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Abstract

A mathematical model is considered for Rayleigh-Benard convection of mantle whose viscosity depends strongly both on

temperature and pressure defined in an Arrhenius form. The model is solved numerically for extremely large viscosity variations

across a unit aspect ratio cell, and steady solutions are obtained. To improve the efficiency of numerical computation, a modified

viscosity law with a low temperature cut-off is used. The aim is to investigate the convection pattern with internal heating

at a very high viscosity variation in the presence of high Rayleigh number. The study also investigates the relation between

temperature-dependent parameter and pressure dependent parameter. The numerical simulation is done using the finite element

method based PDE solver and the results are presented through figures, tables and graphs.
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Abstract10

A mathematical model is considered for Rayleigh-Bénard convection of mantle whose viscos-11

ity depends strongly both on temperature and pressure defined in an Arrhenius form. The12

model is solved numerically for extremely large viscosity variations across a unit aspect ratio13

cell, and steady solutions are obtained. To improve the efficiency of numerical computation,14

a modified viscosity law with a low temperature cut-off is used. The aim is to investigate the15

convection pattern with internal heating at a very high viscosity variation in the presence16

of high Rayleigh number. The study also investigates the relation between temperature-17

dependent parameter and pressure dependent parameter. The numerical simulation is done18

using the finite element method based PDE solver and the results are presented through19

figures, tables and graphs.20

Plain Language Summary21

Convection is a process where the heat is transferring from one place to another caused by22

the movement of the fluid particles. The inner infrastructure of the Earth can be divided23

into Center, Core, Mantle and Crust. The surface of the Earth is the part of crust and the24

molten materials that lies beneath the crust is known as Mantle which is about 84% of the25

Earth’s total volume. Mantle Convection can be defined as the process where hot materials26

sink and cool materials rise up, this loop process is responsible for plate tectonic movement,27

volcanic eruptions, earthquakes, etc. The mantle is powered by the core but also there is28

some rocks in the mantle which are capable of providing the heat necessary to occur the29

convection. That’s why we are interested about the internal heating in the mantle. Also,30

as we go deeper not only temperature but also pressure dependence parameter becomes31

significant and so we want to study these dependence on viscosity and understand how it32

affects the mantle convection.33

1 INTRODUCTION34

Mantle convection in the Earth and other planets is a complex mechanism. It sets the pace35

for the evolution of the Earth as a whole. It is the primary mechanism for the transport36

of heat from the Earth’s deep interior to its surface and the fundamental cause of plate37

tectonics, formation and drift of continents, volcanism, earthquakes, and mountain building38

Schubert et al. (2001). There are two possible heat sources to drive this convection: the39

primary sources of thermal energy for mantle convection are internal heating due to the40
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decay of the radioactive isotopes of uranium, thorium, and potassium, the long-term secular41

cooling of the Earth, and heat from the core Schubert et al. (2001). Mantle convection is42

also very much influenced by its enormous viscosity. The effective viscosity of the mantle is43

a strong function of temperature, pressure, and stress. The temperature and stress depen-44

dences are well documented experimentally. The first attempt to model mantle convection45

was made by D. Turcotte and Oxburgh (1967). They performed a boundary-layer analysis of46

two-dimensional steady state convection of a constant viscosity fluid at high Rayleigh num-47

ber. Later Roberts (1977), Olson and Corcos (1980), Jimenez and Zufiria (1987) presented48

improved boundary layer analyses for mantle convection. The temperature-dependent case49

was studied numerically by Christensen (1984), Christensen (1984b), Moresi and Soloma-50

tov (1995), Solomatov and Moresi (1997), Kameyama and Ogawa (2000). The influence51

of temperature and depth-dependent viscosity on convection has been explored in two-52

dimensional numerical experiments by Houston and De Bremaecker (1975), Christensen53

(1984b), Fleitout and Yuen (1984), Doin et al. (1997), Dumoulin et al. (1999), Stemmer et54

al. (2006), Khaleque et al. (2015). The work involving ‘internal heating’ is investigated by55

Bercovici et al. (1989), Ito and Katsura (1989), Leitch et al. (1991), Davies and Richards56

(1992), Bercovici et al. (2000), D. L. Turcotte and Schubert (2002), Van Heck and Tackley57

(2011), Stein et al. (2013), Limare et al. (2015), King (2015), Korenaga (2017).58

In this paper, we present numerical results of Rayleigh-Bénard convection influenced by59

variable viscosity (Khaleque et al., 2015) which depends strongly on both temperature and60

pressure with the presence of internal heating. This type of Arrhenius law with an im-61

posed cut off viscosity was applied by Huang et al. (2003), Huang and Zhong (2005) and62

King (2009) but none of them was applied to a temperature and pressure dependent vis-63

cosity. Khaleque et al. (2015) applied this cut-off viscosity function to a temperature and64

pressure dependent viscosity and emphasises that this trick enables numerical simulation of65

the extreme viscosity variations without compromising anything. In Sec. 2, we introduce66

and nondimensionalize the governing equations and boundary conditions. We validate our67

method through comparison with benchmark values and then present our numerical results68

with internal heating in Sec. 4 by graphs and tables. A discussion on the relationship be-69

tween temperature and pressure dependent parameters is also presented here. A comparison70

is shown between ‘with’ and ‘without’ internal heating which follows in Sec. 5 and finally,71

we draw our conclusions in Sec. 6.72
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2 GOVERNING EQUATIONS73

2.1 Model equations and boundary conditions74

We consider classical Rayleigh-Bénard convection in a two-dimensional square cell with a75

fixed temperature difference ∆T between the horizontal boundaries. This convective cell76

is assumed to be a part of a periodic structure in an infinite horizontal layer. We adopt77

Cartesian coordinates (x, z) with the x-axis horizontal and the z-axis pointing vertically78

upwards. The governing equations which describe the motion are (is treated as a Boussinesq79

fluid),80

ρ∇ · (u) = 0,

ρ

[
∂u

∂t
+ (u.∇)u

]
= −∇p+∇ · τ − ρgk̂ ,

τ = η[∇u+ (∇u)T ], τ 2 = τ21 + τ23 , (2.1)

ρ = ρ0[1− α(T − Tb)],

ρCp

[
∂T

∂t
+ u.∇T

]
= κ∇2T +

τ2

2η
+ ρQ,

where, u = (u, 0, w) is the fluid velocity, t is time, p is the pressure, ρ is the density,

τ is the deviatoric stress tensor, τ1 and τ3 are longitudinal and shear components of the

deviatoric stress respectively, T is the absolute temperature, and η is the viscosity. The

parameters in the equations are the constant gravitational acceleration acting downward g,

specific heat at constant pressure Cp, thermal conductivity κ, (radiogenic) internal heating

Q, thermal expansion coefficient α, reference density ρ0, basal temperature Tb. In general,

η is a function of temperature, pressure and stress which is written as,

η =
1

2A(τ21 + τ23 )(n−1)/2
exp

(
E + pV

RT

)
, (2.2)

where A is the rate factor, n is the flow index, E is the activation energy, V is the activation81

volume, and R is the universal gas constant. This form of viscosity function is known as82

Arrhenius form of viscosity.83
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Figure 1: Schematic diagram of a basally heated non-dimensional unit aspect-ratio cell in

mantle.

We will consider only two-dimensional motion in the (x, z) plane. We impose the free-slip

boundary conditions on all boundaries and thermal insulation on the vertical sides. The

top and bottom are maintained at specified temperatures Ts and Tb respectively, so the

boundary conditions are,

w = 0,
∂u

∂z
= 0, T = Tb on z = 0,

w = 0,
∂u

∂z
= 0, T = Ts on z = d,

u = 0,
∂u

∂z
= 0, Tx = 0 on x = 0, d.

(2.3)

where d is the depth. In addition, we consider only Newtonian rheology, and therefore set84

n = 1 in (2.2).85

2.2 Non-dimensionalisation86

Following Fowler (2011), Jarvis and Peltier (1982), we non-dimensionalize as follows:

(x, z) = d(x∗, z∗), T = ∆TT ∗ + Ts, u =
κ0
d
u∗, t =

d2

κ0
t∗

η =
e(1+µ)/ε

2A
η∗, ρ = ρ0ρ

∗, τ =
η0κ0
d2

τ∗, p = ρgd(1− z∗) +
η0κ0
d2

p∗
(2.4)
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Substituting these variables in equations (2.1),(2.2), we obtain the following dimensionless87

equations by dropping the asterisks:88

∂u

∂x
+
∂w

∂z
= 0,

1

Pr
ρ

[
∂u

∂t
+ (u.∇)u

]
= −∇p+∇ · τ −Ra(1− T )k̂ , (2.5)

∂T

∂t
+ u.∇T = ∇2T +

D

Ra

τ2

2η
+H,

where, τ = η[∇u + (∇u)T ] = η∇u. While the dimensionless version of constitutive η

relation with n = 1 leads to,

η = exp

[
1− T + µ(1− z − T ) + B̄p/Ra

εT

]
, (2.6)

where the dimensionless parameters are,89

Dimensionless surface tempearture, θ0 =
Ts
Tb
, Prandtl number, Pr =

η0
ρ0κ0

,

Dissipation number, D =
αgd

Cp
, Viscous pressure number, µ =

ρ0gdv

E
,

Internal heating number, H =
ρ0Qd

2

κ0Tb
, Viscous temperature number, ε =

RTb
E

,

Rayleigh number, Ra =
ρ0αg∆Td3

η0κ0
, Boussinesq number, B̄ = αTb.

Using the typical parameter values for the mantle as shown in Table 1, we find that Pr ≈ 1023

and D ≈ 0.6. Thus, Pr can be taken as infinite and for Ra � 1, D/Ra can be neglected.

B̄/Ra can easily be ignored in the viscosity relation. However, we are going to use a low-

temperature cut-off viscosity function (Khaleque et al., 2015) defined as follows,

η =

 exp[M/ε] ,M ≤ ε log106

106 , otherwise,
(2.7)

where,

M =
(1 + µ)(1− T )− µz

T
. (2.8)

Here, ε is the viscous temperature number and µ is the viscous pressure number. The heating90

parameter H depends on the assumed distribution of radioactive elements in the mantle.91

If we take thermal conductivity to be constant (κ = 1), then we obtain the dimensionless92

Boussinesq equations of convection,93

∇ · u = 0,

∇p = ∇ · (η∇u)−Ra(1− T )k̂ , (2.9)

∂T

∂t
+ u.∇T = ∇2T +H,

–5–
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The associated free-slip dimensionless boundary conditions are,

w = 0,
∂u

∂z
= 0, T = 1 on z = 0,

w = 0,
∂u

∂z
= 0, T =

Ts
Tb

= θ0 on z = 1,

u = 0,
∂w

∂x
= 0, Tx = 0 on x = 0, 1.

(2.10)

Our complete dimensionless model consists of governing equations (2.9), constitutive relation94

(2.7),(2.8) and boundary conditions (2.10).95

2.3 Viscosity contrast, Nusselt number and Root means square (RMS) velocity96

We define three useful diagnostic quantities which will be used to characterise the numerical

results found. First, we define the viscosity contrast ∆η to be the ratio between the surface

and basal values (bottom layer values) of the viscosity, that is,

∆η = exp

(
1− θ0 − µθ0

εθ0

)
. (2.11)

Second, the Nusselt number Nu is the ratio of the average surface heat flow from the

convective solution to the heat flow due to conduction and is calculated in the present case

of a square cell by the dimensionless relation

Nu = − 1

a(1− θ0)

a∫
0

∂T

∂z
(x, 1) dx. (2.12)

Finally, the vigour of the circulating flow is characterised by the non-dimensional RMS

velocity, defined by

Vrms =

 1∫
0

a∫
0

(u2 + w2) dx dz

1/2

. (2.13)

In our case, a = 1 and θ0 = 0.1.97
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Table 1: Typical parameter values for numerical models of mantle convection.

Parameter Symbol Value

Mantle Depth d 3× 106 m

Thermal expansion coefficient α 2× 10−5 K−1

Reference density ρo 4× 103 kgm−3

Gravitational acceleration g 10 ms−2

Temperature at the base of the lithosphere Ts 300 K

Temperature at the core-mantle boundary Tb 3000 K

Temperature difference ∆T 2700 K

Thermal conductivity κo 4 W m−1K−1

Specific heat at constant pressure Cp 103 J Kg−1 K −1

Thermal diffusivity coefficient κo =
κo
ρoCp

1× 10−6 m2s−1

Dynamic viscosity η0 1021 Pa s

Rayleigh number Ra 104 − 107

Activation energy E 300− 525 kJmol−1

Activation volume V 6× 10−6 m3mol−1

Universal gas constant R 8.31 Jmol−1K−1

Viscous rate constant A 105 MPa−1s−1

Viscous temperature number ε 0.042− 0.083

Viscous pressure number µ 1.2− 2.4

Boussinesq number B̄ 0.06

Dimensionless surface temperature θ0 0.1

3 METHODOLOGY98

3.0.1 Comparison with Benchmark values99

To validate our model, we first solve the model in a unit aspect ratio cell (a = 1) setting100

η = 1, H = 0 and θ0 = 0. i.e. we consider constant viscosity. We use a finite element101

method based PDE solver ‘COMSOL Multiphysics’ to solve numerically the dimensionless102

governing equations (2.9)-(2.10). To build our model the physics of creeping fluid flow,103

heat transfer in fluids and Poisson’s equation are coupled. We choose the appropriate free104

triangular meshing with some refinement near the boundaries. As for the basis functions105

–7–
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or shape functions, we select Lagrangian P2-P1 elements for creeping flow which means the106

shape functions for the velocity field and pressure are Lagrangian quadratic polynomials107

and Lagrangian linear polynomials, respectively. Similarly, Lagrangian quadratic elements108

for both temperature in the heat equation and the streamfunction in Poisson’s equation are109

chosen. Our specific discretization finally produces 150,267 degrees of freedom (Ndof ). We110

have compared the values of Nusselt number, Nu and root mean square velocity, Vrms with111

the benchmark values from Blankenbach et al. (1989) and Koglin Jr et al. (2005) for mantle112

convection with constant viscosity. Their values were computed for Ra up to 106 and 107113

respectively. The comparison is shown in Table 2, where we can observe that the agreement114

is within a very good range.115

Table 2: Comparison of Nusselt number, Nu and RMS velocity, Vrms for constant viscosity

with benchmark values from (Blankenbach et al., 1989)a and (Koglin Jr et al., 2005)b

Ra
Nu Vrms

Benchmark This work Error(%) Benchmark This work Error(%)

104 4.884409a 4.88441 0.00002 42.864947a 42.86497 0.00005

105 10.534095a 10.53409 0.00005 193.21454a 193.21548 0.00047

106 21.972465a 21.97245 0.00007 833.98977a 834.00658 0.00202

107 45.62b 45.63173 0.03 .... 3634.04868 ....

–8–
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4 Numerical Simulation of Mantle Convection with Internal Heating116

4.1 Simulation Results and Discussion117

We solve the system of dimensionless equations (2.9) with the boundary conditions (2.10)118

by setting H = 0.0, 2.0, 3.0, 5.0, 6.0, along with the cut-off viscosity function defined as in119

equations (2.7) and (2.8), so that the viscosity depends strongly both on temperature and120

pressure.121

Table 3: Comparison of Nusselt number, Nu and RMS velocity, Vrms with values from

(Khaleque et al., 2015), using cutoff viscosity function at Ra= 107 and θ0 = 0.1, H = 0.0.

∆η µ ε
Nu Vrms

This work Khaleque et al. This work Khaleque et al.

1010 0.5 0.369 8.0632 8.04491 1000.2615 999.9255

1.0 0.3474 9.3392 9.31593 1189.7667 1186.3094

1015 0.5 0.246 6.9647 6.95366 893.4528 892.7446

1.0 0.2316 8.1909 8.17339 957.8617 956.18565

1020 0.5 0.1846 6.2722 6.25907 806.0677 804.45323

1.0 0.1737 6.8964 6.89670 610.1082 614.08143

1025 0.5 0.1477 5.7638 5.75448 721.55095 720.1903

1.0 0.139 5.4793 5.49674 315.2551 317.69797

1030 0.5 0.123 5.3457 5.3509 634.03108 634.18688

1.0 0.1158 4.8863 4.9234 278.0535 273.45468

We compare our results with (Khaleque et al., 2015) for H = 0.0 and found a good agree-122

ment with them, which is presented in Table 3. The simulation results are presented by123

temperature distributions and stream function contours mainly. At first we present the tem-124

perature distributions. At each plot of the temperature profile, the blue region corresponds125

to the cooler temperature whereas the red region corresponds to the high temperature. The126

cold upper thermal boundary layer represents the stagnant lid. Since, the fluid has a vis-127

cosity which depends strongly on temperature and pressure it is no longer possible for the128

–9–
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bulk flow to be both isothermal and isoviscous. From Figure 2, when µ = 0.5, we observe129

that as ε decreases (i.e, viscosity contrast ∆η increases) the thickness of the lid increases.130

(a) ∆η = 1015, ε = 0.246, H = 3.0 (b) ∆η = 1030, ε = 0.123, H = 3.0

(c) ∆η = 1015, ε = 0.246, H = 6.0 (d) ∆η = 1030, ε = 0.123, H = 6.0

Figure 2: Thermal distributions of a temperature and pressure dependent viscosity convection

at different viscosity contrast, where µ = 0.5 and H = 3.0, 6.0 , with θ0 = 0.1 and Ra = 107.

At the lower mantle near the core mantle boundary, the temperature is higher as expected131

and this temperature is also increasing as the viscosity contrast gets larger. The temperature132

associated with the lower mantle and near the core mantle boundary at H = 6.0 is greater133

than the temperature associated with the core, the lower mantle and near the core mantle134

boundary at H = 3.0.135

–10–
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(a) ∆η = 1015, ε = 0.246, H = 3.0 (b) ∆η = 1030, ε = 0.123, H = 3.0

(c) ∆η = 1015, ε = 0.246, H = 6.0 (d) ∆η = 1030, ε = 0.123, H = 6.0

Figure 3: Stream function contours of a temperature and pressure dependent viscosity convection

at different viscosity contrast, where µ = 0.5 and H = 3.0, 6.0 , with θ0 = 0.1 and Ra = 107.

When µ = 1.0, we observe the appearance of quite a different flow structure in Figure 4.136

The interior temperature is significantly lower than the case with µ = 0.5. That means137

strong pressure dependence in the viscosity function reduce the internal temperature.138

–11–
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(a) ∆η = 1015, ε = 0.2316, H = 3.0 (b) ∆η = 1030, ε = 0.1158, H = 3.0

(c) ∆η = 1015, ε = 0.2316, H = 6.0 (d) ∆η = 1030, ε = 0.1158, H = 6.0

Figure 4: Thermal distributions of a temperature and pressure dependent viscosity convection

at different viscosity contrast, where µ = 1.0 and H = 3.0, 6.0 , with θ0 = 0.1 and Ra = 107.

The corresponding streamlines are also presented in Figure 3 and Figure 5. In each case of139

the streamfunction contours, the absence of streamlines at the top indicates the presence of140

a stagnant lid, but the overall convection pattern changes markedly as viscosity gets larger141

and also as the internal heating is increasing.142

–12–
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(a) ∆η = 1015, ε = 0.2316, H = 3.0 (b) ∆η = 1030, ε = 0.1158, H = 3.0

(c) ∆η = 1015, ε = 0.2316, H = 6.0 (d) ∆η = 1030, ε = 0.1158, H = 6.0

Figure 5: Stream function contours of a temperature and pressure dependent viscosity convection

at different viscosity contrast, where µ = 1.0 and H = 3.0, 6.0 , with θ0 = 0.1 and Ra = 107.

Next, we plot the temperature profiles at the mid-cell (i.e. x = 0.5) for different viscosity143

contrasts. In Figures 6(a,b), we show how temperature changes with depth. The Figure144

6(a) shows that the temperature changes mainly in the upper part of the mantle. In the145

middle the temperature is almost constant for H = 6.0 approximately. In Figure 6(b), we146

plot mid-cell temperature profiles for µ = 1 presented with internal heating. We see that147

when µ = 1, the interior temperature is no longer constant. The temperature is significantly148

–13–
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lower than with µ = 0.5. It is also clear that that the mid-cell temperature decreases in the149

interior as the viscosity contrast gets larger.150

(a) µ = 0.5, ε = .123, H = 6.0 (b) µ = 1.0, ε = .1158, H = 6.0

Figure 6: Temperature profiles of mid-cell at different viscosity contrasts due to varying ε for

convection with temperature and pressure-dependent viscosity with internal heating at θ0 = 0.1

and Ra = 107.

In Tables 4, we present the values of the Nusselt number, Nu and the root mean square151

velocity, Vrms with the variation of internal heating parameter at two pressure dependent152

parameter values, µ = 0.5, 1.0. At a fixed pressure dependence parameter µ, we are in-153

terested to see how Nusselt number, Nu and root mean square velocity, Vrms change with154

decrease of temperature dependent parameter, ε and with the increase of internal heating.155

We keep the pressure dependence parameter µ fixed and the temperature dependence pa-156

rameter ε is decreased and as a result variation of viscosity across the layer is increased. We157

observe form Tables 4 that, as the viscosity contrast increases the values of Nu decreases.158

When µ = 0.5, Nu decreases as viscosity variation gets larger however when µ = 1.0 with159

H = 5.0, 6.0, Nu shows an irregular pattern of decreasing. However root mean square veloc-160

ity shows a different situation, it seems they are decreasing at first sight however the RMS161

velocity is increasing as ∆η increases at µ = 0.5.162

–14–
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Table 4: Values of Nusselt number, Nu and RMS velocity, Vrms using cutoff viscosity

function with internal heating at Ra= 107 and θ0 = 0.1.

∆η µ ε
H = 3.0 H = 5.0 H = 6.0

Nu Vrms Nu Vrms Nu Vrms

105 0.5 0.7383 9.7032 606.3496 9.9802 543.7896 10.1055 518.2479

1.0 0.695 10.5357 694.0388 11.0337 647.4956 11.1469 626.2557

1010 0.5 0.369 8.0192 551.4930 8.4323 513.1509 8.8891 506.0699

1.0 0.3474 9.5584 721.2400 10.3346 726.7835 10.6781 731.2395

1015 0.5 0.246 7.3182 538.0019 7.9273 527.7812 8.4293 530.9498

1.0 0.2316 9.3135 769.4341 10.3797 846.3291 10.8844 883.2726

1020 0.5 0.1846 6.9399 539.9098 7.6989 559.0451 8.2252 573.5983

1.0 0.1737 9.0747 790.1099 10.4245 962.5116 11.0230 1041.4943

1025 0.5 0.1477 6.7237 549.5528 7.6053 600.4647 8.1282 630.4403

1.0 0.139 8.4535 711.6921 10.0820 993.7598 10.6301 1106.7552

1030 0.5 0.123 6.5912 562.3468 7.5402 648.8595 8.0349 691.7370

1.0 0.1158 7.3769 540.4424 8.9379 804.4197 9.4438 917.9902
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Figure 7: Variation of Nusselt number Nu with viscosity contrast ∆η in a unit aspect-ratio

cell for µ = 0.5(dashed line) and µ = 1.0 with θ0 = 0.1 and Ra = 107.
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In Figure 7, we plot the variation of the Nusselt number Nu versus viscosity contrast ∆η163

for H = 2.0, 3.0, 5.0, 6.0. From 7, we observe that as the viscosity contrast increases the164

values of the Nu decrease and show a smoothly decreasing pattern for µ = 0.5, however,165

when viscosity is strongly dependent on pressure, i.e. when µ = 1.0, Nu shows an irregular166

decreasing pattern. We also observe from Figure 7, that when the values of H is increasing,167

the values of the Nu is also increasing, it means the convection becomes more dominant for168

higher values of internal heating.169

4.2 Variation of pressure dependence parameter µ170
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Figure 8: Variation of Nusselt number Nu with temperature parameter ε at different

pressure sensitivity µ values in a square cell with T0 = 0.1 and Ra = 107.

With this new form of viscosity function, we are able to run simulations for a larger range

of µ values. In Figure 8, the Nusselt number Nu is plotted against ε for various µ values.

For a fixed value of µ, Nu decreases as ε decreases. This is expected as decrease of ε

corresponds to increase of viscosity contrast across the mantle. It should be noted that for

the same viscosity contrast where ∆η < 109 or ε > 0.35, Nu gets large with the increase

of µ. However, the qualitative behaviour of the curves exhibits a significant change with

the increase of µ. To get a better understanding, we also plotted Nu versus ∆η for various

values of µ in Figure 9. When µ is around 0.5 ∼ 0.6, the value of Nu decreases steadily with
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the increase of viscosity variation. However, as µ increases, there comes a point where the

curve changes its behaviour quite abruptly, i.e. Nu undergoes a rapid decrease and becomes

a decreasing function of µ for very small values of ε (or for large viscosity contrasts ∆η).

Also for bigger values of µ, this point of sudden change comes at larger values of ε, i.e. at

smaller viscosity variations. From Figure 9, we observe that the highest values of Nu at

a certain viscosity contrast creates a type of envelope. Similarly, we also observe that the

lowest values of Nu when strong pressure dependence is present, creates a log-linear relation

with ∆η. The line can be best approximated by

Nu = 7− 0.07 log(∆η), (4.1)

which is shown in Figure 9.171

∆ η
10

0
10

20
10

40
10

60

Nu

1

5

9

13
µ = 0.5

µ = 0.6

µ = 0.7

µ = 0.8

µ = 0.9

µ = 1.0

µ = 1.1

µ = 1.2

µ = 1.4

µ = 1.5

Figure 9: Variation of Nusselt number Nu with viscosity contrast ∆η at different pressure

sensitivity µ values in a square cell with T0 = 0.1 and Ra = 107. The dashed line is the

envelope approximation given by (4.1).
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Figure 10: Variation of the ratio µ/ε with µ. The values of ε are chosen from Figure 8

where the Nusselt number Nu starts to decrease rapidly.

In Figure 10, we have plotted the values of µ/ε versus µ, where the values of ε for each172

µ are chosen from Figure 8 at which the value of Nu starts to decrease rapidly. The173

graph is consistent with the idea that the transition in behaviour is associated with going174

from µ = O(1) to µ = O(ε) or vice-versa. The variation of Nu with ε and µ is quite175

extra-ordinary in qualitative manner. No such pattern can be seen when internal heating176

is considered. It is difficult to explain the exact reason behind this behaviour. However,177

to make a comment on it, we have presented some results of thermal distributions and178

logarithmic viscosity distributions at viscosity contrasts of 1010, 1016 and 1020 for a fixed179

value of µ = 1.5 in Figure 11. We observe that at ∆η = 1010, ε = 0.326, the interior180

is quite warm, isothermal and almost isoviscous, however, when ∆η = 1016, ε = 0.2036,181

the interior gets significantly cooler and the stagnant lid becomes thicker. Also there is a182

clear emergence of a high viscosity region in the lower mantle and this behaviour persists183

and becomes more prominent when ∆η = 1020 with ε = 0.163. We assume that all these184

remarkable changes in the thermal distribution might explain the significant change in the185

values of Nu. We believe this indicates that the transition in the curves in Figure 8 is from186

a thermoviscous η(T ) regime of µ ∼ ε to a thermobaroviscous regime µ� ε.187
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(a) ∆η = 1010, µ = 1.5, ε = 0.326 (b) ∆η = 1010, µ = 1.5, ε = 0.326

(c) ∆η = 1016, µ = 1.5, ε = 0.2036 (d) ∆η = 1016, µ = 1.5, ε = 0.2036

(e) ∆η = 1020, µ = 1.5, ε = 0.163 (f) ∆η = 1020, µ = 1.5, ε = 0.163

Figure 11: Temperature distributions (a, c, e) and the corresponding viscosity distributions

(logarithm plots) (b, d, f) with different viscosity contrasts at a fixed pressure sensitivity µ = 1.5,

in a square cell with T0 = 0.1 and Ra = 107.
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5 Discussion and Comparison between ‘with’ and ‘without’ internal heat-188

ing189

To demonstrate the significant effects of including internal heating temperature profiles in190

the convecting cell at µ = 0.5 and µ = 1.0 with H = 0.0 are shown in Figure 12.191

(a) ∆η = 1030, µ = 0.5, H = 0.0 (b) ∆η = 1030, µ = 1.0, H = 0.0

Figure 12: Thermal distributions of a temperature and pressure dependent viscosity con-

vection without internal heating at µ = 0.5, 1.0 with θ0 = 0.1 and Ra = 107.

In each plot the top thermal boundary layer forms an effectively rigid lid. However, in the192

rest of the cell the differences between Figure 12(a) and Figure 2(d) and between Figure193

12(b) and Figure 4(d) are noticeable. When µ = 0.5 the bulk fluid is roughly isothermal and194

isoviscous. We notice that at the lower mantle and near the core mantle boundary there is a195

very thin warm yellow region (right corner) whereas in Figure 2(d) we observe a red region196

indicating that the temperature is higher than Figure 12(a). When µ = 1 it is no longer197

possible for the bulk flow to be both isothermal and isoviscous and we observe the emergence198

of a quite different characteristic flow structure, with relatively warm (yellow) upper mantle199

separated from a cooler (green) lower mantle (Figure 12(b)), whereas we notice a warm200

orange region in the upper mantle and relatively warm (yellow) region in the lower mantle201

(Figure 4(d)). Also the upper mantle region almost touches the right side of the cell.202

From Table 3 and Table 4, we compare the values of Nusselt number and RMS velocity203

between H = 0.0 and H = 6.0 for µ = 0.5, 1.0. By comparing between H = 0.0 and204

H = 6.0 we observe that, as the viscosity contrast increases the values of Nu and RMS205
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velocity decrease for both µ = 0.5, 1.0 but when internal heating is added, both the Nusselt206

number and RMS velocity shows an irregular pattern of slowly decresing and increasing207

behaviour. However, root mean square velocity is significantly lower with internal heating208

for the case µ = 0.5. But the effect is quite different for µ = 1.0. Even though RMS velocity209

decreases with large viscosity contrast, the rate of decrease is slow, and hence we obtain210

higher values of RMS velocity with internal heating compared to no internal heating for the211

case µ = 1.0.212

6 Conclusions213

The principal aim of this study has been to investigate the Rayleigh-Bénard convection214

with strongly temperature and pressure dependent viscous fluid relative to the mantle in the215

presence of internal heating at a very high Rayleigh number. We consider a two-dimensional216

model for convection in a unit aspect-ratio cell with free-slip boundary conditions with a217

low temperature cut-off viscosity function in addition of internal heating. The results we218

have found may have serious implications for the style of convection in the mantle of the219

Earth and other terrestrial planets. Purely basally heated convection in plane layers leads to220

upwellings and downwellings of equal intensity (equal and opposite thermal anomalies and221

velocities). However, one of the defining characteristics of convection in the Earth’s mantle222

is that it is very likely powered by radiogenic heating from the decay of uranium, thorium223

and potassium distributed throughout the mantle (D. Turcotte & Schubert, 1982). Thus,224

the mantle is not only heated along the core-mantle boundary by the hotter molten iron225

outer core, it is also heated throughout its interior. This component of internal heating leads226

to a very significant breaking of the symmetry between upwellings and downwellings. We227

find that temperature and pressure dependence of the viscosity in the presence of internal228

heating results in a quite different flow regime, shown for example in Figures (2,4)(d), which229

is completely different from the flow profile when internal heating is neglected. However,230

the nature of the resulting convection can be understood if one realizes that the bottom231

thermal boundary layer must conduct in the heat injected through the bottom while the top232

thermal boundary layer must conduct out both the heat injected through the bottom as well233

as the heat generated internally (Bercovici et al., 2000). We observed that the temperature234

profile are quite different when internal heating is present. We have also investigated how235

pressure dependence parameter influences the heat transfer and found a relation with the236

order of temperature dependence parameter when the convection is purely basally heated.237
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It is obvious that inclusion of different factors will make the model more sophisticated and238

complex as well. We hope that our study has discovered some significant characteristics239

of convection with strong temperature and pressure dependent viscosity and with internal240

heating which are relevant to the mantle of the Earth and other terrestrial planets and241

give an insight of the broader picture of mantle convection in the Earth as well as other242

terrestrial planets.243
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