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Abstract

Because remote sensing (RS) data are spatially and temporally explicit and available across the globe, they have the potential

to be used for predicting runoff in ungauged catchments and poorly gauged regions, a challenging area of research in hydrology.

There is potential to use remotely sensed data for calibrating hydrological models in regions with limited streamflow gauges.

This study conducts a comprehensive investigation on how to incorporate gridded remotely sensed evapotranspiration (AET)

and water storage data for constraining hydrological model calibration in order to predict daily and monthly runoff in 30

catchments in the Yalong River basin in China. To this end, seven RS data calibration schemes are explored, and compared to

direct calibration against observed runoff and traditional regionalization using spatial proximity to predict runoff in ungauged

catchments. The results show that using bias-corrected remotely sensed AET (bias-corrected PML-AET data) for constraining

model calibration performs much better than using the raw remotely sensed AET data (non-bias-corrected AET obtained

from PML model estimate). Using the bias-corrected PML-AET data in a gridded way is much better than using lumped

data, and outperforms the traditional regionalization approach especially in headwater and large catchments. Combining the

bias-corrected PML-AET and GRACE water storage data performs similarly to using the bias-corrected PML-AET data only.

This study demonstrates that there is great potential in using bias-corrected RS-AET data to calibrating hydrological models

(without the need for gauged streamflow data) to estimate daily and monthly runoff time series in ungauged catchments and

sparsely gauged regions.
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Key points 19 

• Using bias-corrected remote sensing data to calibrate hydrological model shows 20 

great potential especially in ungauged catchments.  21 

• Compared to raw PML-AET, bias-corrected PML-AET improves runoff prediction 22 

noticeably and adding GRACE shows limited benefit.  23 

• Gridded application performs better than lumped catchment modelling application 24 

for maximizing the benefit from the spatial PML-AET data.   25 
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Abstract 26 

Because remote sensing (RS) data are spatially and temporally explicit and available 27 

across the globe, they have the potential to be used for predicting runoff in ungauged 28 

catchments and poorly gauged regions, a challenging area of research in hydrology. 29 

There is potential to use remotely sensed data for calibrating hydrological models in 30 

regions with limited streamflow gauges. This study conducts a comprehensive 31 

investigation on how to incorporate gridded remotely sensed evapotranspiration (AET) 32 

and water storage data for constraining hydrological model calibration in order to 33 

predict daily and monthly runoff in 30 catchments in the Yalong River basin in China. 34 

To this end, seven RS data calibration schemes are explored, and compared to direct 35 

calibration against observed runoff and traditional regionalization using spatial 36 

proximity to predict runoff in ungauged catchments. The results show that using bias-37 

corrected remotely sensed AET (bias-corrected PML-AET data) for constraining model 38 

calibration performs much better than using the raw remotely sensed AET data (non-39 

bias-corrected AET obtained from PML model estimate). Using the bias-corrected 40 

PML-AET data in a gridded way is much better than using lumped data, and 41 

outperforms the traditional regionalization approach especially in headwater and large 42 

catchments. Combining the bias-corrected PML-AET and GRACE water storage data 43 

performs similarly to using the bias-corrected PML-AET data only. This study 44 

demonstrates that there is great potential in using bias-corrected RS-AET data to 45 
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calibrating hydrological models (without the need for gauged streamflow data) to 46 

estimate daily and monthly runoff time series in ungauged catchments and sparsely 47 

gauged regions. 48 

Key words: Remote sensing, evapotranspiration, PML, runoff prediction, bias 49 

correction 50 

1. Introduction 51 

Runoff Prediction in Ungauged Basins (PUB) is important for accounting and 52 

managing water resources, and flood disaster risk management (Montanari et al., 2013). 53 

A widely used approach for PUB is regionalization that transfers calibrated model 54 

parameters from a gauged catchment (or a donor) to an ungauged catchment (Post and 55 

Jakeman, 1999; Hundecha and Bardossy, 2004; Merz and Bloschl, 2004; Oudin et al., 56 

2008; Zhang and Chiew, 2009; Hrachowitz et al., 2013; Li and Zhang, 2017). Oudin et 57 

al. (2008) compared classical regionalization schemes on 913 French catchments, and 58 

their result shows that regionalization based on spatial proximity provides the best 59 

solution among three regionalization methods (regression, spatial proximity and 60 

physical similarity). Therefore, spatial proximity is considered as a good approach for 61 

predicting runoff in ungauged catchments. However, the performance of the spatial 62 

proximity approach becomes gradually poorer with increase in regionalization distance 63 

(Li and Zhang, 2017), suggesting that the spatial proximity may not be suitable in 64 

regions with very limited or sparsely distributed streamflow gauges. The data scarcity, 65 
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and hence the regionalization challenge, is prominent especially in alpine and complex-66 

terrain regions with few stream gauges. 67 

Remote sensing observation provides continuous data in both spatial and temporal 68 

scales, which makes it possible to estimate regional surface data in a quick and widely 69 

applicable way (Stewart and Finch, 1993; Sun et al., 2018). Therefore, remote sensing 70 

data has been widely applied and combined with hydrological models (Wanders et al., 71 

2014; Beck et al., 2017a; Kittel et al., 2018; Kumar and Lakshmi, 2018). However, the 72 

quality of remote sensing data is not always guaranteed (Andersen et al., 2005; Liu et 73 

al., 2016; Beck et al., 2017b; Sun et al., 2018), and the accuracy varies across regions, 74 

which can have important regional implications (Hijmans et al., 2005; Wang et al., 75 

2015). Thus, selection of the datasets should be done carefully. As inputs to 76 

hydrological models, the remote sensing data should be as accurate as possible. Studies 77 

show the bias correction of input data improves the runoff simulations under most 78 

conditions (Li et al., 2009b; Stisen and Sandholt, 2010; Habib et al., 2014; Zhang and 79 

Tang, 2015). What’s more, it has also been shown that constraining multiple variables 80 

such as soil moisture and water storage data from remote sensing can improve the 81 

performance of hydrological models (Sutanudjaja et al., 2014; Wanders et al., 2014; Li 82 

et al., 2016; Kundu et al., 2017; Yassin et al., 2017; Pomeon et al., 2018). Nevertheless, 83 

practically all studies calibrate the models against observed streamflow data, which is 84 

limited in poorly gauged regions. Zhang et al. (2020) proposed a remotely sensed actual 85 
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evapotranspiration (RS-AET) calibration approach based on PML evapotranspiration 86 

products (PML-AET) and showed that this approach is potentially useful in the 87 

relatively wet regions of Australia. Nevertheless, there are several limitations in the 88 

study of Zhang et al. (2020) that can be improved upon. First, Zhang et al. (2020) did 89 

not consider the potential for improving the quality of the remote sensing actual 90 

evapotranspiration data that was used for hydrological model calibration. Second, the 91 

study used a lumped catchment-average rainfall-runoff modelling approach and does 92 

not take advantage of the spatial continuity of remote sensing data. Third, the research 93 

does not consider the potential to combine remote sensing actual evapotranspiration 94 

with remote sensing water storage data.  95 

To further advance the study of Zhang et al. (2020), this paper proposes a more 96 

comprehensive framework that uses quasi-runoff-free method (very limited runoff data) 97 

for hydrological model calibrations. Specifically, this work aims to improve calibration 98 

schemes by adding more remote sensing information (raw PML-AET, bias-corrected 99 

PML-AET, GRACE water storage) into model calibrations, and calibrating the 100 

hydrological model both in lumped and gridded ways. Nine modelling schemes (seven 101 

are based on RS-data calibrations; one is based on runoff-data calibration; one is based 102 

on spatial proximity regionalization) are tested on the Yalong River Basin, the upper 103 

reach of which is located on the southeastern Tibetan Plateau and the northwest of 104 

Yunnan-Guizhou Plateau, with complex terrain conditions. The major objectives of this 105 
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study are to: 106 

i. Evaluate the merit of using limited runoff data for bias correcting remote sensing 107 

evapotranspiration data;  108 

ii. Investigate the performance of calibrations with different remote sensing data (raw 109 

PML-AET, bias-corrected PML-AET, GRACE water storage);  110 

iii. Evaluate the performance of calibrations at different spatial scales (gridded and 111 

lumped); and 112 

iv. Investigate the spatial characteristics of optimum model calibration schemes. 113 

2. Study area and data 114 

2.1. Study area 115 

The study area is located in the Yalong River basin. The Yalong River, the largest 116 

tributary on the left bank of the Jinsha River, originates from the southern foot of the 117 

Bayankala Mountains in Yushu County, Qinghai Province, China. The river flows from 118 

the northwest to the southeast, and the length of the mainstream is around 1570 km. 119 

The whole basin area is around 1.36 x 105 km2, shaped like a north-south stripe (96°52′120 

E-102°48′E, 26°32′N-33°58′N) and located on the southeastern Tibetan Plateau and the 121 

northwest of Yunnan-Guizhou Plateau. The river basin spans more than seven degrees 122 

of latitude from north to south, and the geographic characteristics in the basin are 123 

complex. The altitude varies greatly from 5,400 m to 980 m from the north to the south, 124 
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and the terrain mainly includes hilly plateaus, alpine canyons, and wide valley basins 125 

from north to south, respectively. All of these make the basin geography greatly 126 

different in both horizontal and vertical directions. In addition, the Yalong River basin 127 

covers a wide range of climate regimes varying from humid to semi humid climates and 128 

has contrasting dry and wet seasons. The mean annual precipitation is about 720 mm 129 

and the mean annual runoff is about 300-400 mm for the entire Yalong River basin. Half 130 

of the runoff in the Yalong River is formed by direct precipitation contribution, and the 131 

rest is replenished by groundwater and melting snow (ice) (Kang et al., 2001).  132 

This study uses data from 30 catchments within the Yalong River basin. Figure 1 shows 133 

a map of the study area and information for the 30 catchments. It also summarizes the 134 

flow path through the 30 catchments. 135 

Figure 1 is about here 136 

2.2. Data 137 

The Climate Meteorological Forcing Dataset (simplified as CMFD) is used to drive the 138 

hydrological model. The CMFD is a reanalysis product of near-surface meteorological 139 

and environmental elements in China. The gridded precipitation data used here is the 140 

CMFD-Precipitation (simplified as CMFD-P). The CMFD-P has been shown to be a 141 

high quality dataset (Yang et al., 2017; Ren et al., 2018; Wu et al., 2019; He et al., 2020), 142 

and is also further evaluated here against daily gauged precipitation in the study area 143 

(see sections 3.1.1 and 4.1).  144 
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The Penman-Monteith-Leuning model (abbreviated as PML_V1) was proposed by 145 

Leuning et al. (2008), and further improved by Zhang et al. (2010, 2016). The gridded 146 

actual evapotranspiration data used in this paper is obtained from the PML_V2 global 147 

evapotranspiration (simplified as PML-AET) product (Gan, 2018; Zhang et al., 2019). 148 

It is referred to as ‘raw PML-AET’ hereafter. In PML_V2, evaporation is divided into: 149 

transpiration from vegetation (Ec), direct evaporation from the soil (Es) and evaporation 150 

of intercepted rainfall from vegetation (Ei). This study uses the PML-AET, equal to the 151 

sum of the three AET components defined above. Since this is a global product, it is 152 

necessary for bias correction to be applied in order to improve its usability for 153 

hydrological modelling applications (see Sections 3.1.2 and 4.2). 154 

The water storage data used in this paper is the Gravity Recovery and Climate 155 

Experiment’s total water storage anomaly data (simplified as GRACE) and has been 156 

corrected by officially provided scale factors (Swenson and Wahr, 2006; Landerer and 157 

Swenson, 2012). Three GRACE datasets come from three centers: the Jet Propulsion 158 

Laboratory (JPL), The University of Texas Center for Space Research (UTCSR) and 159 

the GeoForschungsZentrum Potsdam (GFZ), respectively. The GRACE data used in 160 

this study is the mean value of the three datasets. All the gridded datasets are split into 161 

0.05° to match the PML resolution. The daily runoff data is obtained from hydrological 162 

observed records and used here as the reference data for model validation. Table 1 gives 163 

more information on these data. 164 
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Table 1. Detailed information for research data used in this study 165 

Short name Detailed Name 
Spatial 

Resolution 

Temporal 

Resolution 

Temporal 

Coverage 
Data source 

Key 

references 

CMFD 

Climate 

Meteorological 

Forcing Dataset 

0.1° 

(approximately 

11×11 km) 

3-hour 1979-2018 
https://data.tpdc.ac.cn/zh-hans/data/ 

8028b944-daaa-4511-8769-965612652c49/ 

(He and 

Yang, 

2011; Fan 

et al., 

2017; He 

et al., 

2020) 

PML_V2 

PML_V2 global 

evapotranspiration 

and gross primary 

production 

0.05° 

(approximately 

5×5 km) 

8-day 
2002.07-

2019.08 

http://www.tpdc.ac.cn/zh-hans/data/ 

48c16a8d-d307-4973-abab-972e9449627c/ 

(Zhang et 

al., 2019) 

GRACE_ 

RL05 

Gravity Recovery 

and Climate 

Experiment 

1°(approximately 

111×111 km) 
1-month 

2002.04-

2017.02 

https://grace.jpl.nasa.gov/data/ 

get-data/monthly-mass-grids-land/ 

(Swenson 

and Wahr, 

2006; 

Landerer 

and 

Swenson, 

2012) 

Meteorological 

gauge Data 

Daily dataset of 

China's surface 

climate data 

- 1-day 1951-2019 
http://data.cma.cn/data/cdcdetail/dataCode/ 

SURF_CLI_CHN_MUL_DAY_V3.0.html 
- 

Hydrological  

station Data 

Daily mean runoff 

of hydrological 

stations in Yalong 

River 

- 1-day 

2004-2012 

(Varying 

across 

stations) 

The information and data of stations are 

provided by Yalong River hydropower 

development company  

- 

It should be noted that there are two downstream catchments (Xiaodeshi catchment and 166 

Tongzilin catchment) impacted by the Ertan reservoir regulation during 2004-2012. To 167 

obtain the ‘natural flow’ for these catchments, streamflow series is restored through 168 

reservoir dispatching data based on the water balance method. As shown in Figure 1, 169 

the Xiaodeshi hydrological station and the Tongzilin hydrology station are downstream 170 

of the Ertan hydropower station and are both in the mainstream of Yalong River. 171 

https://data.tpdc.ac.cn/zh-hans/data/
http://www.tpdc.ac.cn/zh-hans/data/
https://grace.jpl.nasa.gov/data/
http://data.cma.cn/data/cdcdetail/dataCode/
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Ignoring other human activities along the river, the ‘natural flow’ series of Xiaodeshi 172 

and Tongzilin catchment is obtained by adding the value of the Ertan Hydropower 173 

Station inflow minus the outflow. 174 

3. Methodology 175 

3.1. Data Processing 176 

3.1.1. Evaluation of CMFD-P 177 

As shown in Figure 1, the available rain gauges are few and sparsely distributed. 178 

CMFD-P provides gridded data, and here it is validated against the observed rainfall 179 

data at ten rain gauges. The main idea is to verify the accuracy through daily 180 

precipitation detection ability and accuracy indicators. The evaluation indicators are 181 

listed in Table 2, together with their descriptions. 182 

Table 2. Evaluation indicators for precipitation 183 

Type of Indicators Evaluation Indicators Short name Formula 
Ideal 

Value 

Detection Ability 

Indicators 

Probability Of Detection POD 
11

11 01

n
POD

n n
=

+
 1 

Frequency Of Hit FOH 
11

11 10

n
FOH

n n
=

+
 1 

Heidke’s Skill Score HSS 
11 00 10 01

11 01 01 00 11 10 10 00

2( - )

( )( ) ( )( )

n n n n
HSS

n n n n n n n n
=

+ + + + +
 1 

Accuracy 

Indicators 

Correlation coefficient CC 
1

2 2

1 1

( )( )

( ) ( )

n

i i

i

n n

i i

i i

P P G G

CC

P P G G

=

= =

− −

=

− −



 

 

1 

Nash-Sutcliffe Efficiency NSE 

2

1

2

1

( )

1-

( )

n

i i

i

n

i

i

P G

NSE

G G

=

=

−

=

−





 
1 
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Similarity indicator SI 

2

1

2

1

( )

1-

( )

n

i i

i

n

i i

i

P G

SI

G G P G

=

=

−

=

− + −





 

1 

Mean error ME/(mm) 
1

( ) /
n

i i

i

ME G P n
=

= −
 

0 

Mean absolute error MAE/(mm) 
1

/
n

i i

i

MAE G P n
=

= −
 

0 

Bias BIAS 
1 1

( ) /
n n

i i i

i i

BIAS G P G
= =

= − 
 

0 

Absolute bias ABIAS 
1 1

/
n n

i i i

i i

ABIAS G P G
= =

= − 
 

0 

* n11 represents the frequency of precipitation detected by both CMFD and the rainfall gauges; n10 represents the frequency of 184 

precipitation detected by CMFD but not the rainfall gauges; n01 represents the frequency of precipitation detected by the gauges 185 

but not CMFD; n00 represents the frequency of precipitation detected by neither CMFD nor the rainfall gauges. P represents 186 

precipitation in CMFD, G represents gauged precipitation, and n is the number of samples. 187 

3.1.2. Bias correction of PML-AET  188 

The PML-V2 is a global evapotranspiration and gross primary product dataset. To 189 

enhance its utility for this study, the mean annual PML-AET is bias corrected to match 190 

the mean annual precipitation minus mean annual runoff estimated by the Fu model 191 

(the Fu model is an adaption of the Budyko framework) (Fu, 1981; Zhang et al., 2004; 192 

Zhang et al., 2008). The bias correction is carried out as follows: 193 

i. Input data 194 

To adhere to the principle of “essentially runoff-free calibration”, only data from one 195 

single basin towards the downstream end of the system is used. This is the gauging 196 

station for the Daluo River Basin (Gauging station 21, see Figure 1) with streamflow 197 

data from 1999 to 2012. Mean annual precipitation comes from the CMFD-P gridded 198 

data. Mean annual potential evapotranspiration (Ep) is estimated using the Allen et al. 199 
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(2006) equation following Penman-Monteith method (Eq.(1)), using climate input data 200 

from the CMFD dataset (i.e. temperature, humidity, wind speed), and daily dataset of 201 

China's surface sunshine duration data that was spatially interpolated by kriging method 202 

(Delhomme, 1978). Ep is calculated using the following equation: 203 

 
2

900
0.408 ( ) )

273

(1 0.34 )

n 2 s a

mean

p

R - G u (e - e
T

E
u





 +
+

=
 + +

,  (1) 204 

where Ep is the potential evapotranspiration (mm/d); Δ is the slope of the saturation 205 

vapor pressure versus temperature curve (kPa/℃); Rn is the net radiation flux density 206 

at the surface (MJ/(m*d)); G is the sensible heat flux from the surface to the soil 207 

(MJ/(m²*d)); γ is the psychrometric constant (kPa/℃); Tmean is the daily mean 208 

temperature (℃); u2 is the wind speed at 2-m height (m/s); es is the saturation vapor 209 

pressure at air temperature (kPa); ea is the actual vapor pressure of the air (kPa). 210 

ii. The Fu model 211 

We used the classical Budyko framework – Fu model – to estimate mean annual Q 212 

(called Qfu hereafter) (Fu, 1981; Zhang et al., 2004; Zhang et al., 2008). Qfu is expressed 213 

as: 214 

 1/[1 ( ) ] = + −fu PQ P AI E ,  (2) 215 

where Qfu represents mean annual runoff (mm/year); P is mean annual precipitation 216 

(mm/year); Ep is mean annual potential evapotranspiration (mm/year); AI is the aridity 217 

index, calculated as Ep divided by P; α is a parameter that represents climate and 218 
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physical characteristics. The value of the parameter α is estimated based on the basin-219 

average mean annual precipitation and evapotranspiration, and the streamflow from the 220 

single Daluo Basin, and this value was 1.56. This α = 1.56 is then used to calculate Qfu 221 

at each (0.05° x 0.05°) of 5170 grid cells within the study area for the period of 2004 to 222 

2012. 223 

iii. Gridded ‘real’ mean annual PML-AET  224 

The ‘real’ value of mean annual AET (2004-2012) at each grid is calculated as P minus 225 

Qfu; 226 

iv. Scaling factor  227 

A scaling factor SC at each grid cell is calculated as the ‘real’ mean annual AET divided 228 

by mean annual raw PML-AET; and 229 

v. Bias-corrected PML-AET (8-day data)  230 

Finally, the bias-corrected PML-AET for each grid is obtained by multiplying the raw 231 

PML-AET by the scaling factor at each grid cell.  232 

In summary, this study uses mean annual streamflow data from one downstream gauge 233 

of Daluo and from an independent period of 1999-2012 to parameterize the Fu model, 234 

and then uses Fu mean annual runoff estimate to bias correct PML-AET at each grid 235 

cell in 2004-2012.  236 
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3.2. Xinanjiang model 237 

The Xinanjiang model is a lumped conceptual model, developed by Zhao (1980). The 238 

model has been extensively used for runoff simulation and prediction across humid and 239 

semi-humid regions globally (Moore and Clarke, 1981; Zhao, 1992; Todini, 1996; 240 

Jayawardena and Zhou, 2000; Cheng et al., 2006; Ju et al., 2009; Li et al., 2009a; Yao 241 

et al., 2009). The model is driven by daily precipitation and potential evapotranspiration 242 

for the period of 2004-2012. The model outputs include daily runoff and daily actual 243 

evapotranspiration. Daily water storage is one of state variables in this model and is 244 

used in the calibration functions in this study. The model structure is shown in Figure 245 

2. 246 

Figure 2 is about here 247 

3.3. Model calibration schemes 248 

The RS-ET runoff free calibration method is developed by Zhang et al. (2020) and its 249 

objective function is calibrated only against PML-AET. It has been shown that water 250 

storage data can also enhance hydrological model calibration (Yassin et al., 2017). This 251 

study will therefore explore the model calibration against both remotely sensed (and 252 

bias corrected) PML-AET and water storage data. This study also assesses the model 253 

calibrations at three spatial scales: gridded, regional and catchment. This means that the 254 

model (i.e. optimization of the 15 parameters in the model) is calibrated at each grid 255 

cell, each region, and each catchment, respectively. For the grid calibration, each grid 256 
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cell has its own set of parameter values. For regional calibration (a region is defined as 257 

the contribution area between two gauges), all the grid cells within the region have the 258 

same set of parameter values. Therefore, the lowest-level tributary comprises one 259 

region, but higher lever catchments comprise multiple regions. For instance, the Ganzi, 260 

Xinlong and Gongke Basins have one, two and three regions, respectively. For 261 

catchment calibration, all the grid cells in the entire catchment have the same set of 262 

parameter values. The model therefore becomes more lumped as the scale increase from 263 

gridded to catchment.  264 

Altogether, nine calibration schemes are considered (Table 3), seven of which are based 265 

on PML-AET calibration methods and two of which are based on streamflow 266 

calibration. A global optimizer, the genetic algorithm (Holland, 1992; Konak et al., 267 

2006), is used to optimize the model parameters. Population size and the generations 268 

for the genetic algorithm are set as 400 and 100, respectively. The optimum point can 269 

normally be achieved after ~50 generations of searching (Li and Zhang, 2017). The 270 

selection of parameter sets is based on the fitness function (objective function). In 271 

scheme 1, the model is calibrated against observed daily runoff by using lumped 272 

catchment inputs, which represents the best possible model simulation or calibration. 273 

Scheme 2 is regionalization based on spatial proximity, that is, runoff is predicted using 274 

parameter values from the closest donor catchment with streamflow data to calibrate 275 

the model (Merz and Bloschl, 2004; Oudin et al., 2008; Li and Zhang, 2017). This 276 



 

17 

 

scheme is the “traditional” regionalization approach to estimate runoff in ungauged 277 

catchments, regarded as the baseline for evaluating the performance of schemes 3-9. 278 

Scheme 3 uses the raw PML-AET output for model calibration. Schemes 4-6 uses the 279 

bias-corrected PML-AET for model calibration, and the difference among them is that 280 

scheme 4 is calibrated at each PML-AET grid cell, scheme 5 is calibrated at each region, 281 

and scheme 6 is calibrated at each catchment. Schemes 7-9 are similar to schemes 4-6, 282 

respectively, but with the model calibrated against both the bias-corrected PML-AET 283 

data and the GRACE water storage data with equal weighting.  284 

Table 3 summarizes the nine schemes for model calibration and provides the objective 285 

function used for calibration in each scheme. 286 

Table 3. Summary of nine model calibration schemes 1-9.  287 

The numbers 1-9 represent scheme numbers, respectively. Eq. (3)- Eq. (6) represent objective functions. 288 

Calibration Method 
At 

grids 

At 

regions 

At 

catchment 
Model input data (and calibration data) 

Objective 

functions 

Calibration against observed runoff   1 CMFD-P, Ep, (Q at 30 stations) Eq.(3) 

Regionalization   2 
CMFD-P, Ep, a set of parameters (at a 

neighbor station) 
 

Raw PML-AET runoff-free calibration 

approach 
3   CMFD-P, Ep, (raw PML-AET) Eq. (4) 

Bias-corrected PML-AET calibration 

approach 
4 5 6 CMFD-P, Ep, (bias-corrected PML-AET) Eq. (5) 

Bias-corrected PML-AET combined 

with GRACE storage data runoff-free 

calibration approach 

7 8 9 
CMFD-P, Ep, (bias-corrected PML-AET, 

GRACE) 
Eq. (6) 

The widely used Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) is used as 289 

the objective functions defined in Eqs. 3-6.   290 
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, (6) 294 

where Qobs represents the observed daily runoff, Qsim represents the simulated daily 295 

runoff. AETSIM, AETPML and AETB-PML represent modeled actual evapotranspiration, 296 

the raw PML-AET output and bias-corrected PML-AET with a temporal step of eight 297 

days, respectively. ΔWGRACE and ΔWSIM with a temporal step of one month represent 298 

the water storage change estimated by GRACE and calculated by Xinanjiang model, 299 

respectively. Eq. (3) is performed at daily scale, Eq. (4) and Eq. (5) are performed at 8-300 

day scale, and Eq. (6) is performed at monthly scale. It is noted that Qsim generated from 301 

grid and regional calibrations, is aggregated to catchment scale to compare to Qobs. The 302 

smaller the value of the objective function, the better the simulation quality. 303 

3.4. Evaluating the nine modelling schemes 304 

The Kling–Gupta efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012), Qualified 305 

Rate (QR) (Standardization Administration of the People's Republic of China, 2008), 306 

NSE and Log-transformed NSE (LogNSE) are used to evaluate the performance of the 307 
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nine schemes at different temporal scales. The four metrics are defined as follows: 308 
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where m represents the numbers of samples whose ABIAS (absolute bias) are less than 313 

0.35, n is the total number of samples (total number of daily, or monthly streamflow 314 

data), cov is the covariance between observation and simulation, σ is the standard 315 

deviation, µ is the mean, Log is the log-transformed values. The subscripts obs and sim 316 

standing for observed and simulated, respectively. KGE combines the correlation, bias 317 

and coefficients of variation in a balanced way. QR is the qualified rate of modelled 318 

runoff whose absolute bias are less than 0.35. KGE and QR focus more on overall model 319 

performance. NSE indicates the ability to reproduce middle and high flows, and log-320 

transformed NSE puts more weight on low flows. The value of QR varies from 0 to 1, 321 

the closer to 1 indicating better model performance (QR=1 means that the absolute bias 322 

from all samples is less than 0.35). The values of KGE, NSE and LogNSE vary from 323 

negative infinity to 1, the closer to 1 indicating better model performance. The temporal 324 

step is daily and monthly for daily runoff and monthly runoff, respectively. The model 325 
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evaluation period is the period of available observed runoff series in each catchment. 326 

4. Results 327 

4.1. Evaluation of CMFD-P 328 

Figure 3 evaluates CMFD-P, the 0.05°×0.05° reanalysis precipitation product of China, 329 

against ten precipitation gauges at different time scales. Table 4 shows the performance 330 

of the CMFD-P using statistical indices summarized from the ten gauges. At daily scale, 331 

the values of POD, FOH, and HSS are 0.93, 0.67, and 0.62, respectively. This indicates 332 

that the detection ability of CMFD-P is relatively good. The CMFD-P is able to detect 333 

most of the daily precipitation events between 2004 and 2012. The accuracy of CMFD-334 

P is also relatively good at the daily scale with high SI (0.75) and low BIAS (-0.002). 335 

On the other hand, the low frequency of hits leads to low NSE (0.26) and high ABIAS 336 

(0.83). At the monthly scale, the consistency between the CMFD-P and the station's 337 

precipitation has increased significantly compared to the daily scale. The accuracy has 338 

increased significantly. CC, NSE and SI have increased to 0.99, 0.99 and 1.00, 339 

respectively, and ABIAS has decreased dramatically to 0.06. Compared to monthly 340 

performance, the performance of CMFD-P at annual scale is slightly degraded, 341 

indicated by smaller NSE and SI, but ABIAS at annual scale is 0.02, noticeably smaller 342 

than that at monthly scale. In summary, CMFD-P has overall quite good quality in this 343 

region. Furthermore, it performs best at monthly scale, followed by annual and daily 344 

scales. The poor performance of daily precipitation might bring more uncertainties to 345 
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the results of the hydrological modelling, but the high SI and low BIAS might show 346 

positive influence in the modelling. 347 

Figure 3 is about here 348 

Table 4. Evaluation of CMFD-P (precipitation in CMFD). The definition of each index is given in Table 2 349 

 POD FOH HSS ME/mm BIAS MAE/mm ABIAS CC NSE SI 

Daily 0.93 0.67 0.62 -0.001 -0.002 1.61 0.83 0.59 0.26 0.75 

Monthly - - - -0.153 -0.002 3.22 0.06 0.99 0.99 1.00 

Annual - - - -0.366 -0.002 13.40 0.02 0.99 0.98 0.99 

4.2. Bias-corrected PML-AET 350 

The raw PML-AET and bias-corrected PML-AET are evaluated using their 351 

performance for estimating annual streamflow. The annual streamflow predicted from 352 

each of them is estimated by annual precipitation minus annual raw PML-AET (Q1) and 353 

annual precipitation minus annual bias-corrected PML-AET (Q2), respectively. If the 354 

agreement between Q2 and Qobs is better than between Q1 and Qobs, then it can be 355 

concluded that bias correction improves the accuracy of the AET estimation. 356 

Figure 4 summarizes the performance of Q1 and Q2 at annual scale for all 30 streamflow 357 

gauges. The Daluo catchment has similar climate and physical characteristics to most 358 

catchments in the study area. Thus, it is reasonable to apply the calibrated parameter α 359 

in the study area, and it is also as expected that Q2 is significantly better than Q1 in 360 

Figure 4. In most basins, scatters of Qobs against Q2 distribute evenly on both sides of 361 
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the 1: 1 line, which means the agreement and consistency between Q2 and Qobs is good, 362 

while Q1 is severely biased. The mean BIAS values of Q1 and Q2 are -0.54 and -0.04 for 363 

30 catchments, respectively; the mean ABIAS values of Q1 and Q2 are 0.55 and 0.18 for 364 

30 catchments, respectively. This result demonstrates that the bias-corrected PML-AET 365 

achieves much better water balance (in terms of producing streamflow), compared to 366 

the raw PML-AET. It should be noted that the Qobs at Daluo station was used to bias 367 

correct PML-AET. Therefore, the performance of bias correction of mainstream 368 

catchments in the upper reach of Daluo catchment (Daluo, Luning, Jinping, Maidilong, 369 

Jiju and Yajiang) is better than that in other catchments. The better bias correction 370 

should also improve the performance of hydrological model in these catchments. 371 

Figure 4 is about here 372 

Figure 5 shows the mean annual spatial and seasonal distributions of CMFD-P, bias-373 

corrected PML-AET and GRACE soil water storage change data. The mean annual 374 

precipitation and mean annual actual evapotranspiration are 721 mm and 359 mm, 375 

respectively. In the upper and middle reaches, the precipitation is lower than that in the 376 

lower reach, while the actual evapotranspiration in the upper and middle reaches is 377 

higher than that in the lower reach for spring, summer and autumn. In winter, the spatial 378 

distribution of precipitation varies little across the study area, and the actual 379 

evapotranspiration in the upper and middle reaches is lower than that in the lower reach. 380 

This indicates that the climates become drier from south to north at most times of the 381 
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year. Figures 5i-5l indicate a greater water storage change in the lower reach than in the 382 

upper and middle reaches. Replenishing snow and ice might help to reduce the variation 383 

of water storage change in upper and middle streams. The water storage decreases in 384 

autumn and winter, and increases in spring and summer. Overall, the mean annual water 385 

storage change is close to 0 with a slightly negative value of about 1 mm. The mean 386 

annual precipitation data and mean annual actual evapotranspiration data follow similar 387 

seasonal patterns, and the simulated mean annual runoff (P minus bias-corrected PML-388 

AET) matches the observed mean annual runoff reasonably well in different parts of 389 

the Yalong River basin. The two results suggest that the bias corrected PML-ET is 390 

suitable for calibrating a hydrological model in the Yalong river basin. 391 

Figure 5 is about here 392 

4.3. Runoff prediction  393 

The plots in Figure 6 summarize the performance of nine modelling schemes in 394 

predicting daily runoff (6a, 6c, 6e, 6g) and monthly runoff (6b, 6d, 6f, 6h) across the 30 395 

catchments in the Yalong River basin (to present patterns clearly, negative values are 396 

not shown here, but are shown later in Figure 7). In each scheme, the simulated monthly 397 

runoff is accumulated from the daily runoff, and monthly simulations are generally 398 

better than the daily runoff simulations. The annual runoff performance has not been 399 

analyzed because of the relatively short records. The KGE and QR focus more on the 400 

overall model performance, while NSE and LogNSE focus more on high flow and low 401 
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flow, respectively. The range of the metrics above describes modelling stability and the 402 

model is more stable across the flow regime with a lower range of metrics. 403 

Figure 6 is about here 404 

4.3.1. Raw PML-AET calibration versus bias-corrected PML-AET calibration  405 

The simulated streamflow obtained from scheme 3 (calibration using the raw PML-406 

AET data) and from scheme 4 (calibration using the bias-corrected PML-AET data) are 407 

evaluated against observed streamflow at daily and monthly scales. Table 5 shows mean 408 

values of metrics for scheme 3 and scheme 4, and their difference. 409 

Table 5. Mean values of metrics for scheme 3 and scheme 4, and the differences between the two 410 

 Scheme 3 Scheme 4 Scheme 4 - Scheme 3 

KGE (daily) 0.13 0.65 0.51 

QR (daily) 0.15 0.40 0.25 

NSE (daily) -0.08 0.39 0.47 

LogNSE (daily) -4.45 0.09 4.55 

KGE (monthly) 0.19 0.74 0.55 

QR (monthly) 0.15 0.45 0.31 

NSE (monthly) -0.01 0.65 0.66 

LogNSE (monthly) -3.84 0.15 3.99 

As shown in Table 5, compared to scheme 3, the performance of scheme 4 is greatly 411 

improved. At daily scale, the improvement is 0.51 in mean KGE, 0.25 in mean QR, 0.47 412 

in mean NSE and 4.55 in mean LogNSE; at monthly scale, the improvement is 0.55 in 413 

mean KGE, 0.31 in mean QR, 0.66 in mean NSE and 3.99 in mean LogNSE. Therefore, 414 

using the bias-corrected PML-AET data for constraining model calibration performs 415 

much better than using the raw PML-AET data, and the improvement in monthly runoff 416 
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simulation is larger than that in daily runoff simulation. Therefore, in the following 417 

sections of 4.3.2-4.3.4, we only show the relative merits related to bias-corrected PML-418 

AET (i.e. quasi-runoff-free calibration method, schemes 4-9). 419 

4.3.2. Lumped calibration versus gridded calibration 420 

The bias-corrected PML-AET data, as well as its combination with the GRACE data 421 

are used to calibrate model parameters in schemes 4-6 and schemes 7-9, respectively. 422 

The difference in schemes 4-6 is that the model becomes more lumped with increasing 423 

scheme number. Schemes 7-9 repeat the spatial scale of schemes 4-6. Table 6 424 

summarizes mean values of metrics for schemes 4-9. 425 

Table 6. Mean values of metrics for schemes 4-9 426 

 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 Scheme 9 

KGE (daily) 0.65 0.54 0.49 0.64 0.56 0.54 

QR (daily) 0.40 0.37 0.29 0.40 0.40 0.29 

NSE (daily) 0.39 0.32 0.26 0.39 0.31 0.29 

LogNSE (daily) 0.09 -0.76 -1.55 0.00 -0.19 -2.05 

KGE (monthly) 0.74 0.61 0.53 0.73 0.61 0.68 

QR (monthly) 0.45 0.42 0.34 0.45 0.44 0.33 

NSE (monthly) 0.65 0.51 0.47 0.62 0.50 0.48 

LogNSE (monthly) 0.15 -0.64 -1.36 0.03 0.02 -1.74 

As the spatial scale becomes greater from scheme 4 to scheme 6, the calibration 427 

performance becomes worse. Schemes 7-9 give a similar performance for spatial 428 

dependency. The median values in Figure 6 also show the same pattern with the mean 429 

values. These results indicate that the gridded model calibration schemes (scheme 4 and 430 

scheme 7) perform best. The reason that gridded calibration outperforms lumped 431 
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calibration is that gridded remote sensing data provides more information, and therefore 432 

spatial heterogeneity of runoff can be better simulated and predicted using the 433 

parameter sets obtained from gridded calibrations. The bias-corrected PML-AET 434 

calibrations have a slightly improved performance with the increase in calibration 435 

resolution. 436 

4.3.3. Bias-corrected PML-AET calibration versus calibration of bias-corrected PML-437 

AET combined with GRACE data 438 

The mean KGE, mean QR and mean NSE of scheme 4 are relatively similar to those in 439 

scheme 7. This is also generally true for scheme 5 versus scheme 8 and for scheme 6 440 

versus scheme 9, as shown in Table 6. The mean LogNSE of schemes 4 and 6 is 441 

relatively similar to those in schemes 7 and 9, respectively. but the mean LogNSE of 442 

scheme 8 is significantly increased compared to scheme 5. This result suggests that 443 

incorporating GRACE data could improve the low flow simulation in regional 444 

calibration. Comparing the results of gridded calibrations (scheme 7 and scheme 4) in 445 

Table 6 and Figure 5, the mean value of LogNSE of scheme 7 is smaller than that of 446 

scheme 4, but the mean values of KGE, QR and NSE are similar, and the range of NSE 447 

becomes slightly smaller, as indicated by noticeably higher NSE of daily runoff at the 448 

less than 25th percentiles. This means that scheme 7 gives similar overall results, more 449 

stable high flow modelling results, but also negative influences on low flow. Similar 450 

patterns are also found at catchment scales (scheme 6 versus scheme 9). Regional and 451 
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gridded calibrations give similar patterns of KGE, QR, and NSE, but the LogNSE of 452 

scheme 8 is larger than that of scheme 5, indicating improvements in predicting low 453 

flows. The reason for this may be that the resolution of GRACE data is closer to regional 454 

scale. Therefore, using GRACE together with PML-AET for model calibration has very 455 

limited benefit for gridded and catchment calibrations, but improves the performance 456 

of low flows at regional calibrations, for both daily and monthly runoff prediction, 457 

compared to using PML-AET solely. 458 

4.3.4. RS model calibration versus traditional regionalization 459 

Scheme 7 is only marginally better than scheme 4, and scheme 4 is noticeably superior 460 

to other PML-AET based calibration schemes. Therefore, scheme 4 is selected as the 461 

best candidate to compare with scheme 2, the traditional regionalization that is 462 

considered as the benchmark here. The results are also compared with scheme 1 which 463 

provides the best possible direct calibration results for catchment calibrations. Table 7 464 

shows mean values of metrics for schemes 1, 2 and 4. 465 

Table 7. Mean values of metrics for schemes 1, 2 and 4 466 

 Scheme 1 Scheme 2 Scheme 4 Scheme 4 - Scheme 1 Scheme 4 - Scheme 2 

KGE (daily) 0.70 0.59 0.65 -0.05 0.06 

QR (daily) 0.33 0.30 0.40 0.07 0.10 

NSE (daily) 0.58 0.45 0.39 -0.19 -0.06 

LogNSE (daily) -1.39 -1.93 0.09 1.48 2.02 

KGE (monthly) 0.71 0.57 0.74 0.04 0.18 

QR (monthly) 0.39 0.34 0.45 0.07 0.11 

NSE (monthly) 0.72 0.54 0.65 -0.07 0.11 

LogNSE (monthly) -1.05 -2.63 0.15 1.19 2.78 
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The mean daily KGE, QR and NSE of scheme 4 are similar to those of scheme 2, and 467 

the mean daily LogNSE of scheme 4 is greater than that of scheme 2. The mean monthly 468 

metrics of scheme 4 are significantly larger than those of scheme 2. The results indicate 469 

scheme 4 performs slightly better than scheme 2 for daily calibrations, and performs 470 

significantly better than scheme 2 for monthly calibrations. The mean NSE and mean 471 

QR of scheme 4 are also close to those of scheme 1 especially in monthly simulations. 472 

The increase of LogNSE indicates a better low flow performance of quasi-runoff-free 473 

calibration method (schemes 4-9) These results provide confidence that model 474 

calibration against bias-corrected PML-ET at each grid cell can simulate ungauged 475 

catchments almost as well as or even better than traditional calibration and 476 

regionalization against streamflow data approaches to predict runoff in ungauged 477 

catchments. 478 

4.3.5. Summary for runoff prediction 479 

The results in sections 4.3.1 to 4.3.4 indicate that bias correction of PML-AET is critical 480 

for improving the runoff prediction/simulation in ungauged or poorly gauged 481 

catchments comparing to traditional regionalization methods. The RS-based model 482 

calibration framework performs better at gridded scale than at lumped scale, which 483 

reflects the advantage of remote sensing in that it is spatially and temporally explicit 484 

across the global land surface. However, combining GRACE water storage data with 485 

the bias-corrected PML-AET only improves model performance marginally for 486 
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regional calibrations (especially in low flow prediction), with little benefit in the 487 

gridded and catchment calibrations. 488 

4.4. Spatial characteristics of optimum model calibration schemes 489 

Figure 7 shows spatial patterns of KGE, QR, NSE and LogNSE from schemes 4 and 7. 490 

The spatial patterns of schemes 4 and 7 are very similar with a difference of less than 491 

0.1 in most catchments. For both schemes, the four metrics of monthly runoff are 492 

generally larger or marginally larger than the metrics of daily runoff. This is expected 493 

because of the impacts of precipitation seasonality enhancing the performance statistics 494 

(Zhang et al., 2020). Another spatial feature is that the KGE and NSE values for 495 

mainstream catchments are generally larger than those for tributary catchments. The 496 

KGE values of schemes 4 and 7 for Nike (05) catchment are negative, and the NSE 497 

values of schemes 4 and 7 for Nike (05) and Lugu (24) catchments are negative, while 498 

the QR values for them are positive. The values of LogNSE for schemes 4 and 7 vary 499 

generally from 0.2 to 1.0, but there are also extreme negative values. All in all, the 500 

spatial patterns of schemes 4 and 7 are similar and indicate better runoff simulations in 501 

mainstream catchments than in small catchments. The result in Daluo station is always 502 

good, this might be the result of the application of streamflow at Daluo station when 503 

correcting bias of the PML-AET. 504 

Figure 7 is about here 505 

Figure 8a, 8b, 8d, 8e, 8g, 8h, 8j, 8k, 8m, 8n, 8p, 8q, 8s, 8t, 8v, 8w, 8x further show 506 
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spatial patterns of performance of scheme 4 by calculating the difference, compared to 507 

scheme 1 and scheme 2. Figure 8c, 8i, 8o, 8u, 8f, 8l, 8r, 8x shows spatial patterns of 508 

performance of scheme 7 by calculating the difference, compared to scheme 4. The 509 

difference of each metric is calculated as follows: 510 

 a = − bM M M  (11)  511 

where M is one of the four metrics (KGE, QR, NSE and LogNSE), a and b refer to the 512 

proposed scheme and benchmark scheme, respectively. The blue dots in Figure 8 513 

indicate positive differences in that catchment, the grey dots indicate no obvious 514 

differences, and the red one indicate negative differences. The darker the color is, the 515 

greater the difference is. 516 

Figure 8 is about here 517 

Figures 8a-8x-show the daily and monthly distribution of ΔM. There are three main 518 

patterns for daily simulations, obtained from Figures 8a-8c, 8g-8i, 8m-8o and 8s-8u. 519 

The first pattern is that there are 5 out of 30 catchments with positive differences of all 520 

the 4 metrics for scheme 4 minus scheme 1. The difference for 3 out of the 5 catchments 521 

is not larger than 0.02, indicating a reasonable result compared to scheme 1. The result 522 

shows that although scheme 4 performs poorer than scheme 1 in most catchments, it 523 

outperforms scheme 1 in a couple of catchments (2 out of 30) which shows the 524 

advantage of incorporating remote sensing data and gridded calibration, even compared 525 

to calibration against stream gauge data. 526 
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The second pattern is that in all 11 main stream stations, the ΔM for scheme 4 minus 527 

scheme 2 are positive with grey, light blue or dark blue dots in daily simulations, which 528 

means scheme 4 performs better than scheme 2 for daily runoff simulation, in upstream 529 

and large catchments which are also in the main stream (e.g. Ganzi catchment). There 530 

are 13 out of 30 catchments with positive differences in all 4 metrics for scheme 4 minus 531 

scheme 2. The difference for 2 of them is not larger than 0.02, indicating a reasonable 532 

result compared to scheme 2 in these catchments. However, scheme 4 outperforms 533 

scheme 2 for 37% of catchments for all 4 metrics. These catchments are generally 534 

downstream and small catchments, indicating that this approach may perform better 535 

than traditional regionalization in these catchments. 536 

The third pattern is that the inclusion of GRACE data shows only a marginal or no 537 

improvement in most catchments, with positive differences of four metrics in only 4 538 

out of 30 catchments, and the positive differences are not larger than 0.02 for all 4 539 

catchments. In downstream catchments, the values of the difference are negative for 540 

LogNSE, indicating weakness on low flow modelling in these catchments. All in all, 541 

scheme 7 has limited improvement on the model performance, compared to scheme 4. 542 

In monthly runoff simulation (Figure 8d-8f, 8j-8l, 8p-8r, 8v-8x), there are 14 out of 30 543 

(about 47%) catchments for scheme 4 minus scheme 1, and 21 out of 30 (about 70%) 544 

for scheme 4 minus scheme 2 having positive ΔM values for all the four metrics. 545 

Scheme 7 performs similar to scheme 4 in 24% of catchments, where ΔM values for 546 
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scheme 7 minus scheme 4 are larger than -0.02. Furthermore, there is no catchment, 547 

where ΔM values for all the 4 metrics are all negative. 548 

In summary, in daily runoff simulations, scheme 4 performs similarly to scheme 1, and 549 

outperforms scheme 1 in 7% of catchments, indicating the advantage of quasi-runoff-550 

free calibration method. Scheme 4 also performs better than scheme 2 in upper 551 

catchments and mainstream large catchments. Scheme 4 and scheme 7 show similar 552 

performance in most catchments. In monthly runoff simulations, the model 553 

performance of scheme 4 against schemes 1 and 2 improved in upper and main stream 554 

large catchments, compared to daily runoff simulations. Scheme 4 outperforms scheme 555 

1 and scheme 2 in 47% and 80% of catchments, respectively. Overall, scheme 7 has 556 

limited benefit for improving model performance of scheme 4, and scheme 4 performs 557 

close to scheme 1, or better than scheme 1 in a few regions. Scheme 4 also performs 558 

better than scheme 2 in upper catchments and mainstream large catchments. 559 

4.5. Relationship between statistical metrics and catchment attributes 560 

Figure 9 summarizes the relationships between statistical metrics (at daily and 561 

monthly scales) obtained from scheme 4 and seven catchment characteristics. 562 

Probability of significant test is conducted for each of the relationships. Most 563 

characteristics have no significant relationships to the metrics (p > 0.1). Among the 564 

seven catchment characteristics, catchment areas has strong positive impacts on most 565 

of the metrics; five catchment characteristics, including area (p < 0.001), elevation (p 566 
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< 0.001), normalized difference vegetation index (NDVI) (0.01 < p < 0.05), mean 567 

annual precipitation (0.001 < p< 0.01) and mean annual temperature (0.001< p < 568 

0.01), have good relationships with daily NSE; mean annual precipitation has the best 569 

relationship (0.05 < p < 0.1) to daily LogNSE and monthly LogNSE. The result 570 

indicates that in the study region, the quasi-runoff-free calibration method does show 571 

the strong influence of catchment area on model performance, which agrees to the 572 

results of section 4.4. It is noted that the sample number of the relationship analysis is 573 

only 30, relatively small. More large-scale researches need to be conducted for the 574 

significant test and relationship analysis. 575 

Figure 9 is about here 576 

5. Discussion 577 

5.1. Potential for using RS data calibration methods 578 

The climate and topography of the Yalong River is complex and covers a wide range, 579 

ranging from alpine mountains to humid basins. The complex topography and climate 580 

is one of the reasons for the limited number of gauges in the Yalong River basin in its 581 

upstream alpine regions. However, this region contributes to the majority of water 582 

resources for the Jinsha River, which is a major tributary of the Yangtze River (Kang et 583 

al., 2001; Yang et al., 2006). Therefore, it is important to improve prediction skills in 584 

this region or other similar regions. 585 
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This study explores the performance of seven RS-data based calibration schemes in 30 586 

catchments of the Yalong River basin. Though the mean KGE and mean NSE of daily 587 

runoff of schemes 4-9 are generally not larger than that obtained from traditional 588 

regionalization (scheme 2), the mean QR and mean LogNSE are occasionally larger 589 

than traditional regionalization. Thus, the performance of scheme 4 is slightly better 590 

than scheme 2 in upstream and large catchments and the results of monthly runoff 591 

simulation of certain schemes (schemes 4 and 7) are superior to the those obtained from 592 

scheme 2. Scheme 4 even outperforms scheme 1 for simulating daily runoff in a couple 593 

of catchments, which demonstrates the advantage for model calibration against PML-594 

AET at each grid cell, and the advantage is more noticeable at monthly scale. This 595 

indicates that the proposed approaches, especially for scheme 4, have great potential in 596 

data sparse regions. 597 

5.2. Why bias-corrected PML-AET works better 598 

Our results demonstrate that it is necessary to bias correct PML-AET data for more 599 

reliable model calibration in Yalong River Basin. The bias correction is crucial in the 600 

study area as demonstrated by comparing calibration schemes 3 and 4. It is noted that 601 

this study aims to improve the PML-AET model calibrations in ungauged or poorly 602 

gauged catchments (Zhang et al., 2020). With a single value of mean annual runoff data 603 

in a downstream gauge, the PML-AET based quasi-runoff-free calibration has been 604 

shown to have the potential for large scale application. Furthermore, using a single 605 
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parameter of α in the Fu model can generate reasonable mean annual runoff estimates 606 

for most of the 30 catchments, demonstrating the applicability of using a downstream 607 

catchment for bias correction. Overall, the bias correction method of PML-AET is 608 

reasonable with a reliable gridded product and limited surface data. 609 

5.3. Advantage of gridded model calibration 610 

The remote sensing data provides a spatial coverage, and it has the potential to reduce 611 

uncertainty related to lumped calibrations through better parameterization for each grid 612 

(Arnold et al., 2010; Li and Zhang, 2017). In this study, the gridded hydrological 613 

modelling results are considerably better than the lumped hydrological modelling 614 

results. The gridded calibration schemes outperform lumped calibration schemes in all 615 

the four metrics. It is noted that the run time increases by about 170-fold from lumped 616 

calibration to gridded calibration. Therefore, a more efficient algorithm is needed to 617 

reduce model run time in the future, and if necessary, a compromise should be made 618 

between model accuracy and time consumption for practical applications. 619 

5.4. Adding GRACE data has very limited benefit to improve predictions 620 

Though available studies show GRACE water storage data has been effectively applied 621 

at basin scales (Rodell et al., 2004), and the snow storage at high latitudes is also 622 

considered in GRACE water storage data (Syed et al., 2008), this study found that the 623 

benefit of including GRACE data for model calibration is negligible for gridded and 624 

catchment calibrations. This could be caused by the fact that the total water volume has 625 



 

36 

 

been already properly considered by the bias-corrected PML-AET. However, adding 626 

GRACE data improves the performance of low flow in regional calibrations. This might 627 

be the result of the similar spatial resolution between GRACE (1° x 1°) and the region 628 

area. Furthermore, the resolution of GRACE data is spatially (1° x 1°) and temporally 629 

(monthly) coarse. It is probably not appropriate to incorporate GRACE data into the 630 

small and medium sized catchments located on the Yalong River Basin with complex 631 

terrains and large ranges in elevations (Kang et al., 2001).  632 

5.5. Limitations and further directions 633 

This study does not consider snow cover for model calibration even though the recharge 634 

ratio of snowmelt runoff is relatively large, and it is the main component of runoff in 635 

the upper reach of Yalong River basin (Kang et al., 2001). In addition, spring runoff has 636 

a strong response to climate warming in alpine areas of Yalong River basin (Deng and 637 

Hou, 1996; Liu et al., 2019a). In the future, snow cover should be incorporated into the 638 

runoff simulation in the upper catchments (Kang et al., 2001). However, to do this, 639 

hydrological models need to be modified, making sure the modified structure has a 640 

physically meaningful conceptualization for appropriately assimilating remote sensing 641 

data, such as snow cover and soil moisture. 642 

The ‘natural flow’ is obtained by ignoring irrigation and other human-activity 643 

consumption of water volume in this study. The method is reasonable during 2004-2012 644 

due to the relatively small influences of reservoir dispatching during these years. 645 
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However, with the running of hydropower stations (such as Ertan hydropower station 646 

and Jinpin hydropower station) and land use change in recent years, human activity has 647 

increased dramatically, especially in downstream catchments (Liu et al., 2017; Liu et 648 

al., 2019b). For runoff simulation and prediction after 2012 in the Yalong River basin, 649 

a human-activity based hydrological model with accurate remote sensing data is 650 

essential and benefits both hydrology and management (Montanari et al., 2013). 651 

The calibration schemes can still be further improved. Incorporating GRACE data 652 

improves the model stability across the flow regime in the selected catchments though 653 

the overall improvement is marginal. Furthermore, the main challenge of applying 654 

remote sensing data into rainfall-runoff modelling includes choosing proper products, 655 

reducing the uncertainty of the products and matching remote sensing data with model 656 

variables (Li et al., 2016). Therefore, the model structure and constraining variables 657 

need to be further developed. 658 

6. Conclusion 659 

In this study, nine modelling schemes are applied and assessed for runoff prediction in 660 

the Yalong River basin, an ideal location for testing the potential benefit of using remote 661 

sensing data, because of its complex terrain and wide-ranging climate conditions. The 662 

PML-AET datasets are first evaluated and then bias corrected against water-balance 663 

AET estimated using the Fu equation calibrated against streamflow data from a single 664 

gauging station. The performance of calibration schemes using the bias-corrected PML-665 
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AET data is much better than the performance with raw PML-AET data. The 666 

performance of gridded modelling is much better than lumped modelling, albeit with 667 

an increase in model run times. The calibration schemes incorporating GRACE data 668 

provide very limited benefit to gridded and catchment calibrations, but slightly 669 

improves the performance of low flow in regional calibrations. Using bias-corrected 670 

PML-AET to constrain a gridded hydrological model outperforms lumped 671 

regionalization hydrological modelling especially in monthly runoff simulation for 672 

upstream and large catchments.   673 

This study demonstrates that the quasi-runoff-free hydrological model calibration 674 

against bias-corrected remotely sensed PML-AET data (using only one gauged 675 

streamflow station data to calibrate the Fu equation to estimate water balance AET) can 676 

reliably estimate daily and monthly runoff. The performance metrics of the simulated 677 

runoff are similar to or better than the runoff estimated using parameter values from the 678 

closest calibration catchment. This method is therefore particularly suited for estimating 679 

runoff in ungauged catchment and large regions, particularly sparsely gauged regions. 680 

Acknowledgements 681 

This study was supported by the CAS Talent Program, the National Natural Science 682 

Foundation of China (Grant No. 41971032 and 51879172) and the Second Tibetan 683 

Plateau Scientific Expedition and Research (2019QZKK0208). We acknowledge the 684 

Yalong River hydropower development company in China for providing the daily 685 



 

39 

 

streamflow data for 30 gauging stations. The PML evapotranspiration and the Climate 686 

Meteorological Forcing Dataset used in this study are provided by National Tibetan 687 

Plateau Data Center (http://data.tpdc.ac.cn). The GRACE water storage data are freely 688 

available from Data Catalog of the Google Earth Engine 689 

(https://developers.google.com/earth-engine/datasets). Daily dataset of China's surface 690 

climate data is available from the China Meteorological Data Service Center 691 

(http://data.cma.cn/). We thank the anonymous reviewers and editors for their critical 692 

and constructive comments on this paper. 693 

Declaration of competing interest 694 

The authors declare no conflicts of interest. 695 

Author contributions 696 

YQZ conceived this study. QH prepared and performed data analysis and prepared the 697 

figures. QH, GHQ and YQZ wrote the paper and other authors contributed discussion 698 

and interpretations of the results and manuscript revision. 699 

 700 

References 701 

Allen, R.G., Pruitt, W.O., Wright, J.L., Howell, T.A., Ventura, F., Snyder, R. , et al. (2006). A 702 

recommendation on standardized surface resistance for hourly calculation of reference ETO 703 

by the FAO56 Penman-Monteith method. Agricultural Water Management, 81(1-2), 1-22. 704 

DOI:10.1016/j.agwat.2005.03.007 705 

Andersen, O.B., Seneviratne, S.I., Hinderer, J., & Viterbo, P. (2005). GRACE-derived terrestrial water 706 



 

40 

 

storage depletion associated with the 2003 European heat wave. Geophysical Research 707 

Letters, 32(18). DOI:10.1029/2005gl023574 708 

Arnold, J.G., Allen, P.M., Volk, M., Williams, J.R., & Bosch, D.D. (2010). Assessment of different 709 

representations of spatial variablility on SWAT model performance. Transactions of the Asabe, 710 

53(5), 1433-1443.  711 

Beck, H.E., van Dijk, A., Levizzani, V., Schellekens, J., Miralles, D.G., Martens, B. , et al. (2017a). 712 

MSWEP: 3-hourly 0.25 degrees global gridded precipitation (1979-2015) by merging gauge, 713 

satellite, and reanalysis data. Hydrology and Earth System Sciences, 21(1), 589-615. 714 

DOI:10.5194/hess-21-589-2017 715 

Beck, H.E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A., Weedon, G.P. , et al. (2017b). Global-716 

scale evaluation of 22 precipitation datasets using gauge observations and hydrological 717 

modeling. Hydrology and Earth System Sciences, 21(12), 6201-6217. DOI:10.5194/hess-21-718 

6201-2017 719 

Cheng, C., Zhao, M., Chau, K., & Wu, X. (2006). Using genetic algorithm and TOPSIS for Xinanjiang 720 

model calibration with a single procedure. Journal of Hydrology, 316(1-4), 129-140.  721 

Delhomme, J.P. (1978). Kriging in the Hydrosciences. Advances in Water Resources, 1(5), 251-266. 722 

DOI:10.1016/0309-1708(78)90039-8 723 

Deng, Y., & Hou, Y. (1996). Climatic Warming and its Impact on the Water Resources of the Yalong 724 

River, China, Regional Hydrological Response to Climate Change. Springer, pp. 381-387.  725 

Fan, Y., Lu, H., Yang, K., He, J., Wang, W., Wright Jonathon, S. , et al. (2017). Evaluation of multiple 726 

forcing data sets for precipitation and shortwave radiation over major land areas of China. 727 

Hydrology & Earth System Sciences, 21(11), 5805-5821. DOI:10.5194/hess-21-5805-2017 728 

Fu, B.P. (1981). On the calculation of the evaporation from land surface. Sci. Atmos. Sin, 5(1), 23-31.  729 

Gan, R., Zhang, Y., Shi, H., Yang, Y., Eamus, D., Cheng, L., Chiew, F.H.S., Yu, Q., . (2018). Use of 730 

satellite leaf area index estimating evapotranspiration and gross assimilation for Australian 731 

ecosystems. Ecohydrology, e1974. DOI:https://doi.org/10.1002/eco.1974 732 

Gupta, H.V., Kling, H., Yilmaz, K.K., & Martinez, G.F. (2009). Decomposition of the mean squared 733 

error and NSE performance criteria: Implications for improving hydrological modelling. 734 

Journal of Hydrology, 377(1), 80–91. DOI:https://doi.org/10.1016/j.jhydrol.2009.08.003 735 

Habib, E., Haile, A.T., Sazib, N., Zhang, Y., & Rientjes, T. (2014). Effect of Bias Correction of 736 

Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. 737 

Remote Sensing, 6(7), 6688-6708. DOI:10.3390/rs6076688 738 

He, J., & Yang, K. (2011). China Meteorological Forcing Dataset, Cold and Arid Regions Science Data 739 

Center at Lanzhou. Cold and Arid Regions Science Data Center at Lanzhou. 740 

DOI:10.3972/westdc.002.2014.db 741 

https://doi.org/10.1002/eco.1974
https://doi.org/10.1016/j.jhydrol.2009.08.003


 

41 

 

He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y. , et al. (2020). The first high-resolution 742 

meteorological forcing dataset for land process studies over China. Scientific Data, 7(1). 743 

DOI:10.1038/s41597-020-0369-y 744 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., & Jarvis, A. (2005). Very high resolution 745 

interpolated climate surfaces for global land areas. International Journal of Climatology, 746 

25(15), 1965-1978. DOI:10.1002/joc.1276 747 

Holland, J.H. (1992). Genetic Algorithms. Scientific American, 267(1), 66-72. 748 

DOI:10.1038/scientificamerican0792-66 749 

Hrachowitz, M., Savenije, H.H.G., Bloeschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W. , et al. 750 

(2013). A decade of Predictions in Ungauged Basins (PUB)a review. Hydrological Sciences 751 

Journal-Journal Des Sciences Hydrologiques, 58(6), 1198-1255. 752 

DOI:10.1080/02626667.2013.803183 753 

Hundecha, Y., & Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff 754 

generation of a river basin through parameter regionalization of a watershed model. Journal of 755 

Hydrology, 292(1-4), 281-295. DOI:10.1016/j.jhydrol.2004.01.002 756 

Jayawardena, A., & Zhou, M. (2000). A modified spatial soil moisture storage capacity distribution 757 

curve for the Xinanjiang model. Journal of Hydrology, 227(1-4), 93-113.  758 

Ju, Q., Yu, Z., Hao, Z., Ou, G., Zhao, J., & Liu, D. (2009). Division-based rainfall-runoff simulations 759 

with BP neural networks and Xinanjiang model. Neurocomputing, 72(13-15), 2873-2883.  760 

Kang, E., Cheng, G., Lan, Y., & Chen, X. (2001). Alpine runoff simulation of the Yalong River for the 761 

south-north water diversion. J Glaciol Geocryol, 23(1), 139-148.  762 

Kittel, C.M.M., Nielsen, K., Tottrup, C., & Bauer-Gottwein, P. (2018). Informing a hydrological model 763 

of the Ogooue with multi-mission remote sensing data. Hydrology and Earth System Sciences, 764 

22(2), 1453-1472. DOI:10.5194/hess-22-1453-2018 765 

Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an 766 

ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277.  767 

Konak, A., Coit, D.W., & Smith, A.E. (2006). Multi-objective optimization using genetic algorithms: A 768 

tutorial. Reliability Engineering & System Safety, 91(9), 992-1007. 769 

DOI:10.1016/j.ress.2005.11.018 770 

Kumar, B., & Lakshmi, V. (2018). Accessing the capability of TRMM 3B42 V7 to simulate streamflow 771 

during extreme rain events: Case study for a Himalayan River Basin. Journal of Earth System 772 

Science, 127(2). DOI:10.1007/s12040-018-0928-1 773 

Kundu, D., Vervoort, R.W., & van Ogtrop, F.F. (2017). The value of remotely sensed surface soil 774 

moisture for model calibration using SWAT. Hydrological Processes, 31(15), 2764-2780. 775 

DOI:10.1002/hyp.11219 776 



 

42 

 

Landerer, F.W., & Swenson, S. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. 777 

Water resources research, 48(4).  778 

Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., & Tu, K. (2008). A simple surface conductance 779 

model to estimate regional evaporation using MODIS leaf area index and the Penman-780 

Monteith equation. Water Resources Research, 44(10), 240-256.  781 

Li, H., & Zhang, Y. (2017). Regionalising rainfall-runoff modelling for predicting daily runoff: 782 

Comparing gridded spatial proximity and gridded integrated similarity approaches against 783 

their lumped counterparts. Journal of Hydrology, 550, 279-293. 784 

DOI:10.1016/j.jhydrol.2017.05.015 785 

Li, H., Zhang, Y., Chiew, F.H., & Xu, S. (2009a). Predicting runoff in ungauged catchments by using 786 

Xinanjiang model with MODIS leaf area index. Journal of Hydrology, 370(1-4), 155-162.  787 

Li, L., Hong, Y., Wang, J.H., Adler, R.F., Policelli, F.S., Habib, S. , et al. (2009b). Evaluation of the 788 

real-time TRMM-based multi-satellite precipitation analysis for an operational flood 789 

prediction system in Nzoia Basin, Lake Victoria, Africa. Natural Hazards, 50(1), 109-123. 790 

DOI:10.1007/s11069-008-9324-5 791 

Li, Y., Grimaldi, S., Walker, J.P., & Pauwels, V.R.N. (2016). Application of Remote Sensing Data to 792 

Constrain Operational Rainfall-Driven Flood Forecasting: A Review. Remote Sensing, 8(6). 793 

DOI:10.3390/rs8060456 794 

Liu, W.B., Wang, L., Zhou, J., Li, Y.Z., Sun, F.B., Fu, G.B. , et al. (2016). A worldwide evaluation of 795 

basin-scale evapotranspiration estimates against the water balance method. Journal of 796 

Hydrology, 538, 82-95. DOI:10.1016/j.jhydrol.2016.04.006 797 

Liu, X., Chen, R., Liu, J., Wang, X., Zhang, B., Han, C. , et al. (2019a). Effects of snow-depth change 798 

on spring runoff in cryosphere areas of China. Hydrological Sciences Journal, 64(7), 789-797.  799 

Liu, X., Peng, D., & Xu, Z. (2017). Identification of the impacts of climate changes and human 800 

activities on runoff in the Jinsha River Basin, China. Advances in Meteorology, 2017.  801 

Liu, X., Yang, M., Meng, X., Wen, F., & Sun, G. (2019b). Assessing the impact of reservoir parameters 802 

on runoff in the Yalong River Basin using the SWAT Model. Water, 11(4), 643.  803 

Merz, R., & Bloschl, G. (2004). Regionalisation of catchment model parameters. Journal of Hydrology, 804 

287(1-4), 95-123. DOI:10.1016/j.jhydrol.2003.09.028 805 

Montanari, A., Young, G., H, H.G.S., D, H., T, W., L, L., Ren , et al. (2013). “Panta Rhei—Everything 806 

Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. 807 

Hydrological Sciences Journal, 58(6), 1256-1275. DOI:10.1080/02626667.2013.809088 808 

Moore, R.J., & Clarke, R.T. (1981). A DISTRIBUTION FUNCTION-APPROACH TO RAINFALL 809 

RUNOFF MODELING. Water Resources Research, 17(5), 1367-1382. 810 

DOI:10.1029/WR017i005p01367 811 



 

43 

 

Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I — A 812 

discussion of principles. Journal of Hydrology, 10(3), 282-290. 813 

DOI:https://doi.org/10.1016/0022-1694(70)90255-6 814 

Oudin, L., Andreassian, V., Perrin, C., Michel, C., & Le Moine, N. (2008). Spatial proximity, physical 815 

similarity, regression and ungaged catchments: A comparison of regionalization approaches 816 

based on 913 French catchments. Water Resources Research, 44(3). 817 

DOI:10.1029/2007wr006240 818 

Pomeon, T., Diekkrueger, B., Springer, A., Kusche, J., & Eicker, A. (2018). Multi-Objective Validation 819 

of SWAT for Sparsely-Gauged West African River Basins-A Remote Sensing Approach. 820 

Water, 10(4). DOI:10.3390/w10040451 821 

Post, D.A., & Jakeman, A.J. (1999). Predicting the daily streamflow of ungauged catchments in SE 822 

Australia by regionalising the parameters of a lumped conceptual rainfall-runoff model. 823 

Ecological Modelling, 123(2-3), 91-104. DOI:10.1016/s0304-3800(99)00125-8 824 

Ren, M., Xu, Z., Pang, B., Liu, W., & Liu, J. (2018). Accuracy Evaluation of A Variety of Satellite-825 

Derived Precipitation Products in Beijing City. AGUFM, 2018, H33I-2211.  826 

Rodell, M., Famiglietti, J.S., Chen, J., Seneviratne, S.I., Viterbo, P., Holl, S. , et al. (2004). Basin scale 827 

estimates of evapotranspiration using GRACE and other observations. Geophysical Research 828 

Letters, 31(20). DOI:10.1029/2004gl020873 829 

Standards Press of China.(2008).Standard for Hydrological Information And Hydrological 830 

forecasting.Standardization Administration of the People's Republic of China. 831 

Stewart, J.B., & Finch, J.W. (1993). APPLICATION OF REMOTE-SENSING TO FOREST 832 

HYDROLOGY. Journal of Hydrology, 150(2-4), 701-716. DOI:10.1016/0022-833 

1694(93)90132-s 834 

Stisen, S., & Sandholt, I. (2010). Evaluation of remote-sensing-based rainfall products through 835 

predictive capability in hydrological runoff modelling. Hydrological Processes, 24(7), 879-836 

891. DOI:10.1002/hyp.7529 837 

Sun, Q.H., Miao, C.Y., Duan, Q.Y., Ashouri, H., Sorooshian, S., & Hsu, K.L. (2018). A Review of 838 

Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of 839 

Geophysics, 56(1), 79-107. DOI:10.1002/2017rg000574 840 

Sutanudjaja, E.H., van Beek, L.P.H., de Jong, S.M., van Geer, F.C., & Bierkens, M.F.P. (2014). 841 

Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil 842 

moisture and discharge data. Water Resources Research, 50(1), 687-705. 843 

DOI:10.1002/2013wr013807 844 

Swenson, S., & Wahr, J. (2006). Post‐processing removal of correlated errors in GRACE data. 845 

Geophysical Research Letters, 33(8).  846 

https://doi.org/10.1016/0022-1694(70)90255-6


 

44 

 

Syed, T.H., Famiglietti, J.S., Rodell, M., Chen, J., & Wilson, C.R. (2008). Analysis of terrestrial water 847 

storage changes from GRACE and GLDAS. Water Resources Research, 44(2). 848 

DOI:10.1029/2006wr005779 849 

Todini, E. (1996). The ARNO rainfall-runoff model. Journal of Hydrology, 175(1-4), 339-382. 850 

DOI:10.1016/s0022-1694(96)80016-3 851 

Wanders, N., Bierkens, M.F.P., de Jong, S.M., de Roo, A., & Karssenberg, D. (2014). The benefits of 852 

using remotely sensed soil moisture in parameter identification of large-scale hydrological 853 

models. Water Resources Research, 50(8), 6874-6891. DOI:10.1002/2013wr014639 854 

Wang, S.S., Pan, M., Mu, Q.Z., Shi, X.Y., Mao, J.F., Brummer, C. , et al. (2015). Comparing 855 

Evapotranspiration from Eddy Covariance Measurements, Water Budgets, Remote Sensing, 856 

and Land Surface Models over Canada. Journal of Hydrometeorology, 16(4), 1540-1560. 857 

DOI:10.1175/jhm-d-14-0189.1 858 

Wu, Y., Guo, L., Zheng, H., Zhang, B., & Li, M. (2019). Hydroclimate assessment of gridded 859 

precipitation products for the Tibetan Plateau. Science of The Total Environment, 660, 1555-860 

1564.  861 

Yang, F., Lu, H., Yang, K., Wang, W., Li, C., Han, M. , et al. (2017). Evaluation and comparison among 862 

multiple forcing data sets for precipitation and shortwave radiation over mainland China. 863 

Hydrology and Earth System Sciences Discussions, 21(11), 1-32.  864 

Yang, Z., Wang, H., Saito, Y., Milliman, J.D., Xu, K., Qiao, S. , et al. (2006). Dam impacts on the 865 

Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the 866 

Three Gorges Dam. Water Resources Research, 42(4). DOI:10.1029/2005wr003970 867 

Yao, C., Li, Z., Bao, H., & Yu, Z. (2009). Application of a developed Grid-Xinanjiang model to 868 

Chinese watersheds for flood forecasting purpose. Journal of Hydrologic Engineering, 14(9), 869 

923-934.  870 

Yassin, F., Razavi, S., Wheater, H., Sapriza-Azuri, G., Davison, B., & Pietroniro, A. (2017). Enhanced 871 

identification of a hydrologic model using streamflow and satellite water storage data: A 872 

multicriteria sensitivity analysis and optimization approach. Hydrological Processes, 31(19), 873 

3320-3333. DOI:10.1002/hyp.11267 874 

Zhang, L., Hickel, K., Dawes, W., Chiew, F.H., Western, A., & Briggs, P. (2004). A rational function 875 

approach for estimating mean annual evapotranspiration. Water resources research, 40(2).  876 

Zhang, L., Potter, N., Hickel, K., Zhang, Y., & Shao, Q. (2008). Water balance modeling over variable 877 

time scales based on the Budyko framework–Model development and testing. Journal of 878 

Hydrology, 360(1-4), 117-131.  879 

Zhang, X., & Tang, Q. (2015). Combining satellite precipitation and long-term ground observations for 880 

hydrological monitoring in China. Journal of Geophysical Research-Atmospheres, 120(13), 881 

6426-6443. DOI:10.1002/2015jd023400 882 



 

45 

 

Zhang, Y., & Chiew, F.H.S. (2009). Relative merits of different methods for runoff predictions in 883 

ungauged catchments. Water Resources Research, 45(7). DOI:10.1029/2008wr007504 884 

Zhang, Y., Chiew, F.H.S., Liu, C., Tang, Q., Xia, J., Tian, J. , et al. (2020). Can Remotely Sensed Actual 885 

Evapotranspiration Facilitate Hydrological Prediction in Ungauged Regions Without Runoff 886 

Calibration? Water Resources Research, 56(1). DOI:10.1029/2019wr026236 887 

Zhang, Y., Kong, D., Gan, R., Chiew, F.H.S., McVicar, T.R., Zhang, Q. , et al. (2019). Coupled 888 

estimation of 500 m and 8-day resolution global evapotranspiration and gross primary 889 

production in 2002–2017. Remote Sensing of Environment, 222, 165-182. 890 

DOI:https://doi.org/10.1016/j.rse.2018.12.031 891 

Zhang, Y., Leuning, R., Hutley, L.B., Beringer, J., McHugh, I., & Walker, J.P. (2010). Using long-term 892 

water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial 893 

resolution. Water Resources Research, 46(5). DOI:10.1029/2009wr008716 894 

Zhang, Y., Peña-Arancibia, J.L., McVicar, T.R., Chiew, F.H.S., Vaze, J., Liu, C., , Lu, X. , et al. (2016). 895 

Multi-decadal trends in global terrestrial evapotranspiration and its components. 6(1), 19124.  896 

Zhao, R.J. (1980). The xinanjiang model, Proceedings of the Oxford Symposium.  897 

Zhao, R.J. (1992). The Xinanjiang model applied in China. Journal of Hydrology, 135(1-4), 371-381.  898 

  899 

https://doi.org/10.1016/j.rse.2018.12.031


 

46 

 

Figures and figure captions 900 

 901 

Figure 1. Information and location of study area. The station Daluo for constraining 902 

Fu model is labelled as 21.  903 
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 904 

Figure 2. Model structure of Xinanjiang Model  905 
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 906 

Figure 3. Comparison between observed precipitation and precipitation generated 907 

from CMFD data (CMFD-P)  908 
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 909 

Figure 4. Evaluating annual runoff obtained from precipitation minus raw PML-AET 910 

(Q1) and that (Q2) obtained from precipitation minus bias-corrected PML-AET (The 911 

numbers in the bracket represent the watershed codes shown in Figure 1.)  912 
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 913 

Figure 5. The mean annual spatial and seasonal distributions of CMFD-P, bias-914 

corrected PML-AET and GRACE soil water storage change data  915 



 

51 

 

 916 

Figure 6. Comparison of performance of the nine calibration schemes for estimating 917 

streamflow. Noted that negative values are plotted as zero for better visualization (The 918 

boxes represent the values range from 25th to 75th percentiles, the lines in each plot 919 

from top to bottom represent upper boundary, median value and lower boundary, 920 

respectively. The square represents the mean value and the rhombus represents the 921 

outlier.)  922 
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 923 

 924 

Figure 7. spatial patterns of metrics obtained from scheme 4 and scheme 7  925 
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 926 

Figure 8. Spatial evaluation of scheme 4 against scheme 1, 2 and 7. The difference 927 

among them is obtained from Eq. (11). Having a range from -0.02 to 0.02, gray means 928 

the two perform similarly. 929 

  930 
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 931 

Figure 9. Scatterplots between metrics (obtained from scheme 4) and catchment 932 

characteristics (Each point represents one catchment. Negative values are set as zero 933 

to minimize the weight of negative metric values on significant test; p is the 934 

probability of significant test; AI is aridity index for each catchment; NDVI is mean 935 

annual normalized difference vegetation index.) 936 
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