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Abstract

Data from the South Pole ice core (SPC14) are used to constrain climate conditions and ice-flow-induced layer thinning for the

last 54,000 years. Empirical constraints are obtained from the SPC14 ice and gas timescales, used to calculate annual-layer

thickness and the gas-ice age difference (Δage), and from high-resolution measurements of water isotopes, used to calculate the

water-isotope diffusion length. BothΔage and diffusion length depend on firn properties and therefore contain information about

past temperature and snow-accumulation rate. A statistical inverse approach is used to obtain an ensemble of reconstructions

of temperature, accumulation-rate, and thinning of annual layers in the ice sheet at the SPC14 site. The traditional water-

isotope/temperature relationship is not used as a constraint; the results therefore provide an independent calibration of that

relationship. The temperature reconstruction yields a glacial-interglacial temperature change of 6.7 ± 1.0 °C at the South Pole.

The sensitivity of δ180 to temperature is 0.99 ± 0.03 significantly greater than the spatial slope of ˜0.8 East Antarctic ice core

records. The reconstructions of accumulation rate and ice thinning show millennial-scale variations in the thinning function as

well as decreased thinning at depth compared to the results of a 1-D ice flow model, suggesting influence of bedrock topography

on ice flow.
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Key Points:11

• An inverse method using a firn model with isotope diffusion provides self-consistent12

temperature, accumulation rate, and thinning histories.13

• Glacial-interglacial temperature change at the South Pole was 6.7 +/- 1.0 K. The14

d18O/T sensitivity is 0.99 +/- 0.03 permille/K.15

• Reconstruction of ice thinning shows millennial-scale variations in thinning func-16

tion and decreased thinning at depth compared to 1-D model.17
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Abstract18

Data from the South Pole ice core (SPC14) are used to constrain climate conditions and19

ice-flow-induced layer thinning for the last 54,000 years. Empirical constraints are ob-20

tained from the SPC14 ice and gas timescales, used to calculate annual-layer thickness21

and the gas-ice age difference (∆age), and from high-resolution measurements of water22

isotopes, used to calculate the water-isotope diffusion length. Both ∆age and diffusion23

length depend on firn properties and therefore contain information about past temper-24

ature and snow-accumulation rate. A statistical inverse approach is used to obtain an25

ensemble of reconstructions of temperature, accumulation-rate, and thinning of annual26

layers in the ice sheet at the SPC14 site. The traditional water-isotope/temperature re-27

lationship is not used as a constraint; the results therefore provide an independent cal-28

ibration of that relationship. The temperature reconstruction yields a glacial-interglacial29

temperature change of 6.7±1.0°C at the South Pole. The sensitivity of δ180 to temper-30

ature is 0.99±0.03h°C−1, significantly greater than the spatial slope of 0.8h°C−1 that31

has been used previously to determine temperature changes from East Antarctic ice core32

records. The reconstructions of accumulation rate and ice thinning show millennial-scale33

variations in the thinning function as well as decreased thinning at depth compared to34

the results of a 1-D ice flow model, suggesting influence of bedrock topography on ice35

flow.36

1 Introduction37

Ice cores from polar ice sheets provide important records of past changes in climate and38

ice dynamics. Temperature and snow-accumulation rate are critical targets for recon-39

struction from ice-core data (Lorius et al., 1990). The traditional approach to reconstruct-40

ing temperature is the use of water isotope ratios (δ18O, δD), calibrated using empir-41

ical relationships (Dansgaard, 1964; Jouzel et al., 1993). Another approach is borehole42

thermometry, which provides a direct measurement of the modern temperature profile43

of the ice sheet that can be related to surface temperature history through a heat advection-44

diffusion model (Cuffey et al., 1995; Dahl-Jensen et al., 1998). Finally, measurements45

of δ15N of N2 in trapped air bubbles provide information about the thickness of the firn46

layer and past abrupt temperature changes that produce thermal gradients (Sowers et al.,47

1992; Schwander, 1989; Severinghaus et al., 1998). Because firn thickness is a function48

of accumulation rate and temperature, δ15N can be used to provide constraints on both49

variables through modeling of the firn densification process (Huber et al., 2006; Guille-50

vic et al., 2013; Kindler et al., 2014). With independent constraints on the ice-core depth-51

age relationship, in particular from annual-layer counting, these approaches can be com-52

bined to produce robust estimates of temperature and accumulation rate through time.53

Results from Greenland (Buizert et al., 2014) and the West Antarctic Ice Sheet (WAIS)54

Divide ice core (Cuffey et al., 2016) provide recent examples.55

In comparison with locations in West Antarctica and Greenland, ice-core sites in East56

Antarctica pose special challenges. The low accumulation rates typical of the East Antarc-57

tic plateau are less favorable for borehole thermometry; high accumulation rates and lo-58

cations near ice divides, where horizontal velocities are low, are generally necessary for59

preservation of detectable thermal anomalies. Additionally, some recent studies have ques-60

tioned the validity of firn models at the typically very cold temperatures during the glacial61

period in East Antarctica (Freitag et al., 2013; Bréant et al., 2017), since many of the62

models are calibrated with or designed for warmer conditions. One approach that may63

help to address such challenges is to use the “diffusion length,” a measure of the spec-64

tral properties of high-depth-resolution measurements of water-isotope ratios. Water-65

isotope diffusion length reflects the vertical diffusion experienced by water molecules through66

the firn column (Johnsen, 1977; Whillans and Grootes, 1985; Cuffey and Steig, 1998; Johnsen67

et al., 2000). While diffusion length has primarily been used as a proxy for temperature68

(e.g., Simonsen et al., 2011; Gkinis et al., 2014; van der Wel et al., 2015; Holme et al.,69
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2018; Gkinis et al., 2021), it is sensitive to both temperature and accumulation rate through70

their influence on the firn density profile and tortuosity, and is also affected by vertical71

strain (Gkinis et al., 2014; Jones et al., 2017a). Diffusion length thus provides an inde-72

pendent constraint on several important ice-core properties: temperature, accumulation73

rate, and the thinning history due to ice deformation.74

Here, we present data from a new ice core (SPC14) from the South Pole, East Antarc-75

tica, and we use a novel approach to combine multiple data sets to constrain temper-76

ature, accumulation-rate, and ice-thinning histories. We take advantage of two timescales77

for SPC14, one for the ice (Winski et al., 2019) and one for the gas enclosed within it78

(Epifanio et al., 2020), to obtain an empirical measure of the gas-age ice-age difference79

(∆age). We also use high-resolution measurements of δ17O, δ18O, and δD of ice (Steig80

et al., 2021) to obtain water-isotope diffusion lengths.81

We use a statistical inverse approach to obtain optimized, self-consistent reconstructions82

of temperature and accumulation rate using a combined firn-densification and water-isotope83

diffusion model. We exclude gas isotope (δ15N) data and use the water-isotope values84

only for calculating diffusion length, reserving these variables for comparison and val-85

idation. This approach allows us to produce a novel and independent calibration of the86

traditional isotope paleothermometer without the use of borehole thermometry. We also87

obtain an independent constraint on the thinning of annual layers. This is important at88

South Pole because the location of the site is about 200 km from the ice divide and the89

ice-flow history is not well known at ages earlier than the Holocene (Lilien et al., 2018).90

2 Data from the South Pole Ice Core91

The South Pole Ice Core (SPC14) was obtained from 2014 to 2016 at 89.9889°S, 98.1596°W,92

approximately 2 km from the geographic South Pole. SPC14 was drilled to a depth of93

1751 m, equivalent to an age of approximately 54 ka (Winski et al., 2019). Compared94

to other East Antarctic plateau ice-core sites, South Pole has a relatively high annual95

accumulation rate (8 cm w.e. a−1) (Casey et al., 2014) given its low mean-annual air tem-96

perature of -49°C (Lazzara et al., 2012). The mean firn temperature is -51°C (Severing-97

haus et al., 2001). The modern surface ice velocity is 10 m a−1 (Casey et al., 2014).98

The data sets used in our analysis are developed from the independent ice and gas timescales99

for SPC14 described previously by Winski et al. (2019) and Epifanio et al. (2020), re-100

spectively, and water-isotope measurements obtained at high depth resolution by continuous-101

flow analysis, as described in Steig et al. (2021). We briefly summarize the information102

obtained directly from the ice-core measurements as well as the data sets derived from103

that information (annual-layer thickness, ∆age, and water-isotope diffusion length).104

2.1 Ice Timescale and Annual-Layer Thickness105

The SP19 ice timescale was constructed by stratigraphic matching of 251 volcanic tie106

points between SPC14 and WAIS Divide (Winski et al., 2019). Between tie points, iden-107

tification of individual layers from seasonal cycles in sodium and magnesium ions was108

used to produce an annually-resolved timescale for most of the Holocene. For ages greater109

than 11.3 ka, despite lack of annual resolution, the uncertainty of the timescale is esti-110

mated to be within 124 years relative to WD2014 (Winski et al., 2019). Annual-layer111

thickness is given by the depth between successive years on the SP19 timescale. For ages112

older than 11.3 ka where annual layers could not be identified, Winski et al. (2019) found113

the smoothest annual-layer thickness which matched 95% of the volcanic tie points to114

within one year. Based on the uncertainty associated with interpolation between sparse115

tie points (Fudge et al., 2014), we estimate the uncertainty in annual-layer thickness (two116

standard deviations, hereafter s.d.) to be ±3% of the value in the Holocene, increasing117

to ±10% of the value at earlier ages.118
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2.2 Gas Timescale and ∆age119

Epifanio et al. (2020) developed the SPC14 gas timescale through stratigraphic match-120

ing of features in the high-resolution CH4 records of the SPC14 and WAIS Divide cores.121

The difference in age between the ice and gas timescales, ∆age, is a measure of the ice122

age at the lock-in depth, which depends on the rate of firn densification (Schwander and123

Stauffer, 1984; Schwander et al., 1988; Blunier and Schwander, 2000). Epifanio et al. (2020)124

determined ∆age empirically at each of the CH4 tie points and used a cubic spline fit125

to derive a continuous ∆age curve for all depths. Due to the empirical nature of the gas126

timescale, the SPC14 ∆age record is determined without the use of a firn-densification127

model. Moreover, the SPC14 ∆age was obtained without relying on the additional con-128

straint of δ15N to determine lock-in depth.129

We assign an age to each empirical ∆age estimate as the mid-point between the gas-age130

and ice-age timescales from which ∆age is calculated. This approximation is justified by131

results from a dynamic densification model (Stevens et al., 2020), which show that at132

a site like South Pole the timescale on which ∆age responds to climate variations is a133

time interval shorter than ∆age itself. Uncertainty in ∆age depends on uncertainty in134

the match between the WAIS Divide and SPC14 gas timescales, the uncertainty asso-135

ciated with interpolation between tie points, and uncertainty in the ∆age for WAIS Di-136

vide. Because ∆age is an order of magnitude smaller at WAIS Divide than at South Pole,137

that source of uncertainty is the smallest. The uncertainty estimated by Epifanio et al.138

(2020) ranges from ±1% to ±8% (two s.d.) of the value of ∆age.139

2.3 Water-Isotope Measurements and Diffusion Length140

We measured water-isotope ratios at an effective resolution of 0.5 cm using continuous141

flow analysis (CFA), following the methods described in Jones et al. (2017b) and Steig142

et al. (2021). We measured δ18O and δD for the entirety of the core and δ17O from a143

depth of 556 m through the bottom of the core. We used Picarro Inc. cavity ring-down144

laser spectroscopy (CRDS) instruments, including both a model L2130-i (for δ18O and145

δD) and a model L2140-i for δ17O (Steig et al., 2014). We use the standard notation for146

δ18O:147

δ18Osample =

(
18O
16O

)
sample

/( 18O
16O

)
V SMOW

− 1,

where VSMOW is Vienna Standard Mean Ocean Water. δ17O and δD are defined sim-148

ilarly. These measurements were used to calculate the water-isotope diffusion length. Fig-149

ure 1 shows the δ18O measurements at 100-year-mean resolution as a function of age.150

After deposition as snow on the ice-sheet surface, water isotopologues diffuse through151

interconnected air pathways among ice grains in the firn, driven by isotope-concentration152

gradients in the vapor phase (Johnsen, 1977; Whillans and Grootes, 1985; Cuffey and153

Steig, 1998). In solid ice below the firn column, diffusion continues, but at a rate orders154

of magnitude slower than in the firn (Johnsen et al., 2000). The extent of diffusion is quan-155

tified as the diffusion length, the mean cumulative diffusive-displacement in the verti-156

cal direction of water molecules relative to their original location in the firn.157

Diffusion length is determined from spectral analysis of the high-resolution water-isotope158

data, following the methods described in Kahle et al. (2018). We use discrete data sec-159

tions of 250 years. We calculate the diffusion length, σ, for each section by fitting its power160

spectrum with a model of a diffused power spectrum and a two-component model of the161

measurement system noise:162

P = P0 exp(−k2σ2) + P ′0 exp(−k2(σ′)2) + |η̂|2, (1)

where k is the wavenumber, |η̂|2 is the measurement noise, and P0, P ′0, and σ′ are vari-163

able fitting parameters. The second term (P ′0 exp(−k2(σ′)2)) accounts for the influence164
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Figure 1: High-resolution δ18O record (Steig et al., 2021) from the South Pole ice core
(SPC14), shown as discrete 100-year averages for clarity, on the SP19 ice timescale (Win-
ski et al., 2019).

of the CFA measurement system on the water-isotope data spectrum. Kahle et al. (2018)165

found that this term does not completely eliminate the effect of system smoothing on166

the spectrum; we therefore make an additional correction, based on the sequential mea-167

surement of ice standards of known and differing isotopic composition, following Jones168

et al. (2017b). This correction is small, accounting for only ∼4% of the total diffusion169

length throughout the core. The uncertainty on σ is estimated conservatively as described170

in Kahle et al. (2018) and varies from ±4% to ±66% (two s.d.) of the value throughout171

the core.172

Additionally, we correct the diffusion-length estimates to account for diffusion in the solid173

ice, following Gkinis et al. (2014). This effect is also small, accounting for a maximum174

of 4% of the total diffusion length at the bottom of the core. To calculate the solid-ice175

diffusion length, we assume the modern borehole temperature profile T (z) remains con-176

stant through time to find the diffusivity profile Dice(z), following Gkinis et al. (2014).177

We use borehole temperature measurements from the nearby neutrino observatory (Price178

et al., 2002). We assume a simple thinning function from a 1-D ice-flow model (Dans-179

gaard and Johnsen, 1969) with a kink-height h0 = 0.2 for this calculation; the error in180

this assumption is negligible for the small deviations in total thinning we are calculat-181

ing. We subtract both the solid-ice and CFA diffusion lengths from the observations in182

quadrature to produce our final diffusion-length data set. Further details on both cor-183

rections are provided in the Supporting Information, Section S1.1.184
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We calculate the diffusion length for each of the three water-isotope ratios measured on185

the core. To combine the information from each isotope, we convert δ17O and δD dif-186

fusion lengths to equivalent values for δ18O. For example, the δ18O-equivalent diffusion187

length (σ18 from 17) from the δ17O diffusion length (σ17) is:188

σ2
18 from 17 = σ2

17

D18

α18

/D17

α17
, (2)

where D and α are the corresponding air diffusivity and solid-vapor fractionation fac-189

tor for each isotope. Values for D and α are given in the Supporting Information, Sec-190

tion S1.2 (Majoube, 1970; Barkan and Luz, 2007; Luz and Barkan, 2010; Lamb et al.,191

2017). For the single diffusion-length record used in our analysis, we take the mean of192

these three estimates for σ18.193

3 Forward Model194

We use a forward model to relate the observational data sets to the variables of inter-195

est. Figure 2 summarizes the data sets obtained from the ice-core measurements and the196

calculations described above: ∆age, water-isotope diffusion length, and annual-layer thick-197

ness. We use these three data sets as our “observations” in a statistical inverse approach198

to infer temperature, accumulation rate, and ice-thinning function.199

Figure 3 illustrates the structure of the forward model, including a firn-densification com-200

ponent, a water-isotope diffusion component, and a vertical strain (ice thinning) com-201

ponent. We describe the individual components below.202

3.1 Firn Densification203

The firn layer comprises the upper few tens of meters of the ice sheet where snow is pro-204

gressively densifying into solid ice. As successive layers of snow fall on the surface of the205

ice sheet, the increase in overburden pressure causes the underlying ice crystals to pack206

closer together. The firn matrix densifies through this packing and through metamor-207

phism of the crystal fabric. The rate of densification is determined primarily by temper-208

ature and accumulation rate. The Herron and Langway (1980) (HL) firn-densification209

model is a benchmark empirical model, based on depth-density data from Greenland and210

Antarctic ice cores (Lundin et al., 2017). We model the depth-density profile of the firn211

using the HL framework due to its simplicity and its good match with measurements of212

the modern South Pole firn density. We also evaluate the impact that using different firn213

models would have on our results (Section 5.1).214

We use a surface density ρ0 = 350 kg m−3, consistent with measured values at the SPC14215

site, and assume it remains constant through time (Fausto et al., 2018). We assess the216

sensitivity of our results to this assumption in Section 5.1. The bottom of the firn is con-217

strained by a close-off density ρco, which we define as a function of temperature (Mar-218

tinerie et al., 1994). As temperature varies between -50 and -60°C, close-off density varies219

in a small range between 831.5 and 836.4 kg m−3.220

We use the analytical formulation of the HL model, which assumes an isothermal firn.221

If either temperature or accumulation rate changes on short timescales, a transient for-222

mulation of the model would be required to reflect propagation through the firn column.223

Although our temperature and accumulation-rate inputs vary through time, the timescale224

of those variations (i.e., 10 ka for ∼6°C change in temperature) is large enough that the225

steady-state approximation is acceptable. To test this assumption, we ran our forward226

model with a transient formulation of the HL model (Stevens et al., 2020) and found no227

difference in the results when we account for the advection time through the firn, as we228

do in our inverse approach. Since the transient model is more computationally expen-229

sive, we use the analytical formulation.230
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Figure 2: Data sets from SPC14 used to optimize the inverse problem, each averaged
over bins of 250 years and plotted with uncertainty representing two s.d. Panel (a) shows
∆age with tie points marked in blue circles, panel (b) shows water-isotope diffusion
lengths, and panel (c) shows annual-layer thickness data. Diffusion lengths from δ17O
(green) and δD (red) have been converted to δ18O-equivalent values.

3.2 Modeling ∆age231

Modeled ∆age is given by the difference in the modeled age of the ice and the gas at the232

lock-in depth. We define the lock-in depth at a density of 10 kg m−3 less than the close-233
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Model Inputs Model Components Model Outputs

Temperature
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Thinning Function
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Model

Isotope
Diffusion

Model

Layer
Thickness

Model

∆age
Diffusion Length
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Figure 3: Illustration of the forward model components, which include firn densification
(Section 3.1/3.2), water-isotope diffusion (Section 3.3), and a model of layer thickness
(Section 3.4). Together, these components relate the variables of interest (temperature,
accumulation rate, and thinning function) to the observational data sets (∆age, layer
thickness, and diffusion length) shown in Figure 2.

off density (Blunier and Schwander, 2000). The age of the ice at this depth is estimated234

directly from the age-density profile from the firn-densification model. We estimate the235

age of the gas at the lock-in depth (LID) using the parameterization in Buizert et al. (2013):236

gas age(ρLID) =
1

1.367

(
0.934× (DCH)2

D0
CO2

+ 4.05

)
, (3)

where DCH is the diffusive column height given in units of m, defined as the lock-in depth237

minus a 3 m convective zone at the surface where firn air is well-mixed with the atmo-238

sphere. D0
CO2

is the free air diffusivity of CO2 defined in Schwander et al. (1988) and239

Buizert et al. (2012) and given in units of m2 a−1. The lock-in depth is defined as the240

depth at which the effective molecular diffusivity of the gas is reduced to one thousandth241

of the free air diffusivity (Buizert et al., 2013).242

3.3 Modeling Diffusion Length243

The combined effects on the initial isotope profile (δ = δ(z, 0)) due to diffusion and firn
densification are given by:

∂δ

∂t
= D

∂2δ

∂z2
− ε̇z ∂δ

∂z
, (4)

where δ(z′, t) is the resulting smoothed and compressed isotope profile after time t since244

deposition, D is the diffusivity coefficient, ε̇ is the vertical strain rate, and z is the ver-245

tical coordinate assuming an origin fixed on an arbitrary sinking layer of firn (Johnsen,246

1977; Johnsen et al., 2000; Whillans and Grootes, 1985). Note that z′ accounts for the247

vertical compression of the original profile (Johnsen et al., 2000). Equation 4 is valid where248

the isotopic exchange between firn grains and the surrounding vapor is rapid, where the249

firn grains are well mixed and in isotopic equilibrium with the vapor, and where δ �250

1000h.251

–8–
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The diffusivity coefficient Dx of each isotope x depends on the temperature and density252

profile of the firn column Whillans and Grootes (1985); Johnsen et al. (2000):253

Dx =
mpDair

x

RT αx τ

(
1

ρ
− 1

ρice

)
, (5)

where m is the molar weight of water, p is the saturation pressure of water vapor over254

ice at temperature T and with gas constant R, Dair
x is the diffusivity of each isotopo-255

logue through air, αx is the fractionation factor for each isotopic ratio in water vapor256

over ice, τ is the tortuosity of the firn, ρ is the firn density, and ρice is the density of ice.257

Values for these parameters are given in the Supporting Information, Section S1.2.258

Using the output from the firn-densification model, we calculate water-isotope diffusion259

through the depth-density profile. First, the density profile is used to calculate the dif-260

fusivity of each isotope based on Equation 5. We then solve for the diffusion length σfirn261

of a particular isotope ratio in terms of its effective diffusivity coefficient D and the firn262

density ρ (Gkinis et al., 2014):263

σ2
firn(ρ) =

1

ρ2

∫ ρ

ρ0

2ρ2
(
dρ

dt

)−1
D(ρ)dρ, (6)

where ρ0 is the surface density and dρ
dt is the material derivative of the density. To cal-264

culate the diffusivity D, we use an atmospheric pressure of 0.7 atm, the ambient pres-265

sure at the SPC14 site (Severinghaus et al., 2001), which we assume to be constant through266

time.267

Cumulative vertical strain significantly thins layers in the ice. The thinning function is268

defined as the fractional amount of thinning that has occurred at a given depth in the269

ice sheet. We account for the effects of vertical strain on our modeled firn diffusion length,270

σfirn, using a thinning function Γ. We model the diffusion length measured in the ice271

core as σicecore:272

σicecore = σfirn × Γ. (7)

Recall that when we compare the modeled diffusion length with the observations, the273

observations have been corrected for diffusion in solid ice.274

3.4 Modeling Annual-Layer Thickness275

Annual-layer thickness λ is given by the accumulation rate ḃ, in ice-equivalent m a−1,276

multiplied by the thinning function Γ:277

λ = ḃ× Γ. (8)

4 Inverse Framework and Results278

4.1 Initialization279

We use a Bayesian statistical approach to produce an ensemble of possible solutions to280

our inverse problem. Through many iterations, we use the forward model described above281

to solve our forward problem and determine the range of possible model inputs. This282

forward problem is described by the following equation, where the forward model, G, cal-283

culates the modeled observables, or data parameters, d as a function of unknown input284

variables, or model parameters, m:285

G(m) = d. (9)

Our forward model G is nonlinear and cannot be solved analytically. Instead, we use a286

Monte Carlo approach to solve the inverse problem by testing many instances of m through287
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the forward model G to find the output d that best matches the observations dobs. The288

theory and practical implementation of this approach are detailed in the Supporting In-289

formation, Section S2 (Tarantola, 1987; Mosegaard and Tarantola, 1995; Gelman et al.,290

1996; Mosegaard, 1998; Khan et al., 2000; Mosegaard and Sambridge, 2002; Mosegaard291

and Tarantola, 2002; Steen-Larsen et al., 2010).292

We incorporate a priori information about model parameters based on their modern val-293

ues and our best estimate of how they have varied through time. We include this a pri-294

ori information by creating bounds on the allowable model space to explore and use the295

Metropolis algorithm to randomly create perturbations that sample within the bounded296

model space (Metropolis et al., 1953). If the algorithm proposes a solution mx that falls297

outside of our bounded model space, mx is disregarded and another solution is evalu-298

ated. Because we expect the parameters to vary smoothly through time, proposed per-299

turbations are smoothed with a lowpass filter to prevent spurious high-frequency noise300

from being introduced. Temperature and accumulation-rate perturbations are smoothed301

with a lowpass filter with a cutoff period of 3000 years, which corresponds to the max-302

imum value of ∆age and thus the limit of natural smoothing we expect from the ice-core303

data. We expect the thinning function to be even smoother and apply a lowpass filter304

with a cutoff period of 10,000 years to those perturbations.305

We also determine initial guesses m1 for each parameter. Initializing the problem at what306

is judged to be a reasonable solution m1 helps to avoid non-physical solutions (MacAyeal,307

1993; Gudmundsson and Raymond, 2008). We design initial guesses for each parame-308

ter that are simplified versions of our best initial guess, allowing higher-frequency infor-309

mation to be inferred from the optimization. The initial guess of temperature is a step-310

function version of the water-isotope record. The initial guess for the thinning function311

is the output of a Dansgaard and Johnsen (1969) (DJ) ice-flow model. This simple model312

produces an approximation of the dynamics acceptable at many ice-core sites (Hammer313

et al., 1978). We use a kink height of h0 = 0.2 to simulate the flank flow at the SPC14314

site. To produce an initial guess for accumulation rate, we divide the layer-thickness data315

by this thinning function and approximate the result with a simplified step function.316

Each parameter is bounded based on näıve expectations for its variability. For temper-317

ature, we bound the model space with an upper and lower scaling of the step-function318

initial guess version of the water-isotope record. We create an envelope based on pre-319

vious estimates of glacial-interglacial temperature change in Antarctica, which allows for320

solutions with glacial-interglacial changes as small as 0.5°C and as large as 15°C. For ac-321

cumulation rate, the bounded model-parameter range is an envelope about our initial322

guess defined as ±0.02 m a−1. Given the surface and Holocene accumulation-rate fluc-323

tuations at South Pole described in Lilien et al. (2018), this range is a reasonable limit324

on accumulation rate, while still allowing variation in the values tested in each m. For325

the ice-equivalent thinning function, we enforce a value of one at the surface but do not326

provide further constraints on the model space because it is effectively constrained by327

the bounds on accumulation rate and layer thickness.328

4.2 A posteriori Distributions329

The resulting solutions m from our inverse approach are described by the a posteriori330

distribution. To visualize the high-dimensional a posteriori distribution, we plot prob-331

ability distributions for each parameter. Rather than create separate probability distri-332

butions for each of the many parameters in our model space, we plot each probability333

distribution successively in a single figure to visualize the entire model space at once. Fig-334

ure 4 shows our results, with the model inputs on the left and outputs on the right. The335

grey shading shows successive probability distributions. A vertical slice through the shad-336

ing in each plot represents the probability distribution for a particular parameter (re-337

call that a parameter represents the value of a variable at a specified model timestep,338

e.g., the value of temperature at the 4th timestep). How often a particular value is ac-339
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cepted for each parameter is represented by the shading, where darker shading denotes340

values that were accepted more often. The solid magenta curves describe the initial guess341

for each parameter, and the dashed magenta curves describe the bounded model space342

(for temperature and accumulation rate). The right three panels of Figure 4 illustrate343

how well the modeled observables d(m) match with the observations dobs throughout the344

collection of solutions.345

10 20 30 40 50

1000

1500

2000

2500

3000

a
g

e
 (

y
r)

Output Parameters

10 20 30 40 50

0.02

0.03

0.04

0.05
D

if
fu

s
io

n
 L

e
n

g
th

 (
m

)
Accepted Outputs

Ice Core Data

Uncertainty Bounds

10 20 30 40 50

Age (ka)

0.02

0.04

0.06

0.08

0.1

L
a

y
e

r 
T

h
ic

k
n

e
s
s
 (

m
)

10 20 30 40 50

-65

-60

-55

-50

T
e

m
p

e
ra

tu
re

 (
°C

)

Input Parameters

10 20 30 40 50

0.02

0.04

0.06

0.08

0.1

A
c
c
u

m
u

la
ti
o

n
 R

a
te

 (
m

/y
r)

Accepted Inputs

Initial Guess

Model Space Bounds

10 20 30 40 50

Age (ka)

0.2

0.4

0.6

0.8

1

T
h

in
n

in
g

 F
u

n
c
ti
o

n

Figure 4: Results of the Monte Carlo inverse calculations, showing the a posteriori dis-
tribution result compared with a priori information. The grey shading in each panel
represents probability distributions for each parameter from the a posteriori distribu-
tion, where darker shading signifies greater likelihood. Left panels show the initial guesses
(solid magenta) and model bounds (dashed) for the input parameters: temperature, ac-
cumulation rate, and thinning. Right panels show the observational data (solid red) and
prescribed uncertainties (dashed) for the output parameters: ∆age, diffusion length, and
layer thickness.

5 Sensitivity of Results346

We evaluate the sensitivity of our results to choices within the forward model and in-347

verse algorithm, as well as to constraints from the data sets included in the inverse prob-348

lem and from independent data.349
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5.1 Sensitivity to Forward Model350

Within the forward model, we hold the surface density ρ0 in the firn-densification model351

constant through time. We tested two alternate values of surface density ρ0 (450 kg m−3352

and 550 kg m−3); we find no significant change in the results. We also did two exper-353

iments to assess the impact of the choice of firn-densification model. First, we evaluated354

the depth-density and age-density profiles using a large collection of models (Herron and355

Langway, 1980; Goujon et al., 2003; Ligtenberg et al., 2011; Simonsen et al., 2013; Li and356

Zwally, 2015) within the Community Firn Model framework (Stevens et al., 2020). Sec-357

ond, we implemented two of those models, those of Goujon et al. (2003) (GOU) and Ligten-358

berg et al. (2011) (LIG), within our inverse framework. The results are similar regard-359

less of which firn model is used, but the GOU and LIG models produce consistently lower360

temperatures than the HL model. Because this difference is systematic throughout the361

depth of the core, the magnitude of reconstructed temperature variability, including the362

glacial-interglacial temperature change, is not significantly affected (Figures S3 and S4).363

Our choice of the HL model within our forward model is justified by the good agreement364

with modern temperature compared with these other models and the consistency within365

the interpretation of the temperature result across all models. Details from these sen-366

sitivity tests are given in the Supporting Information, Section S3.1. It has been suggested367

that most firn models (including the HL model) are biased to produce firn columns that368

are too thick at very cold temperatures (Landais et al., 2006; Dreyfus et al., 2010; Fre-369

itag et al., 2013; Bréant et al., 2017), though the magnitude of this bias is disputed. An370

implicit assumption in our method is that the HL model is unbiased. We discuss the im-371

plications of this assumption in Section 6.372

5.2 Sensitivity to Inverse Algorithm373

Within the formulation of the inverse algorithm, we evaluated the sensitivity to differ-374

ent initial guesses for each parameter. Altering the initial guesses within the model space375

bounds do not affect the final results. Additionally, including higher-frequency a priori376

information in our initial guesses does not change the results. For example, we evalu-377

ated initial guesses of constant values for each of temperature, accumulation rate, and378

thinning function. These extremely simplified initial guesses produce results indistinguish-379

able from those that include the high-frequency variability of each comparison data set,380

but require many more iterations to reach an equilibrium solution. As recommended in381

Gudmundsson and Raymond (2008), we opted for a middle-ground approach that saves382

time by setting the initial guess close to the expected answer but relies on the optimiza-383

tion to obtain high-frequency information.384

5.3 Sensitivity to Included Data Constraints385

We also examined the sensitivity of the results to each data set individually, as detailed386

in the Supporting Information, Section S3.2. One key conclusion from these tests is that387

all three data sets (∆age, layer thickness, and diffusion length) provide important infor-388

mation for producing a well-constrained result (Figures S6 and S7), although the rela-389

tive importance of each parameter varies with age in the record. In general, we find that390

the diffusion length and layer thickness are sufficient to constrain accumulation rate, and391

the ∆age strongly impacts the temperature. However, while it is evident that ∆age is392

the most important constraint on temperature for ages less than ∼35 ka, at greater ages,393

constraints provided by the combination of diffusion length and layer thickness become394

increasingly critical.395

We also considered the influence of the temperature-dependence of water-isotope diffu-396

sivity. We evaluated the effect of removing the temperature-dependence (Equation 5),397

so that diffusion-length data affects only the thinning function (Equation 7), and tem-398

perature is primarily driven by the ∆age data. The results show a significant difference399

from the main result, demonstrating that the diffusion-length data provide an impor-400

tant constraint on temperature, which has subsequent impact on other parameters. Fur-401

ther details are provided in the Supporting Information, Section S3.2.402
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5.4 Comparison with δ15N data403

Finally, we consider the impact on our results of the inclusion of information from mea-404

surements of δ15N in N2 of air bubbles in SPC14 (Winski et al., 2019; Severinghaus et al.,405

2019). The enrichment of δ15N in an ice core is a linear function of the original diffu-406

sive column height (DCH) of the firn, resulting from gravitational fractionation (Sow-407

ers et al., 1992; Buizert et al., 2013). We calculate DCH from δ15N as described in the408

Supporting Information (Equation S19). As shown in Figure S9, there are significant dif-409

ferences between the DCH calculated from the main reconstruction and that calculated410

from δ15N. We do not incorporate δ15N data in our full Monte-Carlo inverse procedure411

because this added constraint over-determines the solution; as we show in the following412

sensitivity test, no combinations of temperature and accumulation rate can simultane-413

ously satisfy δ15N and the other data constraints at all depths in the core. Instead, we414

evaluate the impact of the additional constraint of δ15N data as follows.415

We use the δ15N data to determine temperature and accumulation-rate pairs that pro-416

duce a DCH in agreement with the δ15N-based DCH. To determine these pairs, we run417

a global search algorithm over a set of temperature and accumulation-rate values defined418

by a small range centered on the mean values from the main reconstruction (Figure 4).419

For each depth in the core, we use the HL firn model to calculate the DCH for all tem-420

perature and accumulation-rate values in the global search, and then select only the tem-421

perature and accumulation-rate pairs that produce a DCH within the uncertainty of the422

DCH calculated from δ15N. The result is shown in light-red shading in Figure 5. Com-423

pared with our main reconstruction, the accumulation-rate history remains essentially424

unchanged, but the mean temperature is greater by 2.8°C on average for the glacial pe-425

riod (i.e., before about 15 ka). To further refine this suite of solutions, we select the sub-426

set of accumulation-rate and temperature values that both satisfy the δ15N constraint427

on DCH and are consistent (through the HL model) with ∆age, within the uncertainty428

of the empirical ∆age data. The blue shading in Figure 5 shows this combination of both429

δ15N and ∆age constraints; the result is a decrease in mean values for both accumula-430

tion rate and temperature during the glacial period compared to δ15N alone. Areas of431

overlap (dark purple shading) between our main reconstruction and the combined δ15N432

and ∆age constraints show where all constraints – diffusion length, layer thickness, ∆age,433

δ15N – are satisfied. Further details on this sensitivity test are given in the Supporting434

Information, Section S3.3 and Figure S9.435

Three important conclusions can be drawn from these comparisons. First, while our tem-436

perature and accumulation-rate reconstructions are entirely consistent with δ15N con-437

straints during the Holocene, a combination of warmer temperatures and lower accumu-438

lation rates are required to match the δ15N constraint in the glacial period. Second, there439

is no consistent solution for which all constraints (layer thickness, diffusion length, ∆age,440

and δ15N), for all depths in SPC14, are satisfied, implying that further refinements to441

firn models may be required (Supporting Information, Section S3.3). However, for those442

depths where all constraints are satisfied, the resulting temperatures are warmer by <1°C443

on average than in our main reconstruction. This means that, third, our results are con-444

servative with respect to the assumption that the HL model produces the correct DCH445

at very cold temperatures. This also supports the exclusion of δ15N in our main recon-446

struction, to avoid giving too much weight to the reproduction of the DCH by the HL447

model. For this reason, we focus on the results from our main reconstruction in the dis-448

cussion which follows.449

6 Discussion450

We now consider our main reconstructions for accumulation rate, ice thinning, and tem-451

perature in comparison with estimates from simpler calculations and independent data.452

In general, the results are in agreement with näıve expectations, but with some impor-453

tant differences. Because the accumulation-rate and thinning reconstructions are fun-454
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Figure 5: Results from a sensitivity test that includes δ15N as a constraint on diffusive
column height (DCH). Panel (a) shows accumulation rate, and panel (b) shows tempera-
ture; shading represents 2 s.d. uncertainty for all three reconstructions. The main recon-
struction is shown in grey. Results consistent with the δ15N constraints (only) are shown
in red. Results consistent with both δ15N and the empirical ∆age data are shown in blue.
The overlap of blue and grey shows where all empirical constraints (layer thickness, diffu-
sion length, ∆age, and δ15N) are satisfied within the framework of the firn model. Further
details are given in the Supporting Information, Section S3.3 and Figure S9.

damentally linked through Equation 8, we discuss them together. We then compare our455

reconstruction for temperature with the traditional water-isotope paleothermometer, and456

discuss the broader implications of our results. The a posteriori distribution is near-Gaussian,457

and in this section we plot its mean and standard deviation rather than the full prob-458

ability distributions. Recall that the a posteriori distribution comprises only accepted459

solutions, a subset of all iterations.460

6.1 Accumulation Rate and Thinning Function461

Figure 6 shows the results for the thinning function (panel (a)) and accumulation rate462

(panel (b)). The grey shading denotes a band of two s.d. of the a posteriori distribu-463

tion. In general, thinning functions are expected to be smooth and to decrease mono-464

tonically because they integrate the total thinning experienced at a given depth, as il-465

lustrated by the results of a 1-D Dansgaard-Johnsen (DJ) model with h0 = 0.2 (red curve,466

panel (a)). However, the SPC14 site is far from an ice divide such that variations in the467

bed topography upstream can create more complex thinning histories (e.g., Parrenin et al.,468

2004). Thus, the thinning function result is similar to the DJ-model output, but con-469

tains additional higher-frequency variations. To evaluate the plausibility of these vari-470

ations in the primary reconstruction, we compare with two other independent estimates471

of the thinning function, an ice-flow-model thinning function and a δ15N-based thinning472

function.473

First, we compare the primary thinning function with one calculated from an ice-flow474

model. We use a 2.5-D flowband model (Koutnik et al., 2016) forced with observations475

of the bedrock topography and the accumulation-rate pattern. Details of the model setup476

are given in the Supporting Information, Section S4 (Nye, 1963; Looyenga, 1965; Gades477

et al., 2000; Neumann et al., 2008; Catania et al., 2010; Jordan et al., 2018). The result-478

ing thinning function is best considered in two segments. The thinning function for the479

past 10 ka (solid black line in Figure 6) is well constrained because the flowline is known480

(Lilien et al., 2018) and the bed topography has been measured along the flowline (Fig-481

ure S11). The key result is that the bed undulations along the flowline cause the same482

structure as is inferred in the primary thinning function. The “reversal” in the thinning483

function at 7 ka, where deeper layers have thinned less than shallower layers, matches484
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Figure 6: Reconstructions of accumulation rate and thinning function for SPC14. Two
s.d. (grey shading) of the a posteriori distribution is plotted for each reconstruction
alongside comparison estimates. Panel (a) shows the primary thinning function recon-
struction (grey) compared to a DJ-model output with h0 = 0.2 (red), an ice-flow-model
thinning function from a 2.5-D flowband model (solid and dashed black), and a δ15N-
based thinning function with error bars showing two s.d. uncertainty (blue). The solid
black curve shows where the ice-flow-model thinning function is well constrained by data,
and the dashed black curve shows where the bed topography is simulated. The thinning
function is shown vs. depth in the Supporting Information (Figure S10). Panel (b) shows
the accumulation-rate reconstruction compared to two versions of the destrained layer-
thickness data. The thinning functions used for destraining are the DJ-model output (red)
and the mean of the reconstruction and the δ15N-based estimate (purple).

well in both the primary and ice-flow-model thinning functions. This feature is caused485

by an overdeepening in the bed topography (Figure S18).486

For ages older than 10 ka, we do not know where the ice originated and thus cannot use487

the ice-flow model to determine the thinning function with confidence. Instead, we aim488

to evaluate whether the primary thinning function is physically plausible, given what we489
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know about the bed topography in the region. Using airborne radar measurements (Fors-490

berg et al., 2017) to create a plausible bed beyond 100 km upstream, we show that the491

ice-flow model (black dashed line) can approximately match the magnitude and struc-492

ture of the primary thinning function. Therefore, the primary thinning function is con-493

sistent with expectations, given plausible variations in bedrock topography.494

Second, we compare the primary thinning function with a δ15N-based thinning function495

(blue circles; error bars show two s.d. uncertainty). We obtain this estimate following496

the methods described in Parrenin et al. (2012), who showed that the thinning function497

scales with the ratio of “∆depth” to the DCH, where ∆depth is given by ∆age multi-498

plied by the depth/age slope from the ice-core timescale. The thinning function Γ is then499

given by (Parrenin et al., 2012):500

Γ =
∆depth

A× LID
, (10)

where A is a scaling factor that accounts for the ice-equivalent thickness of the original501

firn column (Winski et al., 2019), and the lock-in depth, LID = DCH + 3, accounting502

for a 3-m convective zone. We use our temperature reconstruction to incorporate the im-503

pact of thermal fractionation in our calculation of the LID (Grachev and Severinghaus,504

2003; Cuffey and Paterson, 2010; Fudge et al., 2019). Full details on this approach and505

its uncertainties are given in the Supporting Information, Section S5.506

Figure 6a shows that the structure of the δ15N-based thinning function generally agrees507

with the primary reconstruction, showing the same high-frequency variations and mean508

estimates whose error bars in general overlap with the uncertainty of the primary recon-509

struction. There is the least agreement between ages of about 15 and 30 ka, where the510

δ15N-based thinning function is shifted appreciably towards higher values (less thinning).511

This is consistent with the observation that the modeled DCH from our main reconstruc-512

tion tends to be higher than that calculated from δ15N. We note that the uncertainties513

for the ∆depth calculation are not depth-independent; many known sources of error are514

expected to be systematic. For example, if the WAIS Divide ∆age data set were system-515

atically too large during the glacial period, correcting for this would result in smaller es-516

timates for the SPC14 ∆depth, and therefore smaller values (more thinning) in the δ15N-517

based thinning function. The same adjustment to ∆age results in no significant change518

in the primary thinning function, thus improving the agreement between the means of519

the two independent estimates. We discuss further quantification of uncertainties in these520

calculations in Section 5.4 and Section S5.1 in the Supporting Information.521

For comparison with the accumulation-rate reconstruction, Figure 6b shows two versions522

of high-frequency estimates produced by destraining the layer-thickness data with es-523

timates of the thinning function. The red curve uses the 1-D Dansgaard-Johnsen thin-524

ning function; the resulting accumulation-rate estimate deviates from the reconstruction525

at the oldest ages. Thus, the reconstruction reflects a significantly smaller accumulation526

rate before 40 ka than would be inferred using a DJ model. The purple curve shows our527

best estimate for high-frequency accumulation rate by combining the information from528

both the primary thinning function and the δ15N-based thinning function; we use the529

mean of these two thinning functions to destrain the layer-thickness data. We incorpo-530

rate information from both thinning functions in order to include all available informa-531

tion in our best estimate. The uncertainty is estimated by combining the uncertainties532

of both thinning functions.533

6.2 Temperature Reconstruction534

The temperature reconstruction is shown in Figure 7. For comparison, we show two scaled535

versions of the measured δ18O, corrected for secular variations in the δ18O of sea-water,536

following Bintanja and van de Wal (2008). Recall that while we used diffusion length de-537

termined from the δ18O power spectrum in our reconstruction, we do not use the abso-538
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Figure 7: Reconstruction of temperature and relationship with δ18O. Grey shading shows
two s.d. of the a posteriori distribution. Solid lines show scaled versions of δ18O, dis-
cretely averaged to 250-year resolution. The δ18O is scaled by 0.8h°C−1 (red), the mod-
ern surface relationship, and by 0.99h°C−1 (black), the calibrated linear relationship with
the mean of the temperature reconstruction.

lute δ18O values; hence, these comparisons serve as an independent calibration of the tra-539

ditional water-isotope thermometer, similar to what has been done previously with bore-540

hole thermometry (Cuffey et al., 1995, 2016) but maintaining higher-frequency informa-541

tion. The red curve in Figure 7 uses a scaling of ∂(δ18O)/∂T = 0.8h°C−1, which is both542

the observed modern surface isotope-temperature relationship at the site (Fudge et al.,543

2020) and the value commonly used in the literature for Antarctica (e.g., Jouzel et al.,544

2003), for which Masson-Delmotte et al. (2008) report a 1 s.d. error of 0.01h°C−1. The545

black curve shows the best-fit linear calibration between δ18O and the mean of our re-546

construction; this has a significantly greater slope of 0.99±0.03h°C−1 (2 s.d.). Our es-547

timate of uncertainty on the slope accounts for errors in both variables, following the method548

of York et al. (2004), with errors on temperature given by the a posteriori distribution549

(Figure 7) and errors on δ18O (0.1h, 1 s.d.) obtained from replicate continuous-flow mea-550

surements made on the South Pole ice core as reported in Steig et al. (2021). Results551

from the sensitivity tests (Section 5) using other firn models, and using independent δ15N552

constraints, yield the same result: slopes vary from 0.97 to greater than 1.2h°C−1. Cor-553

relation with the δ18O is greatest (r=0.94) with our main reconstruction (see Support-554

ing Information, Section S3.4).555

There are interesting similarities and differences between the calibrated δ18O and our556

independent temperature reconstruction. For example, the prominent Antarctic Isotope557
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Maximum 12 (AIM12) event, at about 47 ka, is similar in both our reconstruction and558

the scaled δ18O data, and suggests a temperature change of about 2°C. On the other hand,559

our temperature reconstruction for AIM8, at about 38 ka, is part of a low-frequency vari-560

ation longer than that indicated by the δ18O data, and the mean reconstruction suggests561

that AIM8 was warmer than AIM12, while a simple linear scaling of the δ18O implies562

the opposite. Another interesting feature is AIM2 (∼24 ka), which is muted in most East563

Antarctic records, but is prominent in the WAIS Divide ice core (WAIS Divide Project564

Members, 2013). AIM2 is clearly evident in both our reconstruction and in the scaled565

δ18O data, as is AIM4 (∼30 ka) and the Antarctic Cold Reversal (ACR) (∼13 ka).566

In contrast, the early-Holocene isotope maximum (centered at about 10 ka) is muted in567

our temperature reconstruction. This is perhaps surprising, given the prevalence of this568

feature in the δ18O records, both at South Pole and elsewhere in East Antarctica. On569

the other hand, there is no early-Holocene peak in the WAIS Divide record, in either the570

δ18O or the borehole-calibrated temperature reconstruction (WAIS Divide Project Mem-571

bers, 2013; Cuffey et al., 2016). Furthermore, the temperature reconstruction suggests572

an earlier onset of deglacial warming (at about 22 ka) than the isotope data suggest, but573

similar to both the isotope data and the temperature reconstruction at WAIS Divide (WAIS574

Divide Project Members, 2013; Cuffey et al., 2016). Because large changes in the δ18O-575

temperature relationship can occur, for example, from changes in seasonality (Steig et al.,576

1994; Werner et al., 2000), we cannot assume that either result (i.e.,, our main recon-577

struction or the scaled δ18O) is the more faithful representation of temperature. Rec-578

onciling the differences would benefit from transient simulations, including water isotopes,579

of the AIM events and the early-Holocene maximum, as recently achieved for Dansgaard-580

Oeschger events in Greenland (Sime et al., 2019), and of the deglaciation.581

Clearly, a single ∂(δ18O)/∂T scaling does not capture all of the variability in our tem-582

perature reconstruction. We explored calibrations separated by frequency and time pe-583

riod (i.e., millennial versus glacial-interglacial frequencies and Holocene versus glacial584

time periods), but find the resulting fits were not statistically distinguishable from that585

of the single scaling. Thus, there is no evidence of the large change in scaling that has586

been observed in Greenland ice cores (Cuffey et al., 1995), attributable primarily to changes587

in the seasonality of precipitation (Steig et al., 1994; Werner et al., 2000). Our results588

agree well with the assumption generally made in East Antarctica that the slope remains589

constant through time (e.g., Jouzel et al. (2003)), but show that this slope cannot be as-590

sumed to be the same as the modern spatial relationship.591

While our calibration yields a significantly greater slope than has been generally used592

in previous work, this slope is consistent with isotope-modeling results. Modeling work593

has shown that the sensitivity of δ18O to temperature should increase at sites with colder594

mean-annual temperatures and higher elevations in Antarctica. For example, Markle (2017)595

obtains ∂(δ18O)/∂ T ∼ 0.8h°C−1 for a location like WAIS Divide, in agreement with596

the borehole temperature calibration, and ∂(δ18O)/∂ T ∼ 1h°C−1 for South Pole. This597

difference in sensitivity occurs because air masses traveling to higher elevations are on598

different moist isentropic surfaces and experience greater rainout for a given change in599

temperature (Bailey et al., 2019).600
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6.3 Upstream Corrections and Site Reconstructions601

Figure 8: Advection-corrected reconstructions of accumulation rate and temperature at
the South Pole site. Advection corrections are based on Lilien et al. (2018) and Fudge
et al. (2020), as described in the text. All shading indicates two s.d. uncertainty. Panel
(a) shows two advection-corrected accumulation-rate histories: the main reconstruction
(grey) and the high-frequency accumulation-rate history from destraining 100-year aver-
age layer thicknesses (purple), corresponding to the ice-core histories shown in Figure 6b.
Panel (b) compares the advection-corrected temperature estimates from our reconstruc-
tion and from the scaled δ18O, averaged to 100-year resolution. Uncertainty takes into
account the correlation coefficient between the temperature reconstruction and the scaled
isotope estimate.

Because SPC14 was drilled far from the divide, deeper ice in the core originated increas-602

ingly farther upstream. To obtain accurate climate histories, it is necessary to remove603

the influence of flow from upstream where the climate conditions are different. We cor-604
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rect for advection of ice based on Lilien et al. (2018) and Fudge et al. (2020). Using mea-605

surements of surface velocities and the pattern of modern accumulation rate upstream606

along the flowline, Lilien et al. (2018) correlated the measured ice-core layer thicknesses607

with the expected layer thickness due to advection through the upstream accumulation-608

rate pattern. This provides a unique constraint on the origin of ice for the past 10 ka and609

indicates an increase in surface flow speed of about 15% through that time period. We610

rely on this novel constraint for our advection correction rather than the advection pre-611

dicted with the steady-state flowband model, and we note that the two approaches give612

similar trajectories for the reversal in the thinning function at 7 ka (Figure S13). Fudge613

et al. (2020) measured δ18O values using 10-m firn cores at 12.5 km intervals along the614

flowline to determine an appropriate correction for δ18O. Fudge et al. (2020) also mea-615

sured 10-m firn temperatures, and while the results were inconclusive, they were con-616

sistent with a typical 10°C km−1 lapse rate (dry adiabatic). Using this information, we617

apply corrections to the “ice core” reconstructions described above to produce “site” re-618

constructions of accumulation rate and temperature.619

The upstream correction to accumulation rate is separated into two time intervals. For620

ages younger than 10.2 ka, the surface accumulation-rate pattern upstream of the core621

is known (Lilien et al., 2018). We apply these modern surface variations as a correction622

by adding the deviation from the mean value to the accumulation-rate ice-core recon-623

struction. This correction damps the variability of Holocene accumulation rate in the624

site reconstruction compared with the ice-core reconstruction, but it does not affect the625

trend of the mean. For ages older than 10.2 ka, there is an insignificant linear trend in626

the accumulation rate along the 100 km flowline such that Fudge et al. (2020) suggest627

no long-term advection correction. Thus we make no correction to the ice-core recon-628

struction for ages older than 10.2 ka. We do not attempt to correct for the impact of spa-629

tial variability on the ice-core reconstruction for these older ages, but note that non-climate630

variations of roughly 15% are expected to occur on millennial timescales. We estimate631

the uncertainty in the accumulation-rate upstream correction using the variations in ac-632

cumulation rate along the flowline. For ages older than 10.2 ka, we assume the 1σ un-633

certainty is equal to the standard deviation of the upstream accumulation-rate pattern.634

For ages younger than 10.2 ka, the uncertainty is lower because we have removed much635

of the impact of advection; however, the correction is not perfect. Roughly 2/3 of the636

variance in the measured annual-layer thicknesses is explained by advection (Lilien et al.,637

2018). We thus conservatively assume a 1σ uncertainty is equivalent to half the stan-638

dard deviation. Adding this uncertainty in quadrature to the uncertainty of the ice-core639

accumulation-rate estimates shown in Figure 6b, we produce the site accumulation-rate640

histories and their uncertainty bounds shown in Figure 8a. The grey bounds show the641

advection-corrected accumulation-rate reconstruction from our inverse approach and the642

purple bounds show the advection-corrected high-frequency accumulation-rate estimate643

from destraining the layer-thickness data with our thinning function reconstruction.644

To correct the ice-core temperature reconstruction, we apply the dry adiabatic lapse rate645

of 10°C km−1 to the elevation correction given by Fudge et al. (2020) to produce the grey646

shading in Figure 8b. We do not quantify uncertainty associated with this correction.647

For comparison with the water-isotope record, we correct the δ18O with the water-isotope648

correction given by Fudge et al. (2020) and scale the record using the best-fit linear cal-649

ibration with the site reconstruction (also 0.99h°C−1) to produce the purple curve in650

Figure 8b. The uncertainty in the advection correction takes into account the correla-651

tion coefficient between the temperature reconstruction and the scaled isotope estimate.652

We use our site temperature reconstruction to determine the magnitude of glacial-interglacial653

temperature change at South Pole. We define this change as the difference in the mean654

temperature within the intervals of 0.5 - 2.5 ka and 19.5 - 22.5 ka. Note that our recon-655

struction ends at 0.5 ka, not the present, because the upper ∼500 years of the record is656

in the firn; hence, ∆age is undefined and diffusion of water isotopes is still in progress.657
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The choice of the last glacial maximum (LGM) window avoids the prominent warming658

of the Antarctic Isotope Maximum (AIM2) event. The site temperature reconstruction659

gives a glacial-interglacial temperature change at the South Pole site of 6.65±0.96°C (one660

s.d.). The site scaled δ18O gives a glacial-interglacial temperature change of 7.15±0.68°C661

(one s.d.).662

Our site temperature estimate indicates a 2 to 3.5°C lower glacial-interglacial surface tem-663

perature change than that reconstructed from other ice cores in east Antarctica, which664

is generally taken to be 9°C (Parrenin et al., 2013). Importantly, assessment of uncer-665

tainty in our calculations suggests that this key finding is conservative. In particular, there666

is some indication that firn-densification models may be biased to produce diffusive col-667

umn heights that are too large at cold temperatures (Landais et al., 2006; Dreyfus et al.,668

2010; Freitag et al., 2013; Bréant et al., 2017). If the Herron-Langway model were in fact669

unbiased, then even warmer LGM temperatures would be required.670

The difference between our results and the conventional 9°C value cannot be readily at-671

tributed to elevation change at South Pole, which is unlikely to have been more than 100 m672

thinner during the last glacial maximum, thus accounting for at most about 1°C of the673

difference, assuming a dry adiabatic lapse rate of 10°C km−1. (Constraints from ice sheet674

models and geodetic data (Pollard and DeConto, 2009; Whitehouse et al., 2012; Briggs675

et al., 2014; Argus et al., 2014; Golledge et al., 2014; Roy and Peltier, 2015) show a near-676

zero mean elevation change, with a standard deviation of 50 m.)677

Our results show that the commonly-used 9°C value for glacial-interglacial change in East678

Antarctica, which is based on water isotopes unconstrained by the independent estimates679

we use here, is too large. This finding may resolve an apparent disagreement, first rec-680

ognized at least three decades ago (Crowley and North, 1991), between ice-core-based681

temperature estimates and results from general circulation models (GCMs), which pro-682

duce cold-enough LGM temperatures only if surface elevations significantly higher than683

present are assumed (e.g., Masson-Delmotte et al., 2006; Lee et al., 2008; Werner et al.,684

2018), or other boundary conditions, such as extensive sea ice, are imposed (Schoene-685

mann et al., 2014). Such GCM estimates are in better agreement with our results if cor-686

rected for the prescribed elevation changes, consistent with the smaller changes in East687

Antarctic ice elevations during the LGM indicated by more recent results than those sug-688

gested by earlier work (e.g., Peltier, 2004).689

7 Conclusions690

The South Pole ice core (SPC14) provides the opportunity to obtain reconstructions of691

important climate variables using multiple independent constraints. SPC14 has an em-692

pirical measure of the gas-age ice-age difference, ∆age, obtained independently of firn-693

densification modeling (Epifanio et al., 2020). We also present a new continuous record694

of water-isotope diffusion length. Both ∆age and diffusion length depend on firn prop-695

erties, which in turn depend on the snow-accumulation rate and firn temperature. The696

water-isotope diffusion length provides an important additional constraint on the ice-697

thinning function, which relates measured layer thickness with the original accumula-698

tion rate at the surface. Layer thickness variations in SPC14 are well constrained by the699

ice timescale for the core, developed by annual-layer counting through the Holocene and700

by stratigraphic matches with the well-dated West Antarctic Ice Sheet Divide ice core701

(Winski et al., 2019). We have used a statistical inverse approach to combine informa-702

tion from all these data sets to obtain an ensemble of self-consistent temperature, accumulation-703

rate, and ice-thinning histories.704

Our estimate of the thinning function for SPC14 indicates greater variations in thinning705

rate, in particular less thinning at depth, than can be captured with a simple one-dimensional706

ice-flow parameterization such as the commonly-used Dansgaard-Johnsen model. Vari-707

ations in thinning comparable in timing and magnitude to our results are supported by708
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a 2.5-D flowband model that accounts for variations in bedrock topography upstream709

of the drill site. The thinning function reconstruction is particularly important because710

SPC14 was drilled more than 200 km away from the ice divide and the surface velocity711

is high (10 m a−1) (Casey et al., 2014). Our results demonstrate the value of using water-712

isotope diffusion length, in conjunction with annual-layer thickness, to more precisely713

constrain the thinning function. This approach, also employed by Gkinis et al. (2014)714

for a Greenland ice core, is entirely independent of the δ15N method of Parrenin et al.715

(2012), and provides an important new observational constraint on ice-sheet flow.716

Our temperature reconstruction serves two important purposes. First, it provides the717

first empirical, high-frequency estimate of temperature for an East Antarctic ice-core site718

that does not depend on the traditional water-isotope paleothermometer. It thus enables719

an independent calibration of the isotope-temperature sensitivity, ∂(δ18O)/∂T , similar720

to what has been done in central Greenland and in West Antarctica using borehole ther-721

mometry (Cuffey et al., 1995, 2016). Moreover, our approach preserves additional high-722

frequency information that is not available from the highly diffused borehole-temperature723

measurements. We find no evidence of a time- or frequency-dependence to the ∂(δ18O)/∂T724

relationship, in contrast to the case for Greenland. Second, our results indicate a smaller725

glacial-interglacial temperature change at South Pole than previously estimated elsewhere726

in East Antarctica. Our results yield a glacial-interglacial change of 6.7±1.0°C (one s.d.).727

This value is in better agreement with results from climate models, which generally match728

the much colder LGM temperatures obtained from traditional isotope-temperature scal-729

ing only when high ice-sheet elevations are assumed. The difficulty of reconciling tem-730

perature estimates from climate models and ice-core data has been noted in the liter-731

ature for more than three decades (Crowley and North, 1991; Masson-Delmotte et al.,732

2005; Lee et al., 2008; Schoenemann et al., 2014). Our results thus lend greater confi-733

dence to the fidelity of climate-model simulations of last glacial maximum climate.734

8 Data Availability735

The published data set associated with this paper, including water isotope diffusion lengths736

and all of the reconstructions discussed in this manuscript, can be accessed through the737

USAP Data Center (DOI: 10.15784/601396). The SPC14 high-resolution water stable738

isotope record published with this paper can also be accessed through the USAP Data739

Center (DOI: 10.15784/601239). The radar data used in the ice-flow modeling can be740

accessed through the USAP Data Center at https://www.usap-dc.org/view/project/p0000200.741

The code used in this work is publicly available at https://doi.org/10.5281/zenodo.4579416,742

and the Community Firn Model is available at https://doi.org/10.5281/zenodo.3585885.743
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T. A., Neff, P. D., Gallant, A. J. E., Mayewski, P. A., Taylor, K. C., Hoff-1138

mann, G., Dixon, D. A., Schoenemann, S., Markle B. M., Schneider, D. P.,1139

Fudge, T. J., Schauer, A. J., Teel, R. P., Vaughn, B., Burgener, L., Williams,1140

J., & Korotkikh, E. (2013). Recent climate and ice-sheet change in West1141

Antarctica compared to the past 2000 years. Nature Geoscience, 6 (5), 372.1142

https://doi.org/10.1038/ngeo17781143

Steig, E. J., Gkinis, V., Schauer, A. J., Schoenemann, S. W., Samek, K., Hoffnagle,1144

J., Tan, S. M., et al. (2014). Calibrated high-precision 17O-excess measurements1145

using cavity ring-down spectroscopy with laser-current-tuned cavity resonance. At-1146

mospheric Measurement Techniques, 7, 2421–2435. https://doi.org/10.5194/amt-7-1147

2421-20141148

Steig, E. J., T. R. Jones, A. J. Schauer, E. C. Kahle, V. A. Morris, B. H. Vaughan,1149

L. Davidge, & White, J. W. C. (2021). Continuous-flow analysis of δ17O, δ18O,1150

and δD of H2O on an ice core from the South Pole. Frontiers in Earth Science, 9,1151

640292. https://doi.org/10.3389/feart.2021.6402921152

Stevens, C. M., Verjans, V., Lundin, J., Kahle, E. C., Horlings, A. N., Horlings,1153

B. I., & Waddington, E. D. (2020). The Community Firn Model (CFM) v1. 0.1154

Geoscientific Model Development, 13 (9), 4355–4377. https://doi.org/10.5194/gmd-1155

13-4355-20201156

Tarantola, A. (1987). Inverse problem theory: Methods for data fitting and model1157

parameter estimation. Elsevier Science, Amsterdam.1158

van der Wel, G., Fischer, H., Oerter, H., Meyer, H., & Meijer, H. A. J. (2015). Esti-1159

mation and calibration of the water isotope differential diffusion length in ice core1160

records. The Cryosphere, 9 (4), 1601–1616. https://doi.org/10.5194/tc-9-1601-20151161

Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon,1162
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Introduction. This supporting information document provides further details on meth-10

ods used in the analysis described in the main text. We include information about:11

S1. Diffusion-length data and modeling12

S2. Inverse methods13

S3. Sensitivity tests14

S4. Ice-flow modeling15

S5. The δ15N-based thinning function16
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Text S1. Diffusion-length data and modeling17

S1.1 Corrections to diffusion-length data18

We make two corrections to the estimates of diffusion length calculated from the spectra19

of the water-isotope data.20

First, we correct for the effect on the water-isotope data from the continuous-flow-analysis21

(CFA) measurement system. As melted ice samples are transported through the tubing22

and reservoirs of the CFA system, some smoothing of the high-frequencies of the natural23

water-isotope variations occurs. This smoothing is minimized by design of the components24

of the CFA-system, but still impacts the measured signal. The extent of this system25

smoothing can be quantified by measuring the system response to a step change in isotopic26

value using laboratory-produced ice (Jones et al., 2017b). The system diffusion length for27

the CFA system used in this analysis is 0.07 cm for δ17O and δ18O, and 0.08 cm for δD28

(Jones et al., 2017b).29

Second, we correct for the additional diffusion that occurred in the solid ice below the30

bottom of the firn, following Gkinis et al. (2014). To calculate the solid-ice diffusion length,31

we assume the modern borehole temperature profile T (z) remains constant through time32

to find the diffusivity profile Dice(z), following Gkinis et al. (2014):33

Dice(z) = 9.2× 10−4 × exp

(
−7186

T (z)

)
, (1)

with T (z) given in K and Dice(z) given in m2 s−1. For T (z) at SPC14, we use borehole34

temperature measurements from the nearby neutrino observatory (Price et al., 2002).35
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The solid-ice diffusion length is also affected by vertical strain in the ice sheet. We assume36

a simple thinning function from a 1-D ice-flow model (Dansgaard and Johnsen, 1969) with37

a kink-height h0 = 0.2 for this calculation. We describe the total thinning experienced by38

a layer S(t) in a given time interval t = 0 to t = t′ as:39

S(t′) = exp

(∫ t′

0

ε̇z(t)dt

)
, (2)

where ε̇z(t) is the vertical strain rate calculated from the thinning function. The solid-ice40

diffusion length, σice, is then calculated as (Gkinis et al., 2014):41

σ2
ice(t

′) = S(t′)2
∫ t

0

2Dice(t)S(t)−2dt. (3)

To produce the corrected diffusion-length data set used in this analysis, we subtract in42

quadrature both the system diffusion length, σCFA, and the solid-ice diffusion length,43

σsolid, from the total measured diffusion length, σmeas:44

σ2 = σ2
meas − σ2

CFA − σ2
solid. (4)

The diffusion length σ represents the diffusion that occurred within the firn column and45

that has experienced the effects of vertical strain in the ice sheet (i.e., σ = S(z)σfirn).46

Figure S1 shows the effect of these corrections on the estimated diffusion length.47

S1.2 Modeling firn diffusion length48

Within the forward model of the inverse problem, we model diffusion length in the firn49

column. We use the following values in calculating the diffusivity coefficients, Dx, for each50

water-isotope ratio:51
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Dair
δ18O =

Dair

1.0285
(Johnsen et al., 2000) (5)

Dair
δ17O =

Dair

1.01466
(Luz and Barkan, 2010) (6)

Dair
δD =

Dair

1.0251
(Johnsen et al., 2000) (7)

where:52

Dair = 0.211× 10−4 ×
(

T

273.15

)1.94

× P0

P
(Johnsen et al., 2000) (8)

is the diffusivity of water vapor in air. T is temperature given in Kelvin and P is the53

atmospheric pressure compared to a reference pressure of P0 = 1 atm.54

We use the following values in calculating the fractionation factors, αx, for each water-55

isotope ratio, for the equilibrium of water vapor over ice:56

α18 = exp(
11.839

T
− 28.224× 10−3) (Majoube, 1970) (9)

α17 = exp(0.529× log(α18)) (Barkan and Luz, 2007) (10)

αD = exp(−0.0559 +
13525

T 2
) (Lamb et al., 2017) (11)

The tortuosity parameter τ used in Equation 5 in the main text is given by (Schwander57

et al., 1988; Johnsen et al., 2000):58

1

τ
=

1− b×
(

ρ
ρice

)2
, for ρ ≤ ρice√

b

0 , for ρ > ρice√
b

(12)

using a tortuosity parameter b = 1.3.59
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The solution to Equation 4 in the main text for the isotope profile at a given depth z and

time t is given by:

δ(z, t) = S(t)
1

σ
√

2π

∫ ∞
−∞

δ(z, 0) exp

(
−(z − u)2

2σ2

)
du, (13)

as described in (Gkinis et al., 2014) and fully derived in Kahle et al. (2020), where σ is60

the diffusion length and the factor S(t) is the total thinning a layer has experienced due61

to ice flow, as described in Equation 2 of this supplement.62

Text S2. Inverse methods63

The statistical inverse method used in this work relates the three variables that span the64

model space with the three data variables that span the data space. We define the model65

space as a vector space with a dimension for each of the unknown input parameters; a66

particular point in the model space represents a specific set of input parameters m. The67

data space is defined similarly, where each data parameter in d represents a dimension,68

and our observations dobs exist at a particular point in the data space. Because the data69

have measurement uncertainties, the “true” values in the data space may differ from dobs.70

Because we have three model parameters across 208 depth points (624 total unknown71

parameters), our problem spans a high dimensional model space, and an exhaustive search72

of all possible solutions m is not practical. We limit the number of instances of m to73

evaluate by using an importance-sampling algorithm. We use a Markov Chain Monte74

Carlo algorithm to combine a priori information about which solutions m are plausible75

for realistic ice-sheet conditions and information from our data sets. This algorithm76

efficiently explores the parameter space by favoring instances of m that are similar to77

those that have already produced good fits with the observations dobs.78
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In this section, we describe the theoretical framework (S2.1 and S2.2) and the practical79

implementation (S2.3) of the inverse approach we use. In general, the solution of this type80

of inverse problem depends on the formulation of the problem, including what information81

is included in the constraints and how the output is analyzed. We detail below each of82

the choices that we make in our approach.83

S2.1 Bayesian framework84

We use a statistical Bayesian framework to solve this inverse problem. Rather than seek a85

single best-fit solution, we consider the likelihood of different solutions based on probabil-86

ity distributions within the parameter spaces of the data and the model. This framework87

combines a priori model parameter information with data measurement uncertainties.88

Unlike a regularization approach, such as Tikhonov regularization, a Bayesian approach89

does not require a subjective choice about how well the final set of solutions should fit90

the data (Tarantola, 1987; Steen-Larsen et al., 2010).91

We characterize the a priori information describing the model inputs m as a probability92

distribution in the model space. This distribution, denoted as ρm(m), represents the93

likelihood of solutions m based on data-independent prior knowledge about what values94

are realistic for that particular parameter (Mosegaard and Tarantola, 1995; Mosegaard95

& Sambridge, 2002). To produce the complete solution to the problem, the a priori96

information is combined with the likelihood function, which describes how well the output97

d from a given solution G(m) matches our observations dobs. The likelihood function L(m)98

is defined as (Mosegaard and Tarantola, 1995):99

L(m) = CL exp(−M(m)), (14)
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where CL is a normalization constant and M(m) is a misfit function that measures the100

deviation between d and dobs in the data space.101

The likelihood function L(m) is combined with the a priori distribution ρm(m) to define102

the a posteriori distribution f(m) (Tarantola, 1987):103

f(m) = CfL(m)ρm(m). (15)

Note that in our implementation, detailed in S2.3, we directly incorporate a priori in-104

formation into the model space bounds and thus directly compare values of the misfit105

function M(m) calculated for each solution m. Specific values for CL, Cf , and ρm are not106

required.107

The a posteriori distribution f(m) contains all the information we have to constrain108

the inverse problem and thus represents its complete solution. The region of maximum109

values of f(m) denote the most likely solutions to the problem. This distribution may be110

Gaussian-like and simple to interpret, or may be multi-modal and require a more complex111

interpretation. We cannot produce this a posteriori distribution analytically, but we can112

sample its values at discrete points. For each solution m that we test in our forward model113

G, we calculate a discrete value of f(m).114

S2.2 Sampling strategy115

Our sampling strategy uses an algorithm to determine which solutions m to test, with116

the goal of producing f(m) after sufficient iterations (Mosegaard and Tarantola, 1995).117

The algorithm explores the model space by randomly stepping from one solution mi to118

a neighbor mj. In each iteration, the algorithm follows two stages, designed such that it119

asymptotically produces f(m) (Mosegaard, 1998; Mosegaard & Sambridge, 2002).120
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First, an exploration stage defines how the algorithm selects a proposal for mj given its121

starting place at mi. The selection depends on how far in model space the algorithm122

is allowed to step in a single iteration. While the magnitude and direction of the step123

are determined randomly, the magnitude is scaled by a base step-size. The choice of124

base step-size balances the exploration of more of the model space (larger steps) with the125

exploration of regions that result in high values of f(m) (smaller steps). In practice, we126

must tune the step size in order to strike this balance (e.g., Steen-Larsen et al. (2010)).127

Second, an exploitation stage defines the transition probability that the proposed step128

with be accepted. If the proposed step is rejected, the current solution mi is repeated for129

an additional iteration. The simplest choice for the transition probability is the Metropo-130

lis acceptance probability (Metropolis et al., 1953; Mosegaard, 1998; Mosegaard & Sam-131

bridge, 2002):132

paccept = min

(
1,
f(mj)

f(mi)

)
. (16)

This formulation will always accept the proposed step to mj if the a posteriori distribution133

is greater at that point (f(mj) > f(mi)), but may still accept the proposed step even if134

the a posteriori distribution is smaller at that point (f(mj) < f(mi)) by a probability135

proportional to
f(mj)

f(mi)
. This design prevents the algorithm from getting stuck at a local136

maximum of f(m), while still favoring samples from regions of the model space with a137

relatively high value of f(m).138

After sufficient iterations, the sampling of this algorithm will converge on f(m). The139

number of iterations required for convergence, the convergence time, depends on the base140

step-size chosen. Step size is tuned to minimize the number of iterations required while141
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appropriately sampling the model space. Related to the convergence time is the burn-in142

time, which refers to the number of iterations completed before the sampled values of143

f(m) become relatively stationary. After this point, the algorithm continues to sample144

only highly likely solutions m. Prior work has found that after the burn-in time, the145

acceptance rate of the algorithm should be 25-50% (Gelman et al., 1996) in order to strike146

a balance between exploration (bigger steps) and efficiency (smaller steps).147

S2.3 Implementation of sampling148

To sample and estimate the a posteriori distribution, we implement the theory described149

above. We initiate the problem with our initial guess m1 for each parameter and begin150

evaluating successive solutions from that point. Our sampling strategy uses Equation 16151

and the associated ideas about sampling efficiency.152

In the exploration stage of the algorithm, rather than perturb only one parameter within153

mi at a time, all 624 parameters (i.e., values at each depth point for temperature, ac-154

cumulation rate, and thinning function) are perturbed in each iteration. This design155

improves the efficiency of the algorithm. Each perturbation is constructed with the same156

low-frequency, red-noise slope in its power spectral density as that of a comparison data157

set. The comparison data set for temperature is the water-isotope record, for accumu-158

lation rate is a destrained version of the annual-layer thicknesses, and for the thinning159

function is a DJ-model output. Because in reality we expect temperature, accumulation160

rate, and thinning to vary smoothly through time, each proposed perturbation must vary161

smoothly as well. Furthermore, the ∆age and diffusion-length data sets are inherently162

smooth because they integrate information over the depth of the firn column. To pre-163
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vent spurious high-frequency noise from being introduced into the proposed solution m,164

we apply a low-pass filter to the perturbation. To the temperature and accumulation-165

rate perturbations, we apply a lowpass filter at a 3000-year period, which corresponds166

to the maximum value of ∆age. We apply a lowpass filter at a 10,000-year period to167

the thinning-function perturbations because we expect the thinning function to be even168

smoother. The perturbations are then added to the previous accepted solution to generate169

the next proposed solution.170

In the exploitation stage, the algorithm determines whether to accept the proposed solu-171

tion mi+1 by calculating and comparing the values of the a posteriori distribution at mi172

and mi+1. Equation 15 describes how the a posteriori distribution is calculated from the173

likelihood function L(m) and the a priori distribution ρ(m). Because we have already in-174

corporated our prior knowledge directly into the model space bounds, we simply compare175

the value of the likelihood function evaluated at mi and mi+1 (Mosegaard, 1998):176

paccept = min

(
1,
L(mi+1)

L(mi)

)
. (17)

We define the likelihood function, as in Equation 14, with a misfit function M(m) defined177

as (Khan et al., 2000; Mosegaard & Sambridge, 2002):178

M(m) =
∑
n

∣∣∣d(n)(m)− d(n)obs

∣∣∣
σn

, (18)

where d(n)(m) denotes the modeled output, d
(n)
obs the observation, and σn the standard de-179

viation of the observation for the nth datum. This misfit function minimizes the influence180

of outliers, compared to a root-mean-square formulation.181

We run the algorithm until we have 100,000 accepted samples of the a posteriori distribu-182

tion. With an acceptance rate of 30-40%, this requires approximately 300,000 iterations183
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in total. The burn-in time is reached after approximately 10,000 iterations, and we con-184

sider solutions m only after this point. We repeat this process five times to account for185

any persistent impacts from early perturbations, combining all accepted solutions after186

the burn-in time to create the final set of results. Because only a small perturbation is187

made between iterations, successive iterations are correlated. Analysis of the a posteriori188

distribution requires a collection of statistically independent models, so we consider only189

a subset of all accepted models (Mosegaard, 1998; Dahl-Jensen et al., 1998). Through an190

autocorrelation analysis of the accepted models, we conclude that saving every 300th solu-191

tion produces a statistically independent set. Out of a total of 500,000 accepted solutions,192

1500 solutions are included in our analysis of the a posteriori distribution.193

Text S3. Sensitivity tests194

S3.1 Sensitivity to Firn Model195

To evaluate the sensitivity of the results to the choice of firn model, we perform two196

sets of experiments comparing different firn models. First, we use the Community Firn197

Model (CFM) (Stevens et al., 2020; Gkinis et al., 2021) to calculate ∆age using our full198

ensemble of accumulation-rate and temperature reconstructions as inputs for five different199

models: a dynamic version of Herron-Langway, Goujon et al. (2003), Li and Zwally (2015),200

Ligtenberg et al. (2011), and Simonsen et al. (2013). (Solving the full inverse problem201

with any of these dynamic models, which do not have analytical solutions, is impractical,202

but we address this issue in the second set of experiments below.) Comparison of the203

outputs of the five different models and the ∆age data is given in Figure S2. The results204

show that while the Ligtenberg et al. (2011) and Li and Zwally (2015) models produce205
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similar results for the glacial period, the Goujon et al. (2003) and Simonsen et al. (2013)206

models systematically underestimate ∆age by about 500 years. As currently formulated,207

none of these models other than Herron-Langway are consistent with the modern depth-208

density profiles at South Pole. Because the accumulation rate and thinning function are209

tightly constrained by the diffusion-length and layer-thickness data, the only available210

free parameter that could be used to reconcile these other models with the empirical211

∆age data is temperature. For the Goujon et al. (2003) model, for example, adjusting212

the temperature to match ∆age requires reducing the temperature by about 2°C in the213

glacial and by > 3°C in the Holocene; the latter is implausible and would require an even214

smaller glacial-interglacial temperature change than our reconstruction indicates. Thus,215

our choice of Herron-Langway is motivated by the fact that it produces results most216

consistent with multiple, independent, empirical constraints.217

In a second set of experiments, we further examine the sensitivity of our results to the218

choice of firn model by implementing two of the models, Goujon et al. (2003) (GOU) and219

Ligtenberg et al. (2011) (LIG), within our inverse model framework. These two models are220

representative end-members (Figure S2). We use the CFM to run these models to steady221

state using a range of temperature and accumulation-rate pairs that span the climate of222

the SPC14 record. We save the model output in a format that is accessible from within223

the inverse procedure, allowing the appropriate firn age-depth-density profile to be used224

for the corresponding temperature and accumulation-rate value in each iteration.225

Figure S3 shows the results of these experiments compared with the main result using the226

Herron-Langway analytic model (HLA). Both the GOU and LIG firn models produce lower227

temperatures throughout the record, lower accumulation-rate values in the Holocene, and228
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slightly higher thinning function values through the Holocene and glacial transition, com-229

pared to the main HLA result. Although the Last Glacial Maximum (LGM) temperature230

in the GOU and LIG results is lower than that of the HLA result, the glacial-interglacial231

temperature change is similar for all three models, as shown in Figure S4. This shows232

that the relatively small glacial-interglacial change, one of the key results in this paper, is233

not a consequence of our model choice. Building on the result of the first set of firn-model234

experiments, it also further demonstrates that the HLA model is an appropriate model235

for South Pole.236

S3.2 Sensitivity to Measured Data Sets237

To determine the extent to which each of our three data sets affects the results, we238

tested our approach by excluding different combinations of the data sets. We used the239

same inverse framework as before, but took into account only how well the output d240

matches the data observations dobs for the data sets included in that test. Excluding all241

data sets evaluates the effect of the perturbation construction by resampling the a priori242

distribution (Mosegaard and Tarantola, 2002). Figure S5 illustrates that this null test, in243

which there are no constraints from the data, successfully recovers the prior; the mean244

of the a priori distribution is approximately the mean of the bounded model space. This245

result shows that no spurious information is produced by the sampling procedure.246

Building up from the null test, we tested two suites of three runs each to evaluate the247

sensitivity of results to each of the data sets. The first suite includes only one data set248

at a time, and the second suite includes two data sets at a time. The results from both249

suites are similar, and we show here only the results from the second. Figure S6 shows250
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the mean solution from each run of the second suite: excluding ∆age (purple), excluding251

diffusion length (blue), and excluding layer thickness (green), compared alongside the252

full results including all parameters (black). The right three panels show the effect on253

the fit of the data parameters, producing, as expected, the worst fit to each data set254

when that information is excluded from the problem. The left three panels of Figure S6255

show how the exclusion of each data set impacts the mean of each set of solutions. The256

result for the thinning function suggests that, from 40 - 54 ka, the diffusion-length record257

pulls the thinning function to greater values (less thinning), while the layer thickness258

pulls the thinning function to smaller values (more thinning). The accumulation-rate259

reconstruction is most sensitive to diffusion length and layer thickness. To assess the260

sensitivity of the temperature reconstruction, we ran our two suites of sensitivity tests261

again, this time prescribing accumulation rate to the mean solution. Figure S7 shows the262

results for temperature for each of the four types of tests. The results suggest that ∆age263

is most important for temperature at ages younger than 35 ka. At ages older than 35 ka,264

no single data set is most important for temperature, but the results of the 2-parameter265

suite suggest that the combined information from diffusion length and layer thickness has266

the greatest impact on the temperature result.267

Additionally, we tested the impact of the diffusion-length data set on the temperature re-268

sult by isolating the temperature-dependence of the water-isotope diffusion model within269

the forward model. We used a linear step-change input for temperature within the diffu-270

sion model (solid magenta line in temperature panel of Figure S8), not allowing changes271

of temperature in each iteration to influence the misfit of the modeled diffusion lengths to272

the data set. These results (blue shading in Figure S8) show a significant difference in the273
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results for all three variables (temperature, accumulation rate, and thinning function),274

particularly during the LGM. This occurs because the fixed temperature we use for the275

diffusivity increases the modeled firn diffusion length, requiring more thinning to match276

the diffusion-length data. To accommodate the increased thinning, accumulation rate277

must increase to match the layer-thickness data. To compensate for a higher accumula-278

tion rate, a colder temperature is required to match the ∆age data. In this particular279

example, the glacial-interglacial temperature change is reduced by 1.4°C from the main280

results, a significant difference. Setting a constant diffusion temperature colder than the281

main result would have the opposite effect. This sensitivity test demonstrates that the282

water-isotope diffusion model provides a critical constraint on temperature, comparable283

in significance to ∆age.284

S3.3 Sensitivity to δ15N data285

As detailed in Section 5.4 of the main text, we use the δ15N-based diffusive column height286

(DCH) to assess the impact of the δ15N data on our main result. We run a global search287

algorithm over a range of temperature and accumulation-rate values to find those that are288

in agreement with the δ15N-based DCH. The temperature and accumulation-rate values289

included in our global search are defined by a small range about the corresponding mean290

values in the main reconstruction. For temperature values, we define the range as ±5°C,291

and for accumulation-rate values, we define the range as±0.01 m a−1. Given the variability292

in each parameter, the temperature range is relatively larger than the accumulation-rate293

range, which is appropriate since the accumulation rate is fairly well constrained.294
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Accompanying Figure 5 in the main text, Figure S9 shows the DCH as calculated with295

the accumulation-rate and temperature results shown in Figure 5. The red shading,296

corresponding to the red shading in Figure 5, shows the DCH calculated when the δ15N297

constraint is applied to the accumulation rate and temperature solutions. The red shading298

exactly spans the uncertainty of the δ15N-based DCH, demonstrating that the solutions299

shown in Figure 5 are consistent with the δ15N data. A change in the global search ranges300

of temperature and accumulation-rate has a minor effect on the width of the red shading,301

but no impact on the mean values. We note that the equivalent representation of the blue302

shading from Figure 5 in Figure S9 is identical to that of the red shading.303

As noted in the main text, these results show that the Herron-Langway firn model (and all304

other firn models we examined) cannot simultaneously accommodate all data constraints305

at all depths. We emphasize that while δ15N tightly constrains the DCH, δ15N does not306

depend on the details of the depth-density profile, nor on the amount of time represented307

by the DCH, and therefore cannot constrain either of these variables independently. In308

contrast, ∆age is a measure of the firn densification time, and water-isotope diffusion309

length depends on both the densification time and the depth-density structure. Within310

the firn-model framework, warmer temperatures than our main reconstruction permit311

agreement with δ15N, but reduce agreement with diffusion-length constraints. We consider312

our reconstruction conservative with respect to the key result of a relatively warm last313

glacial maximum. We suggest that water-isotope diffusion-length data, such as we present314

in this paper, should be used to a greater extent in developing further refinements to firn315

models in the future (Gkinis et al., 2021).316

S3.4 Sensitivity of Isotope-Temperature Relationship317
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In Section 6.2 of the main test, we show that the δ18O-temperature relationship indicated318

by our reconstruction, based on the HL firn model, is 0.99h°C−1. Table S1 shows results of319

the same calculation for the sensitivity tests using other firn models (Figure S3), and from320

the δ15N and ∆age constraints (main text Figure 5). We also report the correlation coef-321

ficient r between the δ18O record and each temperature reconstruction. All ∂(δ18O)/∂T322

slopes are significantly greater than the modern surface slope of 0.8h°C−1. While all323

correlations are significant, the maximum correlation is for the main reconstruction.324

Text S4. Ice-flow modeling325

We use a 2.5-D flowband ice-flow model to estimate a thinning function for SPC14 to326

compare with the primary thinning function reconstruction described in the main text.327

As described in the main text, the primary thinning reconstruction contains more high-328

frequency variation than a 1-D Dansgaard-Johnsen model output. For emphasis, Fig-329

ure S10 shows this comparison in the depth domain to highlight the main discrepancies330

in the estimates, particularly from 200 to 500 m depth and from 1400 to 1750 m depth.331

This ice-flow-model thinning function is constrained by data for ages younger than 10 ka,332

producing an independent data-based estimate of ice thinning. Beyond 10 ka, we do not333

have sufficient knowledge of past ice flow direction and the associated bed topography334

along that flow path in order to fully constrain the model. For the older ice, the goal335

with the ice-flow-model thinning function is to determine if the structure in the primary336

thinning function is physically plausible. To this end, our flowband modeling suggests337

that variations in the primary thinning function can indeed be explained by observed338

variations in bedrock topography.339
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S4.1 Flowband model340

The flowband model was developed to calculate the time-dependent ice-surface evolution341

and velocity distribution along a flowline in the ice-sheet interior. The model has been342

described in Koutnik et al. (2016) where it was applied near the WAIS Divide ice-core343

site. The model calculates the ice-flow field using the Shallow Ice Approximation, which344

is appropriate for relatively slow-flowing interior ice that is not beneath an ice divide.345

Necessary boundary conditions and initial inputs to the model include the accumulation346

rate (Figure S11A), bed topography (Figure S11C), and ice temperature along the flowline,347

as well as the ice flux and ice-sheet thickness at one location.348

The flow field described by the model is defined within a flowband domain extending349

200 km along the flow line. The downstream edge of the domain is located 10 km from350

the SPC14 site; the upstream edge marks the location of the ice divide, 190 km upstream351

of the SPC4 site. The width of the flowband domain (Figure S11B) is a tunable parameter352

and is determined such that the model matches the measured surface velocities and surface353

elevations described below (Text S4.2). The ice flux and ice-surface elevation are specified354

at one point in the domain, which we chose to be near to the drill site.355

For this work, we calculate a steady-state flow field, rather than consider the transient356

response to time-varying forcing. A steady-state model is justified for three main reasons.357

First, the steady-state model provides a good fit to the observed depth-age relationship358

for the Holocene (Figure S12), where the flowline location and corresponding bed topog-359

raphy are well defined. The steady-state model also compares well with the ice advection360

estimated by Lilien et al. (2018) (Figure S13), which included a ∼15% speed up of sur-361
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face ice over the last 10 ka. Second, temporal variations in the accumulation rate have362

little impact on the cumulative thinning as a function of depth (e.g., Nye, 1963). We363

calculate the thinning as a function of depth and then convert to a function of age based364

on the SP19 timescale (Winski et al., 2019). Third, while accumulation-rate variations365

and other changes to the boundary conditions affect ice-particle-path trajectories, these366

inputs require knowledge of the flowline and bed topography, which are poorly known367

beyond 65 km upstream from SPC14. Without specification of where the ice flowed, we368

cannot determine these time-variable inputs, and a time-dependent model has limited369

value. Additionally, we find that a steady-state model satisfies our goal of evaluating the370

physical plausibility of the primary thinning function reconstruction.371

S4.2 Model Inputs372

Velocity, elevation, spatial pattern of accumulation rate, and flowline determination: Mea-373

surements of the surface velocity, surface elevation, and the determination of the flowline374

from these measurements are described in Lilien et al. (2018), with data available from375

the United States Antarctic Program Data Center (USAP-DC) at: https://www.usap-376

dc.org/view/project/p0000200. The surface velocity was measured at a network of stakes377

with 12.5 km spacing along the lines of longitude every 10° from 110° E to 180° E and378

out to a distance of 100 km from SPC14. The modern surface velocities were used to379

determine the modern flowline. The accumulation-rate pattern along the flowline (Figure380

S11A) was inferred using traced layers imaged with a 200 MHz radar. By comparing the381

measured layer thickness in SPC14 to the expected layer thickness due to advection of382

the upstream accumulation-rate pattern, the flowline was confidently determined for a383
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distance of 65 km upstream of SPC14, spanning the past 10.1 ka (Lilien et al., 2018). For384

ice older than 10 ka, we are uncertain what path the ice took.385

Bedrock topography: The bed topography along the domain of the flowline (from SPC14386

to the ice divide) is a necessary model input, and can be grouped into three sections387

based on the data available (Figure S11C). 1) From 0 to 65 km upstream of SPC14,388

we are confident that the ice flowed over the bedrock topography imaged with radar389

along the modern flowline. 2) For 65 km to 100 km upstream from SPC14, we use the390

bedrock topography measured along the modern flowline; however, we cannot be sure391

that ice reaching the SPC14 site flowed along this path. 3) From 100 km to a divide at392

approximately 190 km upstream, we have no information about the modern flowline, nor393

do we know the bed topography. However, we can obtain a plausible example of the bed394

topography from an airborne radar survey in this region.395

For the first and second sections, the bedrock topography along 100 km of the modern flow-396

line upstream of SPC14 was imaged with a ground-based, bistatic impulse radar with cen-397

ter frequency of 7 MHz (Figure S14). The radar system has been used widely in Antarctica398

(Gades et al., 2000; Neumann et al., 2008; Catania et al., 2010). The radar data and bed399

picks are posted at the USAP-DC at: https://www.usap-dc.org/view/project/p0000200.400

For the third section, to provide additional information about the spatial variability in the401

bed topography beyond 100 km, we use the PolarGAP airborne radar survey (Forsberg402

et al., 2017). Although PolarGAP data were collected along 135° E and 142.5° E (Figure403

S14), the data are publicly available as a gridded product. We interpolate the gridded404

data to extract the bed topography along the two flight lines. The bed topography along405
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our flowline and the two PolarGAP lines are shown in Figure S15. The three profiles track406

together well until about 70 km upstream of SPC14 where they diverge as the spacing407

between the lines increases. To obtain a model input for bed topography that produces408

thinning variations similar to the primary thinning function (recall that our goal is to409

evaluate whether these variations are physically plausible), we combine information from410

the two PolarGAP lines. We connect two points (green circles in Figures S15 and S16)411

that yield a flowline over a high in the bed topography. The orientation of this flowline is412

nearly perpendicular to the modern flowline, so the ice is unlikely to have flowed over it;413

however, this example illustrates that the magnitude of topographic variation required to414

match the structure of the primary thinning function does exist in the region.415

Ice temperature: An ice-temperature profile is specified using a 1-D thermal model fit to416

the measurements from the AMANDA and IceCube projects (Price et al., 2002), forced417

to reach the pressure melting point at the bed. This temperature profile is held constant418

in time and is scaled linearly as a function of ice thickness along the flowline to estimate419

the full temperature field in our model domain.420

Basal melt rate: We test two choices for basal melt rate to gain insight into the sensitivity421

of the thinning result to this parameter. With all other parameters taken to be the422

same, one case has no basal melt and one case has 1 cm a−1 of basal melt across the whole423

domain. A 1 cm a−1 melt rate is similar to the value inferred by Jordan et al. (2018) farther424

upstream of SPC14. The difference between the resulting thinning functions increases with425

depth, but differs by only 17% during the last 10,000 years of the core. For simplicity, we426

plot only the non-basal melt result in Figure 6 of the main text.427
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S4.3 Tuning the model428

The flux out the downstream edge of the domain was specified to obtain a velocity of429

10 m a−1 to match modern observations (Lilien et al., 2018). To approximately match the430

velocities measured at 12.5 km intervals out to a farthest distance of 100 km upstream431

(Figure S11E), the width of the flowband was increased with distance upstream (Fig-432

ure S11B). This represents convergent flow, as indicated for this region from the surface433

topography. The velocity measurements (Lilien et al., 2018) are not precise enough to al-434

low reliable convergence estimates, and we therefore assumed a linear change in flowband435

width for 100 km upstream. Beyond 100 km upstream, the flowband width continues436

to increase, at a different rate, such that the divide position is approximately 190 km437

upstream at an elevation of 3075 m, consistent with a likely ice origin at Titan Dome438

(Fudge et al., 2020).439

S4.4 Comparison with measured layers440

The modeled layers are shown in comparison to 7 internal layers imaged by radar (Figure441

S17). There is a good fit at the core site, which is also reflected in Figure S12, comparing442

the modeled depth-age profile and the measured data from SP19. The match to the radar443

layers is not nearly as good upstream where the amplitude of the modeled layers at the444

bedrock bump is less than what is observed in the measured layers. The discrepancy may445

be related to the greater uncertainty in the flowband model inputs farther upstream from446

SPC14.447

S4.5 Ice-flow-model thinning function448
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The ice-flow-model thinning function (Figure 6 in main text) is calculated from the mod-449

eled layer thickness at the core site divided by the original thickness (the accumulation450

rate) when that ice was deposited at the surface. The numerical calculation can become451

noisy due to the finite model mesh and the difficulty of establishing the accumulation rate452

at the point of origin given variations in the surface accumulation pattern. Therefore,453

we smooth the thinning function with a moving average over a depth interval of 50 m.454

The jaggedness of the thinning function is the most noticeable in the deepest layers where455

there are smaller depth differences for the same age interval. Because we have used a456

steady-state model, the modeled age for a given depth is too young for ages prior to the457

Holocene (since we do not account for the lower accumulation rates of the glacial pe-458

riod). Because the cumulative thinning as a function of depth is insensitive to temporal459

variations in accumulation (e.g., Nye, 1963), we convert modeled depth to age using the460

measured depth-age relationship (SP19; Winski et al. (2019)).461

The most prominent feature in the thinning function calculated for the Holocene period462

is at about 7 ka. The ∼7 ka layers have thinned less than the layers above, which we463

term a “reversal” in the thinning function; for example, Parrenin et al. (2004) noted464

such features for the Vostok ice core. For SPC14, reversals can occur because the strain465

thinning of layers is affected by changes in ice thickness along the flow line (Figure S18).466

As the ice flows from a bedrock high into a trough, the thickening of the ice column467

either reduces the vertical thinning or can even cause vertical thickening. Therefore, ice468

parcels reaching the ∼7 ka layer have thinned less than if the bedrock were flat because469

the ice column thickened. Ice parcels reaching younger layers, for example the 6 ka layer,470

have not experienced this thickening. As the ice flows out of this overdeepening, the rise471
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in bed topography causes thinning of the full ice column (i.e., both the 6 ka and 7 ka472

particles). For the bed topography along the flowline spanning the Holocene time period473

(from SPC14 to 65 km upstream), this bed overdeepening is the only feature that has a474

significant impact on the structure of the thinning function.475

Text S5. δ15N-based thinning function476

We use a thinning function estimated from measurements of δ15N in SPC14 for an ad-477

ditional comparison with the primary thinning function reconstruction described in the478

main text (Figure 6 in main text). Following Parrenin et al. (2012), the δ15N-based thin-479

ning function uses the diffusive column height as calculated from the δ15N measurements480

and the ∆depth as calculated from the ice age scale to determine how much thinning has481

occurred since that ice was at the surface (see main text Section 6.1).482

We calculate the DCH with (Parrenin et al., 2012):483

DCH(t) =
(
δ15N(t)− Ω(T )∆Tdiff

)(∆mg × 1000

RT (t)

)−1
, (19)

where Ω(T ) is the thermal diffusivity, Tdiff is the temperature difference between the top484

and bottom of the diffusive column, ∆m is the difference in molar mass between 15N and485

14N in kg mol−1, g is the gravitational acceleration (9.81 m s−2), R is the gas constant486

(8.314 J mol−1 K−1), and T (t) is the temperature history in K. We use the temperature487

reconstruction from the optimization in the main text to estimate the temperature history.488

The temperature difference in the firn is calculated using a 1-D ice-and-heat flow model489

(Fudge et al., 2019), also forced by the accumulation-rate reconstruction. The temperature490

dependence of the thermal diffusivity is from Grachev and Severinghaus (2003).491
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The ∆depth is conceptually similar to the ∆age except that it is the difference in depth in492

the core, rather than age, of the same climate event in the ice and gas phases. The ∆depth493

is found for each gas tie point used to develop the SP19 gas timescale (Epifanio et al.,494

2020). The depth of the ice of the same age is then found from the SP19 ice timescale495

(Winski et al., 2019).496

The δ15N-based thinning function (Γ) can be described:497

Γ(t) =
∆depth(t)∫ LID(t)

0
D(z, t)dz

=
∆depth(t)

LIDIE(t)
=

∆depth(t)

A× LID(t)
, (20)

where498

LID(t) = DCH(t) + CZ = DCH(t) + 3. (21)

D(z, t) is the density profile of the firn relative to density of ice at a given time, LID(t) is499

the lock-in depth, LIDIE(t) is the lock-in depth in ice equivalent, DCH(t) is the diffusive500

column height, and CZ is the thickness of the convective zone, which we set to 3 m (a501

typical value found in firn air pumping experiments).502

Parrenin et al. (2012) showed that the LID/LDIE ratio changes relatively little for different503

climate conditions at Dome C and thus we can use a constant factor to convert LID to504

LIDIE. We obtain a value of A=0.717 by integrating the SPC14 density profile (Winski505

et al., 2019) from the surface to a density of 824 kg m−3. In the following sections, we506

discuss the primary sources of uncertainty in the δ15N-based thinning function.507

S5.1 Uncertainties508
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We estimate the uncertainties in the calculation of this thinning function by calculating the509

change in the thinning function with a different input for the seven main parameters below510

(Figure S19). We choose values which we believe yield approximately 95% confidence (i.e.,511

2 standard deviation).512

Density and depth of firn column: Converting the LID to LIDIE has two primary un-513

certainties: uncertainty in the measured modern density profile and how much variation514

there is through time. We estimate the first using six firn cores, two at SPC14 and two515

near South Pole, as well as two at 50 km upstream (Lilien et al., 2018). We assume lock-in516

density at 824 kg m−3 with an uncertainty ±5 kg m−3. The conversion factor, A, to get517

LIDIE from LID is equivalent to the average density of the firn column relative to the518

density of ice, and hence is unitless. To estimate the uncertainty of this conversion factor519

A, we find a maximum difference of 0.015 among the six firn cores relative to measured520

value for SPC14.521

For the time-varying uncertainty in the conversion factor A, we use the pairs of temper-522

ature and accumulation rate for each time step found in the primary reconstruction to523

force a Herron-Langway densification model. We also allow the surface density to vary by524

±30 kg m−3 from the SPC14 surface density value. We find the largest difference from525

the modern SPC14 value to define an uncertainty of 0.023 (2 standard deviation).526

Convective zone impact on diffusive column height: The modern convective zone is 3 m527

and we assume the uncertainty is ±3 m.528

Vertical thinning of firn column due to ice flow: Separate from firn compaction, there529

is vertical thinning caused by the lateral stretching due to ice flow and the effectively530
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incompressible nature of ice under these conditions. Measurements of englacial vertical531

velocities have become possible with phase sensitive radars; however, separating the ver-532

tical thinning due to ice flow from the vertical compaction of the firn is not yet possible.533

Therefore, we approximate this vertical thinning assuming a uniform, ice-equivalent ver-534

tical strain rate (e.g., Nye, 1963). We develop the uncertainty by assuming either no535

vertical thinning or double our default vertical thinning.536

∆depth: We estimate the uncertainty of the ∆depth from the ∆age uncertainties devel-537

oped for the SP19 gas timescale (Epifanio et al., 2020). To find the uncertainty, we take538

the difference in depths that correspond to the maximum and minimum gas ages and539

divide it in half.540

Measurement uncertainty and variability: The DCH is calculated from the δ15N of N2 data541

using Equation 19. The uncertainty in determining the DCH depends on three things:542

1) the measurement uncertainty of the δ15N; 2) variability in how well the measurement543

represents the actual DCH; and 3) the uncertainty in interpolation from the closest mea-544

surement. The δ15N has been measured at 50- to 100-year resolution for much of the545

core, such that the interpolation distances are small. To jointly assess these measurement546

uncertainty and variability, we compared the DCH estimates of the three closest mea-547

surements. On average, the three measurements differed by slightly less than 2 m. The548

differences among the three measurements did not have a temporal trend, so we calculate549

the uncertainty with a constant 2 m uncertainty. This is the smallest uncertainty for most550

of the measurements.551
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Thermal fractionation: The thermal fractionation of δ15N is calculated using a 1-D ice-552

and-heat flow model (Fudge et al., 2019). The firn-density profile is assumed constant553

through time, with the temperature and accumulation-rate histories from the main re-554

construction presented here as the primary forcings. The thermal conductivity in the firn555

follows the Van Dusen formula (Cuffey and Paterson, 2010). The temperature difference is556

calculated from top and bottom of the diffusive column. The isothermal diffusive column557

height is used initially in the temperature difference calculation; a new diffusive column558

height is computed including thermal fractionation and the temperature difference is then559

recalculated. One iteration is sufficient to reach a stable diffusive column height. The560

amount of thermal fractionation increases in the glacial compared to the Holocene. This561

is driven by the lower glacial accumulation rates, which decrease the vertical advection in562

the firn column. Because the base of the firn column is warmer than the surface, warming563

will tend to mute the temperature gradient in the firn, while cooling will enhance the564

temperature gradient. Thus, the average temperature only weakly impacts the thermal565

fractionation, but the trend in the temperature history is important.566

Developing an uncertainty for the trend in the temperature history is not straightforward567

because it requires making assumptions about the magnitude of timing of temperature568

change on multi-centennial to millennial timescales. The difference between the main569

reconstruction and the scaled water isotopes (Figure 8 in the main text) illustrates the570

uncertainty in these higher frequency trends. Therefore, we seek a simple approximation to571

capture the main features of the uncertainty to allow comparison with the other sources of572

uncertainty in determining the thinning function. We assume an uncertainty in the glacial573

period of 3 m, which is half the maximum impact of including thermal fractionation. To574
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reflect the lower uncertainty due to increasing accumulation rates during the transition575

into the Holocene, we linearly decrease the uncertainty to 1.5 m from 20 ka to 12 ka,576

where it is then constant through the present.577

S5.2 Total uncertainty on thinning function578

To calculate the total uncertainty on the δ15N-based thinning function, we combine the579

uncertainty calculated for each of the seven terms above. The uncertainties for each term580

are shown in Figure S19. We combine the six sources of uncertainty in quadrature to find581

the total uncertainty. For glacial-aged ice, the dominant uncertainty is that for ∆depth.582

This is driven by the larger uncertainty in ∆age primarily due to the larger ∆age at583

WAIS Divide during the glacial. During the Holocene, all of the terms are more similar584

in magnitude, but the uncertainty due to temporal variations in the density profile is the585

largest. Our use of a uniform value (.023) for temporal density for the full record is likely586

too simplistic, and perhaps too conservative, since the uncertainty is based on glacial587

values which differ from modern value far more than the Holocene values.588
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Figure S1: Impact of corrections applied to diffusion-length measurements. Dashed curves
show the effective diffusion length resulting from the continuous-flow system (CFA, red),
and from diffusion in solid ice (blue). Solid curves show diffusion lengths obtained from
the water-isotope data before (black) and after correction for the CFA (red) and solid-ice
diffusion (blue).
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Figure S2: Close-off age as a function of age for a collection of models from the Community
Firn Model framework (HLD = Herron and Langway (1980), GOU = Goujon et al. (2003),
Li = Li and Zwally (2015), LIG = Ligtenberg et al. (2011), SIM = Simonsen et al. (2013)).
The grey shading shows the ∆age data and two s.d. uncertainty.
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Figure S3: Results of inverse procedure using three different firn models. Grey, blue, and
red shading show two s.d. results for Herron and Langway (1980) (HLA), Goujon et al.
(2003) (GOU), and Ligtenberg et al. (2011) (LIG), respectively.
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Figure S4: Glacial-interglacial temperature change from the inverse framework with three
different firn models. Mean and one s.d. are shown for Herron and Langway (1980)
(HLA), Goujon et al. (2003) (GOU), and Ligtenberg et al. (2011) (LIG). The temperature
difference is calculated on the intervals defined in the main text: present = 500-2500 years;
glacial = 19500-22500 years. The temperature reconstructions have been corrected for ice
advection from upstream, resulting in a temperature change estimate for the South Pole
site.
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Figure S5: Results of the null test to recover the a priori distribution. In the upper two
panels, for which model bounds are defined, two standard deviations of the a posteriori
distribution (grey shading) approximately fill the bounded space (dashed magenta lines),
and the mean of the distribution (black curve) is approximately the mean of the bounds.
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Figure S6: Analysis of the sensitivity of the a posteriori distribution to information in each
data set. Each color shows the a posteriori distribution mean for a different sensitivity
test. We compare the results when ∆age is excluded (purple), when diffusion length is
excluded (blue), when layer thickness is excluded (green), and when all data sets are
included (black). Magenta curves in the left panels show a priori information and red
curves in the right panels show ice-core data and uncertainties.



X - 44 KAHLE ET AL.: 0

0 20 40 60
-65

-60

-55

-50

Te
m

pe
ra

tu
re

 (°
C

)

1-parameter Results
Variable Accumulation Rate

Include All Parameters
Only age
Only Diffusion Length
Only Layer Thickness

0 20 40 60
-65

-60

-55

-50

2-parameter Results
Variable Accumulation Rate

Include All Parameters
Exclude age
Exclude Diffusion Length
Exclude Layer Thickness

0 20 40 60
Age (ka)

-65

-60

-55

-50

Te
m

pe
ra

tu
re

 (°
C

)

Constant Accumulation Rate

0 20 40 60
Age (ka)

-65

-60

-55

-50

Constant Accumulation RatePrescribedPrescribed

Figure S7: Analysis of the sensitivity of temperature to information in each data set.
Colors are defined as in Figure S6. The results of the 1-parameter suite are shown on
the left and of the 2-parameter suite on the right. The upper row shows the result
when accumulation rate is allowed to vary, and the lower row shows the result when
accumulation rate is held at the prescribed values.
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Figure S8: Analysis of sensitivity to the temperature dependence within the water-isotope
diffusion model. Grey shading shows the main inverse result as a control test. Blue shading
shows the results from holding the temperature history constant within the water-isotope
diffusion model, only allowing the diffusion-length data to impact the thinning function.
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Figure S9: Comparison of diffusive column height (DCH), shown as two s.d. for each
source. Grey shading shows the DCH as modeled by the temperature and accumulation
rate solutions accepted in the main reconstruction. The black outline shows the DCH
as calculated from the δ15N data. Red shading shows the δ15N-constrained DCH, recon-
structed from the temperature and accumulation-rate histories shown in Figure 5 in the
main text.
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Table S1: Sensitivity of the relationship between water isotopes and temperature. Cali-
brated slopes are given for the relationship between water isotopes and temperature from
five different temperature reconstructions: the main inverse result, the results from using
the GOU and LIG firn models instead of HLA, and the results from using the constraints
of the δ15N and ∆age data sets. The correlation coefficient r is given for the relationship
between the water-isotope record and each temperature reconstruction.

Reconstruction Slope (h°C−1) r

Main 0.99 0.94

GOU 0.97 0.94

LIG 1.10 0.90

δ15N 1.28 0.84

δ15N & ∆age 1.14 0.86
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Figure S10: Comparison of primary thinning reconstruction (grey band shows two s.d.
uncertainty), the 1-D Dansgaard-Johnsen model output (red) plotted against depth, and
the thinning estimate from the 2.5-D ice flow model (black). As in Figure 6 in the main
text, the dashed black line shows the depths at which the upstream bed topography is
unknown. The reconstruction shows considerably more high-frequency variability. Note
that the reconstruction band collapses to a line at the upper depth points due to an
imposed constraint of a priori information to limit variability in the uppermost part of
the thinning function.
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Figure S11: Flowband model inputs (A-C) and model fits to measured data (D-E). A)
Modern accumulation-rate pattern for 100 km upstream of SPC14 site inferred from the
available shallow radar measurements (Lilien et al., 2018; Fudge et al., 2020). B) Normal-
ized width function used to fit measured surface velocities in panel E. C) Bed topography
was measured from 0 to 100 km. Beyond 100 km, the bed topography used in the model is
determined as discussed in Text S4.2. D) Measured (black) and modeled surface elevation
(blue). The small black “x” at 190 km marks the approximate position and elevation of
Titan Dome relative to SPC14. E) Measured (black circles) and modeled surface velocities
(blue).
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Figure S12: Comparison between modeled and measured depth-age relationship. The
depth-age relationship from the steady-state models compare well to SP19 (Winski et al.,
2019) for the Holocene. The divergence in the modeled values compared to SP19 values
below approximately 900 m depth is due to the decrease in accumulation rate at older
ages that we do not simulate with the steady-state model.
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Figure S13: The origin location of ice parcels in 1 ka increments are shown in red squares
for the reconstruction of Lilien et al. (2018) and the flowband model used in this study
(blue dots). The blue lines are the modeled ice parcel paths. The black vertical line at
1 km represents the 1751 m deep SPC14.
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Figure S14: Radar profile along 100 km of the modern flowline upstream of SPC14 (see
map, Figure S16). The data were imaged using a ground-based, bistatic impulse radar
with center frequency of 7 MHz. The transmitter and receiver were towed inline behind
a skidoo; each record consists of 1024 stacked waveforms and records were located using
GPS. Reflection positions, measured as a function of radar two-way travel time, were
converted to depth below the surface using a wave speed of 168.5 m µs−1 in ice and
300 m µs−1 in air. Wave speed in the firn was calculated using the density profile from
SPC14 and a mixing equation (Looyenga, 1965) to estimate the depth profile of the
dielectric constant. Solid black curves show the surface and bed elevations (m above sea
level (asl)). Note that the SPC14 site is about 40 m below sea level. Blue curves are
radar-detected internal layers (isochrones) that were dated using the SPC14 timescale.
Layer ages with increasing depth are: 1020, 1900, 5070, 6510, 8070, 9690, and 11770
years.
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Figure S15: Profiles of bed topography upstream of the SPC14 site. Black is the bedrock
measured along the modern flowline. Red is along 142.5° E and blue is along 135° E from
the PolarGAP survey. Green circles mark the two points that we use to define a plausible
bed feature to explain the thinning function for older ages (circles correspond to Figure
S16).
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Figure S16: Map view of bed topography near SPC14. Black shows measured flowline.
Red is along 142.5° E and blue is along 135° E from the PolarGAP survey. Green line
shows the transect between PolarGAP lines used to guide the bed topographic feature
beyond 100 km in the ice-flow modeling (circles correspond to Figure S15).
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Figure S17: Comparison between modeled and measured internal layers in the flowband
domain. Measured layers are shown in Figure S14. A) Observed (black) and modeled
with no melt (blue) and 1 cm a−1 melt (orange) internal layers. Observed layer ages are
labeled. B) Percent misfit of layer depths for the “no melt” model. C) Percent misfit of
layer depths for the “1 cm a−1 melt” model.
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Figure S18: Illustration of the development of a reversal in the thinning function. A)
Modeled particle paths with ice thickness (and corresponding bed elevation) at particle
origin marked. Age of the red particle is ∼7 ka and age of the blue particle is ∼6 ka.
Purple vertical line at the far left side is ice-core location and the depth of the core
shows the depth range plotted in B. B) Modeled thinning function showing the reversal in
thinning due to thickening of the ice sheet which the red particle experienced by the blue
particle did not. The jaggedness of the thinning function is due to numerical challenges
in the particle tracking.
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Figure S19: Uncertainty representing two standard deviations for the inferred thinning
function from seven main sources described in Text S5.1.


