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November 23, 2022

Abstract

Large scale flood risk analyses are fundamental to many applications requiring national or international overviews of flood

risk. While large-scale climate patterns such as teleconnections and climate change become important at this scale, it remains

a challenge to represent the local hydrological cycle over various watersheds in a manner that is physically consistent with

climate. As a result, global models tend to suffer from a lack of available scenarios and flexibility that are key for planners,

relief organizations, regulators, and the financial services industry to analyze the socioeconomic, demographic, and climatic

factors affecting exposure. Here we introduce a data-driven, global, fast, flexible, and climate-consistent flood risk modeling

framework for applications that do not necessarily require high-resolution flood mapping. We first use statistical and machine

learning methods to examine the relationship between historical (from the Dartmouth Flood Observatory) flood occurrence and

impact, and climatic, watershed, and socioeconomic factors at over 4700 watersheds globally. Using bias-corrected output from

the NCAR CESM Large Ensemble from 1980 to 2020, and the fitted statistical relationships, we simulate one million years of

events worldwide along with the population displaced. We discuss potential applications of the model and present global flood

hazard and risk maps. The main value of this global flood model lies in its ability to quickly simulate realistic flood events

at a resolution that is useful for large-scale socioeconomic and financial planning, yet we expect it to be useful to climate and

natural hazard scientists who are interested in socioeconomic impacts of climate.
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• We present a global flood model built using machine learning methods fitted with6
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Abstract12

Large scale flood risk analyses are fundamental to many applications requiring na-13

tional or international overviews of flood risk. While large-scale climate patterns such14

as teleconnections and climate change become important at this scale, it remains a chal-15

lenge to represent the local hydrological cycle over various watersheds in a manner that16

is physically consistent with climate. As a result, global models tend to suffer from a lack17

of available scenarios and flexibility that are key for planners, relief organizations, reg-18

ulators, and the financial services industry to analyze the socioeconomic, demographic,19

and climatic factors affecting exposure. Here we introduce a data-driven, global, fast,20

flexible, and climate-consistent flood risk modeling framework for applications that do21

not necessarily require high-resolution flood mapping. We first use statistical and ma-22

chine learning methods to examine the relationship between historical (from the Dart-23

mouth Flood Observatory) flood occurrence and impact, and climatic, watershed, and24

socioeconomic factors at over 4700 watersheds globally. Using bias-corrected output from25

the NCAR CESM Large Ensemble from 1980 to 2020, and the fitted statistical relation-26

ships, we simulate one million years of events worldwide along with the population dis-27

placed. We discuss potential applications of the model and present global flood hazard28

and risk maps. The main value of this global flood model lies in its ability to quickly sim-29

ulate realistic flood events at a resolution that is useful for large-scale socioeconomic and30

financial planning, yet we expect it to be useful to climate and natural hazard scientists31

who are interested in socioeconomic impacts of climate.32

Plain Language Summary33

Flood is among the deadliest and most damaging natural disasters. To protect against34

flood risk at large scales, stakeholders need to understand how floods can occur and their35

potential impacts. Stakeholders rely heavily on global flood models to provide them with36

plausible flood scenarios around the world. For a flood model to operate at the global37

scale, climate effects must be represented in addition to hydrological ones to demonstrate38

how rivers can overflow throughout the world each year. Global flood models often lack39

the flexibility and variety of scenarios required by many stakeholders because they are40

computationally demanding. Designed for applications where detailed local flood impacts41

are not required, we introduce a rapid and flexible global flood model that can gener-42

ate hundreds of thousands of scenarios everywhere in the world in a matter of minutes.43

The model is based on a historical flood database that is represented using an algorithm44

that learns from the data. With this model, the output from a global climate model is45

used to simulate a large sample of floods for risk analyses that are coherent with global46

climate. Maps of the annual average number of floods and number of displaced people47

illustrate the models results.48

1 Introduction49

Flood is consistently among the most damaging natural disasters in terms of eco-50

nomic losses (Gall et al., 2009) and mortality (Hu et al., 2018). Impacts generated by51

flood result from a complex set of interactions between climatic, hydrological, demographic,52

and economic factors. Despite improvements in flood defenses and other technologies re-53

sulting in reduced vulnerability (Paprotny et al., 2018), nominal flood-related economic54

losses have increased rapidly in recent decades due to developments in exposure such as55

total wealth and urban area (Jongman et al., 2012), and rising prices. After normaliz-56

ing relative to exposure, Barredo (2009) and Neumayer and Barthel (2011) did not iden-57

tify statistically significant increasing trends in economic flood losses, yet short time se-58

ries, challenges with data, and the inability to control for changes in flood defenses chal-59

lenged these studies. Trends in insured losses, which are further complicated by the ex-60

tent to which exposure is insured, were not found for atmospheric natural disasters at61
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the global scale (Barthel & Neumayer, 2011). However, the same study detected a pos-62

itive trend in normalized flood-driven insured losses from 1980-2007 in the United States.63

Paprotny et al. (2018) reconstructed floods in Europe since 1870 and uncovered increas-64

ing trends in normalized flooded area and persons affected but decreases in normalized65

fatalities and financial losses in recent decades.66

Large scale flood risk analyses are pivotal to disaster management and relief plan-67

ning at regional, national, and international levels. Flood risk analyses can build resilience68

by informing investment needs in mitigation and financial mechanisms such as insurance69

(Vorogushyn et al., 2018). By the nature of their business, insurance and reinsurance com-70

panies are heavily exposed to flood risk across the globe through private and/or pub-71

lic insurance programs (OECD, 2016), whereas banks are subject to mortgage defaults72

following floods (FRBSF, 2019; Ouazad & Kahn, 2019). With mounting pressure com-73

ing from regulators and other bodies worldwide, the financial services industry (banks,74

insurers and reinsurers) will soon need to disclose and stress test their solvency and sta-75

bility to various climate scenarios (Bank of England, 2019; Task Force on Climate-related76

Financial Disclosures, 2017), which includes how future flood risk will affect their prof-77

itability.78

A major methodological challenge to designing global models is to guarantee that79

flood risk is consistent from climate, hydrological, hydraulic, and exposure standpoints,80

such that physically-consistent global climate patterns drive the local hydrological cy-81

cle over many watersheds (Vorogushyn et al., 2018). This is a particularly important is-82

sue for the financial services industry as their global portfolios are impacted by large-83

scale climate patterns affecting people over distances of thousands of kilometers. Top84

down approaches typically force low-resolution hydrological models with meteorologi-85

cal or climate model outputs that simulate runoff that is consistent with simulated cli-86

mate patterns (Yamazaki et al., 2011; Winsemius et al., 2013). Such approaches are not87

just global because they represent the entire planet, but because connections between88

basins in space that are driven by climate are resolved. Top down methods have been89

used to delve into large-scale flood risk questions such as examining patterns of inter-90

annual climate variability (Ward et al., 2014) and to project the impacts of future cli-91

mate and socioeconomic change (Jongman et al., 2014; Dottori et al., 2018; Ward et al.,92

2020). An important weakness of this approach is its lack of focus on flooding occurrence93

and impact in itself, and the inability to resolve small scale floods.94

Bottom up approaches consider higher resolution processes that employ a combi-95

nation of rainfall-runoff or hydrological modeling to drive a hydraulic component and96

calculate flood damage over watersheds (de Bruijn et al., 2014; Sampson et al., 2015; Fal-97

ter et al., 2016). These models are typically forced by meteorological (historical, simu-98

lated, or projected) or discharge distributions. This more detailed approach is closer to99

assessing localized impacts of flood but is challenged by high computational demands100

and data requirements that are not necessarily available globally (Ward et al., 2015). For101

both approaches, the number of scenarios available is limited and they lack the flexibil-102

ity required by planners, relief organizations, regulators, and the financial services in-103

dustry to analyze the socioeconomic, demographic, and climatic factors affecting expo-104

sure.105

In this paper, we introduce a data-driven, global, fast, flexible and climate-consistent106

flood risk modeling framework for applications that do not necessarily require high-resolution107

flood mapping. Our framework is unique in that it is driven by historical flood and en-108

vironmental observations. It takes advantage of the speed of statistical models to quickly109

generate large global catalogues of flood events that are physically consistent with cli-110

mate. Distributions of occurrence and impact can then be analyzed in terms of climatic111

and socioeconomic factors and over spatial scales of interest. The framework is there-112

fore capable of examining interannual climate variability and looking into the future, ac-113

counting for global change over various greenhouse gas emission and socioeconomic sce-114
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narios, in addition to accounting for climate-driven connections between basins. Appli-115

cations of the model include socioeconomic studies, climatic research of the impacts on116

population or wealth affected, risk analyses in poorly sampled watersheds (Hrachowitz117

et al., 2013), and stress testing risk portfolios for the financial services industry.118

To expand upon the limited observational record (Munoz & Dee, 2017), we gen-119

erate a large sample of flood occurrence probabilities and impacts using bias-corrected120

precipitation and temperature output from the National Center for Atmospheric Research’s121

(NCAR) Community Earth System Model (CESM) Large Ensemble (LE) (Kay et al.,122

2015) for each watershed, ensemble member, and model hydrological year for the time123

period 1980-2020. The occurrence and impact components are fitted with large databases124

of past flood history that associate observed flood events to historical precipitation, tem-125

perature and watershed information such as topography, land use, soil type, and bedrock126

features using a machine learning method. Using the fitted occurrence and impact mod-127

els, we use stochastic simulation to generate a large global catalog of synthetic flood events128

along with impacts, expressed in terms of the population displaced and the gross domes-129

tic product affected in a watershed.130

Section 2 presents the datasets used and Section 3 the model development. We eval-131

uate the quality and realism of the flood model in Section 4, present results that illus-132

trate the model’s capabilities in Section 5, and conclude in Section 6. A Supporting In-133

formation document is available online that presents supplementary description and val-134

idations.135

2 Data136

We base statistical models of flood occurrence and impact on two databases de-137

tailed here that associate flood events and their consequences to the driving environmen-138

tal and demographic conditions. The global flood model is represented in terms of wa-139

tersheds from HydroBASINS (Lehner & Grill, 2013). Observations of flood occurrence140

and impact, in terms of population displaced, are derived from the Dartmouth Flood Ob-141

servatory Global Active Archive of Large Flood Events (Brakenridge, 2010). Environ-142

mental quantities that drive flood are represented in terms of a variety of sources that143

include climatological quantities such as precipitation (Xie et al., 2007; Funk et al., 2015)144

and temperature (Shi, 2007), and watershed characteristics such as: topography and lo-145

cation (Lehner & Grill, 2013; Marthews et al., 2015b), land cover and vegetation state146

(Latham et al., 2014), soil type (Shangguan et al., 2014), depth to bedrock (Shangguan147

et al., 2017), and hydrogeologic properties (Gleeson et al., 2014). Population (Doxsey-148

Whitfield et al., 2015; Klein Goldewijk et al., 2017) and wealth (Kummu et al., 2018)149

are used as demographic characteristics (Table 1).150

To generate the global flood catalogue of events, we force the flood occurrence and151

impact models with output from the CESM Large Ensemble (CESM-LE) Community152

Project (Kay et al., 2015) that is driven by the NCAR Community Earth System Model153

(CESM1) (Hurrell et al., 2013). We apply precipitation quantities from the Community154

Land Model 2.0 (Lawrence et al., 2011) and temperature from the Community Atmo-155

sphere Model 5.2 (Neale et al., 2012) (Table 2).156

3 Model157

A riverine flood and its impact is driven by 1. an excess of precipitation less evap-158

otranspiration relative to the storage capacity of the watershed, and 2. interaction with159

the population affected. We built a statistical framework for flood risk that relates flood160

occurrence and impact to environmental and demographic predictor variables (Table 1)161

at the watershed scale. Wolock et al. (2004) and Rumsey et al. (2015) used a similar sta-162

tistical framework to define hydrologic-landscape regions and estimate baseflow, respec-163
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Figure 1. Schematic of the model components. The fitting process is detailed on the left,

whereas the simulation process is presented on the right.

tively, but to the authors’ knowledge such an approach has not been applied to flood risk164

modeling at the global scale. While our approach falls into the class of lumped models165

(Bevin, 2012; Perrin et al., 2013) since the forcing data we used is averaged over a wa-166

tershed, instead of considering a system output quantity such as discharge, we directly167

model watershed 1. flood hazard and 2. impact. We achieve this by building databases168

and statistical models of 1. flood occurrence and 2. the fraction of population displaced,169

and express them in terms of environmental and demographic predictor variables. The170

model components are summarized in Figure 1.171

3.1 Data Inputs172

3.1.1 Observational Data173

Historical flood events are provided by the Dartmouth Flood Observatory (DFO)174

Global Active Archive of Large Flood Events (Brakenridge, 2010). DFO flood events are175

derived from news, government, and instrumental sources, and validated by satellite ob-176

servations. Floods are represented in space by means of a polygon that bounds the flooded177

areas (Figure 2). While this inherently overestimates flooded areas, it represents the syn-178

optic and climatic scales over which riverine flood is driven and so is an appropriate quan-179

tity to quantify the association between climate variables and observed large-scale floods.180

All events with a non-atmospheric cause (Jökulhaup, tsunami, tides, avalanche, storm181

surge, barrier break or release, ice jam or ice break-up or ice melt) were ignored. We con-182

sidered the years 1985-2017, during which there were 4499 flood events globally.183

Flood hazard and risk are represented at the level of watersheds whose boundaries184

are defined by the HydroBASINS (Lehner & Grill, 2013) dataset at Pfafstetter level 5,185

which unless otherwise stated we refer to simply as watersheds. The databases built here186

and all analyses are conducted over the 4734 watersheds at this scale (Figure 3). The187

historical flood occurrence and impact databases described are based on the spatial in-188

tersection of the DFO events and the HydroBASINS watersheds, which we refer to as189

watershed-floods. A single observed DFO flood event generally occurs over several wa-190

tersheds and therefore results in one or more watershed-floods. Due to the bounding poly-191

gon nature of the DFO flood events, we assumed that watershed-floods that are less than192

5% of the watershed area are “no flood” in our database. Based on an investigation into193

a subset of DFO events with 0 reported people displaced, we treated such floods as miss-194

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. Dartmouth Flood Observatory flood events from 1985-2017.

Figure 3. Graphical representation of the 4734 HydroBASINS level 5 watersheds.
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Figure 4. Distributions of population displaced impact variable. (a) Observed population

displaced (log10) for each DFO event. (b) Fraction of population displaced (log10) for each

watershed-event.

ing data instead of events with zero impact. These steps resulted in 3160 of the 4499 DFO195

floods with at least 1 person displaced (Figure 4a). For each flood, we distributed the196

population displaced over the watershed-floods in proportion to the population of the197

watershed in the year of the flood (Figure 4a).198

We explored time-varying environmental predictors and chose datasets with the199

following features: 1. global spatial coverage, 2. temporal coverage that contained the200

DFO flood event dataset (1985-2017), 3. at least 1◦ spatial resolution, 4. at least daily201

temporal resolution, 5. resolved in the CESM-LE climate product that drives the cat-202

alogue simulation. While observational products such as soil moisture (Gruber et al., 2019)203

and terrestrial water storage (Tapley et al., 2004) were of interest, our restrictions lim-204

ited our analyses to precipitation and temperature products.205

Precipitation is the key driving predictor to flood occurrence and impact. We rep-206

resent it using the Climate Hazards group Infrared Precipitation with Stations (CHIRPS)207

dataset (Funk et al., 2015) for latitudes from 50◦S to 50◦N, and the CPC Global Uni-208

fied Gauge-Based Analysis of Daily Precipitation (CPC Precipitation) dataset (Xie et209

al., 2007) for all other latitudes. Temperature plays a key role in evapotranspiration (Li210

et al., 2016) and we represent it with the CPC Global Daily Temperature (CPC Tem-211

perature) dataset (Shi, 2007). We considered several timescales of precipitation and tem-212

perature to capture potential regimes of climatic trajectories that can result in flood, namely213

averages over the 7, 8-30, 31-60, and 61-120 days prior to an event.214

The remaining environmental predictors represent watershed storage capacity. Wa-215

tershed topography is a crucial characteristic in hydraulic modeling that determines flows216

along the surface and subsurface and influences infiltration into the subsurface (Farr et217
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al., 2007). We represent topographic features and watershed location with the HydroBASINS218

(Lehner & Grill, 2013) and High-resolution global topographic index values (TI) (Marthews219

et al., 2015b) datasets. Land cover characteristics alter infiltration into the subsurface220

and can additionally influence evapotranspiration (Nie et al., 2011). We represent land221

cover with the Global Land Cover SHARE (GLC-SHARE) (Latham et al., 2014) dataset.222

Soil permeability affects infiltration (Wolock et al., 2004) and subsurface drainage (Yu223

et al., 2000), whereas soil depth is indicative of soil water storage. We represent soil type224

with the Global Soil Database (GSD) (Shangguan et al., 2014) and depth with the Global225

Depth to Bedrock (GDB) (Shangguan et al., 2017) dataset. Bedrock porosity and per-226

meability proxy subsurface storage and drainage, respectively (Wolock et al., 2004). We227

represent these quantities using the GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0)228

(Gleeson et al., 2014) dataset.229

The exposure predictors population density and GDP (Gross Domestic Product)230

per capita are interpreted as time-varying proxies of urbanization and flood control that231

can additionally capture features of land cover and socioeconomic change that are not232

represented in the time-invariant GLC-SHARE dataset, and as such affect both hazard233

and impact. Population is represented with the Gridded Population of the World (GPW)234

(Doxsey-Whitfield et al., 2015) and Anthropogenic land-use estimates for the Holocene235

(HYDE3.2) (Klein Goldewijk et al., 2017) datasets, and wealth with the Gridded global236

datasets for GDP and HDI (Human Development Index) over 1990-2015 (GDPHDI) (Kummu237

et al., 2018). Temporal extrapolations of these variables are described in the Support-238

ing Information.239

3.1.2 Climate Model Output240

The climate component used in our global model applies the NCAR-CESM1 (Hurrell241

et al., 2013) Large Ensemble (CESM-LE) (Kay et al., 2015). The CESM-LE was designed242

to examine interannual climate variability in the context of anthropogenic climate change,243

and consists of 40 ensemble members run from 1920 to 2100. Each member is initialized244

with a roundoff error perturbation to the atmosphere in model year 1850, so that by 1920245

the members are independent of one another yet driven by the same forcing. The NCAR-246

LE employs a single historical forcing scenario up to 2005 and the RCP8.5 from 2006 to247

2100. In this paper, to be consistent with the flood observational record from DFO, we248

consider the years 1980 to 2020. This results in 40 years from 40 members, which we re-249

fer to as 1600 member-years of global climate model output that drive the flood occur-250

rence and impact models to generate a stochastic catalog of floods. As with the predic-251

tor variables used in the statistical fit step, for each climate forcing variable (Table 2)252

we aggregate by taking the average of grid points in each level 5 watershed.253

CESM-LE atmospheric rain and snow are summed to model precipitation. Snow254

is assumed to melt immediately to water when it touches the ground at a bulk weight255

density of 100 kg m−3 corresponding to that of fresh snow (Meløysund et al., 2007). Bi-256

ases in the CESM-LE precipitation are corrected relative to CHIRPS and CPC Precip-257

itation, and biases in temperature are corrected relative to CPC Temperature, both us-258

ing the methodology of Hempel et al. (2013). When considering the correction of the num-259

ber of dry months, we instead use the fraction of dry months since our simulated dataset260

(CESM-LE, with 40 years of data) has a different sample size to the observations (CHIRPS,261

with 37 years of data). This bias correction approach is widely used in the hydrologi-262

cal and flood impact literature and separately corrects monthly means and daily vari-263

ability about the means, thereby preserving long-term observed trends. We apply the264

correction to precipitation and temperature aggregated over each level 5 basin.265
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3.2 Occurrence Component266

This component of the model represents the occurrence of a riverine flood (“flood”267

or “no flood”) in a level 5 watershed given a set of observed or simulated predictor en-268

vironmental variables. Watershed hydrology and river hydraulics that result in floods269

are complex processes with inherent nonlinear features and interactions between forc-270

ing variables. To break down this problem, we first represent how climatological, hydro-271

logical and basin-scale factors determine riverine flood occurrence globally and region-272

ally in the model fitting step. Once these relationships are established at the watershed273

level, we use output from the climate component in addition to the basin-scale predic-274

tors to simulate flood occurrences. Combining these two steps results in a global flood275

hazard model.276

3.2.1 Model Fitting277

Given the observed watershed-floods, we assumed that a level 5 watershed can be278

in one of two states (“flood” or “no flood”) in a given hydrological year dating from Oc-279

tober 1 - September 30. The 32 hydrological years considered in the DFO database and280

4734 watersheds resulted in a potential of 151488 occurrence observations. Taking miss-281

ing data in the predictors into consideration left us with 128494 observations for the fit-282

ting process. For the occurrence problem climate predictors, we use the mean annual tem-283

perature and for precipitation take the annual maxima of each of the 4 timescales con-284

sidered over the hydrological year.285

The statistical problem at hand is therefore a classification problem with the bi-286

nary response variable (“flood”,“no flood”). We considered classical and machine learn-287

ing methods such as logistic regressions (LR), random forests (RF, Breiman (2001)) and288

artificial neural networks (NN, McCulloch and Pitts (1943)) to solve this problem. Hastie289

et al. (2009) discuss the three methods in chapters 4, 15, and 11, respectively. Since it290

is difficult to define explicit functional forms and interaction terms between the predic-291

tor variables a priori, in particular given the variety of flood regimes that exist globally,292

we adopted a machine learning approach that builds such relationship from observations.293

Validation of the occurrence models are presented in Section 4.1 for the chosen model,294

as well as in the Supporting Information for the other models.295

We first fit each of the three models globally, thereby providing one set of param-296

eter estimates per model. To guarantee that local dynamics were appropriately repre-297

sented in the global fit, we also made fits of each model on aggregations of watersheds298

at Pfafstetter level 2 (HS2). Since there are 62 watersheds at HS2, 62 parameter sets were299

fitted.300

For the global occurrence fit we took a random sample of 70% of the observations301

as the training set for all models and conducted out-of-sample validation on the remain-302

ing 30%, the test set. Although normalization of the variables is only required for the303

NN models, to compare the models we normalized all predictor variables to the range304

[0, 1]. For the RF model we considered 500 decision trees and 5 randomly selected pre-305

dictors, from among the 38, to decide which predictor is selected for each split. Regional306

occurrence fits by HS2 watersheds are also based on normalized predictors and to com-307

pare with the global fit we used the same training and test set. Given the smaller sam-308

ples involved in fitting the regional models, we only apply a fit if more than 3% of ob-309

servations in the region are “flood”. The structure of the RF models follows the global310

model, with 500 decision trees and 5 predictors considered for each split.311

3.2.2 Event Simulation312

To simulate floods we apply the fitted occurrence model to compute predicted flood313

occurrence probabilities (1600 member-years × 4734 watersheds) using the bias corrected314
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precipitation and temperature outputs from the CESM-LE and the basin-scale environ-315

mental and socioeconomic variables. Flood occurrence, for each member-year and each316

watershed, thus follows a Bernoulli distribution whose only parameter represents the prob-317

ability of a riverine flood. The flood occurrence probability is unique for every ensem-318

ble member year and watershed (40 members x 40 years x 4734 watersheds). To gen-319

erate a large sample of flood events at the global scale, we sample from each of these Bernoulli320

distributions 625 times, resulting in a million simulated years.321

3.3 Impact Component322

The impact component models the number of people affected by a given flood. It323

aims to approximate the combined effects of the exposure (population, wealth, etc.) and324

its vulnerability. Combining the occurrence and impact components thus yields the global325

flood risk model.326

3.3.1 Model Fitting327

Combining the DFO population displaced with the level 5 watershed population328

(Doxsey-Whitfield et al., 2015; Klein Goldewijk et al., 2017), we model the fraction of329

the population displaced (displaced population / watershed population) to proxy the im-330

pact. We applied a log10 transformation to the fraction displaced since it spans 8 orders331

of magnitude (Figure 4b). The predictor variables used are the same as for the occur-332

rence model, with the important difference that the four timescales for temperature and333

precipitation are calculated for the final day of the event as reported in DFO. Overall,334

the impact model aims to explain the log10 of the fraction of population displaced as335

a function of demographics, wealth, climatological, and watershed predictors. The cli-336

matological and watershed predictors aim to capture the effects of the intensity of a flood337

on the fraction of population displaced whereas population density and wealth per capita338

aim to capture the vulnerability of a population.339

There are 19746 watershed-floods in the impact database with complete response340

and predictor information. As in the statistical modeling for occurrence, we considered341

classical and machine learning methods, namely linear regressions, random forests and342

neural networks (see above references for details). Validation of the impact models are343

presented in Section 4.2 for the chosen model, as well as in the Supporting Information344

for the others.345

The global impact model fitting procedure follows the occurrence model and takes346

70% of the observations to form the training set. All validations are done by applying347

the fitted model to the remaining 30% of observations. As the impact model is a regres-348

sion problem, both predictors and the response variable were normalized to the range349

[0, 1]. For the random forest fits, since there are 41 predictors, we consider 6 randomly350

selected predictors at each tree split and repeat this for 500 regression trees. Regional351

impact observations were also normalized and used the same training observations as the352

global fit. A regional model was fitted when there were at least 30 watershed-flood im-353

pact observations in the HS2 watershed.354

3.3.2 Event Simulation355

For each simulated flood event, we in turn simulate impact in terms of the frac-356

tion of the watershed population displaced. The impact depends on the bias-corrected357

temperature and precipitation from the CESM-LE, watershed characteristics (which are358

assumed to not change in time), and the population density and wealth observed in the359

watershed for the year of the event. We assume the log10 of the fraction of population360

displaced is normally distributed (Figure 4b). The mean of the flood impact distribu-361

tion is taken from the maximum of daily impact predictions over the hydrological year.362
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The standard deviation parameter is determined by calculating the root mean squared363

prediction error in each of 9 groups determined by watershed population density. This364

grouping preserves the observed structure of increasing and then flat prediction errors365

for watershed-floods that depend on population density (Supporting Information).366

In summary, to model impact in any watershed and year, we sample from a nor-367

mal distribution whose 1. mean parameter is the largest daily simulated impact of the368

fraction of population displaced, and 2. standard deviation parameter is the root mean369

squared prediction error from the fitted model for the population density group of the370

watershed. This process is repeated for each simulated flood over the million years of the371

catalogue.372

3.4 Validations and Variable Importance373

The flood occurrence model is a binary classification problem. A good classifica-374

tion model should predict an event when there is really an event (a true positive). How-375

ever, when occurrences are rare, it is easy to be accurate most of the time by simply pre-376

dicting the event always (or never) occurs. As such, one needs to evaluate models by bal-377

ancing true positives (TP) and true negatives (TN) with false positives (FP) and false378

negatives (FN) (Fawcett, 2006; Powers, 2011). Such analyses are commonly summarized379

using the receiver operating characteristic (ROC) curve, a plot of the true positive rate380

(TP/(TP+FN)) versus the false positive rate (FP/(FP+TN)), which are both determined381

as functions of the cutoff probability used to define a predicted “flood”. The area un-382

der the ROC curve (AUC) is a summary measure that ranges from 0 to 1 and indicates383

the likelihood that the classification model can differentiate between “flood” and “no flood.”384

Values above 0.5 indicate that the model in question has the ability to differentiate be-385

tween classes. We report the AUC aggregated over HS2 watersheds if there are at least386

10 observations and at least 5 floods in the test set (Section 4.1 and Figure 5). Other387

model evaluation metrics are discussed in the Supporting Information.388

To assess the quality of the impact models for the linear model (LM), random for-389

est (RF), and neural network (NN), we consider two metrics using out-of-sample obser-390

vations : the root mean square error (RMSE, lower is better) and the R-squared (higher391

is better, with 1 being the maximum). The RMSE summarizes the model error whereas392

the R-squared measures the proportion of variance explained by a model (Hastie et al.,393

2009) (Section 4.2 and Figures 6 and 7).394

For the random forest models, we consider two variable importance measures for395

each of the flood classification and regression problems using the R randomForest pack-396

age (Liaw & Wiener, 2002). The first measure considers how the accuracy changes in397

reaction to permuting the observations of each predictor in the out-of-bag (a test set)398

observations. For occurrence, accuracy is defined as the fraction of observations that are399

correctly classified (TP +TN)/(TP +TN +FP +FN), whereas for impact the mean400

squared error is used. The second measure employs node purity, which rewards homo-401

geneity in predictions. For flood occurrence, the Gini impurity index is used, whereas402

for impact the residual sum of squares is used.403

3.5 Code and Computations404

Our work was coded using the R software environment (R Core Team, 2018). We405

used the package data.table (Dowle & Srinivasan, 2018) for data processing and merg-406

ing, and velox (Hunziker, 2017) to calculate aggregations of the predictor and climate407

variables over the HydroBASINS watersheds. The packages sp (E. J. Pebesma & Bivand,408

2005) and sf (E. Pebesma, 2018) were applied for spatial analyses such as spatial inter-409

sections. The linear model and logistic regressions fits were achieved with the stats pack-410

age core functions lm() and glm() (R Core Team, 2018), and we applied the randomForest411
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(Liaw & Wiener, 2002) and RSNNS (Bergmeir & Beńıtez, 2012) packages for the RF and412

NN models. ROCR (Sing et al., 2005) was used for the occurrence model validation cal-413

culations and doSNOW (Microsoft & Weston, 2017) was used to parallelize computations.414

We used cartography (Giraud & Lambert, 2016) for choropleth maps and RColorBrewer415

(Neuwirth, 2014) for the color schemes.416

Table 3 details the steps involved in simulating the flood catalogue. The durations417

reported are for a single processor thread on an Intel Xeon E5-2650 v3 at 2.30 GHz. Step418

2 takes approximately 1 day to compute daily impact predictions over the model years419

1980-2020 of the CESM-LE. While this is the most computationally demanding step, it420

takes only 37 minutes per ensemble member and so the duration of the user’s calcula-421

tions depend on the number of ensemble members of interest. All other steps are rapid,422

with the simulation of 1 million years of flood occurrence requiring only 14 minutes (Step423

1) and the simulation of corrected impacts and merging with occurrence taking only 39424

minutes (Step 8). While we worked with a single thread, step 2 can be parallelized given425

sufficient system memory, easily reducing the calculation by a factor of 6 to 8.426

Simple shocks to the occurrence or impact components through the predictor vari-427

ables, such as precipitation or temperature, can be conveniently considered to examine428

model sensitivity. In particular, for monotonic shocks to individual predictors, Step 2429

need not be repeated since the predictors that generate the annual maximum are already430

known. The occurrence and impact prediction functions of the model can also be used431

with alternative precipitation and temperature output (for example another climate model,432

reanalysis product, or temperature or precipitation product), or socioeconomic data prod-433

ucts. For such an application, the user should first compare the statistical properties of434

the new forcing quantities over the watersheds of interest with those used in the model435

fitting. Based on those analyses, the user should consider applying a bias-correction be-436

fore proceeding with the steps described in Table 3.437

4 Results and Model Validation438

This section presents validations for the occurrence and impact models that we de-439

scribe in terms of goodness of fit, parsimony, ease of use, and interpretation (Sections440

4.1 and 4.2). Results are presented on world maps over aggregated HydroBASINS wa-441

tersheds. We analyze the realism of the entire simulated flood catalogue in Section 4.3.442

Additional validations and other results can be found in the Supporting Information.443

4.1 Occurrence444

Overall, we find that logistic regressions do poorly for the global fit but their qual-445

ity significantly improves when fitted regionally (Table 4 and Supporting Information).446

RF and NN models are built to capture complex non-linear relationships and interac-447

tions between predictors and given the problem at hand it is not a surprise that such non-448

linearities and interactions appear. As such, RF and NN perform similarly globally and449

over regional aggregations of watersheds. That said, for fits over HS2 watersheds, all three450

methods perform similarly.451

Neural networks do not significantly improve the quality of the fit when compared452

to random forests. With only 128494 observations, the dataset is likely not in the ap-453

propriate sample size regime to observe the benefits of NNs. Given the difficulty in in-454

terpreting NNs, we cannot recommend their use for this application. We generally find455

that the RF, fitted globally or regionally, is a solid approach in terms of in-sample and456

out-of-sample fit of global flood occurrences. Given that the RF is composed of individ-457

ual decision trees applied to random samples of the observations, it is also easier to in-458

terpret than the other models. If a user has a preference toward a more statistical ap-459

proach, we recommend the use of logistic regressions in combination with regional fits.460
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Figure 5. World map of the area under the receiver operating characteristic curve (AUC) for

the globally-fitted random forest model. The AUC is evaluated using out-of-sample observations

aggregated over each level 2 watershed (HS2) and indicates the probability that a model can

differentiate between “flood” and “no flood”.

In the Supporting Information, we present the ROC curve and other validation measures461

used to support these results.462

Figure 5 demonstrates the performance of the globally fitted random forest in terms463

of the area under the ROC curve aggregated over HS2 watersheds. The occurrence model464

does particularly well in Eastern Canada, Eastern China, Japan, Indonesia, Australia,465

and the Amazon. The global random forest model shows predictive skill (AUC more than466

0.5) over all regional HS2 watersheds, and generally has the ability to identify the en-467

vironmental and socioeconomic features that generate flood occurrence. We are encour-468

aged that only 6 of the 62 HS2 watersheds have an AUC less than 0.6.469

Table 5 lists the 10 most significant predictors found to explain flood occurrence470

with the globally fitted RF model. Regardless of the measure chosen, the two exposure471

predictors of GDP per capita and population density are prominent. Unsurprisingly, the472

precipitation over various timescales are key predictors. Annual mean temperature is also473

an important predictor, driven by its link to interannual patterns in evapotranspiration.474

The remaining predictors represent the residual components of flood hydrology. Topo-475

graphic effects are represented by the topographic position index and aspect, soil con-476

tent by gravel, and land usage by cropland. Bedrock porosity provides a proxy of longer477

term storage.478

4.2 Impact479

As with the occurrence model, we fit each model globally and by HS2 regional sub-480

sets of watersheds. In terms of the quality of the out-of-sample fit, we again cannot claim481

that the NN models outperform the others, so given their complexity we do not recom-482

mend them. Linear models (LM) perform poorly globally but their fit improve once fit-483

ted over different subsets of watersheds (Table 6). However, LM are outperformed by484

RF in terms of global and local fit and hence we recommend the latter method for this485

application. The Supporting Information presents the RMSE and R2 for all three mod-486

els fit globally and by regional subsets of watersheds.487
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Figure 6. World map of the out-of-sample RMSE for each level 2 watershed for the globally

fitted random forest model.

Figure 7. World map of the out-of-sample R-squared for each level 2 watershed for the glob-

ally fitted random forest model.
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Figure 6 shows the root-mean-square error (RMSE) aggregated by HS2 watershed488

regions for the random forest fitted globally. Almost all HS2 regions have an out-of-sample489

RMSE below 1, which given the log10 scale of the fraction of population displaced used490

as the response variable, indicates that the predictions are within an order of magnitude491

of the observations. This result is excellent given that impact ranges over 8 orders of mag-492

nitude (Figure 4b). It is also important to note that in the observations, the fraction of493

displaced people is very small (mainly in the range of [−5,−2] on a log10 scale) mean-494

ing that absolute errors, rather than relative errors, are quite small. Moreover, only one495

quarter of the HS2 watersheds analyzed have an out-of-sample R2 below 10%, while the496

majority are above 20% (Figure 7) and many of them are above 40%. Given the chal-497

lenge of predicting the fraction of the population affected by a flood over the globe, we498

find these to be promising results. A number of the poorer predictive results are influ-499

enced by limited observations, such as for Madagascar, Papua New Guinea, and New Zealand500

(see Supporting Information). However, for the more challenging watersheds the predic-501

tors are not representing the fraction displaced because 1. other predictors represent the502

relevant flood regimes in those watersheds, 2. there are biases or inaccuracies in the im-503

pact observations, 3. there are biases in the manner in which the persons displaced are504

associated to particular watersheds. For the impact model, we are reassured by good lev-505

els of out-of-sample variance explained over the majority of the globe, and by a lack of506

systemic patterns in the watersheds with poorer variance explained.507

Table 7 lists the 10 most significant predictors in the globally fitted random for-508

est impact model. Regardless of the measure used, we find that most timescales of pre-509

cipitation and temperature variables need to be included in the model, as well as pop-510

ulation density and GDP per capita. The resulting predictors are similar to those iden-511

tified in the occurrence model, with lagged temperature predictors taking on an impor-512

tant explicative role. Overall, we find that lagged precipitation and temperature vari-513

ables, when applied with the exposure predictors of GDP per capita and population den-514

sity, capture the majority of the resolved signal of seasonal flooding.515

4.3 Global Model516

This section assesses the entire flood catalogue, which consists of 1 million simu-517

lated years of flood occurrences and impacts over 4734 watersheds globally. We first eval-518

uate the displaced fraction of population and then the simulated occurrence and pop-519

ulation displaced. Despite the bias correction of precipitation and temperature, the time-520

varying CESM-LE output and basin-scale predictors do not sufficiently capture impact521

extremes. This results in underestimated densities for both low and high values of the522

fraction displaced (Supporting Information). To remedy this issue in a simple way, we523

scaled the standard deviation parameters of the impact distribution to match the ob-524

served standard deviation (Supporting Information).525

Figure 8 compares the mean simulated and observed occurrence and impact ag-526

gregated over level 3 watersheds (HS3). It is important to note that such a comparison527

is ambitious since the performance of the global model depends on the performance of528

the CESM-LE to generate conditions favorable for flood. As such, the clustering of points529

along the 45◦ lines indicates that the global model works well overall to simulate a re-530

alistic number of floods and displaced people compared to the observations. For low risk531

areas though, the model tends to slightly overestimate flood hazard. This could be be-532

cause no flood was observed over the 32-year observational record even if the true flood533

probability is non-zero. This bias results in overestimates of the number of displaced peo-534

ple for small population watersheds. Nevertheless, for HS3 watersheds with an annual535

mean of more than 300 people displaced (the great majority of basins where risk anal-536

ysis is relevant), the model predictions fit the observations well.537
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Figure 8. Observed versus simulated flood occurrence and population displaced aggregated

by level 3 watersheds. (a) Mean observed flood frequency versus mean simulated frequency. (b)

Mean observed versus simulated population displaced, expressed on a log10 scale. The red tri-

angle represents the mean. Averages of observations are taken over the 32 hydrological years

available from the DFO and over 1 million years for the catalogue.
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Figure 9. World map of the error on the mean number of displaced people. Represented

as the mean observed displaced population less the mean displaced population in the catalog

(with each member of the difference being on a log10 scale). Negative values indicate the model

overestimates observations.

The world map in Figure 9 illustrates the average error in the number of displaced538

people. The darkest blue shade represents locations where the overestimation is larger539

than a factor of 10. Of these regions, we observe that they are either in far northern re-540

gions (Northern Canada, Sweden, Finland, North-Western Russia) or dry climates (Libya,541

Egypt, Saudi Arabia, and Southwest Australia). While flood is not common in these re-542

gions, biases could be due to underreporting in DFO in these regions as they are sparsely543

populated, to overestimates in the CESM-LE flood-generating conditions, or a lack of544

fit of the occurrence/impact statistical models due to a lack of observations. Looking back545

to Figures 5 and 7, the fit of both statistical models is good in dry climates but not as546

successful over northern regions. Overall, there are less cases of underestimated popu-547

lation displaced. The model underestimates population displaced in a few South Asian548

watersheds in Bangladesh, India, and Nepal. This region, particularly Bangladesh, is known549

for extreme floods resulting in millions of displaced driven by the unique combination550

of precipitation extremes from the annual Indian Monsoon, low-lying and complex hy-551

drology, high population, and poor infrastructure (Dewan, 2015), which is beyond the552

ability of our model to capture.553

5 Applications554

To illustrate potential uses for the model, we show global flood hazard and risk maps555

based on the stochastic catalogue comprised of one million years of events. Flood haz-556

ard is expressed as the annual flood probability whereas flood risk combines flood haz-557

ard with population and wealth exposed.558

Figure 10 presents the annual mean flood frequency in the catalogue for each HS5559

watershed, which can be interpreted as the annual flood probability over each HS5 wa-560

tershed. Darker colors point to flood hot spots, with the highest flood probabilities in561

northeastern India, Bangladesh, and Myanmar being driven by the annual South Asian562

monsoons. Southeastern China, Japan, and certain areas of Southeast Asia are also high563

hazard areas. Other regional peaks are found in eastern USA, southern Mexico and Cen-564
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Figure 10. Global flood hazard map by level 5 watershed expressed as the annual flood prob-

ability.

Figure 11. Global flood risk map, expressed as the average population displaced (log10).

tral America, southern Brazil, and parts of Europe. Although these probabilities seem565

high, they represent the likelihood that at least one river within an HS5 watershed over-566

flows sufficiently so that a minimum number of people are displaced. It should not be567

compared to typical return periods.568

The annual average population displaced over each HS5 watershed (Figure 11) com-569

bines flood hazard (flood probability) and exposure (population) to yield the average num-570

ber of displaced people in any given year (flood risk). For example, over Northern In-571

dia, Bangladesh and China, many highly densely populated watersheds yield an annual572

average number of displaced people of over 100,000. Over Central Europe, for example,573

many watersheds have an average annual number of displaced people of about 1,000. We574

expect this model of flood risk to be highly relevant to risk management and socioeco-575

nomic studies.576
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Figure 12. Global flood risk map, expressed as the average GDP produced by the displaced

population (log10, US dollars)

To illustrate the global scale economic loss potential of flood, we translate popu-577

lation displaced into the GDP of the population displaced by simply multiplying by the578

annual GDP per capita (Kummu et al., 2018). Figure 12 presents this alternative per-579

spective of flood risk, with exposure being the GDP of the population over a given wa-580

tershed. This view of flood risk is more targeted to studies of economic loss and finan-581

cial risk management. In terms of GDP affected, less developed high population water-582

sheds remain important, yet hot spots appear in wealthier regions in Europe (UK, East583

of France, Belgium, Netherlands, Germany, and Italy), North America (Eastern USA and584

West Coast USA, Southern Canada), South America (Southern Brazil and Northeast-585

ern Argentina), and Australia (Brisbane and Melbourne).586

6 Conclusion587

By integrating the Dartmouth Flood Observatory database of historical flood events588

with the HydroBASINS database of watersheds, we created novel flood occurrence and589

impact databases that describe flood frequency and intensity over a watershed in terms590

of the climatic, watershed, and socioeconomic drivers. We then fitted classical regres-591

sion and machine learning techniques to these data, and adopted the random forest model592

fitted to observations at the global scale. Finally, we generated a global catalogue of flood593

events by forcing the empirical model with bias-corrected precipitation and temperature594

output from the large ensemble of the NCAR CESM climate model.595

The unique value of this global flood model lies in its ability to quickly simulate596

realistic flood events at a resolution that is useful for large-scale socioeconomic and fi-597

nancial planning. Translating outputs from a climate model into flood events facilitates598

the creation of scenarios and projections of impacts over various time horizons. One could599

apply global weather or seasonal forecasts to simulate flood impacts over time horizons600

from days to months, or focus on different time horizons from the NCAR CESM climate601

model and investigate the impacts of climate change on flood hazard and risk. Alterna-602

tively, subsets of the catalogue could be extracted to investigate the impacts of various603

climate oscillations on flood hazard and various measures of risk. Including population604

and wealth per capita in the model allows for sensitivity testing and experimentation of605
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the dependence of flood hazard and risk to changes in the spatial population and wealth606

patterns. Finally, one could conveniently consider shocks to the outputs of the climate607

model (such as significant changes in precipitation over a given area in a year) and eval-608

uate different climate scenarios, as will be required by regulators of the financial services609

industry. We expect this model to be a useful empirically-based though climatically-consistent610

complement to the mechanistic and other approaches available.611
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Database Variable Data Reference

Response variables

DFO - Dartmouth Flood Observatory Global Active Archive of Large Flood Events Brakenridge (2010)
Flood event
Population displaced

Predictor variables

CHIRPS - Climate Hazards group Infrared Precipitation with Stations Funk (2015)
Precipitation (Daily, 1981-present) (0.05◦) For sites between [−50◦,+50◦] latitude

CPC Precipitation - CPC Global Unified Gauge-Based Analysis of Daily Precipitation Xie et al. (2007)
Precipitation (Daily, 1979-present) (0.5◦) For sites outside [−50◦,+50◦] latitude

CPC Temperature - CPC Global Daily Temperature Shi (2007)
Temperature (Daily, 1979-present) (0.5◦)

HydroBASINS Lehner and Grill (2013)
Aspect
Elevation
Hillslope
Slope
Topographic position index
Latitude of watershed centroid
Longitude of watershed centroid

TI - High-resolution global topographic index values Marthews et al. (2015a)
Topographic index

GLC-SHARE - Global Land Cover SHARE Latham et al. (2014)
Artificial surfaces
Cropland
Grassland
Tree covered areas
Shrubs covered areas
Herbaceous vegetation
Aquatic or regularly flooded
Mangroves
Sparse vegetation
Bare soil
Snow and glaciers
Water bodies

GSD - Global Soil Dataset for Earth System Modeling Shangguan et al. (2014)
Sand
Silt
Clay
Gravel
Bulk soil density

GDB - Global depth to bedrock Shangguan et al. (2017)
Global depth to bedrock

GLHYMPS 2.0 - GLobal HYdrogeology MaPS 2.0 Gleeson et al. (2014)
Bedrock porosity
Bedrock permeability

GPW - Gridded Population of the World CIESIN (2018)
Population count (2.5 min)

HYDE3.2 - Anthropogenic land-use estimates for the Holocene Klein Goldewijk (2017)
Population count (5 min)

GDPHDI - Gridded global datasets for GDP and HDI over 1990-2015 Kummu et al. (2019)
Gross domestic product (PPP) per capita (5 min)

Table 1. Response and predictor variables used in statistical fits of occurrence and impact

models.
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Variable Long Name Variable Model Quantity

Atmospheric rain RAIN Precipitation
Atmospheric snow SNOW Precipitation
Reference height temperature TREFHT Temperature

Table 2. Forcing climate variables from the NCAR CESM Large Ensemble (CESM-LE) Com-

munity Project.

Step Description Duration Repetitions

1 Occurrence - Simulation 1.34 s / simulation 625
2 Intensity - Distribution mean 36.9 min / member 40
3 Intensity - Distribution standard deviation 3.1 s 1
4 Intensity - Merge mean and standard deviation 6.8 s 1
5 Simulate intensity and combine with occurrence 3.75 s / simulation 50
6 Calculate standard deviation correction 1.68 min 1
7 Repeat step 4 with corrected standard deviation 6.8 s 1
8 Simulate corrected intensity and combine with occurrence 3.75 s / simulation 625

Table 3. Duration of simulation computation steps.

Model Global Fit HS2 Fit

LR 0.735 0.789
RF 0.788 0.792
NN-24 0.787 -
NN-12-12 0.781 -
NN-24-24 0.776 -
NN-12 - 0.777

Table 4. Out-of-sample area under the ROC curve for occurrence models and fitting ap-

proaches considered.
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Mean decrease in accuracy Mean decrease in Gini impurity index

1 GDP per capita Population density
2 Population density Precipitation (previous 7 days)
3 Temperature (annual mean) GDP per capita
4 Precipitation (previous 7 days) Precipitation (previous 8-30 days)
5 Topographic position index Precipitation (previous 31-60 days)
6 Precipitation (previous 8-30 days) Precipitation (previous 61-120 days)
7 Gravel Temperature (annual mean)
8 Precipitation (previous 61-120 days) Cropland
9 Aspect Latitude

10 Porosity Longitude

Table 5. Most significant predictors of flood occurrence ranked by two methods for the glob-

ally fitted random forest model.

Model Global Fit HS2 Fit

LM 0.172 0.209
RF 0.325 0.353
NN-26 0.291 -
NN-13-13 0.287 -
NN-26-26 0.303 -
NN-13 - 0.308

Table 6. Out-of-sample R2 for impact models and fitting approaches considered.
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Increase in mean squared error Increase in residual sum of squares

1 Precipitation (previous 8-30 days) GDP per capita
2 GDP per capita Temperature (previous 61-120 days)
3 Precipitation (previous 7 days) Temperature (previous 31-60 days)
4 Population density Temperature (previous 8-30 days)
5 Precipitation (previous 31-60 days) Temperature (previous 7 days)
6 Precipitation (previous 61-120 days) Population density
7 Temperature (previous 61-120 days) Precipitation (previous 7 days)
8 Temperature (previous 7 days) Latitude
9 Longitude Precipitation (previous 31-60 days)

10 Temperature (previous 31-60 days) Precipitation (previous 8-30 days)

Table 7. Most significant predictors of impact model ranked by two methods.
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Introduction

The texts below present details on the neural network model topologies considered (S1),

the validation techniques used (S2), and the interpolations and extrapolations applied to

the population and GDP per capita data sets (S3). The supporting figures provide a

variety of content such as maps of dataset test sample sizes (Figures S1 and S2), a map of

population exposure (Figure S3), validations of globally and regionally fitted occurrence

models (Figures S4 and S5), maps of aggregated occurrence model validations for the

logistic regression and neural network models (Figures S6 and S7), aggregated validations

of the globally and regionally fitted impact models (Figures S8 and S9), and analyses of

the standard deviation correction applied to the impact model (Figures S10 and S11).

Text S1 Neural Network Model Topology
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For the global occurrence model, we examined 3 topologies for the NN model: 1. a

single hidden layer with 24 neurons (a 38-24-2 network), 2. two hidden layers with the

same total of hidden neurons (a 38-12-12-2 network), and 3. two hidden layers each with

24 neurons (a 38-24-2 network). The choice of 24 neurons for the hidden layers is based

on a commonly used rule of 2/3 as the ratio of hidden to input neurons. We consider a

maximum of 2000 iterations to achieve convergence of the learning algorithm. Due to the

smaller sample sets for the fits over HS2 watersheds, we consider a single hidden layer

with 10 neurons (a 38-10-2 network).

For the global impact model, we examined 3 topologies for the NN impact model: 1.

a single hidden layer with 26 neurons (a 41-26-1 network), 2. two hidden layers with the

same total of hidden neurons (a 41-13-13-1 network), and 3. two hidden layers each with

26 neurons (a 41-26-26-1 network). NN models are fit with a single hidden layer with 13

neurons in the regional fits due to smaller datasets in the HS2 watersheds.

Text S2 Validation

In addition to the ROC curve and the AUC, we here plot the precision-recall curve,

which is the positive predictive value (TP/(TP+FP)) versus the true positive rate

(TP/(TP+FN)), and the F1 Score, the harmonic mean of positive predictive value and

true positive rate as a function of the cutoff probability that defines a prediction as a

“flood”. Since 17% of the flood occurrence observations are “flood”, one could simply

always predict “no flood” and be correct 83% of the time. The precision, however, focuses

on the predictions of “flood” by considering the proportion of predicted floods that are

truly floods.

Text S3 Population and GDP per capita data

June 22, 2020, 4:38pm
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Population from the GPW database is available from 2000-2020. Since growth rates

from the early 2000’s are not appropriate to back-extrapolate as far back as the 1980’s, we

use the HYDE3.2 database gridded population from 1980 to relate the GPW population

in 2000 to that in 1980. For each grid point (i, j), we assume that

GPWi,j,1980 =
HYDEi,j,1980

HYDEi,j,2000

GPWi,j,2000, (1)

which simply implies that the GPW population in 1980 (GPWi,j,1980) is linearly scaled

from that of year 2000 by the HYDE3.2 population ratio between 1980 and 2000.

GDP per capita data from the GDPHDI database is available from 1990-2015. For the

years 2015-2020, we forward extrapolate at each grid point assuming a continuation of ex-

ponential growth based on years 2010-2015. For the years 1980-1990, we back-extrapolate

assuming exponential growth at each grid point by applying the same parameters as fitted

for 1990-1995.
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Figure S1. World map of sample size of occurrence model used in model comparison (test

sets) aggregated over level 2 watersheds.

Figure S2. World map of sample size of impact model used in model comparison (test sets)

aggregated over level 2 watersheds.
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Figure S3. Population (Gridded Population of the World) in 2015 by HydroBASINS level 5

watershed.
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Figure S4. Occurrence validation curves fitted globally. ROC curves (left), Precision-recall

curves (middle), F1 scores (right) for globally fitted models.
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Figure S5. Occurrence validation curves fitted regionally. ROC curves (left), Precision-recall

curves (middle), F1 scores (right) for models fitted over HS2 watersheds.
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Figure S6. World map of the area under the receiver receiver operating characteristic curve,

which measures probability of a model to differentiate between “flood” and “no flood”, evaluated

at each level 2 watershed (HS2) for the globally fitted logistic regression model.

Figure S7. World map of the area under the receiver receiver operating characteristic curve,

which measures probability of a model to differentiate between “flood” and “no flood”, evaluated

at each level 2 watershed (HS2) for the globally fitted neural network model.
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Figure S8. RMSE (top) and R-squared (bottom) by HS2 watershed for globally fitted models

(LM, RF and NN).
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Figure S9. RMSE (top) and R-squared (bottom) by HS2 watershed for models (LM, RF and

NN) fitted over subsets of watersheds.
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Figure S10. Comparison of the residual root mean squared errors when partitioning into 9

and 60 groups by mean watershed population density. The 60 group partitioning shows that

the RMSE increases up to a threshold of -1, from where it remains flat. This allows us to use a

simpler standard deviation structure with only 9 groups that preserves the increasing and then

flat structure.
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Figure S11. Comparison of observed impact distribution (log10 scale) with those simulated for

the flood event catalogue. Observed impacts are solid black, whereas the original and corrected

impact predictions are blue (short dash) and red (long dash), respectively.
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Figure S12. Comparison of observed population displaced distribution (log10 scale) with those

simulated for the flood event catalogue. Observed population displaced is solid black, whereas the

original and corrected impact predictions are blue (short dash) and red (long dash), respectively.

Values are truncated at -3, or 0.001 people displaced. Population displaced of less than one

can arise when the population is low and a low fraction of population affected is predicted. For

example, a watershed with a population of 100 and and impact of 0.001 will result in 0.1 people

displaced.
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