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Abstract

The close connection between the total lightning flash rate and storm updraft has been well recognized. In this study, we

assessed the benefit of such a relationship in convective-scale data assimilation (DA) for model initialization. A lightning DA

scheme to update model kinematic states was developed in the Weather Research and Forecasting Data Assimilation (WRFDA)

three-dimensional variational (3DVar) system. This scheme combines total lightning observations with model-based prescribed

vertical velocity profiles to retrieve kinematic information useful to DA. With the availability of space-borne lightning imagers

in recent years, total lightning data observations from the Lightning Mapping Imager (LMI) on board the FY-4A geostationary

satellite were assimilated in combination with radar DA. A detailed analysis of the impact of the lightning DA scheme on

convective precipitation forecasting was conducted using a squall line case over Beijing on 13 July 2017. The results showed

that the assimilation of LMI data further improves the analyses of dynamical conditions from assimilating radar radial winds.

Although the microphysical states are identical due to the assimilation of reflectivity, updrafts directly form at lightning

observation locations via lightning DA and hence improve the convective-scale dynamical balance. The quantitative verification

of short-term convective forecasts indicated that the lightning DA adds value to current radar DA by improving the precipitation

forecast skill. The new lightning DA scheme was further applied to a heavy rainfall case in 2018, and the results confirmed the

effective and robust improvement in storm forecasting.
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Key Points: 26 

 A lightning data assimilation (DA) scheme to update model kinematic states was 27 

developed using a three-dimensional variational (3DVar) system. 28 

 The Event data from Lightning Mapping Imager (LMI) aboard the FY-4A 29 

geostationary satellite were assimilated to reflect lightning horizontal dimension. 30 

 The new lightning DA scheme improves the convective analysis and storm 31 

forecasting in two severe convective cases. 32 

33 
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Abstract: The close connection between the total lightning flash rate and storm 34 

updraft has been well recognized. In this study, we assessed the benefit of such a 35 

relationship in convective-scale data assimilation (DA) for model initialization. A 36 

lightning DA scheme to update model kinematic states was developed in the Weather 37 

Research and Forecasting Data Assimilation (WRFDA) three-dimensional variational 38 

(3DVar) system. This scheme combines total lightning observations with model-based 39 

prescribed vertical velocity profiles to retrieve kinematic information useful to DA. 40 

With the availability of space-borne lightning imagers in recent years, total lightning 41 

data observations from the Lightning Mapping Imager (LMI) on board the FY-4A 42 

geostationary satellite were assimilated in combination with radar DA. A detailed 43 

analysis of the impact of the lightning DA scheme on convective precipitation 44 

forecasting was conducted using a squall line case over Beijing on 13 July 2017. The 45 

results showed that the assimilation of LMI data further improves the analyses of 46 

dynamical conditions from assimilating radar radial winds. Although the 47 

microphysical states are identical due to the assimilation of reflectivity, updrafts 48 

directly form at lightning observation locations via lightning DA and hence improve 49 

the convective-scale dynamical balance. The quantitative verification of short-term 50 

convective forecasts indicated that the lightning DA adds value to current radar DA by 51 

improving the precipitation forecast skill. The new lightning DA scheme was further 52 

applied to a heavy rainfall case in 2018, and the results confirmed the effective and 53 

robust improvement in storm forecasting. 54 

55 
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Plain Language Summary: Lightning flashes are closely related to the upward air 56 

motions in thunderstorms, and hence are indicative of strong wind convergence. 57 

Currently, lightning imagers on board the geostationary satellites provide increased 58 

availability of lightning data over broad regions and can improve weather forecasting 59 

accuracy. This paper describes how the space-borne lightning observations could be 60 

employed to update model kinematic states and improve convective precipitation 61 

forecasting. 62 

63 
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1. Introduction 64 

Radar observations, including radial velocity, reflectivity and polarimetric 65 

observations, are the primary source of data that provide convective information with 66 

a high spatiotemporal resolution. The assimilation of these data can effectively update 67 

the dynamical and microphysical states, resulting in an improvement in high-impact 68 

weather forecasting (see Sun et al. 2014 and Gustafsson et al. 2018 for relevant 69 

reviews). However, the positive impact is highly dependent on the quality of the radar 70 

observations and the methodology used to assimilate the convective information 71 

obtained from those observations. Although radar networks have been built and are 72 

operationally used in many countries, there are still many wide gaps in their spatial 73 

coverage. In addition, it is particularly challenging for weather radar to acquire 74 

observations over mountainous regions, where emitted radar beams suffer from full or 75 

partial terrain blocking. Thus, efforts have been made to combine radar data 76 

assimilation (DA) with other data sources, such as lightning observations provided by 77 

traditional ground-based lightning detection networks (Fierro et al. 2012, 2014; Chen 78 

et al. 2019). In recent years, lightning imagers aboard geostationary satellites have 79 

become available, for example, the Geostationary Lightning Imager (GLM) on the 80 

GOES-R satellite and the Lightning Mapping Imager (LMI) on the FY-4A satellite. 81 

These space-borne lightning detectors continuously observe the total lightning flashes 82 

[i.e., cloud-to-ground (CG) plus intracloud (IC) lightning] over both the continents 83 

and the oceans with a spatial resolution of kilometers, and these observations 84 

complement the existing radar networks in the monitoring of severe storms. The 85 

effective assimilation of space-borne lightning data, especially when combined with 86 

radar observations, is expected to improve short-term convective forecasts. 87 

Lightning activities are believed to be electrical responses of thunderstorm 88 

evolution. The widely accepted noninductive charging (NIC) theory states that the 89 

primary source of charge separation is the rebounding collisions between graupel and 90 
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ice crystals in the presence of supercooled liquid water. Accordingly, NIC theory lays 91 

the physical basis for assimilating lightning observations. For example, the state 92 

variables retrieved from lightning flash rates via empirical relationships, such as latent 93 

heat (Alexander et al. 1999; Pessi et al. 2009), specific humidity (Papadopoulos et al. 94 

2005; Mansell et al. 2007; Fierro et al. 2012, 2014, 2015, 2016, 2019; Zhang et al. 95 

2017; Hu et al. 2020), hydrometer mass (Qie et al. 2014; Mansell et al. 2014; Wang et 96 

al. 2017; Chen et al. 2019; Kong et al. 2020) and temperature (Marchand et al. 2015), 97 

are assimilated to force the convection at locations where lightning is observed. 98 

Generally, these lightning DA methods are very similar to the methods used to 99 

assimilate radar reflectivity observations that force convection by adjusting the 100 

microphysical or thermodynamic state variables. For example, when lightning flash 101 

rates exceed a specified threshold, derived moisture is assimilated into model using 102 

variational DA technique (e.g. Fierro et al. 2016, 2019; Hu et al. 2020), which induces 103 

buoyancy-generated lifting from positive adjustments of water vapor mixing ratios, in 104 

a similar fashion to moisture adjustment based on radar reflectivity (Wang et al. 105 

2013a). However, unlike radar networks from which kinematic information is 106 

provided by radial velocity observations, lightning observations do not directly 107 

provide kinematic information. Since it has been shown that the kinematic 108 

information can help alleviate model spin-up problem when combined with 109 

reflectivity assimilation and improve dynamical balance (Xiao and Sun, 2007; Sun 110 

2005), in this study, we explore the possibility to update model kinematic states from 111 

lightning observations and the resulting benefit on convective forecasting.  112 

Relationships between the total lightning flash rate and strong updrafts in deep 113 

convection have been proposed through field observations and numerical studies. 114 

According to NIC theory, strong updrafts are required to support the production of 115 

supercooled water and suspend graupel particles, which are necessary for storm 116 

electrification. Deierling and Petersen (2008) analyzed the total lightning flash rate 117 

and the updraft volume associated with the vertical velocities w >5 m s
-1

 and w >10 m 118 
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s
-1

 above the freezing level, and they found a strong linear correlation between them. 119 

In the numerical studies of electrification and lightning by Kuhlman et al. (2006), it 120 

was also shown that the total lightning flash rate is well correlated with the updraft 121 

volume and updraft mass flux. Considering the importance of updrafts on cloud 122 

electrification and lightning, the maximum updraft velocity (wmax) is employed in the 123 

lightning parameterization scheme of Price and Rind (1992, hereafter PR92) to 124 

diagnose the lightning flash rate. Since the lightning flash rate is closely associated 125 

with the strength of storm updrafts, lightning flashes are theoretically indicative of 126 

regions with strong upward air motions and hence significant low-level convergence. 127 

If the updraft information provided by lightning data is introduced into a model, it is 128 

possible to update the 3-dimensional wind components at lightning observation 129 

locations via the continuity equation. As a result, air parcels are more likely to reach 130 

their level of free convection (LFC) to form convection due to enhanced uplift from 131 

the updated kinematic states. From this perspective, using lightning data to directly 132 

update model kinematic states can be more physically effective than forcing 133 

convection by inserting water vapor and/or hydrometeors.  134 

The strong connection between the total lightning flash rate and storm updraft 135 

implies that total lightning flashes are indicative of the updraft intensity and the 136 

timing of convective development (MacGorman et al. 1989; Schultz et al. 2011; 137 

Fierro et al. 2012). Currently, lightning detectors aboard geostationary satellites are 138 

capable of obtaining wide-range observations of total lightning activities and hence 139 

present an opportunity to assess the impact of lightning observations on model 140 

kinematic variables and convective forecasting. The greatest challenge in fully 141 

exploiting the kinematic information contained in total lightning activity observations 142 

is developing a reliable observation operator in the DA context. In the PR92 lightning 143 

parameterization scheme, a simple formula estimating the total lightning flash rate 144 

from wmax was proposed, which provided a basis for deriving wmax from the observed 145 

lightning flash rate. However, it is challenging to assimilate lightning-derived wmax 146 
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information. The two-dimensional wmax field lacks height information, which means 147 

that the vertical location of the strongest updraft in a column is not known. Finally, 148 

space-borne lightning detections usually have poorer resolutions than lightning 149 

observations from ground-based networks. The typical resolution of a lightning 150 

imager (e.g., LMI) equipped on a geostationary satellite is coarser than that of the 151 

present-day convection-permitting models (1-4 km). 152 

In this study, we propose a scheme that aims to improve the analysis of model 153 

kinematic states by the assimilation of total lightning observations from the LMI on 154 

board the FY-4A geostationary satellite with a three-dimensional variational (3DVar) 155 

DA system. Although the scheme is not limited to any particular DA technique, we 156 

use the 3DVar system for implementation and testing mainly due to its widespread 157 

operational applications and lower computational costs. In this scheme, 158 

pseudo-vertical velocity observations are obtained by combining lightning-derived 159 

wmax information with prescribed model-based vertical profiles depicting the vertical 160 

distribution of the vertical velocity w. Then, an observation operator for horizontal 161 

convergence is developed in the 3DVar cost function. To address the issue of the LMI 162 

sampling resolution, we present a data preprocessing procedure to generate input data 163 

compatible with numerical weather prediction (NWP) models while minimizing the 164 

loss of information contained in the LMI lightning data. Considering the proven role 165 

of radar observations in convective-scale data assimilation, we evaluate the benefit of 166 

the kinematic information derived from the total lightning observations in addition to 167 

radar DA. Therefore, the combined assimilation of radar and lightning data is 168 

conducted, and the results are compared with those of experiments assimilating either 169 

data type alone. We first show a set of single observation tests to illustrate the effects 170 

of assimilating these two types of data on analysis increments. The real data impact of 171 

the kinematic-based lightning DA scheme with and without radar DA is evaluated by 172 

two convective cases with heavy precipitation. The impact of LMI data preprocessing 173 

on the DA and subsequent forecasting is assessed via sensitivity experiments. 174 
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The rest of this paper is organized as follows. Section 2 describes both the 175 

processing method for total lightning data from the LMI suitable for the purpose of 176 

convective-scale DA and the Weather Research and Forecasting Model Data 177 

Assimilation (WRFDA) 3DVar and forecast system. In Section 3, the LMI lightning 178 

DA scheme in the 3DVar system is described in detail. The results of single 179 

observation tests and real case studies are presented in Section 4 and Section 5, 180 

respectively. Our conclusions are summarized in Section 6. 181 

2. Description of the data, WRFDA 3DVar, and forecast system  182 

Both conventional observations from the GTS (Global Transmission System) and 183 

unconventional observations are used in this study. The unconventional data include 184 

radial velocity and reflectivity observations from a network of six operational Doppler 185 

radars in a region of North China surrounding Beijing (Fig. 1) and from the LMI on 186 

board the FY-4A geostationary satellite. The radar observations have been 187 

operationally assimilated in WRFDA 3DVar by the Beijing Meteorological Service 188 

since 2012. The reader is referred to Chen et al. (2012; 2014) for a detailed 189 

description regarding the preprocessing and quality control (QC) of the Beijing radar 190 

network. Due to the complex terrain in this region with high mountains in the 191 

northwest and the Bohai Bay in the southeast, the radar network suffers from 192 

topographic blocking in the mountainous area. In this paper, our main focus is 193 

space-borne LMI total lightning data, whose preprocessing and QC are described 194 

below. The DA system and WRF model will be described later in this section. 195 

Fig. 1 196 

 197 

a. Preprocessing of the LMI data      198 

The LMI on board the FY-4A geostationary satellite that was launched 199 

successfully in December 2016 is the first satellite-based lightning detector in China. 200 

Different from ground-based lightning location systems, the LMI observes the optical 201 
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evolution of lightning flashes instead of changes in the electrical field. A 400×600 202 

charge coupled device (CCD) array plane is adopted to detect changes in brightness at 203 

cloud tops induced by lightning flashes over China and its adjacent oceanic regions 204 

(Cao et al. 2018; Hui et al. 2020). The LMI observes lightning flashes at a rate of 500 205 

frames per second with a pixel resolution of 7.8 km at the subsatellite point. In each 206 

frame, if a pixel is illuminated by lightning, it is termed an event with the pixel 207 

centroid as its latitude-longitude coordinates. The lightning event product is the basic 208 

LMI detection element, and events can be further combined into group and flash 209 

products using a lightning clustering algorithm (Christian et al. 1999; Mach et al. 210 

2007; Goodman et al. 2013). 211 

Since the LMI tracks the brightness changes at cloud tops, the instrument detects 212 

the total lightning flashes without discriminating between IC and CG lightning flashes, 213 

and its three product levels, including the event, group and flash products, are capable 214 

of resolving storm updraft characteristics. In this study, the LMI event product is 215 

employed instead of the group and flash products for two reasons. First, the LMI 216 

event product records all lightning-illuminated pixels, which can better depict the 217 

spatial propagation of lightning flashes and, hence, convective regions (Peterson, 218 

2019). Since the flash and group products are collections of lightning events 219 

satisfying some prespecified temporal and spatial thresholds, some of the information 220 

on the storm location, coverage and intensity can be lost. Second, the values of the 221 

group and flash products are greatly impacted by the lightning clustering algorithm 222 

applied. Therefore, using the event product can avoid the uncertainties originating 223 

from lightning clustering algorithms. 224 

For the purpose of DA, a quality control procedure should not only remove 225 

unreliable observations but also define the observation error (measurement plus 226 

representative error) for the “good” observations. For the instantaneous point 227 

measurements of the LMI, however, it is difficult to estimate such observation errors 228 

quantitatively. Alternatively, we preprocess the LMI data by the so-called 229 
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scale-matching approach (Janjic et al. 2017); i.e., we filter out the high-frequency 230 

scales in the observations such that the data to be assimilated match the resolvable 231 

scales of the numerical model used for the data assimilation. Specifically, the QC 232 

procedure implemented in this study includes the following three steps: 233 

(1) Remove isolated event data with no adjacent illuminated pixels. These 234 

isolated data are removed because they are typically regarded as noise. 235 

(2) Temporally bin the LMI event data. The quality-controlled lightning event 236 

data are binned into 15-min time periods from the original level-II 1-min data 237 

provided by the National Satellite Meteorological Center, Chinese Meteorological 238 

Administration. 239 

(3) Spatially regrid the LMI event data to the model grid, as illustrated in Fig. 2. 240 

Because the LMI pixel resolution is approximately 7.8 km, in the context of DA at the 241 

convective scale (<3 km), a 5-km search radius is applied to count the number of 242 

lightning events at each model grid. To be more specific, provided with the WRF 243 

model Cartesian grid coordinates and the binned 15-min LMI events, the number of 244 

lightning events that occurred within a 5-km radius of each grid are summed and 245 

termed the LMI event density (LED). The regridded LED with a 5-km radius is able 246 

to maintain the compactness of lightning occurrences. Following the idea behind 247 

PR92, stronger updrafts (wmax) are expected over regions with higher LED. The values 248 

of wmax and the corresponding ranges of LED will be described in the next section. 249 

While it is not common practice to regrid observation data to model grids in DA 250 

for other types of observations, such as radiosondes, we believe this approach is an 251 

appropriate practice for space-borne lightning data. Most DA schemes assume a 252 

Gaussian distribution for the background error covariance, which implies that the 253 

observation information is spread out among grid points devoid of observations 254 

according to Gaussian statistics. Lightning flashes apparently violate the Gaussian 255 

error assumption because they are confined to electrically active regions within 256 

thunderstorms. 257 
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 258 

Fig. 2 259 

 260 

Since the LMI detects the brightness changes at cloud tops, the detection 261 

efficiency and accuracy can be influenced by the cloud depth and optical diffusion 262 

due to the spreading of optical pulses. Consequently, lightning flashes propagating 263 

through optically thick clouds could be underestimated or undetected. However, 264 

accurately estimating the underestimation by thick clouds is a complicated research 265 

topic deserving a separate investigation, and is beyond the scope of the current study 266 

and thus is not considered here. 267 

b. WRFDA 3DVar and forecast system  268 

The 3DVar method is widely used at operational NWP centers, especially for 269 

regional models, because of its low computational cost and fewer technical difficulties 270 

associated with nonlinearities. In this study, the WRFDA 3DVar system (Version 3.9.1) 271 

is applied. WRFDA 3DVar is able to assimilate radar radial velocity (Xiao and Sun, 272 

2007) and reflectivity observations (Wang et al. 2013a; Tong et al. 2016; Gao et al. 273 

2018) as well as conventional observations. A new observational term associated with 274 

lightning-derived kinematic data is incorporated into the total cost function of 3DVar 275 

as follows: 276 

,r v rV q q w

b obs r adar r adar r adar l i ght ni ng
J J J J J J J         (1) 277 

where Jb stands for the background term defined by the analysis departure from a 278 

WRF forecast, Jobs stands for the conventional observation term measuring the 279 

analysis departure from conventional observations, and the three terms with the 280 

“radar” subscript are the observation terms corresponding to the radial velocity, 281 

pseudo-in-cloud humidity and hydrometeors retrieved from reflectivity observations. 282 

The last term is the observation term for the pseudo-kinematic observations derived 283 

from the lightning data, which will be introduced in detail in the next section. By 284 

minimizing the total cost function J, WRFDA 3DVar seeks an optimal initial state 285 
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between the background field and observations to drive the WRF model forecast. In 286 

this study, the WRFDA 3DVar system utilizes climatological background error 287 

statistics to represent the uncertainty of the model forecast background. Provided with 288 

24-h and 12-h WRF forecasts for the month of July 2017, the background error 289 

statistics were generated following the National Meteorological Center (NMC) 290 

method (Parrish and Derber, 1992) by the WRFDA 3DVar tool GEN_BE (Barker et al. 291 

2004). The control variable option CV7 was used, which employs the following 292 

control variables: x- and y-component winds (u and v, respectively), temperature (T), 293 

surface pressure (Ps), relative humidity (RH), and hydrometeors (Qr, Qs, and Qg). 294 

According to Sun et al. (2016), the u/v momentum control variables allow closer fits 295 

to high-resolution observations than allowed by traditional stream function/velocity 296 

potential control variables. 297 

All the numerical experiments in this study employ a two-way, three-domain 298 

nested grid using the WRF model. The outermost domain has 650×650 grids with a 299 

9-km horizontal grid spacing, while the inner and innermost domains both have 300 

1060×1060 grids with 3-km and 1-km horizontal grid spacings, respectively. The 301 

number of terrain-following vertical levels is set to 45, and the model top is set to ~50 302 

hPa. The model physics options include the Kain-Fritsch cumulus parameterization 303 

scheme (Kain and Frisch, 1993), which is applied only to the outermost domain, the 304 

NSSL 2-moment bulk microphysics scheme (Mansell et al. 2010), the 305 

Bougeault-Lacarrère PBL scheme (Bougeault and Lacarrere, 1989), the Noah land 306 

surface model (Chen and Dudhia, 2001), the RRTM scheme (Mlawer et al. 1997) and 307 

the Dudhia scheme (Dudhia, 1989) for longwave and shortwave radiation processes. 308 

WRFDA 3DVar is used to initialize the WRF model forecast by assimilating 309 

conventional observations, including radiosonde, surface network and aircraft data, as 310 

well as high-resolution radar and lightning observations. To effectively extract 311 

information from observations with different spatiotemporal scales, the two-step DA 312 

strategy designed for WRFDA (Tong et al. 2016) is applied. In the first step, 313 
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conventional observations are assimilated with Global Forecast System (GFS) data as 314 

the background first guess. Then, the model forecasts from the first step are used as 315 

the background, and a shorter length scale and analysis cycle are applied to assimilate 316 

the radar and lightning data in the second step.  317 

3. The lightning data assimilation method 318 

a. Method to estimate wmax 319 

Following the idea of the PR92 lightning parameterization scheme (Price and 320 

Rind, 1992), we first obtain the magnitude of the column-maximum updraft wmax, 321 

derived from the total lightning observations (e.g., LED). By examining the 322 

cumulative distributions of the 15-min binned LED data (Fig. 3), we found that the 323 

most frequent values of the event density are below 20 events per 15 min and account 324 

for approximately 80% of the entire LED range. Based on the results in Fig. 3, the 325 

ranges of the 60
th

, 80
th

 and 90
th

 percentile event densities are used to determine the 326 

magnitudes of the maximum vertical velocity wmax (Table 1). The procedure employed 327 

to determine the value of wmax for each of the LED ranges is described below.  328 

Fig. 3  329 

 330 

While the correlation between the lightning flash rate and column-maximum 331 

vertical velocity wmax has been confirmed by previous studies, the quantitative 332 

determination of wmax is not straightforward. PR92 found that the minimum wmax is 333 

14.7 m s
-1

 once lightning flashes occur based on their calculations. Moreover, 334 

according to field observations (e.g., Zipser and Lutz, 1994), a mean vertical velocity 335 

of 6 m s
-1

 was necessary to facilitate significant cloud electrification and initiate 336 

lightning. Based on these findings, the upper and lower limits for the values of wmax 337 

are set to 15 m s
-1 

and 5 m s
-1

, respectively,
 
for the ranges of the 60

th
, 80

th
 and 90

th
 338 

percentile event densities with an incremental interval of 3~4 m s
-1

 (see Table 1), 339 

which is the uncertainty magnitude of vertical velocity profiles shown in the next 340 
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section. Although larger values of wmax were observed in electrified convection (e.g., 341 

Calhoun et al. 2013), we set this upper limit because larger values are not resolvable 342 

by the model (in terms of the accuracies of both the value and the location) and hence 343 

can be easily rejected by the WRFDA innovation check. 344 

Table 1 345 

 346 

b. Prescribed vertical velocity profile 347 

Since wmax does not include information about its vertical location, a key step in 348 

the assimilation of wmax is to supplement the information of the updraft vertical 349 

distribution. Yuter and Houze (1995) analyzed the vertical profile of w over 350 

convective areas and found that the updraft typically increases from a low value at 351 

low levels to a peak value at the middle to upper levels and then decreases in value 352 

toward the top of the storm. For the purpose of the present study, we believe that an 353 

ensemble of model forecasts is most suitable for estimating the vertical velocity w 354 

profile. The same model forecasts of July 2017 generated for the calculation of the 355 

background error statistics using the NMC method were used as the ensemble for the 356 

w profile estimation. The mean vertical profile was computed by extracting and 357 

averaging all the w fields over the convective regions in the model forecasts for the 358 

month of July 2017. 359 

In this study, the maximum updraft intensity (upmax) and maximum graupel 360 

mixing ratio (qgmax) in a model column were chosen as the metrics denoting 361 

convective regions. Four convective scenarios were designed with upmax over 10 m s
-1

 362 

and 15 m s
-1

 corresponding to convective regions with intense updrafts and qgmax over 363 

5 g kg
-1

 and 7 g kg
-1

 relating to well electrified convective regions. After the four 364 

averaged profiles from these four scenarios were obtained, they were normalized 365 

(divided by their respective vertical maxima) and further averaged to obtain the final 366 

average profile (Fig. 4a). The model-based profile by this means is generally 367 

consistent with the observations of Yuter and Houze (1995) but is more representative 368 
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of the updraft characteristics at the time of DA. 369 

With the normalized w profile from the model and the wmax derived from the 370 

lightning flash observations, a 3-dimensional pseudo-w observation field can be 371 

created by multiplying the two variables at each grid point. It is noted from Fig. 4a 372 

that the five profiles differ in the height of the strongest updraft and in the w 373 

magnitude, especially at lower altitudes, providing different pseudo-w observations. 374 

The impact of these different prescribed w profiles on forecasts will be examined later 375 

through sensitivity experiments. 376 

c. Observation operator for lightning DA 377 

The pseudo-w observations can be assimilated by adding a vertical velocity 378 

observation term to the 3DVar cost function. However, the direct assimilation of w 379 

may result in excessive noise because there are no constraints or other sources of w 380 

observations to curb the generation of noise during the data assimilation. Instead, the 381 

lightning-derived w fields are converted into pseudo-observations of horizontal wind 382 

convergence (CON) through the mass continuity equation: 383 

  =- ,
u v w

CON
x y z

  
 

  
   (2) 384 

The CON derived from the pseudo-w observations is then assimilated to update 385 

the model horizontal wind components u and v through the following observation 386 

term added to the total cost function:  387 

mod 2 2 mod 2 21 1
  ( ) / ( ( ) ( ) ) / ,

2 2

w obs obs

l i ght ni ng con con

u v w
J CON CON

x y z
   

  
    

  
     (3) 388 

where CON
mod

 and CON
obs

 represent the horizontal wind convergence from the model 389 

background and its pseudo-observations obtained from the lightning-derived w fields, 390 

respectively,   is a weighting coefficient controlling the contribution of the 391 

lightning-derived kinematic observational term to the total cost function J, and 
2

con
  392 

stands for the observation error variance of CON. 393 

Fig. 4b shows the calculated CON profiles from the normalized w profiles 394 

assuming wmax = 15 m s
-1

. These profiles are in good agreement with those from 395 
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observations (e.g., Mapes and Lin, 2005; Deshpande et al. 2015), which exhibit low- 396 

to middle-level wind convergence and upper-level divergence in storms. Since the 397 

horizontal wind convergence influences condensation and precipitation inside storms 398 

and is strongly related to the heating profile (Houze 1982; Jonshon, 1984; Mapes and 399 

Houze, 1995; Mapes and Lin; 2005), the assimilation of CON profiles could result in 400 

enhanced dynamical lifting for air parcels, which would in turn improve the latent 401 

heating profiles. 402 

To estimate the uncertainty of the w profiles, we used an ensemble of 35 403 

members produced by setting the values of wmax to 5, 8, 11, …, 23 m s
-1

 for each of 404 

the five model-based w profiles and for the corresponding CON profile via the mass 405 

continuity equation. Fig. 4c shows the vertical distributions of the standard deviation 406 

and mean of the CON computed from the ensemble. The value of the standard 407 

deviation varies within 0.8~1.7×10
-3

 s
-1

 at different vertical levels. We found that 408 

considering the vertical variation in the uncertainty does not result in an improved 409 

assimilation performance; therefore, in the experiments presented, we simply set the 410 

observation error 
con

 for the CON pseudo-observations to a constant value of 1.5×411 

10
-3

 s
-1

. Single observation experiments using observation errors of 1~2×10
-3

 s
-1

 412 

indicated that the resulting analysis increments are not sensitive within this error 413 

range (not shown). Hence, the CON pseudo-observations above the maximum w level 414 

were not used to avoid overfitting the observations. 415 

 416 

Fig. 4 417 

4. Single observation tests 418 

Because the CON pseudo-observations obtained from lightning-derived w fields 419 

are a new type of data in WRFDA, single observation tests were carried out to 420 

examine the spread of observations by analyzing the background error statistics and 421 
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the responses of the analysis increments to the new observation operator. Three single 422 

observation tests were conducted. The test named RA assimilates only the single 423 

radial velocity observation. The LN test assimilates only the single LMI lightning 424 

observation using the procedure described in the last section. In the RALN test, both 425 

the lightning-derived convergence observation and the radial wind observation are 426 

simultaneously assimilated. The single radial wind velocity observation is provided 427 

by the Doppler radar located at (39.8°N, 116.5°E) in Beijing, and the single CON 428 

pseudo-observation is derived from LMI lightning products using the prescribed w 429 

profiles described above. These single observations are located at the 11
th

 model level 430 

(approximately 700 hPa) at (40.4°N, 115.9°E). The observation errors of radial 431 

velocity and convergence are set to 1 m s
-1

 and 1.5×10
-3

 s
-1

, respectively. 432 

Table 2 433 

 434 

Table 2 lists the employed value of single observations and corresponding 435 

innovation (omb) and residual (oma) terms at the observation location for the three 436 

single observation tests. The analysis increments of the horizontal wind field and 437 

corresponding convergence at 700 hPa are shown in Fig. 5. In the RA test, because the 438 

radial velocity is underestimated in the first guess (-4.544 m s
-1

), assimilating the 439 

single radial wind observation increases the magnitude of the wind speed in the radial 440 

direction (Fig. 5a). Note that the spreading distance of the wind increment is 441 

determined by the length scale in the background error statistics. The maximum wind 442 

increment is approximately 2.6 m s
-1

, and the residual of the radial wind at the 443 

observation location is -0.493 m s
-1

. In LN, assimilating the CON pseudo-observation 444 

successfully enhances the convergence of wind toward the observation location (Fig. 445 

5b); the maximum wind increment is approximately 0.35 m s
-1

, which is much weaker 446 

than that in RA, and the residual of the convergence at the observation location is 447 

-0.589×10
-3

 s
-1

. In RALN, by assimilating both types of observations, not only the 448 

wind speed convergence but also the directional convergence are analyzed (Fig. 5c); 449 
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as a result, the wind convergence increments are further enhanced from those of RA. 450 

Compared with the RA test, the residual of the radial velocity at the observation 451 

location in RALN is further reduced, as shown in Table 2, suggesting that the analysis 452 

wind fields are closer to the observations by combining radar and lightning DA. The 453 

above single observation tests indicate that the combination of radial velocity and 454 

lightning-derived convergence observations effectively increases the convergence of 455 

wind and reduces the error between the observations and model background. 456 

Fig. 5 457 

5. Real case studies 458 

Using the two-step data assimilation procedure described in Section 2, the radar 459 

and lightning observations were assimilated in the second step of our two-step 460 

assimilation experiments. In the baseline experiment, RA, we assimilated reflectivity 461 

and radial velocity observations from the six radar stations shown in Fig. 1. In the LN 462 

experiment, only the pseudo-kinematic observations derived from LMI total lightning 463 

data were assimilated. In the RALN experiment, both the lightning-derived 464 

convergence observations and the radar observations were simultaneously assimilated 465 

to show the value added by assimilating lightning data in addition to the current radar 466 

network. Additionally, a control experiment (denoted CTL) was also conducted by 467 

assimilating neither radar nor lightning observations, only GTS conventional data. 468 

These experiments were conducted using a squall line case with heavy precipitation 469 

that occurred over Beijing on 13 July 2017 during the first warm season observing 470 

period of LMI launched in late 2016. The results of these experiments are verified and 471 

analyzed in detail to demonstrate the impact of the LMI lightning DA on the 472 

convective analysis and forecast. To confirm the positive impact of this new scheme, 473 

the improvement of another severe rainfall event forecast during the 2018 warm 474 

season is also presented. 475 
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a. Impact of lightning DA on precipitation forecasting 476 

A squall line convective system occurred in southwestern Beijing on 13 July 477 

2017. The convective cells initiated at approximately 1700 LST (local standard time, 478 

= UTC+8 h) and then developed and merged into a squall line by 2000 (Fig. 6a), with 479 

its eastern section propagating into the populated area in Beijing. After 2100, the 480 

squall line gradually took the shape of bow echoes and then started to break down. 481 

The total lightning observations from the LMI in this case provide valuable 482 

supplementary convective information in addition to the local radar network (referred 483 

to Fig. 1). As shown in Fig. 6b, the distribution of the 15-min binned LED at 2000 484 

shows good agreement with the cloudy regions in the radar reflectivity data since the 485 

area with reflectivity greater than 25 dBZ, which is the threshold reflectivity value 486 

indicating near saturation in radar DA, exhibits large overlap with the region with an 487 

event density greater than 2. 488 

Fig. 6  489 

 490 

Since accurate short-term heavy precipitation forecasting is a major concern in 491 

NWP, before presenting the impact of the new lightning DA scheme on the analysis of 492 

dynamical variables, we first examine the impact of this scheme on the performance 493 

of hourly precipitation forecasting through a verification against the hourly radar 494 

quantitative precipitation estimate (QPE) produced operationally by the Beijing 495 

Meteorology Bureau. The fractions skill score (FSS; Roberts and Lean 2008), a 496 

neighborhood spatial verification statistic, was used as one of the precipitation 497 

verification metrics. We also used the categorical performance diagram (Roebber, 498 

2009), which combines key information of the frequency bias (FR), probability of 499 

detection (POD), critical success index (CSI) and success ratio [SR, one minus the 500 

false alarm rate (FAR)], into one diagram to evaluate the impact of the lightning DA 501 

scheme relative to the impact of other experiments. 502 

Figs. 7a-b show a comparison of the FSS with two different rainfall thresholds 503 
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for the first three forecast hours initialized at 2000 on 13 July 2017. Benefitting from 504 

the convective-scale DA, experiments RA, LN and RALN have higher scores than 505 

CTL for both the 2.5 mm (moderate precipitation) and the 15 mm (heavy precipitation) 506 

thresholds, and RALN further improves the precipitation skill compared with the 507 

experiments assimilating either data type alone. Figs. 7c-d show the categorical 508 

performance diagrams for the same two hourly precipitation thresholds. A perfect 509 

forecast will be placed toward the upper-right portion of the diagram, indicating a 510 

high POD and SR (and hence a high SCI) and near-unity bias. The improvement of 511 

the convective-scale DA over CTL is evident, as shown by the higher POD and CSI 512 

from RA and RALN. During the 3-h forecast, RALN produces the best overall 513 

performance as measured by the higher SR and POD as well as smaller bias (closer to 514 

the value of 1). It is also noted that the benefit of lightning DA is greater for the 515 

higher precipitation threshold, which is not surprising because of the connection of 516 

lightning flashes to strong storm updrafts. The above statistics show that the lightning 517 

DA scheme works well in producing updrafts at lightning locations and hence 518 

improves the convective rainfall formation. When the lightning DA scheme is 519 

combined with radar DA, although the initial moisture fields are the same in 520 

experiments RA and RALN due to the assimilation of radar reflectivity observations, 521 

in RALN, the enhanced low-level dynamical lifting leads to the accelerated formation 522 

of precipitation. 523 

Fig. 7 524 

 525 

By comparing the hourly accumulated precipitation distributions against the 526 

radar QPE products, we found that the areal coverages of the 1
st
 hour precipitation 527 

forecasts in experiments RA, LN and RALN are much improved over that in CTL in 528 

the northeastern section of the squall line (2000-2100, Figs. 8a-e). Nevertheless, in the 529 

southwestern section of the squall line, the pseudo-convergence observations improve 530 

the convective rainfall forecast, and the RALN precipitation forecast is in better 531 
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agreement with the QPE, a clear positive impact resulting from the additional 532 

lightning DA. For the 2
nd

 hour precipitation forecasts (2100-2200, Figs. 8f-j), the 533 

forecasted rainfall in CTL is much weaker than the QPE, and LN outperforms CTL 534 

and forecasts several scattered rainfall centers. While both RA and RALN 535 

successfully forecast the rain band at the second forecast hour, the precipitation 536 

system from RALN is more organized and located slightly to the south of that from 537 

RA (closer to the 400-m elevation contour, especially for the southwestern section), 538 

which is in better agreement with the observed rain band location. It should be noted 539 

that the lightning-alone experiment LN might perform better if a moisture adjustment 540 

scheme had been implemented (e.g., Fierro et al. 2019; Chen et al. 2019; Hu et al. 541 

2020). The moisture adjustment was not applied in the current study because our 542 

focus here is on the role of kinematic pseudo-observation and the optimal 543 

combination of humidity pseudo-observations derived from radar reflectivity and 544 

lightning data deserves a more detailed and separate study, which is being explored 545 

and will be reported in a follow-up paper.  546 

Fig. 8 547 

b. Impact of lightning DA on analysis fields 548 

To fully elaborate the roles of different data sources in the ability of generating 549 

balanced initial fields, we analyzed the dynamical and microphysical characteristics. 550 

Though LN shows improved convective precipitation forecast compared with CTL, 551 

such positive impact is less significant due to the less updated microphysics, and 552 

hence we focused on the differences between experiment RA and RALN. Fig. 9 553 

shows the analysis wind and convergence fields as well as the increments in the water 554 

vapor at different vertical levels. Comparing RA and RALN with CTL, we found that 555 

water vapor increments greater than 2 g kg
-1

 are obtained at 700 hPa from the 556 

assimilation of reflectivity data. The assimilation of radial wind observations in RA 557 

(Figs. 9c-d) enhances the northwesterly flows behind the squall line in comparison 558 
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with CTL, and the convergence, especially behind the northeastern section of the 559 

squall line, is also strengthened. The contribution of lightning DA to the wind analysis 560 

is reflected by the enhanced northwesterly winds and horizontal wind convergence in 561 

RALN behind the southwestern section of the squall line at both 700 hPa and 500 hPa 562 

compared to RA (Figs. 9e-f). 563 

Fig. 9  564 

 565 

The impact of lightning DA on the wind analysis can be clearly visualized by 566 

plotting the wind difference and convergence difference between RALN and CTL and 567 

between RALN and RA (Fig. 10). The combined assimilation of these two data 568 

sources generates a wide convergence band along the squall line (Fig. 10a). The main 569 

area with strengthened wind convergence in RALN compared with that in RA is 570 

located in the southwestern section behind the squall line (Fig. 10b), where none of 571 

the radars have good observation coverage.  572 

Fig. 10 573 

 574 

The vertical velocity, layer-averaged water vapor mixing ratio between 700 hPa 575 

and 500 hPa, and convective available potential energy (CAPE) fields at 2006 on 13 576 

July 2017 (6-min model integration after DA) are compared in Fig. 11 among the 577 

three experiments. The 6-min model integration was chosen because these fields were 578 

spun up after the short model integration in response to the updated horizontal wind 579 

analysis. The northwesterly flows at 850 hPa over the mountainous regions in RA (Fig. 580 

11b) are increased relative to those in CTL (Fig. 11a) due to the radial wind DA, 581 

leading to enhanced convergence and upward vertical motions. When both radar and 582 

lightning data are assimilated, the magnitudes of the northwesterly and southwesterly 583 

winds are further increased, which leads to stronger and wider updrafts in RALN (red 584 

arrow in Fig. 11c). Although the moisture fields at the analysis time are the same 585 

between RA and RALN from the contribution of the reflectivity assimilation, the 586 
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enhanced updrafts in RALN transport more low-level water vapor upward and 587 

accelerate the formation of precipitation (Fig. 11f). Additionally, because of the 588 

adjusted vertical distribution of moisture, the CAPE over the western mountainous 589 

areas is increased in RALN (Fig. 11i). In short, the above analysis indicates that 590 

assimilating total lightning data through the direct update of kinematic states 591 

accelerates the formation of updrafts, which causes the redistribution of moisture and 592 

hence increases atmospheric instability and hydrometeor production. The results are 593 

similar to the studies of Fierro at al. (2015, 2016) based on moisture adjustment in 594 

which the buoyancy-generated lifting through the assimilation of moisture 595 

pseudo-observation was also induced but at the cost of increased wet biases in 596 

short-term forecast. The current lightning DA scheme does not directly employ a 597 

moisture assimilation scheme and the updated moisture fields are solely based on 598 

reflectivity DA. 599 

Fig. 11 600 

 601 

The impact of assimilating the two different types of observations on reducing 602 

analysis errors was quantitatively evaluated. Fig. 12 shows the root-mean-square 603 

errors (RMSE) of the radial velocity analysis verified against the Beijing Doppler 604 

radar data and of the horizontal wind components, temperature, and water vapor 605 

analyses against the surface METAR observations. Although radial velocity 606 

observations are not an independent dataset for the purpose of a strict verification, an 607 

RMSE evaluation can provide a check of whether the assimilation of additional 608 

lightning information is done properly such that it helps improve the fitting to the 609 

radial velocity. As shown in Fig. 12a, the RMSE of the radial wind field is 610 

significantly reduced in RALN compared with that in RA, while both RMSEs are 611 

much smaller than that in CTL. The RMSE of the surface u and v winds computed 612 

against the surface measurements are also improved (Fig. 12b). Because assimilating 613 

the CON pseudo-observations updates only the horizontal winds, the surface moisture 614 
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and temperature fields in RALN are not changed relative to those in RA. The 615 

improved wind analysis results in low-level convergence (and hence updraft) that 616 

enhances the moisture in the western mountainous region shortly after the WRF 617 

forecast commences. The above comparisons suggest that assimilating total lightning 618 

data in addition to radar data provides additional kinematic information that helps 619 

produce improved initial conditions for the horizontal velocities. In the following 620 

analysis, the impact of lightning DA on different updated kinematic states and storm 621 

evolution forecasts will be illustrated. 622 

Fig. 12 623 

c. Sensitivity of lightning DA to the prescribed w profile 624 

The lightning-derived w observations for DA depend on the model-based w 625 

profile and the wmax inferred from total lightning flash observations. As shown in Fig. 626 

4a, the w profiles obtained with different convective metrics differ in regard to the 627 

height of the strongest updraft and the low-level w magnitude and hence provide 628 

different values of pseudo-w observations. To evaluate how sensitive the lightning DA 629 

scheme is to the prescribed w profile, five assimilation and forecast experiments, each 630 

using one of the five w profiles in Fig. 4a, were conducted. Fig. 13 shows the 631 

averaged vertical velocity and rainwater mixing ratio profiles during the 1
st
 forecast 632 

hour in each sensitivity experiment. Compared with the baseline RA experiment, we 633 

found that generally, the w profiles based on the updraft intensity as the metric of deep 634 

convection (e.g., UP10, UP15) produce stronger upward vertical motions and higher 635 

rainwater production. The w profiles based on the volume maximum graupel mixing 636 

ratio (QG5 and QG7) generate weaker updrafts, especially at low levels, and lower 637 

rainwater mixing ratios. In terms of the precipitation forecast performance (Fig. 14), 638 

the experiments using updraft-based w profiles produce slightly higher scores than 639 

those obtained in RA, while the graupel-based w profiles produce lower scores. It is 640 

not surprising that the mean profile (AVE) produces an improved precipitation 641 
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forecast, as shown by the highest FSS, because this profile accounts for both 642 

dynamical and microphysical contributions. 643 

Fig. 13   644 

 645 

Comparing the vertical distributions of the CON pseudo-observations estimated 646 

from these w profiles (Fig. 4b), the main difference is that the UP10 and UP15 647 

profiles give larger values of convergence at low levels, which can produce larger 648 

low-level dynamical lifting that forces air parcels to reach the condensation level, 649 

resulting in enhanced rainwater production. Compared with UP10 and UP15, the 650 

graupel-based w profiles (QG5 and QG7) have larger convergence values within the 651 

mixed-phase region above the freezing level that support the maintenance of large 652 

ice-phase particles but smaller values of convergence at low levels; these conditions 653 

may not enable the air parcels to be lifted high enough to overcome the convective 654 

inhibition and reach their LFC to form clouds. As a result, the averaged updraft 655 

intensity and rainfall production in QG5 and QG7 are much weaker than those in 656 

UP10 and UP15. The mean w profile, AVE, with moderate low-level and mid-level 657 

convergence, is capable of producing stronger and deeper updrafts as well as higher 658 

rainwater mixing ratios, which contributes to the best FSS for both light and heavy 659 

precipitation, as shown in Fig. 14. 660 

Fig. 14 661 

d. Heavy rainfall case on 16 July 2018 662 

The analyses presented in the previous sections demonstrate the improved 663 

convective analysis fields and forecasts from the new lightning DA scheme. To verify 664 

the robustness of the scheme, another convective case over Beijing is examined using 665 

the same DA and model configurations without changing any of the input parameters. 666 

Influenced by an upper-level shortwave trough and a strong low-level southwest jet, 667 

several convective cells developed along a convergence line over Beijing at 0000 on 668 
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16 July 2018 and gradually merged and grew upscale into a mesoscale convective 669 

system (MCS). The MCS propagated into central Beijing at 0400 and produced 670 

frequent lightning flashes, as shown in Fig. 15. More than half of the ground-based 671 

automatic weather stations distributed over Beijing reported more than 100 mm of 672 

rainfall during the lifespan of the MCS, and several stations even recorded rainfall 673 

over 200 mm. 674 

Fig. 15 675 

 676 

Fig. 16 shows the 1-h forecast of the composite radar reflectivity fields initialized 677 

at 0400. Although CTL is able to produce some of the observed storms, the 678 

convective storm is very limited in regard to its areal coverage (Fig. 16b). The 679 

assimilation of radar data improves the forecast of the southern portion of the MCS; 680 

however, the convection over northeastern Beijing is very weak (black arrow in Fig. 681 

16c). With another 1 h of integration, only a single convective cell forms in 682 

northeastern Beijing (not shown). The additional assimilation of LMI lightning data 683 

enhances the low-level convergence and increases the convection intensity on the 684 

northeastern border of Beijing (Fig. 16d), producing a rainfall area with higher than 685 

30 dBZ reflectivity similar to the observations. Consistent with the squall line case 686 

analyzed above, RALN outperforms RA and CTL in terms of the FSS of the 687 

composite radar reflectivity and produces higher POD and CSI for different 688 

thresholds (Fig. 17). 689 

Fig. 16 690 

 691 

Fig. 17 692 

Fig. 18 shows a comparison of the 3-h accumulated precipitation among the CTL, 693 

RA, and RALN experiments initialized at 0400 on 16 July 2018. The observed 694 

rainfall structure consists mainly of two precipitation areas located near the 695 

northeastern (black arrow in Fig. 18a) border of Beijing and to the east (red arrow) of 696 
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Beijing. A thin rainband is forecasted to the east of Beijing in CTL, but the overall 697 

precipitation coverage is significantly smaller than the observations, and the rainfall 698 

area near the northeastern border of Beijing is largely missed (Fig. 18b). The 699 

assimilation of reflectivity and radial wind observations in RA broadens the 700 

precipitation coverage by more than 3.2 mm compared with CTL, and the heavier 701 

rainfall to the east of Beijing shows a two-band structure (red arrow in Fig. 18c), 702 

similar to the observed structure. Comparing RALN with RA, we found that the 703 

two-band rainfall to the east of Beijing is well captured in both experiments; however, 704 

a clear difference occurs near the northeastern border of Beijing, where heavier 705 

rainfall is forecasted in RALN (Fig. 18d), which agrees well with the observations. 706 

Fig. 18 707 

 708 

The verification statistics shown in Fig. 19 are consistent with those for the 13 709 

July 2017 squall case. The extra kinematic information from lightning data produces 710 

better FSS and higher POD and SR in RALN than in RA and CTL. Overall, the 711 

assimilation of LMI lightning data in conjunction with radar data shows positive 712 

impact on the short-term forecasts of convective precipitation. Similar to the squall 713 

line case, the enhanced low-level convergence via lightning DA directly forms 714 

updrafts at lightning observation locations (not shown here), which accelerates the 715 

precipitation process and results in improved precipitation forecasts. 716 

Fig. 19 717 

6. Summary and conclusions 718 

The strong connection between the total lightning flash rate and storm updraft 719 

has been confirmed both by field observations and by numerical studies. In this study, 720 

we showed that such a relationship could be used in the assimilation of space-borne 721 

lightning data to provide important convective-scale kinematic information for model 722 

initialization. We presented a lightning data assimilation scheme that was developed 723 
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in the WRFDA 3DVar system to update model kinematic states. This scheme 724 

combines total lightning observations and model-based prescribed vertical velocity 725 

conditions to retrieve useful kinematic information for convective-scale DA. 726 

Specifically, the magnitudes of column-maximum updrafts (wmax) are derived from 727 

the total lightning observations mainly following the idea of the PR92 lightning 728 

parameterization scheme. A prescribed profile from model forecast data providing the 729 

vertical distribution of the vertical velocity w enables the wmax information to spread 730 

out over the whole grid column to create pseudo-w observations. Since WRFDA 731 

3DVar utilizes the horizontal wind components u and v as its momentum control 732 

variables, the derived w fields are converted into pseudo-horizontal convergence 733 

observations based on the mass continuity equation. An observation term 734 

corresponding to the lightning-derived convergence is incorporated into the total cost 735 

function of 3DVar. 736 

Considering the proven role of radar observations in convective-scale data 737 

assimilation, we evaluated the impact of the assimilation of lightning data in addition 738 

to radar data, in order to examine whether assimilating the derived kinematic 739 

information from the total lightning observations adds any value to the current radar 740 

DA in 3DVar. A series of single observation tests were conducted first to illustrate the 741 

impact of assimilating two different types of kinematic observations, namely, the 742 

radar radial velocity and pseudo-lightning-derived convergence. The results showed 743 

that the combined assimilation of radar radial velocity and lightning-derived 744 

pseudo-convergence observations could effectively enhance low- and mid-level wind 745 

convergence and reduce the errors between the observations and model background 746 

compared to assimilating either data type alone. 747 

After confirming the feasibility of the lightning DA scheme to update model 748 

kinematic states with single observation tests, real case studies were performed. A 749 

squall line event that occurred over Beijing in 2017 was used to illustrate the positive 750 

impact of assimilating space-borne LMI observations in addition to radar observations 751 
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on improving model analysis and storm forecasting. Three experiments, namely, 752 

assimilating neither radar nor lightning data (CTL), assimilating radar data only (RA), 753 

and assimilating both radar and lightning data (RALN), were conducted. The results 754 

showed that the new lightning DA scheme in conjunction with the assimilation of 755 

radar data produced improved precipitation forecasts compared to the radar DA only 756 

experiment. We further showed that the extra kinematic information from lighting 757 

data could effectively reduce model wind errors and enhance low-level convergence. 758 

Provided thermodynamic and microphysical fields identical to those in RA through 759 

the assimilation of reflectivity data, the assimilation of lightning-derived convergence 760 

observations in RALN enhanced the updrafts at lightning observation locations, 761 

which could in turn increase the upward transport of low-level moisture and 762 

accelerate rainwater production. Our quantitative verification of the performance of 763 

short-term convective forecasts showed that the lightning DA added value to the radar 764 

DA by improving the precipitation forecast skill over the assimilation of radar data 765 

alone experiment. The new lightning DA scheme was further applied to a heavy 766 

rainfall case in 2018, and the results confirmed the effective and robust improvement 767 

in storm forecasting. 768 

Our study demonstrated that lightning observations such as those from 769 

space-borne lightning imagers can complement current radar observational networks, 770 

allowing us to better resolve the nature of clouds when used together. The combined 771 

assimilation scheme can be further improved in the future. Using data from different 772 

sources together can also potentially help improve quality control and the 773 

quantification of observation errors. For example, one issue that deserves future 774 

research is to develop a method to account for signal attenuation in space-borne 775 

lightning detection by optically deep clouds, which is not considered in the current 776 

study. One possible approach is to determine whether signal attenuation occurs using 777 

the vertical distribution of radar reflectivity. With an aim to provide more balanced 778 

initial fields, the combined assimilation of radar and lightning data can also be 779 
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improved by employing lightning information in the radar reflectivity-based humidity 780 

or latent heat adjustment scheme. For example, the moisture insertion with reference 781 

to electrical states of thunderstorms is plausible to acquire small-scale water vapor 782 

variations (Fierro et al. 2019; Hu et al. 2020). A “drying” procedure could be 783 

developed to balance the moisture adjustment and reduce spurious convection by 784 

cooperating radar data (Gao et al. 2018) and lightning observations. Furthermore, the 785 

performance of the combined assimilation of radar and lightning data can be further 786 

studied with more advanced 4DVar assimilation techniques that employ dynamical 787 

model constraints (Wang et al. 2013b). 788 
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Figure Captions： 970 

Fig. 1 Topography of northern China (color, unit: km) and locations (blue crosses) 971 

of the six radar stations distributed around Beijing with their coverage (orange circles) 972 

 973 

Fig. 2 Schematic diagram of the calculation of the LMI event density (LED) in 974 

the WRF model Cartesian grid. The pixel resolution of the LMI event product is 7.8 975 

km, the search radius R is set to 5 km, and the number of 15-min binned LMI 976 

lightning events at each model grid is counted as the LED. For example, suppose the 977 

horizontal grid spacing (dx) is 2 km here; the LED for the green, orange, red and blue 978 

grids are 4, 6, 3 and 1, respectively 979 

 980 

Fig. 2 Schematic diagram of the calculation of the LMI event density (LED) in 981 

the WRF model Cartesian grid. The pixel resolution of the LMI event product is 7.8 982 

km, the search radius R is set to 5 km, and the number of 15-min binned LMI 983 

lightning events at each model grid is counted as the LED. For example, suppose the 984 

horizontal grid spacing (dx) is 2 km here; the LED for the green, orange, red and blue 985 

grids are 4, 6, 3 and 1, respectively 986 

 987 

Fig. 3 Cumulative distribution function of the 15-min binned LMI event density 988 

 989 

Fig. 4 (a) Profiles of the normalized vertical velocity w under different 990 

convective scenarios and (b) convergence profiles corresponding to the w profiles 991 

calculated via the mass continuity equation. UP 10 and UP15 represent the profiles 992 

with maximum updraft intensities (upmax) over 10 m s
-1

 and 15 m s
-1

, respectively, 993 

QG5 and QG7 represent the profiles with maximum graupel mixing ratios (qgmax) 994 

over 5 g kg
-1

 and 7 g kg
-1

, respectively, and AVE represents the averaged profile using 995 

all the vertical velocity w fields of the four convective scenarios. (c) Vertical 996 

distributions of the standard deviation and mean of the CON pseudo-observations 997 
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 998 

Fig. 5 Analysis increments in the wind field (vector: m s
-1

, and the magnitude of 999 

reference wind is 0.3 m s
-1

) and horizontal wind convergence field (color: 10
-3

 s
-1

) for 1000 

the single observation tests at 700 hPa: (a) RA, (b) LN and (c) RALN 1001 

 1002 

Fig. 6 (a) Composite radar reflectivity (unit: dBZ) at 2000 on 13 July 2017 and 1003 

(b) LMI lightning event density (unit: 15 min
-1

) from the LMI between 1945 and 2000. 1004 

The brown contour lines denote the 25-dBZ and 45-dBZ contour lines. The dashed 1005 

purple line denotes the 400-m terrain elevation 1006 

 1007 

Fig. 7 (a-b) FSS of the hourly accumulated precipitation and (c-d) performance 1008 

diagrams for each of the first three forecast hours with thresholds of 2.5 mm (left 1009 

column) and 15 mm (right column) for the CTL (yellow), RA (green), LN (blue) and 1010 

RALN (red) experiments initialized at 2000 on 13 July 2017. The results are shown 1011 

for a neighborhood radius of 10 km. In the performance diagrams, the horizontal axis 1012 

represents the success ratio (SR), the vertical axis represents the probability of 1013 

detection (POD), the magenta lines represent the critical success index (CSI), the 1014 

black dashed lines represent the frequency bias (FR), and the numbers inside the solid 1015 

circles represent the forecast hour 1016 

 1017 

Fig. 8 Hourly accumulative precipitation (color, unit: mm) during the (a-e) 1
st
 1018 

and (f-j) 2
nd

 forecasting hour initialized at 2000 on 13 July 2017 for the radar QPE 1019 

observations (1
st
 column) and for the CTL (2

nd
 column), RA (3

rd
 column), LN (4

th
 1020 

column) and RALN (5
th 

column) experiments. The dashed purple line denotes the 1021 

400-m terrain elevation 1022 

 1023 

Fig. 9 Wind fields (vectors, the magnitude of the reference wind is 12 m s
-1

) and 1024 

wind convergence fields (color: 10
-3

 s
-1

) for the (a-b) CTL, (c-d) RA and (e-f) RALN 1025 
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experiments at 700 hPa (left) and 500 hPa (right) at 2000 on 13 July 2017. The solid 1026 

magenta contour lines (starting at 2 g kg
-1

 with an interval of 2 g kg
-1

) denote the 1027 

increments in the water vapor mixing ratios in RA and RALN. The long dashed red 1028 

line denotes the location of the observed squall line, and the short purple line denotes 1029 

the 400-m terrain elevation 1030 

 1031 

Fig. 10 Wind vector difference (vectors, the magnitude of the reference wind is 1032 

12 m s
-1

) and convergence difference (color: 10
-3

 s
-1

) between (a) RALN and CTL and 1033 

(b) between RALN and RA at 700 hPa at 2000 on 13 July 2017. The long dashed red 1034 

line denotes the location of the observed squall line, and the short purple line denotes 1035 

the 400-m terrain elevation 1036 

 1037 

Fig. 11 (a-c) Vertical velocity w (color, unit: m s
-1

) at 700 hPa superimposed by 1038 

the 850-hPa horizontal wind field (vectors, the magnitude of the reference wind is 10 1039 

m s
-1

), (d-f) layer-averaged water vapor mixing ratio (color, unit: g kg
-1

) and rainwater 1040 

mixing ratio (contour lines with values of 0.1 g kg
-1

) between 700 hPa and 500 hPa, 1041 

and (g-i) horizontal distribution of the maximum convective available potential 1042 

energy (color, unit: J kg
-1

) for the CTL (left), RA (center) and RALN (right) 1043 

experiments at 2006 on 13 July 2017 1044 

 1045 

Fig. 12 RMSE of the (a) radial velocity verified against the Beijing Nanyuan 1046 

Doppler radar observations and of the (b) wind components, temperature and water 1047 

vapor mixing ratio compared with surface METAR observations 1048 

 1049 

Fig. 13 Averaged vertical velocity profile (a) over the inner domain and (b) over 1050 

lightning regions and the (c) rainwater mixing ratio profile over lightning regions for 1051 

the 1
st
 hour forecasts during 2000-2100 on 13 July 2017 1052 

 1053 
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Fig. 14 FSS of the 1
st
 hour accumulated precipitation forecasts during 2000-2100 1054 

on 13 July 2017 with thresholds of (a) 2.5 and (b) 15 mm for all sensitivity 1055 

experiments  1056 

 1057 

Fig. 15 (a) Composite radar reflectivity (unit: dBZ) at 0400 on 16 July 2018 and 1058 

(b) LMI lightning event density (unit: 15 min
-1

) from the LMI between 0345 and 0400 1059 

 1060 

Fig. 16 Composite radar reflectivity (colors, unit: dBZ) of the (a) radar 1061 

observations (OBS) and the (b) CTL, (c) RA, and (d) RALN experiments at 0500 on 1062 

16 July 2018 1063 

 1064 

Fig. 17 Same as Fig. 7 but for the composite reflectivity fields initialized at 0400 1065 

on 16 July 2018 relative to radar observations with thresholds of 30 dBZ (left column) 1066 

and 40 dBZ (right column) 1067 

 1068 

Fig. 18 Three-hour accumulative precipitation forecasts (color, unit: mm) 1069 

initialized at 0400 on 16 July 2018 for (a) the radar QPE observations and for the (b) 1070 

CTL, (c) RA and (d) RALN experiments 1071 

 1072 

Fig. 19 Same as Fig. 7 but for the hourly accumulated precipitation initialized at 1073 

0400 on 16 July 2018 relative to radar observations with thresholds of 2.5 mm (left 1074 

column) and 15 mm (right column) 1075 

 1076 

 1077 

  1078 

1079 
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Table 1. Ranges of the LMI event density and corresponding maximum vertical 1080 

velocity wmax 1081 

LMI Event Density (15 min
-1

) wmax (m s
-1

) 

2-12 5 

13-22 8 

23-42 12 

43- 15 

 1082 

1083 
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Table 2. List of single observation tests. In the first row, “CON” stands for the 1084 

convergence value (unit: 10
-3

 s
-1

), “RV” stands for the radar radial velocity (unit: m 1085 

s
-1

), and the superscripts “obs”, “omb” and “oma” stand for the single observation 1086 

value, its corresponding innovation (observation minus background), and its residual 1087 

(observation minus analysis), respectively, in each type of single observation 1088 

Test CON
obs

 CON
omb

 CON
oma

 RV
obs

 RV
omb

 RV
oma

 

RA / / / -7.691 -3.147 -0.493 

LN -0.557 -0.702 -0.589 / / / 

RALN -0.557 -0.702 -0.584 -7.691 -3.147 -0.489 

 1089 

1090 
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 1091 

 1092 

Fig. 1 Topography of northern China (color, unit: km) and locations (blue crosses) of 1093 

the six radar stations distributed around Beijing with their coverage (orange circles) 1094 

1095 



 

45 

 

 1096 

 1097 

Fig. 2 Schematic diagram of the calculation of the LMI event density (LED) in the 1098 

WRF model Cartesian grid. The pixel resolution of the LMI event product is 7.8 km, 1099 

the search radius R is set to 5 km, and the number of 15-min binned LMI lightning 1100 

events at each model grid is counted as the LED. For example, suppose the horizontal 1101 

grid spacing (dx) is 2 km here; the LED for the green, orange, red and blue grids are 1102 

4, 6, 3 and 1, respectively 1103 

1104 
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 1105 

Fig. 3 Cumulative distribution function of the 15-min binned LMI event density 1106 

1107 
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 1108 

Fig. 4 (a) Profiles of the normalized vertical velocity w under different convective 1109 

scenarios and (b) convergence profiles corresponding to the w profiles calculated via 1110 

the mass continuity equation. UP 10 and UP15 represent the profiles with maximum 1111 

updraft intensities (upmax) over 10 m s
-1

 and 15 m s
-1

, respectively, QG5 and QG7 1112 

represent the profiles with maximum graupel mixing ratios (qgmax) over 5 g kg
-1

 and 7 1113 

g kg
-1

, respectively, and AVE represents the averaged profile using all the vertical 1114 

velocity w fields of the four convective scenarios. (c) Vertical distributions of the 1115 

standard deviation and mean of the CON pseudo-observations 1116 

1117 
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 1118 

Fig. 5 Analysis increments in the wind field (vector: m s
-1

, and the magnitude of 1119 

reference wind is 0.3 m s
-1

) and horizontal wind convergence field (color: 10
-3

 s
-1

) for 1120 

the single observation tests at 700 hPa: (a) RA, (b) LN and (c) RALN 1121 

1122 
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 1123 

Fig. 6 (a) Composite radar reflectivity (unit: dBZ) at 2000 on 13 July 2017 and (b) 1124 

LMI lightning event density (unit: 15 min
-1

) from the LMI between 1945 and 2000. 1125 

The brown contour lines denote the 25-dBZ and 45-dBZ contour lines. The dashed 1126 

purple line denotes the 400-m terrain elevation 1127 

1128 
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 1129 

Fig. 7 (a-b) FSS of the hourly accumulated precipitation and (c-d) performance 1130 

diagrams for each of the first three forecast hours with thresholds of 2.5 mm (left 1131 

column) and 15 mm (right column) for the CTL (yellow), RA (green), LN (blue) and 1132 

RALN (red) experiments initialized at 2000 on 13 July 2017. The results are shown 1133 

for a neighborhood radius of 10 km. In the performance diagrams, the horizontal axis 1134 

represents the success ratio (SR), the vertical axis represents the probability of 1135 

detection (POD), the magenta lines represent the critical success index (CSI), the 1136 

black dashed lines represent the frequency bias (FR), and the numbers inside the solid 1137 

circles represent the forecast hour 1138 

1139 
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 1140 

Fig. 8 Hourly accumulative precipitation (color, unit: mm) during the (a-e) 1
st
 and (f-j) 1141 

2
nd

 forecasting hour initialized at 2000 on 13 July 2017 for the radar QPE 1142 

observations (1
st
 column) and for the CTL (2

nd
 column), RA (3

rd
 column), LN (4

th
 1143 

column) and RALN (5
th 

column) experiments. The dashed purple line denotes the 1144 

400-m terrain elevation 1145 

1146 
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 1147 

Fig. 9 Wind fields (vectors, the magnitude of the reference wind is 12 m s
-1

) and wind 1148 

convergence fields (color: 10
-3

 s
-1

) for the (a-b) CTL, (c-d) RA and (e-f) RALN 1149 

experiments at 700 hPa (left) and 500 hPa (right) at 2000 on 13 July 2017. The solid 1150 

magenta contour lines (starting at 2 g kg
-1

 with an interval of 2 g kg
-1

) denote the 1151 

increments in the water vapor mixing ratios in RA and RALN. The long dashed red 1152 

line denotes the location of the observed squall line, and the short purple line denotes 1153 

the 400-m terrain elevation 1154 

1155 
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 1156 

Fig. 10 Wind vector difference (vectors, the magnitude of the reference wind is 12 m 1157 

s
-1

) and convergence difference (color: 10
-3

 s
-1

) between (a) RALN and CTL and (b) 1158 

between RALN and RA at 700 hPa at 2000 on 13 July 2017. The long dashed red line 1159 

denotes the location of the observed squall line, and the short purple line denotes the 1160 

400-m terrain elevation 1161 

1162 
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 1163 

Fig. 11 (a-c) Vertical velocity w (color, unit: m s
-1

) at 700 hPa superimposed by the 1164 

850-hPa horizontal wind field (vectors, the magnitude of the reference wind is 10 m 1165 

s
-1

), (d-f) layer-averaged water vapor mixing ratio (color, unit: g kg
-1

) and rainwater 1166 

mixing ratio (contour lines with values of 0.1 g kg
-1

) between 700 hPa and 500 hPa, 1167 

and (g-i) horizontal distribution of the maximum convective available potential 1168 

energy (color, unit: J kg
-1

) for the CTL (left), RA (center) and RALN (right) 1169 

experiments at 2006 on 13 July 2017 1170 

1171 
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 1172 

 1173 

Fig. 12 RMSE of the (a) radial velocity verified against the Beijing Nanyuan Doppler 1174 

radar observations and of the (b) wind components, temperature and water vapor 1175 

mixing ratio compared with surface METAR observations 1176 

1177 
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 1178 

Fig. 13 Averaged vertical velocity profile (a) over the inner domain and (b) over 1179 

lightning regions and the (c) rainwater mixing ratio profile over lightning regions for 1180 

the 1
st
 hour forecasts during 2000-2100 on 13 July 2017 1181 

1182 
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 1183 

Fig. 14 FSS of the 1
st
 hour accumulated precipitation forecasts during 2000-2100 on 1184 

13 July 2017 with thresholds of (a) 2.5 and (b) 15 mm for all sensitivity experiments  1185 

1186 
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 1187 

Fig. 15 (a) Composite radar reflectivity (unit: dBZ) at 0400 on 16 July 2018 and (b) 1188 

LMI lightning event density (unit: 15 min
-1

) from the LMI between 0345 and 0400 1189 

1190 
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 1191 

Fig. 16 Composite radar reflectivity (colors, unit: dBZ) of the (a) radar observations 1192 

(OBS) and the (b) CTL, (c) RA, and (d) RALN experiments at 0500 on 16 July 2018 1193 

1194 
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 1195 

Fig. 17 Same as Fig. 7 but for the composite reflectivity fields initialized at 0400 on 1196 

16 July 2018 relative to radar observations with thresholds of 30 dBZ (left column) 1197 

and 40 dBZ (right column) 1198 

1199 
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 1200 

Fig. 18 Three-hour accumulative precipitation forecasts (color, unit: mm) initialized at 1201 

0400 on 16 July 2018 for (a) the radar QPE observations and for the (b) CTL, (c) RA 1202 

and (d) RALN experiments 1203 

1204 
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 1205 

Fig. 19 Same as Fig. 7 but for the hourly accumulated precipitation initialized at 0400 1206 

on 16 July 2018 relative to radar observations with thresholds of 2.5 mm (left column) 1207 

and 15 mm (right column) 1208 

  1209 


