data to the 5 173 
km data were appropriately performed using the U-Net. Particularly, the maximum amplitudes of 174 
the estimation results of 𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱ along the A–A’ direction were –5.46, –3.20, and 1.05 m 175 
s–1, while their ground truth were –4.58, –4.02, and 1.17 m s–1, respectively. Additionally, the 176 
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location of the maximum amplitudes corresponding to 𝑣ᇱ were slightly shifted, and coincided 177 
quite well with those corresponding to 𝑢ᇱ and 𝑤ᇱ. 178 

Generally, as shown in Figures 4d and 4e, the momentum fluxes between the ground 179 
truth and the estimation results corresponded well. Additionally, the estimation results of the 180 
maximum amplitude of the vertical flux of the zonal and meridional momentum were –0.83 and 181 
–0.49 mPa, while their ground truth were –0.78 and –0.39 mPa, respectively. The maximum 182 
momentum flux magnitude was 0.87 mPa for the estimation result and 0.93 mPa for the ground 183 
truth. The peak of the maximum amplitude corresponding to 𝑣ᇱ was out of phase compared with 184 
those of the maximum amplitudes corresponding to 𝑢ᇱ and 𝑤ᇱ, and this led to an underestimation 185 
of the maximum momentum flux magnitude obtained by multiplying them. 186 

 187 

Figure 4. Comparison of the magnitude of the amplitude of the gravity waves based on the 188 
estimation results and the ground truth along the A–A’ direction shown in Figure 3a. (a) 𝑢ᇱ, (b) 189 𝑣ᇱ, (c) 𝑤ᇱ, (d) 𝜌𝑣ᇱ𝑤ᇱ, (e) 𝜌𝑣ᇱ𝑤ᇱ, and (f) momentum flux magnitude. 190 

Finally, the estimation results of the maximum momentum flux in the target area for each 191 
month was demonstrated. Figures 5a–5c depict the distribution of the ground truth, the estimated 192 
values of the momentum flux magnitude, and the zonal and meridional momentum vertical 193 
fluxes, respectively, as monthly box plots. The magnitude of the momentum flux, including the 194 
zonal and meridional components, tended to be larger in winter and smaller in summer. This 195 
could possibly be attributed to the jet stream that moves southward to the analysis area in winter; 196 
hence, the wind close to the surface is more frequently strongly sufficient to excite orographic 197 
gravity waves. This seasonal change trend was consistent with the estimated values as well as the 198 
ground truth. Additionally, the variation in the estimation results for each month was 199 
approximately consistent with the ground truth, and the maximum and 3rd quartile were in good 200 
agreement, especially during the season of strong gravity waves (October–April). For the median 201 
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in December, when the momentum fluxes are strongest, the estimated values of the magnitude, 202 𝜌𝑢ᇱ𝑤ᇱ, and 𝜌𝑣ᇱ𝑤ᇱ were 0.37, 0.33, and 0.14 mPa, respectively, and their corresponding ground 203 
truth values were 0.28, 0.25, and 0.09 mPa, respectively. The median values in the estimation 204 
results were below those of the ground truth for most months, especially in the winter months. 205 
This could be attributed to the misalignment of the phases between 𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱ in the 206 
estimation results, as mentioned above. 207 

Furthermore, the estimation errors (RMSE: Root Means Squared Error) for the 208 
momentum flux magnitude, the vertical fluxes of the zonal and the meridional momentum are 209 
shown in Figures 5d–5f, respectively. The RMSE, in terms of the magnitude, zonal, and 210 
meridional components, was large in winter and small in summer, corresponding to the 211 
magnitude of the gravity wave. The median, 3rd quartile, and maximum of the estimation errors 212 
in December were approximately 0.13, 0.32, and 0.70 mPa, respectively. The series of results 213 
presented in this section show that the proposed method can adequately estimate orographic 214 
gravity waves in each season. 215 

 216 

Figure 5. Monthly changes in the estimated maximum momentum flux in the target area. 217 
Estimation results and ground truth for (a) Momentum flux magnitude, (b) 𝜌𝑢ᇱ𝑤ᇱ, and (c) 𝜌𝑣ᇱ𝑤ᇱ, 218 
and (e)–(f) their estimation errors (RMSEs). 219 
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4 Conclusions 220 

In this study, a deep convolutional deep neural network was used to estimate the parameters of 221 
orographic gravity waves. Low-resolution data (u, v, T, and q) at pressure levels of 850, 700, and 222 
300 hPa in the troposphere as well as high-resolution orographic data were directly transferred to 223 
the 3-D wind fluctuations (𝑢ᇱ, 𝑣ᇱ, and 𝑤ᇱ) in the lower stratosphere. Particularly, in winter, 224 
parameters such as the maximum amplitude of the strong momentum flux could be estimated.  225 

 On the other hand, generally, machine learning techniques vary greatly in the quality of 226 
the results they produce depending on the neural network layer setting, the choice of the training 227 
data, and the definition of the error function. Therefore, it is necessary to optimize the learning 228 
method taking into account the area to which it would be applied, the season, as well as the 229 
parameters to be extracted. 230 

 One of the advantages of the proposed method is the low computational cost associated 231 
with its application on untrained data. By adopting the proposed method in a global atmospheric 232 
model, the realization of long-term integrations that incorporate the effects of gravity waves will 233 
be possible. Such deep learning-based methods can be particularly useful in the parameterization 234 
of non-orographic gravity waves, which often have multiple origins and have generation 235 
mechanisms that are still unclear. Therefore, to apply this proposed method to non-orographic 236 
gravity waves, further studies are still needed. 237 
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