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Abstract

A simple and efficient method was developed to improve soil moisture representation in an operational water balance model

through satellite data assimilation. The proposed method exploits temporal covariance statistics between modelled and satellite-

derived soil moisture to produce analysed estimates, as a weighted combination of all data sources. We demonstrate the

application of the method to the Australian Water Resources Assessment (AWRA) model and evaluate the accuracy of the

approach against in-situ observations across the water balance. The correlation between simulated surface soil moisture and

in-situ observation is increased from 0.54 (open-loop) to 0.77 (data assimilation). We suggest an approach to use analysed

surface moisture estimates to impart mass conservation constraints on related states and fluxes of the AWRA model in a

post-analysis adjustment. The improvements gained from data assimilation can persist for more than one week in surface soil

moisture estimates and one month in root-zone soil moisture estimates.
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Key Points: 12 

• We develop a simple and efficient method to improve operational soil water balance 13 

model through satellite data assimilation.  14 

• We suggest an approach to use analyzed surface soil moisture estimates to impart mass 15 

conservation constraints on related states and fluxes  16 

• The impact of the satellite data assimilation on model estimates of soil moisture can 17 

persist for several weeks.  18 
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Abstract  23 

A simple and efficient method was developed to improve soil moisture representation in an 24 

operational water balance model through satellite data assimilation. The proposed method 25 

exploits temporal covariance statistics between modelled and satellite-derived soil moisture to 26 

produce analysed estimates, as a weighted combination of all data sources. We demonstrate the 27 

application of the method to the Australian Water Resources Assessment (AWRA) model and 28 

evaluate the accuracy of the approach against in-situ observations across the water balance. The 29 

correlation between simulated surface soil moisture and in-situ observation is increased from 30 

0.54 (open-loop) to 0.77 (data assimilation). We suggest an approach to use analysed surface 31 

moisture estimates to impart mass conservation constraints on related states and fluxes of the 32 

AWRA model in a post-analysis adjustment. The improvements gained from data assimilation 33 

can persist for more than one week in surface soil moisture estimates and one month in root-zone 34 

soil moisture estimates.  35 

 36 

Plain Language Summary 37 

The access to accurate daily continental soil water balance predictions is valuable for water 38 

management practitioners, policy makers and researchers in support of water resources 39 

assessment and agriculture planning. This study develops a simple and robust method for an 40 

operational water balance model to incorporate satellite soil moisture products for improved 41 

accuracy and spatial representation of soil water storage predictions. The integration of satellite 42 

soil moisture products can provide persistent constraints in model predictions for up to several 43 

weeks. 44 

  45 
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1 Introduction 46 

Accurate estimation of soil moisture is fundamental to monitoring and forecasting water 47 

availability and land surface conditions under extreme events such as droughts, heatwaves and 48 

floods (Ines et al., 2013; Sheffield and Wood, 2007; Tian et al., 2019a; Wanders et al., 2013). 49 

The assimilation of satellite soil moisture into land surface and hydrology models has been 50 

repeatedly demonstrated to improve model representation of soil water dynamics (Draper et al., 51 

2012; Kumar et al., 2009; Pipunic et al., 2008; Reichle and Koster, 2005; Renzullo et al., 2014; 52 

Tian et al., 2017; Tian et al., 2019b). Soil moisture is the linchpin between atmospheric fluxes, 53 

surface- and ground-water hydrology, thus it is important that any changes in modelled estimates 54 

are not detrimental to other components of the water balance.  55 

Soil moisture anomalies can persist for months (Vinnikov et al., 1996), but the spatial pattern can 56 

vary significantly due to the heterogeneous spatial distribution of rainfall and variability in soil 57 

properties, land cover type and topography. Due to this large spatial variability of soil moisture, 58 

the utility of ground-based, point-scale measurements is limited. Soil moisture estimates from 59 

land surface models are adversely affected by the uncertainties of atmospheric forcing, model 60 

dynamics and model parameterization. Remotely sensed data can provide spatially and 61 

temporally varying constraints on the modelling of biophysical landscape variables that are often 62 

superior to that achieved by a single static set of model parameters. Data assimilation merges 63 

models and observations in a way that compensates for the deficiencies in each (e.g. uncertainty, 64 

coverage), resulting in improved accuracy, coverage, and ultimately forecasting capability. 65 

Methods of assimilation are many and varied, however commonalities exist between them. These 66 

commonalities are such, that for any time step, the time integrated first guess (the forecast) of 67 

soil moisture states are adjusted by an amount determined by the difference between observed 68 

and modelled soil moisture (the innovation), which is weighted by the respective error variances 69 

of modelled and observed quantities (the gain), to generate revised soil moisture states (the 70 

analysis). At this point, the model soil moisture states are out of balance with the other stores and 71 
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fluxes, until the model integrates forward to the next time step, whereupon water balance is 72 

restored through model physics. 73 

In addition to water balance closure, from an operational perspective, is it important that the 74 

method of data assimilation be: computationally efficient for routine, automated simulation over 75 

the whole model domain; robust to data gaps; and make lasting positive improvements to future 76 

predictions of soil water stores and fluxes. Currently, there are very few operational continental 77 

land surface modelling systems that provide high-resolution near-real time soil moisture 78 

estimates that have been constrained through the assimilation of satellite observations. Some 79 

recent examples include surface soil wetness observations from Advanced Scatterometer 80 

(ASCAT) active radar system, on the meteorological operational satellite (MetOp), been 81 

assimilated into Unified Model (Davies et al., 2005) through nudging to provide soil moisture 82 

analysis at 40 km globally (Dharssi et al., 2011). Additionally, ASCAT data are used in the 83 

ECMWF (European Centre for Medium-Range Weather Forecasts) Land Data Assimilation 84 

System through a simplified Extended Kalman Filter approach (De Rosnay et al., 2013) to 85 

provide near-real time surface soil moisture and root-zone soil moisture at 25-km resolution 86 

globally. However, soil moisture products from a passive radiometer system such as SMOS (Soil 87 

Moisture and Ocean Salinity) mission (Kerr et al., 2001) or the SMAP mission (Entekhabi et al., 88 

2010) have not been fully explored in an operational data assimilation system.  89 

In this study, we develop a simple, computationally efficient, and effective data assimilation 90 

approach for assimilating satellite soil moisture products into an operational national water 91 

balance model. We demonstrate the application of the method to the Australian Water Resources 92 

Assessment Community Modelling system (AWRA-CMS), which provides daily water balance 93 

estimates at 5-km resolution across Australia, with the assimilation of satellite surface soil 94 

moisture (SSM) from both SMOS and SMAP. A post-analysis adjustment is proposed to impart 95 

mass conservation constraints on related states and fluxes such as root-zone soil water storage, 96 

evapotranspiration and streamflow thus improving the accuracy of the water balance post 97 

assimilation. The impacts of data assimilation on model predictions is assessed by quantifying 98 

the persistence of the correction to key model components with respect to open-loop simulations.   99 
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2 Materials and Methods 100 

2.1 Australian Water Resources Assessment Community Modelling system (AWRA-CMS) 101 

The Australian Water Resources Assessment (AWRA) Community Modelling system (AWRA-102 

CMS) is a freely available version of the AWRA Landscape model (Van Dijk, 2010) which 103 

simulates the water balance in the Australian landscape (https://github.com/awracms/awra_cms). 104 

The operational implementation of the AWRA-CMS by the Australian Bureau of Meteorology 105 

provides daily 0.05 degree (approximately 5 km) national gridded soil moisture, runoff, 106 

evapotranspiration and deep drainage estimates, and underpins the annual national water 107 

resource assessments and water use accounts (Frost et al., 2018) as well as providing situational 108 

soil moisture for flood forecasting, agriculture and other applications. AWRA is a one-109 

dimensional distributed model that simulates the water balance for each grid cell across the 110 

modelling domain by distributing rainfall into plant-accessible water, soil moisture and 111 

groundwater stores, and removing water through evapotranspiration, runoff and deep drainage. 112 

The soil water column has been partitioned into three layers (upper: 0–10 cm, lower: 10–100 cm, 113 

and deep: 1–6 m) simulated separately for deep- and shallow-rooted vegetation. In addition to 114 

the modelling of soil columns, the model includes a surface water and a groundwater storage that 115 

are simulated at each grid cell and conceptualized as if operating within a small unimpaired 116 

catchment. In this study, we used daily precipitation and air temperature from the gridded 117 

climate data services (Jones et al., 2009), daily solar exposure produced from geostationary 118 

satellites (Grant et al., 2008), and interpolated site-based wind speed (McVicar et al., 2008) as 119 

model forcing inputs.  120 

2.2 Satellite soil moisture (SSM) 121 

To optimize the daily spatial coverage, we used two satellite soil moisture products derived from 122 

passive L-band systems: the Soil Moisture Active-Passive (SMAP) product from NASA 123 

(Entekhabi et al., 2010); and the product from the European Space Agency’s (ESA’s) Soil 124 

Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2001). The SMAP product is the 125 

level-2 enhanced radiometer half-orbit 9-km EASE-grid soil moisture (Chan et al., 2018). The 126 

SMOS product is the level-2 soil moisture product on ~ 25-km grid (Rahmoune et al., 2013). 127 

Both SMAP and SMOS produce volumetric soil moisture estimates (units m"/m") of 128 
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approximately the upper 5 cm of soil. Available swath data for each product covering Australia 129 

were sourced and collated for 24-hour period approximating the AWRA-CMS operational time 130 

steps and interpolated to a regular 0.05-degree grid across the modelling domain from 2015 to 131 

2019. This provided maximum possible spatial coverage for each data product in representing 132 

surface soil moisture at the end of the model's time step integration each day. 133 

2.3 Data assimilation approach through triple collocation (TC) 134 

The data assimilation method used here is a time sequential updating of model state(s) given 135 

observations of relevant model variables (Reichle, 2008). Two key modelling components in 136 

data assimilation: the dynamics operator, which describes the time integration of the system 137 

states and fluxes, which in this study is the AWRA-CMS; and the observation operator, which 138 

provides the mathematical mapping from state to observation space (or vice versa). The role of 139 

the observation operator is to perform a mapping between observation and state space, as often 140 

observations are not directly comparable to model states.  141 

The state updating equation for sequential data assimilation is written as: 142 

𝑋%& = 𝑋%
( + 𝐾%[𝑌% − 𝐻/𝑋%

(0]                                               (1) 143 

which says that the best estimate of model state, known as analysis (X34), is equal to the first 144 

guess or forecast (X35) plus a weighted difference between observations, Y3, and the model 145 

equivalent to the observation, H/X350, for that time step. The multiplier, K3, is known as the gain 146 

factor which contains uncertainty expressed as error variance for both model estimates (𝜎:;) and 147 

observations 𝜎<;. For a unity observation operator and assuming independence between model 148 

estimates and observations, gain factor typically assumes the form: 149 

𝐾 =	 >?
@

>?
@A>B

@ .                                                                  (2) 150 

In this study, the state variable of focus is the moisture storage in AWRA's upper soil layer, SD. 151 

Satellite surface soil moisture (SSM) products from both SMOS and SMAP are used as the 152 

observations to update the model simulation. Satellite soil moisture estimates are provided in 153 

volumetric units (m"/m"), whereas modeled upper-layer soil moisture is given in terms of 154 
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storage of water (i.e. units mm). The observation operator used here is a linear transformation 155 

which matches the mean and variance between model and observation time series (Tian et al., 156 

2017). As such, the observation operator also simultaneously removes systematic bias between 157 

model estimates and satellite observations. In addition, for region with sparse rain-gauge 158 

coverage such as central Western Australia, the linear transformation of the satellite soil moisture 159 

products draws on data sampled from neighboring cells with similar soil moisture conditions, to 160 

account for known poor model estimates from consistent underestimation of rainfall (S1). 161 

The gain factor, 𝐾, contains information on the error variances of the model and observations. 162 

Observation error variance is often estimated through field campaigns (Draper et al., 2009; 163 

Panciera et al., 2014), but these rarely represent the spatial and temporal variability of errors in 164 

gridded satellite products. Alternatively, data providers often specify error estimates, but their 165 

magnitude can be overly optimistic. Triple collocation (TC) was developed as a method of 166 

quantifying error characteristics in geophysical variables when the true error structure is elusive. 167 

It was first applied to near-surface wind data (Stoffelen, 1998) and later extensively applied to 168 

soil moisture (Dorigo et al., 2017; McColl et al., 2014; Scipal et al., 2008; Su et al., 2014) and 169 

rainfall (Massari et al., 2017). The assumption of this approach is that three independent data sets 170 

of the same geophysical variable can be used to infer the error variances in each. Here we use TC 171 

as a way of inferring error variances from our three independent estimates of surface soil 172 

moisture, AWRA SD, SMAP, and SMOS. McColl et al. (2014) shows that the error variances of 173 

each data set can be calculated from the temporal variance and covariance between data sets 174 

respectively as: 175 

𝜎E; = F𝑄E,E −
IJ,KIJ,L
IK,L

M,			 	𝜎N; = F𝑄N,N −
IJ,KIK,L
IJ,L

M      and   		𝜎O; = F𝑄O,O −
IL,KIJ,L
IJ,K

M   (3)                                        176 

where x, y and z denote AWRA, SMAP or SMOS soil moisture estimates respectively and Q 177 

denotes temporal variance and covariance between the data sets. These estimates of the error 178 
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variances are then used in the determination of gain factors (Eq. 2) for the three estimates of soil 179 

moisture, thus recasting Equation (1) as: 180 

𝑋%& = 𝐾TU<T𝑋%
( + 𝐾VWTX𝑌%VWTX + 𝐾VWYV𝑌%VWYV                                 (4) 181 

The analysed soil water state derived from Eq. (4) represents an optimal blending of AWRA SD, 182 

SMAP and SMOS (S2).  183 

2.4 Analysis increment redistribution (AIR) 184 

The assimilation of satellite soil moisture often violates mass conservation in the model through 185 

the analysis update (Eq. 4). The difference between the analysis, X34, and the forecast, X35, (known 186 

as the analysis increment) represents an amount of water that has been added or subtracted from 187 

the system that was not present at the start of model integration for the given time step. In this 188 

study, we use the concept of tangent linear modelling (Errico, 1997; Giering, 2000) to 189 

redistribute the analysis increment of SD to all the relevant model states and fluxes (e.g. lower 190 

layer and deep layer soil water storage, evapotranspiration and runoff). This was considered as a 191 

way of maintaining mass (i.e. water) balance within a model time step, which data assimilation is 192 

known to break. We refer to this approach as analysis increment redistribution, or simply as AIR 193 

hereafter. To illustrate, Equation 5 gives an example of what should the resulting changes (∆) in 194 

drainage (DD) be, given the analysis increment in SD (SD4 − SD5 ): 195 

∆𝐷D = 	 (1 − 𝛽D)𝑘Db&%[c
Vde

VDf&E
g
;
− F Vd

h

VDf&E
M
;

] ,                                   (5) 196 

where the 𝑘Di43 and 𝑆Df&E are model parameters representing the saturated hydraulic 197 

conductivity and maximum storage of the upper soil layer, respectively, and 𝛽D is the 198 

proportion of upper soil layer lateral drainage (S3 for more detail). Corresponding adjustments 199 

of total lateral interflow for both upper and lower soil layer are then propagated to the river 200 

water storage and total runoff. In addition, the analysis increments of SD and change in lower 201 

soil layer water storage after application of the AIR are used to revise the total 202 
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evapotranspiration. The adjustments to the relevant states and fluxes are derived from AWRA 203 

model formulation (S3). 204 

2.5 In-situ measurements  205 

Evaluation of the modelled soil water storages was made against measurements from three soil 206 

moisture monitoring networks in Australia from 2016 to 2018, namely OzNet (Smith et al., 207 

2012), CosmOz (Hawdon et al., 2014) (Fig. 1a) and OzFlux (Fig.1b). AWRA model estimates 208 

of upper layer soil water storage were compared against in situ measurements from the top 10 cm 209 

of soil across all three networks. In situ measurements of root-zone moisture varied across 210 

networks from 0-30 cm to 0-1 m. As such, AWRA soil water storages over the root-zone were 211 

constructed accordingly by combining upper- and lower-layer soil water storage in the 212 

appropriate proportions. OzFlux sites are primarily used for the evaluation of AWRA 213 

evapotranspiration estimates, which were calculated from accumulated latent heat flux 214 

measurements at each location. In total, there are 45 sites for soil moisture validation and 14 sites 215 

for evapotranspiration validation. Streamflow observations for 100 catchments across Australia 216 

have been used in the validation based on the quality and data availability (Fig. 1c).   217 

2.6 Vegetation index 218 

In water-limited regions like Australia, shallow-rooted vegetation normally responds quickly 219 

with soil water availability, typically within a month. Consistency between root-zone soil water 220 

storage and vegetation greenness may be considered as an indirect independent verification of 221 

the simulation of root-zone soil water dynamic (Tian et al., 2019a; Tian et al., 2019b). The 0.05-222 

degree monthly Normalized Difference Vegetation Index (NDVI) from Moderate Resolution 223 

Imaging Spectroradiometer (MODIS, MYD13C2 v6) is used to evaluate estimates of root-zone 224 

soil moisture over cropland and grassland regions of the continent. The 250m land cover 225 

classification map from Geoscience Australia (Lymburner et al. 2015) is resampled to 0.05 226 

degree over model domain and used in the identification of crop and grassland cells.  227 

 228 

 229 
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 230 
Figure 1 Study area showing gain factors of the TC data assimilation method rescaled to highlight relative contribution of the 231 
respective estimate: (a) AWRA-simulated 𝑆D, (b) SMOS soil moisture, and (c) SMAP soil moisture. Also displayed are the 232 
locations of in-situ monitoring stations from (a) CosmOz and OzNet networks, (b) OzFlux network, and (c) catchments for 233 
streamflow validation. Subfigures (d) and (e) are the average 𝑆D simulations for 2019 from AWRA open-loop (OL) and TC 234 
assimilation of SMOS and SMAP data (DA-TC). Subfigure (f) shows the average relative change of analysed 𝑆D (TC) compared 235 
to OL simulations in 2019.  Subfigures (g) and (h) are the average 𝑆b simulations for 2019 from AWRA OL and DA-TC. 236 
Subfigure (i) shows the average relative change of analysed 𝑆b after analysis increment redistribution (TC-AIR) compared to OL 237 
simulations in 2019. 238 

  239 
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3 Results and Discussion  240 

3.1 Improved spatial representation of soil moisture variability 241 

The analysed upper layer soil water storage estimates receive a greater contribution from SSM 242 

products, in particular SMAP observations, compared to model simulations (Figures 1a-c). 243 

AWRA model simulations are driven by gauge-based rainfall analyses. As such they have 244 

difficulty in adequately simulating soil moisture patterns over regions lacking in rain gauge 245 

coverage, such as Western Australia and central Australia (Fig. 1d). Water storage simulations 246 

over these regions default to zero, thus very little or no weight was given to the AWRA estimates 247 

in these regions (Fig. 1a). In contrast, SMAP SSM data is heavily weighted in the assimilation 248 

due to the smaller error variance derived from TC (Fig. 1c). This is expected since SMAP is the 249 

best-performing satellite soil moisture product over the majority of applicable global land pixels 250 

(Chen et al., 2018). AWRA simulations of SD are dominated by the satellite SSM data as a result 251 

of TC data assimilation in the region which largely eliminates the erroneous artefacts associated 252 

with deficient rainfall data forcing (Fig.1e).  253 

Moreover, the SSM data assimilation has the effect of adding moisture to AWRA SD simulations 254 

over most of Australia, with predictions on average often in excess of 100% of those from the 255 

OL simulations (Fig. 1f). The notable exception to this is in the southeast of Australia, 256 

particularly within the Murray-Darling Basin, where SSM data assimilation reduced AWRA SD 257 

by more than 50%. This suggests that AWRA simulations underestimated the severity of the 258 

drought experienced in the region in 2019.  259 

TC assimilation only updates SD directly with satellite SSM, thus the Si and other water storage 260 

receives the impact from assimilation once the model integrates forward to the next time step 261 

from the analysed SD as initial conditions. The AIR method adjusts Si and other relevant states 262 

and fluxes as a post-correction according to the change in SD to maintain water balance. The 263 

average Si with the correction in drainage and lateral interflow from the change in SD after TC 264 

assimilation shows significant different spatial pattern with a relative change more than 100% 265 
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over those regions with sparse rain-gauge coverage against OL simulations (Fig. 1g-i, i.e. see the 266 

white regions in Fig1g in particular).  267 

 268 

Figure 2 Evaluation of AWRA-estimated upper soil water storage 𝑆D, root-zone soil water storage 𝑆b + 𝑆D, total 269 
evapotranspiration 𝐸%l% and runoff 𝑄%l%: (a) relative change in correlation of 𝑆D from TC assimilation (DA-TC) compared to 270 
model open-loop (with dots above the zero line showing improved performance); (b) relative change in correlation of root-zone 271 
soil water storage from TC-AIR to DA-TC without mass redistribution; (c) – (d) relative correlation and RMSE changes in 272 
𝐸%l%	and 𝑄%l%	compared to DA-TC without AIR (with dots in the bottom right quadrant showing both improved correlation and 273 
reduced RMSE); (e) – (f) relative change in correlation between monthly root-zone soil water storage from TC-AIR with NDVI 274 
compared to DA-TC for all grid cells classified as grassland and cropland. Note that dashed curves delineate a 95% level of 275 
statistical significance.   276 
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3.2 Improved water balance estimates  277 

Comparisons of AWRA simulations with and without SSM data assimilation were made against 278 

in-situ measurements networks from 2016 to 2018. Consistent, statistically significant 279 

improvement in modelled upper layer soil water storage estimates (SD) was observed across all 280 

sites (Fig. 2a) with the exception of a single OzFlux site located in a tropical rainforest, where 281 

microwave SSM retrievals are typically poor in areas of dense vegetation (Njoku and Entekhabi, 282 

1996). TC-based assimilation (Section 2.2) increases the correlation between in-situ surface SM 283 

measurements from 0.47 to 0.72 on average for CosmOz sites, 0.54 to 0.69 for OzFlux sites, and 284 

0.56 to 0.77 for OzNet sites compared to OL. This is a significant improvement in AWRA 285 

simulations of surface soil moisture dynamics. Compared to ensemble methods of data 286 

assimilation (e.g. Tian et al. 2017; 2019b) which rely on an initial guess of the error variance and 287 

post hoc correction (e.g. inflation factors, Anderson, 2009), this proposed method based on TC is 288 

simple, effective and computationally efficient, thus well suited to an operational system 289 

simulating large-scale hydrology. Overall subtle improvements were observed across the AWRA 290 

estimates of root-zone soil water storage, evapotranspiration and streamflow (results not shown, 291 

see Tian et al., 2019c). The level of improvement is not surprising since those variables were not 292 

directly updated with the TC assimilation and are only influenced through the integration of the 293 

model to the next time step (Tian et al., 2019c).  294 

The lack of water balance closure is arguably a weak point in data assimilation (Pan and Wood, 295 

2006). Hence, we applied an analysis increments redistribution (AIR, Section 2.3) as a post-296 

correction to all relevant model states and fluxes to enforce mass conservation (water balance). 297 

Although the absolute change SD is small relative to the volume of Si, the corresponding change 298 

in lower layer soil water storage is allocated through AIR based on model physics (S3). The 299 

adjusted root-zone soil water storage (SD+Si) shows better agreement with in-situ measurements 300 

by up to 10% compared to TC estimates without AIR (Fig. 2b). Improvements are found over the 301 

majority of sites from OzFlux and OzNet with measurements. Improvements in correlation 302 

together with reduced RMSE (Root-Mean-Squares Error) with in-situ measurements for E3n3 are 303 

found more than 10% relative to the TC estimates without AIR for some sites (Fig. 2c). Further 304 

improvements in Q3n3 simulations are found for some sites, with up to 40% reduction in RMSE 305 

(Fig. 2d). Improvements in runoff simulation are due to, first, the SSM assimilation improving 306 
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pre-storm soil moisture status (Pauwels et al., 2001; Crow and Ryu, 2009), and then AIR adjusts 307 

the interflow and river storage accordingly. This indicates the importance of accurate antecedent 308 

soil moisture condition in the simulation of runoff response to subsequent rainfall. 309 

The inadequate distribution of in-situ observations as well as the large spatial disparity between 310 

ground measurement and modelling scales are a great limitation for the evaluation of root-zone 311 

soil moisture and evapotranspiration. AWRA simulation of root-zone soil moisture are compared 312 

against satellite-derived NDVI in an indirect verification of model performance and as a way of 313 

evaluating the impact of data assimilation. We calculated the correlation between time series of 314 

monthly average AWRA root-zone soil moisture from OL, DA-TC and TC-AIR simulations 315 

against NDVI for cropland and grassland of Australia over the period 2015 to 2018. These cover 316 

types we selected as their rooting depths are commensurate with the combined soil depths of the 317 

upper- and lower-soil water storages in AWRA. Figure 2e-f show the relative change in 318 

correlation between root-zone simulations from DA-TC and those from TC-AIR data against 319 

NDVI data for grassland and cropland areas of Australia. The figure shows that for the vast 320 

majority of model grids, TC-AIR shows statistically significant increase in correlation with 321 

NDVI compared to DA-TC alone, with an average increase in correlation with NDVI from 0.64 322 

to 0.67 for grassland and 0.55 to 0.66 for cropland compared to OL.This demonstrates that 323 

enforcing mass balances as part of the SSM data assimilation each time step is essential to 324 

improving the simulation of root-zone soil water balance. The improved consistency with NDVI 325 

also illuminates the potential of improving agricultural planning with more accurate information 326 

of root-zone soil water availability.    327 

3.3 Impacts on model predictions 328 

Accurate soil water estimates can provide initial conditions for improved flood forecasting and 329 

groundwater forecasting (Getirana et al., 2020a; Getirana et al., 2020b; Wanders et al., 2013). 330 

Few studies quantify how long the impacts of data assimilation persist in the model system’s 331 

memory. In this study we used 100-day model simulations from initial states provided by the 332 

AWRA OL and DA-TC with AIR. We calculated the number of days it took for the simulation 333 

from the analysed DA-TCAIR states to converge to within +/- 5% of those from OL. The 334 

experiments were run for one year from 1 March 2018 to 28 February 2019. Results show that 335 

data assimilation can impact on model states and fluxes for weeks and sometimes up to 2-3 336 
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months (Fig. 3). The impacts of DA-TC with AIR can persist in simulated SD for as long as a 337 

week over coastal regions, and longer in central Western Australia and Northern Australia with 338 

up to 1 month persistence in winter and spring (Fig. 3a). There is less impact on SD simulations 339 

during wet season since the SD can saturate rapidly due to the heavy rainfall. Overall, the longest 340 

persistence is found in winter with a continental average of 13 days; the shortest persistence is 6 341 

days on average in autumn and summer. The memory of initial conditions in simulations of Si 342 

can persist even longer due to the slower response to rainfall variability and higher field capacity. 343 

Summer persistence for Ss is the least with a continental average of 30 days; in winter, this is 344 

increased to 45 days. 345 

Evapotranspiration estimates, however, do not feedback into the system and are highly variable 346 

in time and space. On average, the impact of the antecedent soil moisture conditions on 347 

evapotranspiration simulations can persist for 1 week over coastal areas, but up to months in 348 

central Western Australia. The continental average varies from 13 to 20 days for each season. 349 

The areas with the longest persistence are those areas with artefacts of zero rainfall in the 350 

forcing. This demonstrates that improvements in AWRA estimates after SSM assimilation over 351 

regions with sparse rain-gauge coverage can persist in the system for more than 2 months. The 352 

impact on runoff varies from 1 week to 3 months over the continent. The majority of areas 353 

impacted for more than 2 months are in locations of little rainfall and runoff. However, there 354 

remains between 1-2 week impacts over north-eastern areas with heavy runoff.    355 
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 356 

Figure 3 Quantified impacts of data assimilation on forecasting AWRA state variables through the forecast of states for 100 days 357 
using the initial condition from DA-TCAIR: average time period that the impact of data assimilation can persist in autumn 358 
(2018.03-2018.05), Winter (2018.06-2018.08), Spring (2018.09-2018.11) and Summer (2018.12-2019.02) on (a) upper-layer soil 359 
water storage 𝑆D, (b) lower-layer soil water storage 𝑆b, (c) total evapotranspiration 𝐸%l%	and (d) total runoff 𝑄%l%. 360 

361 
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4 Conclusion 362 

In this study, we proposed a simple and robust method for assimilating SMAP and SMOS soil 363 

moisture products into the operational Australian Water Resources Assessment (AWRA) model. 364 

The method involves the sequential (daily) updating of the model's upper layer soil water storage 365 

with satellite soil moisture observations through a linear combination with weights determined 366 

through triple collocation (DA-TC). Evaluation against in-situ measurements showed that 367 

simulations of surface soil moisture dynamics is improved significantly after TC data 368 

assimilation with an average increase of 0.23 correlation units compared with open-loop 369 

simulations. Furthermore, we proposed an additional component to the data assimilation 370 

whereby the analysis increment of the upper layer soil water storage is propagated into relevant 371 

model states and fluxes as a way of maintaining mass balance (TC-AIR). An evaluation of the 372 

root-zone soil moisture, evapotranspiration and streamflow estimates showed that the TC-AIR 373 

appeared to only provide marginal, yet positive, improvement over the TC data assimilation 374 

method alone. However, in an indirect verification of modelled root-zone soil moisture against 375 

satellite-derived NDVI, TC-AIR was seen to provide significant improvement on TC method 376 

alone. This demonstrates that by enforcing mass balances as part of the SSM data assimilation 377 

each time step, AWRA can better represent soil water dynamics with greater consistency with 378 

vegetation response. 379 

 380 

The assimilation of satellite soil moisture estimates together with the mass redistribution reduces 381 

the uncertainties in model estimates resulting mainly from uncertain forcing and model physics, 382 

and provides temporally and spatially varying constraints on model water balance estimates. For 383 

example, the assimilation resolves the gaps in rainfall forcing, and the underestimate of drought 384 

condition over south-eastern areas in 2019. We demonstrate that the impacts of data assimilation 385 

can persist in the model system for more than a week for surface soil water storage and more 386 

than a month for root-zone soil water storage. This highlights the importance of accurate initial 387 

hydrological states for improving forecast skill over longer lead times. Hence, an operational 388 

water balance modelling system, with satellite data assimilation, has strong potential to add value 389 

for assessing and predicting water availability for a range of decisions across industries and 390 

sectors. 391 



manuscript submitted to Geophysical Research Letters 

 

Acknowledgments 392 

This project is supported by collaborative research agreement between the Australian Bureau of 393 

Meteorology and Australian National University. We would like to thank Stuart Baron-Hay from 394 

the Bureau of Meteorology for his help with implementation of the in AWRA-CMS. This 395 

research was undertaken with the assistance of resources and services from the National 396 

Computational Infrastructure (NCI), which is supported by the Australian Government through 397 

the National Collaborative Research Infrastructure Strategy. 398 

Data Availability 399 

The AWRA-CMS code is accessible from github (https://github.com/awracms/awra_cms). 400 
SMAP product used here is the level-2 enhanced radiometer half-orbit 9-km EASE-grid soil 401 
moisture from the US National Snow and Ice Data Center (https://nsidc.org). SMOS level-2 soil 402 
moisture product is available from ESA’s SMOS online dissemination service (https://smos-403 
diss.eo.esa.int/oads/access/). The MYD13C2 NDVI data is accessible through Land Processes 404 
Distributed Active Archive Centre (https://lpdaac.usgs.gov). The National Dynamic Land Cover 405 
Dataset of Australia is available from Geoscience Australia (https://www.ga.gov.au). 406 

References 407 

Chan, S. K., Bindlish, R., O'Neill, P., Jackson, T., Njoku, E., Dunbar, S., et al. (2018). 408 
Development and assessment of the SMAP enhanced passive soil moisture product. Remote 409 
Sensing of Environment, 204, 931-941. 410 
Chen, F., Crow, W. T., Bindlish, R., Colliander, A., Burgin, M. S., Asanuma, J., & Aida, K. 411 
(2018). Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using 412 
triple collocation. Remote Sensing of Environment, 214, 1-13  413 
Crow, W. T., & Ryu, D. (2009). A new data assimilation approach for improving runoff 414 
prediction using remotely-sensed soil moisture retrievals. Hydrology and Earth System Sciences, 415 
13(1), 1-16.  416 
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., & 417 
Wood, N. (2005). A new dynamical core for the Met Office's global and regional modelling of 418 
the atmosphere. Quarterly Journal of the Royal Meteorological Society, 131(608), 1759-1782.  419 
de Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C., & Isaksen, L. (2013). A 420 
simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF. 421 
Quarterly Journal of the Royal Meteorological Society, 139(674), 1199-1213.  422 
Dharssi, I., Bovis, K. J., Macpherson, B., & Jones, C. P. (2011). Operational assimilation of 423 
ASCAT surface soil wetness at the Met Office. Hydrology and Earth System Sciences, 15(8), 424 
2729-2746. 425 



manuscript submitted to Geophysical Research Letters 

 

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., et al. (2017). ESA 426 
CCI Soil Moisture for improved Earth system understanding: State-of-the art and future 427 
directions. Remote Sensing of Environment, 203, 185-215. 428 
Draper, C. S., Reichle, R. H., De Lannoy, G. J. M., & Liu, Q. (2012). Assimilation of passive 429 
and active microwave soil moisture retrievals. Geophysical Research Letters, 39. 430 
Draper, C. S., Walker, J. P., Steinle, P. J., de Jeu, R. A. M., & Holmes, T. R. H. (2009). An 431 
evaluation of AMSR-E derived soil moisture over Australia. Remote Sensing of Environment, 432 
113(4), 703-710. 433 
Lymburner, L., Tan, P., McIntyre, A., Thankappan, M., Sixsmith, J. (2015). Dynamic Land 434 
Cover Dataset Version 2.1. Geoscience Australia, Canberra. 435 
http://pid.geoscience.gov.au/dataset/ga/83868  436 
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., et al. 437 
(2010). The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the Ieee, 98(5), 704-438 
716. 439 
Errico, R. M. (1997). What is an adjoint model?. Bulletin of the American Meteorological 440 
Society, 78(11), 2577-2592. 441 
Frost, A., A. Ramchurn, and A. Smith (2018). The Australian Landscape Water Balance model 442 
(AWRA-L v6), Technical Description of the Australian Water Resources Assessment Landscape 443 
model version 6. Bureau of Meteorology Technical Report, Canberra: Bureau of Meteorology.  444 
Getirana, A., Rodell, M., Kumar, S., Beaudoing, H. K., Arsenault, K., Zaitchik, B., et al. (2020). 445 
GRACE Improves Seasonal Groundwater Forecast Initialization over the United States. Journal 446 
of Hydrometeorology, 21(1), 59-71.  447 
Getirana, A., Jung, H. C., Arsenault, K., Shukla, S., Kumar, S., Peters-Lidard, C., et al. (2020). 448 
Satellite Gravimetry Improves Seasonal Streamflow Forecast Initialization in Africa. Water 449 
Resources Research, 56(2), doi: 10.1029/2019wr026259. 450 
Giering, R. (2000). Tangent linear and adjoint biogeochemical models. Inverse Methods in 451 
Global Biogeochemical Cycles, 114, 33-48. 452 
Grant, I., Jones, D., Wang, W., Fawcett, R., and Barratt, D. (2008). Meteorological and remotely 453 
sensed datasets for hydrological modelling: A contribution to the Australian Water Availability 454 
Project, paper presented at Catchment-scale Hydrological Modelling and Data Assimilation 455 
(CAHMDA-3). International Workshop on Hydrological Prediction: Modelling, Observation 456 
and Data Assimilation, Melbourne, Citeseer. 457 
Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for 458 
cosmic-ray neutron soil moisture probes located across Australia. Water Resources Research, 459 
50(6), 5029-5043. 460 
Ines, A. V. M., Das, N. N., Hansen, J. W., & Njoku, E. G. (2013). Assimilation of remotely 461 
sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. 462 
Remote Sensing of Environment, 138, 149-164.  463 
Jones, D. A., Wang, W., & Fawcett, R. (2009). High-quality spatial climate data-sets for 464 
Australia. Australian Meteorological and Oceanographic Journal, 58(4), 233-248. 465 



manuscript submitted to Geophysical Research Letters 

 

Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Martinuzzi, J. M., Font, J., & Berger, M. (2001). 466 
Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. Ieee 467 
Transactions on Geoscience and Remote Sensing, 39(8), 1729-1735.  468 
Koster, R. D., Dirmeyer, P. A., Guo, Z. C., Bonan, G., Chan, E., Cox, P., et al. (2004). Regions 469 
of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138-1140. 470 
Massari, C., Crow, W., & Brocca, L. (2017). An assessment of the performance of global rainfall 471 
estimates without ground-based observations. Hydrology and Earth System Sciences, 21(9), 472 
4347-4361. 473 
McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., & Stoffelen, A. (2014). 474 
Extended triple collocation: Estimating errors and correlation coefficients with respect to an 475 
unknown target. Geophysical Research Letters, 41(17), 6229-6236.  476 
McVicar, T. R., Van Niel, T. G., Li, L. T., Roderick, M. L., Rayner, D. P., Ricciardulli, L., & 477 
Donohue, R. J. (2008). Wind speed climatology and trends for Australia, 1975-2006: Capturing 478 
the stilling phenomenon and comparison with near-surface reanalysis output. Geophysical 479 
Research Letters, 35(20) 480 
Njoku, E. G., & Entekhabi, D. (1996). Passive microwave remote sensing of soil moisture. 481 
Journal of Hydrology, 184(1-2), 101-129. 482 
Pan, M., & Wood, E. F. (2006). Data assimilation for estimating the terrestrial water budget 483 
using a constrained ensemble Kalman filter. Journal of Hydrometeorology, 7(3), 534-547. 484 
Panciera, R., Walker, J. P., Jackson, T. J., Gray, D. A., Tanase, M. A., Ryu, D., et al. (2014). The 485 
Soil Moisture Active Passive Experiments (SMAPEx): Toward Soil Moisture Retrieval From the 486 
SMAP Mission. Ieee Transactions on Geoscience and Remote Sensing, 52(1), 490-507. 487 
Pauwels, V. R. N., Hoeben, R., Verhoest, N. E. C., & De Troch, F. P. (2001). The importance of 488 
the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions 489 
for small-scale basins through data assimilation. Journal of Hydrology, 251(1-2), 88-102. 490 
Pipunic, R. C., Walker, J. P., & Western, A. (2008). Assimilation of remotely sensed data for 491 
improved latent and sensible heat flux prediction: A comparative synthetic study. Remote 492 
Sensing of Environment, 112(4), 1295-1305. 493 
Rahmoune, R., Ferrazzoli, P., Kerr, Y. H., & Richaume, P. (2013). SMOS Level 2 Retrieval 494 
Algorithm Over Forests: Description and Generation of Global Maps. Ieee Journal of Selected 495 
Topics in Applied Earth Observations and Remote Sensing, 6(3), 1430-1439.  496 
Reichle, R. H., & Koster, R. D. (2005). Global assimilation of satellite surface soil moisture 497 
retrievals into the NASA Catchment land surface model. Geophysical Research Letters, 32(2). 498 
https://doi.org/10.1016/j.advwatres.2008.01.001 499 
Reichle, R. H. (2008). Data assimilation methods in the Earth sciences. Advances in Water 500 
Resources, 31(11), 1411-1418. 501 
Renzullo, L. J., van Dijk, A. I. J. M., Perraud, J. M., Collins, D., Henderson, B., Jin, H., et al. 502 
(2014). Continental satellite soil moisture data assimilation improves root-zone moisture analysis 503 
for water resources assessment. Journal of Hydrology, 519, 2747-2762.  504 



manuscript submitted to Geophysical Research Letters 

 

Scipal, K., Drusch, M. & Wagner, W., (2008). Assimilation of a ERS scatterometer derived soil 505 
moisture index in the ECMWF numerical weather prediction system, Advances in water 506 
resources, 31(8), 1101-1112. 507 
Sheffield, J., & Wood, E. F. (2007). Characteristics of global and regional drought, 1950-2000: 508 
Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. 509 
Journal of Geophysical Research-Atmospheres, 112(D17). 510 
Smith, A. B., Walker, J. P., Western, A. W., Young, R. I., Ellett, K. M., Pipunic, R. C., et al. 511 
(2012). The Murrumbidgee soil moisture monitoring network data set. Water Resources 512 
Research, 48. 513 
Stoffelen, A. (1998). Toward the true near-surface wind speed: Error modeling and calibration 514 
using triple collocation. Journal of Geophysical Research-Oceans, 103(C4), 7755-7766. 515 
Su, C. H., Ryu, D., Crow, W. T., & Western, A. W. (2014). Beyond triple collocation: 516 
Applications to soil moisture monitoring. Journal of Geophysical Research-Atmospheres, 517 
119(11), 6419-6439.  518 
Tian, S., van Dijk, A. I. J. M., Tregoning, P., & Renzullo, L. J. (2019). Forecasting dryland 519 
vegetation condition months in advance through satellite data assimilation. Nature 520 
Communications, 10. (1), 1-7. 521 
Tian, S., Tregoning, P., Renzullo, L. J., van Dijk, A. I. J. M., Walker, J. P., Pauwels, V. R. N., & 522 
Allgeyer, S. (2017). Improved water balance component estimates through joint assimilation of 523 
GRACE water storage and SMOS soil moisture retrievals. Water Resources Research, 53(3), 524 
1820-1840.  525 
Tian, S., Renzullo, L. J., van Dijk, A. I. J. M., Tregoning, P., & Walker, J. P. (2019). Global joint 526 
assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and 527 
vegetation response. Hydrology and Earth System Sciences, 23(2), 1067-1081.  528 
Tian, S., Renzullo, L. J., Pipunic, R., Sharples, W., Lerat, J., & Donnelly, C.(2019),. 529 
Assimilating satellite soil moisture retrievals to improve operational water balance modelling. 530 
Proceedings of the 23rd International Congress on Modelling and Simulation, Canberra, 531 
Australia. Https://doi.org/10,36334/modsim.2019.H6.tian 532 
van Dijk, A.I.J.M. (2010). AWRA Technical Report 3, Landscape Model (version 0.5) Technical 533 
Description, WIRADA, Canberra: CSIRO Water for a Healthy Country Flagship. 534 
Vinnikov, K. Y., Robock, A., Speranskaya, N. A., & Schlosser, A. (1996). Scales of temporal 535 
and spatial variability of midlatitude soil moisture. Journal of Geophysical Research-536 
Atmospheres, 101(D3), 7163-7174.  537 
Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M., & Bierkens, M. F. P. (2014). The 538 
suitability of remotely sensed soil moisture for improving operational flood forecasting. 539 
Hydrology and Earth System Sciences, 18(6), 2343-2357. 540 



 
 

1 
 

 
Geophysical Research Letters 

Supporting Information for 

Operational soil moisture data assimilation for improved continental water balance prediction 

Siyuan Tian1*, Luigi J. Renzullo1, Robert Pipunic2, Julien Lerat2, Wendy Sharples2, Chantal 
Donnelly2  

1 Fenner School of Environment & Society, The Australian National University, ACT, 2601, Australia 

2 Water Program, Bureau of Meteorology, Australia 

 

  

 

Contents of this file  
 

Text S1 to S3 

 

Introduction  

This document expands the description of data assimilation method and analysis increment 
mass redistribution (AIR). Specifically it covers: 

• the method of linear transformation of the satellite soil moisture products over gauge-
sparse region; 

• the derivation of equation 4 from equation 1; and 
• all the equations for AIR. 
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Text S1. 
The observation operator that links AWRA model upper-layer soil water storage (𝑆!) state with 
the satellite soil moisture (SSM) is a linear transformation derived from temporal mean and 
variance matching between the two estimates. Mean and variance matching is an accepted 
practice of correcting systematic bias between model estimates and observations, and in our 
case map observations into state space for data assimilation. However, for regions of Australia 
with little, or no, rain gauge coverage, AWRA model 𝑆! persist as zeros or very low values, 
reflecting a deficiency in the gauge-based analysis of daily rainfall used to drive model 
simulations. The result of mean and variance matching in these gauge-sparse areas will be to 
flatten the dynamics of SSM time series to zero.  
 
To resolve this problem, and make full use of the SSM products to fill the modelling gap in 
gauge-sparse region of the continent, we derived a set of coefficients for the observation 
operator from the cells surrounding the gaps. We obtained the maximum SSM values through 
time and the derived ‘slope' and ‘intercept' from the observation model for each cell in 
neighboring region. Then we applied linear regression to estimate the correspond slope and 
intercept from the maximum SSM values in the rainfall gaps.  This provided an observation 
model to transform the SSM in into water storage unit (mm) and ensures the assimilation can 
effectively impart spatial pattern of soil moisture over the sparsely gauged regions. 

Text S2. 

The generic form of the state updating equation for sequential data assimilation is given as: 

X"# = X"$ + K"[Y" − H*X"$+],                                                                                                    

where the terms are defined as for Eq. (1). In this study, there are two satellite soil moisture 
observations, transformed into model space (i.e. water storage) through the observation 
operator, denotes as 𝑌%&'() and 𝑌%&'*&. Since the error variances of the SSM products are 
independent, we can therefore write the above as: 

X"# = X"$ + [𝐾&'() , 𝐾&'*&] 0
𝑌%&'() − X"$

𝑌%&'*& − X"$
1 

      = (1 − 𝐾&'() − 𝐾&'*&)X"$ + 𝐾&'()𝑌%&'() + 𝐾&'*&𝑌%&'*& 

					= 𝐾(+,(X"$ + 𝐾&'()𝑌%&'() + 𝐾&'*&𝑌%&'*&, 

where the gain factors are calculated as: 

𝐾(+,( =	

1
𝜎-.

1
𝜎-.

+ 1
𝜎/.

+ 1
𝜎0.

, 𝐾&'() =	

1
𝜎/.

1
𝜎-.

+ 1
𝜎/.

+ 1
𝜎0.

, 𝐾&'*& =	

1
𝜎0.

1
𝜎-.

+ 1
𝜎/.

+ 1
𝜎0.

 

respectively. The error variance 𝜎. for each data set are obtained through the triple collocation 
(TC) methods, Eq (3).  
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Text S3. 

The influence of the improved, or analysed, upper-layer soil water, 𝑆12 is only realized in the TC 
data assimilation once the model integrates to the next time step when the water balance is 
restored between model components. We proposed an analysis increment redistribution (AIR) 
modification to the TC data assimilation method (TC-AIR) as a way of maintaining water balance 
at each time step. The idea borrows from tangent linear modelling (TLM), where only relevant 
model components are modified to accommodate the increment. The following are the specific 
components of AWRA model which are relevant here (for greater detail see Frost et al., 2016) 
and are used in the AIR approach, and they includ the modifications necessary to impart the 
water balance constraint. 

The analysis increments after the data assimilation can be calculated as: 

∆𝑆1 = 𝑆12 − 𝑆1
3,  

where 𝑆12 denotes the analysed upper-layer soil water storage and 𝑆1
3denotes the forecast, or 

initial estimate. The change in 𝑆1 affects the drainage to the lower-layer soil water storage (𝐷1) 
and interflow draining laterally from the top soil layer (𝑄41). The corresponding change in 
drainage to lower-layer soil water storage from the increment ∆𝑆1 is calculated as: 

∆𝐷1 = (1 − 𝛽1)𝑘152%[<
&!"

&162-
=
.
− > &!

#

&162-?
.

], 

∆𝑄41 = 𝛽1𝑘152%[<
&!"

&162-
=
.
− > &!

#

&162-?
.

], 

where the 𝑘17#" and 𝑆0𝑚𝑎𝑥 are model parameters representing the saturated hydraulic 
conductivity and maximum storage of the upper soil layer, respectively. The proportion of 
overall top layer drainage that is lateral drainage (𝛽1) given as:  

𝛽1 = tanh	(𝑘8𝛽
&!"

&162-
)tanh	(𝑘9(

:!$"%
:$$"%

− 1) &!"

&162-
), 

where 𝛽 and 𝑘8are the slope radians and scaling factor, and 𝑘9 is a scaling factor for the ratio of 
saturated hydraulic conductivity. The revised lower-layer soil water storage 𝑆52 is then 
determined as: 

𝑆52 = 𝑆5
3 + ∆𝐷1. 

The change in 𝑆5 will lead to the change in the shallow soil water storage (𝐷5) and lateral 
interflow (𝑄45). The soil water storage at lower layer is thus updated as: 

𝑆;2 = 𝑆52 + ∆𝐷5. 

Similarly, the groundwater storage 𝑆< will be adjusted with the increment of deep soil layer 
drainage.  

The total runoff (𝑄%!%2 ) should be updated as: 
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𝑄%!%2 = (1 − 𝑒=:&)(𝑆>
3 + 𝑄%!%

3 + ∆𝑄45 + ∆𝑄41),  

where 𝑘>  is a routing delay factor.  

The surface water storage 𝑆>  should be updated accordingly as: 

𝑆>2 = 𝑆>
3 + ∆𝑄45 + ∆𝑄41 − ∆𝑄%!%. 

The total evapotranspiration change (∆𝐸%!%) caused by the changes in 𝑆1 and 𝑆5 can be updated 
as follow: 

∆𝐸%!% = 	𝛿𝐸5 ∗ ∆𝑆1 + 𝛿𝐸% ∗ ∆𝑆5,  

where the 𝐸5 is the evaporation flux from the surface soil store (𝑆1) and 𝐸% is the total actual 
plant transpiration. The term 𝛿𝐸5 is given as 

𝛿𝐸5 = (1 − 𝑓52%)𝐸%_>@6𝛿𝑓5!AB@,  

where 𝑓5!AB@  is relative soil evaporation and 𝑓52% is the fraction of the grid cell that is saturated, 
and 

𝐸%_>@6 = 𝐸1 − (𝐸% − 𝛿𝐸%) , 

The term 𝛿𝐸% is from the changes in root-water uptake from shallow and deep soil layers as 

𝛿𝐸% = 𝛿𝑈5 + 𝛿𝑈;,  

with 

𝛿𝑈5 = 𝛿𝑈562-
max	(𝑎𝑏𝑠(𝛿𝑈562- , 𝛿𝑈;62-))

𝛿𝑈562- + 𝛿𝑈;62-
 

𝛿𝑈; = 𝛿𝑈;62-
max	(𝑎𝑏𝑠(𝛿𝑈562- , 𝛿𝑈;62-))

𝛿𝑈562- + 𝛿𝑈;62-
 

𝛿𝑈562- =
C$!
D$'()

𝛿𝑤5, 𝛿𝑈;62- =
C*!
D*'()

𝛿𝑤;, where 𝑈562- and 𝑈;62- are the maximum root 

water uptake from the shallow soil store and from deep soil store. 𝑤5BA6 and 𝑤;BA6is the water-
limiting relative water content from the shallow and deep soil layer. 

Finally,  

𝛿𝑓5!AB@ =	
3$+(')",
D!'()

𝛿𝑤1,	where  𝑓5!AB62- is the scaling factor corresponding to unlimited soil 

water supply, with 

𝛿𝑤1 =	
E

&!)",
, 𝛿𝑤5 =	

E
&$)",

,	and 𝛿𝑤; =
E

&*)",
, 

where the 𝑤0 is the relative soil wetness of layer z, i.e.  either 0, s or d. 
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