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Abstract

We evaluated the performance of three global evapotranspiration (ET) models using the multiple sets of LAI and meteorological

data from 1982 to 2017, and investigated the uncertainty in ET simulations from the model structure and forcing data. The

three ET models were the Simple Terrestrial Hydrosphere model (SiTH), Priestly-Taylor Jet Propulsion Laboratory model (PT-

JPL ) and MODIS ET algorithm (MOD16). Comparing the observed with simulated monthly ET by the three models over 43

Fluxnet sites, we found that SiTH overestimates ET for forests, but it performed better than the other two models over short

vegetation. MOD16 and PT-JPL models performed well for forests, but poorly in dryland biomes. At the catchment scale, all

models perform well expect over some tropical and high latitudinal catchments. At the global scale, SiTH highly overestimated

ET in tropics, while PT-JPL underestimated ET between 30°N and 60°N and MOD16 underestimated ET between 15°S and

30°S. This study also revealed that the estimated ET by PT-JPL were largely influenced by the uncertainty in meteorological

data, while the estimated ET by SiTH and MOD16 were relatively non-sensitive to the forcing data sets. In addition, the results

suggested that the long-term variations in estimated ET trend were greatly influenced by the uncertainty in LAI data.
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Abstract:26

We evaluated the performance of three global evapotranspiration (ET) models27

using the multiple sets of LAI and meteorological data from 1982 to 2017, and28

investigated the uncertainty in ET simulations from the model structure and forcing29

data. The three ET models were the Simple Terrestrial Hydrosphere model (SiTH),30

Priestly-Taylor Jet Propulsion Laboratory model (PT-JPL ) and MODIS ET algorithm31

(MOD16). Comparing the observed with simulated monthly ET by the three models32

over 43 Fluxnet sites, we found that SiTH overestimates ET for forests, but it33

performed better than the other two models over short vegetation. MOD16 and34

PT-JPL models performed well for forests, but poorly in dryland biomes. At the35

catchment scale, all models perform well expect over some tropical and high36

latitudinal catchments. At the global scale, SiTH highly overestimated ET in tropics,37

while PT-JPL underestimated ET between 30°N and 60°N and MOD1638

underestimated ET between 15°S and 30°S. This study also revealed that the39

estimated ET by PT-JPL were largely influenced by the uncertainty in meteorological40

data, while the estimated ET by SiTH and MOD16 were relatively non-sensitive to41

the forcing data sets. In addition, the results suggested that the long-term variations in42

estimated ET trend were greatly influenced by the uncertainty in LAI data.43

Key words: Evapotranspiration; LAI; Uncertainty; SiTH; MOD16; PT-JPL44
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1. Introducation48

Global terrestrial evapotranspiration (ET) is an important nexus between land49

surface, vegetation and atmosphere, and accurately estimating global land ET is of50

great significance to study global hydrological cycle, energy exchange, carbon cycle51

and climate change (Trenberth et al., 2009; Wang and Dickinson, 2012; Fisher et al.,52

2008; Jung et al., 2010; Miralles et al., 2014). With the rapid developments in remote53

sensing, numerous global ET models have been developed in recent decades (Norman54

et al.,1995; Bastiaanssen et al., 1998; Su, 2002; Cleugh et al., 2007; Mu et al., 2007,55

2011; Fisher et al., 2008; Leuning et al., 2008; Jung et al., 2009; Zhang et al., 2010;56

Miralles et al., 2011; Zhu et al., 2019). In the framework of energy balance theory, the57

majority of these models use the Penman-Monteith equation (P-M equation)58

(Monteith, 1965) or the Priestley-Taylor approach (P-T approach) (Priestley and59

Taylor, 1972) to estimate ET. For instance, MOD16 which is the core algorithm of60

NASA's MODIS evapotranspiration product uses the P-M equation to simulate global61

ET (Mu et al., 2011). Fisher et al. (2008) proposed a simple, less data-driven and62

accurate ET model (PT-JPL) to estimate ET on basis of P-T approach. Recently, Zhu63

et al. (2019) developed a Simple Terrestrial Hydrosphere model (SiTH) to estimate ET64

based on the P-T approach and the groundwater-soil-plant-atmosphere continuum65

(GSPAC) theory. These models have been widely used to study regional or global66

hydrological cycles (Vinukollu et al., 2011a,b; Long et al., 2014; Ramoelo et al., 2014;67

Ershadi et al., 2014, 2015; Zhang et al., 2019; Hu et al., 2015; Michel et al., 2016;68

Miralles et al., 2016).69
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Despite these progresses in model developments, there are still some70

insufficiencies in systematic inter-comparisons and evaluations of the model71

performances. First, there is a lack of systematic assessments of the impact of forcing72

data uncertainties on model performances. As we known, both the vegetation73

characteristics (LAI) and meteorological variables (i.e., radiation, temperature,74

precipitation, humidity and air pressure) may have significant influences on model75

behaviors. For example, LAI can influence the amount of absorbed solar radiation and76

its distributions between plant canopy and soil surface, which ultimately have77

significant influences on plant transpiration and soil evaporation (Good et al., 2015;78

Wang et al., 2014; Wei et al., 2017; Kala et al., 2014). The meteorological conditions79

(i.e., temperature, humidity and wind speed) regulate the atmospheric evaporation80

demand, which may have a significant influence on ET as the result of global change81

(Jung et al., 2010; Zhang et al., 2016; Zeng et al., 2018). Over the past 30 years, it has82

been well documented that there is a constant increase in LAI (Earth greening) (Chen83

et al., 2019; Jiang et al., 2017; Zhu et al., 2016), and continuous increasing in land84

temperature (IPCC, 2018). However, the increasing magnitude and their distributions85

in different LAI and meteorological datasets were also large (Jiang et al., 2017; Jia et86

al., 2018; Vinukollu et al., 2011b). Thus, it’s urgently needed to evaluate the impacts87

of the forcing data uncertainties on the estimates of ET. Second, the majority of88

previous studies have focused on evaluating the performances of one specific model89

over different sites or inter-comparing the performances of different models at single90

(or a few) locations. For example, Zhang et al. (2019) evaluated the performance of91
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the PT-JPL over 43 Fluxnet sites. Ershadi et al. (2014) systemtically compared the92

performances of four ET models over different sites and boimes. To select the best93

candidate ET model for global applications, it is needed to comprehensively evaluate94

and intercompare the performances of different models at different (local, regional95

and global) spatial scales across different biomes and climate conditions. Third, there96

are still great uncertainties in the long-term changes in ET over the past few decades.97

For instance, some studies reported that global land ET increased from 1982 to 199898

and then there is a sharp decline until to 2008 (Jung et al., 2010; Zhang et al., 2015;99

Zhang et al., 2016; Yan et al., 2013). Others studies suggested that an upward trend is100

observed from 1982 to 2000 and an obvious recovery in ET may have started from101

2007 (Mueller et al., 2013; Miralles et al., 2014). To clearly describe the multi-decadal102

trend in global terrestrial ET, we need to simulate ET using different models with103

multiple forcing datasets. So that we can properly assess the influences of model104

structures and forcing data uncertainties on long-term trend of land ET.105

In this study, we intercompare the performances of three process-based ET106

models (MOD16, PT-JPL and SiTH) at different spatial scales, and obtain a long-term107

trend of ET based on different combinations of LAI and meteorological datasets.108

Specifically, the goal of this study is to (i) evaluate the performance of three109

process-based models from local to regional and global scales using different forcing110

datasets, (ii) analyse the uncertainties due to different model structure and111

parameterizations, and (iii) explore the uncertainty of long-term temporal ET trend in112

response to climate change and LAI increasing.113
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2. Methods and data114

2.1 Models115

The SiTH model proposed by Zhu et al. (2019) is a relatively new satellite-based116

ET model at daily temporal resolution. Based on the framework of the117

groundwater-soil-plant-atmosphere continuum (GSPAC), SiTH uses well-established118

hydrological models to simulate important hydrological variables (i.e., groundwater,119

soil moisture, and runoff). Then, the potential evapotranspiration calculated by using120

P-T equation was constrained down to actual ET through the plant physiological121

factor and soil moisture conditions. In SiTH, the total ET consists of canopy122

interception evaporation, soil evaporation and vegetation transpiration. Soil123

evaporation is constrained to occur in the first soil layer, while plant transpiration can124

use both soil water and groundwater.125

The MOD16 model, which was proposed by Mu et al. (2007; 2011), estimated126

ET based on the P-M equation to calculate potential evaporation (Penman and127

Menteith, 1948). It distributes the available energy into the components of surface soil128

and vegetation through fractional total vegetation cover. Then, the soil evaporation129

includes the evaporation from the saturated soil surface and the moist soil surface.130

Furthermore, canopy water loss includes evaporation from the wet canopy surface and131

transpiration from the dry surface. Finally, it limits potential ET to actual ET through132

vegetation physiological factors and meteorological factors. In MOD16,133

evapotranspiration is equal to the sum of wet canopy evaporation, vegetation134

transpiration, and bare soil evaporation at day-time and nighttime periods.135
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PT-JPL is a relatively simple (input data and parameters are reduced), accurate136

model for estimating actual ET (Fisher et al., 2008; Ershadi et al., 2014; Miralles et al.,137

2016; Zhang et al., 2017). First, PT-JPL estimates potential evapotranspiration based138

on the P-T equation (Pristley and Taylor, 1972). Then, plant physiological and139

ecological constraints (i.e., LAI, green canopy ratio, vegetation temperature and140

vegetation moisture) are used to limit potential plant transpiration and atmospheric141

constraints (vapour pressure deficit and relative humidity) to limit potential soil142

evaporation to actual ET. PT-JPL divides the actual evapotranspiration into three143

components: canopy transpiration, soil evaporation and interception evaporation.144

2.2 Input data145

The input data of the above three models includes leaf area index (LAI), net146

radiation (Rn), air temperature (Ta), precipitation (P), air pressure (Pa), relative147

humidity (RH) and land cover (LC) (Supplementary Table 1). To investigate the148

influences of vegetation and meteorological variables on ET estimations, three sets of149

LAI data and two sets of meteorological data were used in this study.150

The three long-term LAI products are GLOBMAP (Liu et al., 2012), GLASS151

(Xiao et al., 2016), and GIMMS LAI3g (Zhu et al., 2013). The GLOBMAP LAI is152

generated in 8 km and 16-day/8-day resolution from 1981 to 2017, produced by using153

Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution154

Imaging Spectroradiometer (MODIS) satellite data, and it can be accessed from155

http://www.globalmapping.org/. The GLASS product is provided in 0.05° and 8 daily156

and 1 km resolution spanning from 1982 to 2000 (Xiao et al., 2016), produced by157
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NASA’s Long Term Data Record (LTDR) project using NOAA/AVHRR surface158

reflectance datasets (http://www.glcf.umd.edu/). The GIMMS LAI3g product (version159

01) is generated at 1/12° spatial resolution from 1982 to 2011160

(http://sites.bu.edu/cliveg/datacodes/; Zhu et al., 2013), based on feed-forward neural161

networks.162

Two sets of meteorological reanalysis data based on observational data retrieval163

and assimilation are used in this study. The first one is the Modern-Era Retrospective164

analysis for Research and Applications Version 2 (MERRA-2) from NASA’s Global165

Modeling and Assimilation Office (https://disc.sci.gsfc.nasa.gov/) (Bosilovich et al.,166

2016). It provides near-surface air pressure and temperature, specific humidity,167

precipitation, and net radiation at a spatial resolution of 0.5°×0.625° on hourly168

temporal resolution from 1982 to 2017. The second is the latest ERA-5 produced by169

European Centre for Medium-Range Weather Forecast (ECMWF)170

(https://cds.climate.copernicus.eu/). This dataset includes near-surface air pressure171

and temperature, dew point temperature, precipitation, and net radiation spanning172

1982 to 2017 at a spatial resolution of 31km and an hour temporal resolution173

(Hersbach et al., 2016). In addition, we use static land cover data from MCD12C1 in174

2001 (Friedl et al., 2010), because its changes are relatively small on a global scale175

with time (Zhang et al., 2016). All driving data was interpolated to a 0.25°×0.25°176

spatial resolution based on the non-linear spatial interpolation method (Zhao et al.,177

2005). A total of 18 ensembles ET products are obtained from the three ET models178

with different combinations of inputs data (Supplementary Table 2).179

https://cds.climate.copernicus.eu/
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2.3 Data used for evaluation180

At the local scale, the FLUXNET 2015 (https:// fluxnet.fluxdata.org) from global181

network of eddy-covariance towers was used for model evaluations (Fisher et al.,182

2008; Mu et al., 2007, 2011; Zhang et al., 2017; Ershadi et al., 2014). Here, a total of183

43 flux sites were selected to cover a wide range of biomes with the energy closure184

ranging from 70% to 90%. These sites can be divided into 7 different vegetation types185

on the basis of the IGBP classification, and included the cropland (CRO, 7 sites),186

deciduous broad-leaved forest (DBF, 4 sites), evergreen broad-leaved forest (EBF, 5187

sites), evergreen coniferous forest (ENF, 8 sites), the grass (GRA ,13 sites), the mixed188

forest (MF, 2sites) and open shrubland (OSH ,4 sites) (Figure 1).189

At the catchment scale, the water balance dataset for 32 major (i.e., >200,000190

km2) river catchments developed by Pan et al. (2012) was used to evaluate the model191

performance at regional scale (Supplementary Table 3). This dataset is considered to192

be the best available water budget dataset (Li et al., 2013; Zeng et al., 2015; Zhang et193

al., 2017), and includes monthly precipitation, ET, streamflow, and the change in194

water storage from 1984 to 2006.195

At the global scale, the Model tree ensembles (MTE) product (Jung et al., 2009)196

spans from 1982-2011 at monthly temporal resolution and 0.5° spatial resolution. The197

MTE model integrates observed ET at the FLUXNET sites with satellite remote198

sensing and surface meteorological data in a machine-learning algorithm. It is widely199

used for the comparison and verification of model performances (Miralles et al., 2014;200

Zhang et al., 2016; Zhu et al., 2019). The Global Land Evaporation Amsterdam Model201
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(GLEAM) calculates ET from satellite observations based on the P-T equation202

(Miralles et al., 2011), and performed well in ET estimated (Miralles et al., 2011;203

Michel et al., 2016).204

2.4 Analysis method205

The statistical measures used to evaluate model performance include the coefficient206

of determination (R2), slope and the Nash-Sutcliffe efficiency coefficient (NSE) (Nash207

and Sutcliffe, 1970; Legates and McCabe, 1999). The NSE is a normalized statistic208

that determines the relative magnitude of the residual variance compared to the209

measured data variance. It wascomputed as:210
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where O(t) is the observed ET, S(t) is the simulated ET, and Ō is the mean of observed212

values. NSE values range between -∞ to 1. When the NSE values is closer to 1, the213

simulation is better.214

3. Results215

3.1 Model evaluation at local scale216

The model performances on estimating monthly ET driving by different inputs217

data were compared with the observations from 43 Fluxnet sites (Figure 2). The SiTH218

model overestimates ET when using all the forcing datasets. The linear regression219

slope between observed and simulated ET ranges from 1.18 to 1.25, especially for the220

MERRA-2 (slope=1.23~1.25). The correlation coefficients (R2) of SiTH are highest221

(greater than 0.73) among the three models, suggesting that the estimated ET by SiTH222
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agreed better with the observed ET. When the same LAI data is used, the estimated223

ET by SiTH using ERA-5 data is better than that using MERRA-2 data. On the224

contrary, when the same meteorological data was used, there were small differences in225

simulated ET between different LAI datasets. Thus, it seemed that the influences of226

the meteorological data on the performances of SiTH is larger than that of the LAI227

data. For MOD16 model, it performed relatively well in simulating ET by using228

different forcing data with the regression slopes close to 1 (slope=0.92~1.0).229

Importantly, it seemed that the differences in forcing data have small influences on the230

performances of MOD16 model. However, the correlation coefficients (R2) between231

observed and simulated ET by MOD16 is generally lower than the other models,232

indicating the consistencies between estimated and observed ET were relatively low233

for MOD16, especially using GLOBMAP LAI data (R2=0.55) (Figures 2a, b). For234

PT-JPL model, its performances using MERRA-2 (slope=0.97~0.99, R2=0.70~0.72)235

were much better than that using ERA-5 (slope=0.71~0.72, R2=0.61~0.66), indicating236

that meteorological data have significant influences on model performances.237

Due to the differences in model structure and parameterization, the model238

performances in ET simulations varied over different land surfaces (Massman and Lee,239

2002; McCabe et al., 2005; Richardson et al., 2006; Williams et al., 2009; Vinukollu240

et al., 2011a; Ershadi et al., 2014). Figure 3 shows the performances of the three241

models across the different biomes. For the forest biomes (ENF, EBF, DBF, MF), the242

SiTH model generally overestimated ET, while the MOD16 and PT-JPL models243

performed relatively well at these biomes. The MOD16 model overestimates ET at the244
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MF biome. However, over the short vegetation types (i.e., GRA, CRO, and OSH),245

SiTH performs well, while the other two models underestimated ET (slope＜0.8). It246

was also observed that the MOD16 significantly underestimate ET over the OSH247

ecosystems (slope=0.25~0.2) (Figure 3). The simulated ET by the three models had248

good consistency with site-observed ET over forest biomes (R2>0.4). However, the249

MOD16 and PT-JPL models do not capture the ET dynamics in dryland biomes (OSH)250

(MOD16:R2=0.02~0.12; PT-JPL:R2=0.12~0.46). On the contrary, the SiTH model was251

satisfactory across dryland biomes, with R2 values ranging from 0.52 to 0.79. The252

SiTH and MOD16 models generate negative NSE in forests (except DBF), because253

they overestimated ET significantly. PT-JPL model has a greater NSE values (closer254

to 1) in forests. The SiTH produces high NSE for short vegetation, and the PT-JPL,255

especially MOD16 has the NSE values lower than 0 in OSH vegetation. In addition,256

compared with SiTH and MOD16 models, PT-JPL model showed great variations in257

ET simulations within a specific biome.258

3.2 Model evaluation at catchment scale259

At regional scale, SiTH tended to overestimate ET driving by different LAI and260

meteorological data (Figure 4). The regression slope between observed and estimated261

ET by SiTH ranged from 1.22 to 1.36. The SiTH model agreed better with WBE data262

than MOD16 and PT-JPL (SiTH:R2=0.89 ~0.90). The MOD16 model also slightly263

overestimated ET with values of slope being 1.03 to 1.16, and the R2 values were264

lower than the other two models (R2=0.71~0.80). The PT-JPL model performed well.265

The regression slope between observed and PT-JPL estimated ET ranged from 0.87 to266
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1.03 with R2 varying from 0.79 to 0.86. The estimated ET by MOD16 and SiTH267

models using different forcing data showed relatively little differences, suggesting268

that the MOD16 and SiTH models are no-sensitivity to uncertainties of the forcing269

data. For the PT-JPL model, the differences of estimated ET are greater when using270

different meteorological datasets.271

The performances of the three models over each basin were compared in Figure272

5. Both MOD16 and SiTH models overestimated ET over the majority of the273

catchments, while PT-JPL performs relatively well in most catchments. The estimated274

ET by three models (especially SiTH) shows high consistency with water balance ET,275

with the R2 greater than 0.8. But the values of R2 in three models are very low in276

several basins (Amazon, Congo, Mekong, MOD16 in Aral, Indus, Murray and277

Olenek ). The PT-JPL model has better NSE (closer to 1) in most catchments than the278

other two models. Generally, the three models performed poorly over catchments in279

the tropical rainforest areas (Amazon, Congo, and Mekong). In addition, MOD16 also280

performed poorly in high latitudes regions (Indigirk, Olenek and Yukon), and281

Zhujiang region. This may be due to large discrepancies in LAI and meteorological282

data sets (Jiang et al., 2017; Jia et al., 2018), or lack of a robust description of snow283

and ice evaporation at high latitudes.284

3.3 Evaluation of ET at global scales285

At global scale, we calculated the annual average ET during 1982-2011 using286

these models forced by six different combinations of inputs (Figure 6). The spatial287

pattern of simulated ET by the three models were very similar. The highest annual ET288



14

was found over the amazon basin, the Congo rainforest and the southeast Asia near289

the equator, while the lowest annual ET were in the north Africa, most areas of central290

Asia, the southwestern United States, the Central and western Australia and some291

parts of high latitude. The average total annual ET from 1982 to 2011 were292

(76.87±2.98)× 103 km3, (71.68 ±2.82) × 103 km3, and (61.25±1.92) × 103 km3 for293

SiTH, MOD16, and PT-JPL model, respectively. These values fell in the ranges from294

54.9 × 103 km3 to 85 × 103 km3 reported by previous studies (Oki and Kanae, 2006;295

Jung et al., 2010; Wang-Erlandsson et al., 2014; Miralles et al., 2016). In addition, the296

mean annual global land ET calculated from MET and GLEAM during the same297

period were 63.34 × 103 km3 and 65.7×103 km3, respectively. These values were298

slightly lower than that estimated by SiTH and MOD16 model, but very close to that299

estimated by PT-JPL model. The latitudinal average of ET simulated by the three300

model during 1982-2011 were also presented Figure 6, and showed similar latitudinal301

pattern. Relative high ET values were observed near the equator area and near 20°N.302

However, the estimated ET in tropical regions by SiTH model was higher than that303

estimated by the other two models. The PT-JPL estimated ET was relatively low for304

the latitudes 30°N - 60°N , and estimated ET by MOD16 was low for the latitudes305

between 15°S and 30°S (Vinukollu et al., 2011b).306

Figure 7 shows the ensembles of multi-decadal ET anomalies (1982-2017) using307

three process-based ET models forced by the six different combinations of inputs.308

Generally, the range of the ensembles of global ET anomalies shows large fluctuations,309

and the median of long-term global ET ensembles agreed better with the global ET310
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trend by MET (Figure 7a). There were two peaks in the median of global ET311

ensembles in 1998 (median ET anomalies =17.17 mm/year) and 2010 (median ET312

anomalies =14.79 mm/year), respectively. Both 1998 and 2010 were El Niño years.313

There was an increasing trend from 1982 to 1998, and a decreasing trend from 1998314

to 2008. After 2008, the ET reached its second summit in 2010. Since the summit in315

2010, the global ET fluctuantly declined but reached high positive anomaly in 2016316

(mean ET anomalies = 12.56 mm/year).317

To evaluate the impact of LAI and meteorological data uncertainties on318

long-term ET trend, we classified 18 sets of ET products in Supplementary Table 2319

into two categories: (1) the estimates of ET from three LAI datasets with different320

combinations of models and meteorological datasets, which were mainly used to321

investigate the influences of different LAI datasets on the ET estimations (Figure 7b);322

and (2) the estimates of ET from two meteorological datasets with different323

combinations of models and LAI datasets, which were mainly used to investigate the324

influences of different meteorological datasets on ET estimations (Figure 7c). In325

Figure 7b, the estimates of ET using the GLASS dataset deviated from those using the326

GLOBMAP and GIMMS datasets. The estimated ET using the GLASS dataset were327

lower than those by the other two LAI datasets during 1988-1993 period, while the328

estimated ET using the GLASS dataset were higher than those by the other two LAI329

datasets during 1999-2004 period. In Figure 7c, the estimates of ET using the330

MERRA-2 dataset were very similar to that using the ERA5 data, and their331

inter-quartile range of ET overlapped greatly and varied synchronously. Also, the332
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median values of ensembles ET using the ERA5 and MERRA-2 datasets were333

consistent with the ET value estimated by MET. This indicated that the influences of334

LAI datasets on the estimated long-term variations in global ET were higher than335

those of meteorological datasets.336

4. Discussion337

4.1 Analyzing the performance of models338

The three models with different structural complexity and process339

parameterizations have been developed to predict global ET. Hence, these models are340

expected to present various performance in estimating ET (Vinukollu et al., 2011a;341

Mueller et al., 2013). In this study, we found that the SiTH model overestimated ET342

over some specific biomes (i.e., forest) and in the tropical regions. However, this343

model exhibited relatively high consistency with the observations ( R2=0.6~0.88). In344

this model, the P-T coefficient α is a dimensionless factor associated with the Bowen345

ratio to limit evaporation, and its value of 1.26 is derived from the data of daily fluxes346

at saturated land sites and open water (Priestley and Taylor, 1972). Many studies347

revealed that the value of α for forests may be below 1.26. For examples, Komatsu et348

al. (2005) reported that the value of α is 0.83 ± 0.15 at deciduous forests and α =0.63349

± 0.2 at coniferous forests. Cho et al. (2012) discovered that the mean value of α for350

deciduous forests is 1.01 and for the coniferous forests is only 0.75. Sanches et al.351

(2010) found that α values for forests are around 0.65. Therefore, the overestimates of352

ET by SiTH is due to the high α value used in this model for forest ecosystems. On353

the contrary, SiTH has a good performance over short vegetation ecosystems (i.e.,354
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grassland, cropland and shrubland). For the well-watered short vegetations, the value355

of α=1.26 is confirmed in the literature (Priestley and Taylor, 1972). Pereira et al.356

(2007) reported that the value of α at the irrigated croplands ranged from 1.17 to1.35.357

Some researchers found that the value of α close to the 1.26 over shrublands (Owe358

and Van de Griend, 1990; Caylor et al., 2005). So, the SiTH performed relatively well359

over short vegetation ecosystems (i.e., grassland, cropland and shrubland) (Figure 4).360

Notice that the α value may systematically vary on the daily and seasonal cycles361

(Tongwane et al., 2017; Assouline et al., 2016; Komatsu et al., 2005). So, it should362

take this variation into account in the future studies and optimize the value of α in363

SiTH for forests to improve its accuracy in ET simulations.364

We also found that both PT-JPL and MOD16 performed poor in dryland biomes365

(OSH), which is consistent with the previous studies (Zhu et al., 2016a; Garcia et al.,366

2013; Zhang et al, 2017; Vinukollu et al., 2011b; Sun et al., 2012; Velpuri et al., 2013;367

Michel et al., 2016; Zhang et al, 2019; Ershadi et al., 2014). In arid areas, soil368

moisture is the main factor to that influences ET processes. However, the PT-JPL and369

MOD16 models used the atmospheric moisture conditions (i.e., air temperature, RH370

and VPD) to reflect soil moisture constraints on ET (Fisher et al., 2008; Mu et al.,371

2007, 2011), rather than directly using the soil moisture to constrain the ET. Recently,372

Novick et al. (2016) reported that atmospheric moisture conditions may be373

significantly correlated with soil moisture at month to year time scales, but they374

tended to be nearly decoupled at the daily and hourly time scales. Thus, the PT-JPL375

and MOD16 models using the atmospheric moisture conditions to limit soil moisture376
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may not properly describe the restricts of soil moisture on ET in arid regions.377

Furthermore, the soil moisture constraint was calculated as RHVPD/β in MOD16 and378

PT-JPL models. The parameter β is the sensitivity of soil moisture constraint to VPD,379

and plays an important role in accurate estimation of soil evaporation (Fisher et al.,380

2008; García et al., 2013; McCabe et al., 2016; Zhu et al., 2016a; Zhang et al., 2017).381

Zhang et al. (2017; 2019) found that β was the most sensitive parameter and its values382

in arid area were lower than that in humid regions, resulting in low soil evaporation383

due to soil moisture stress. On the contrary, the SiTH model directly uses soil water384

content to describe soil moisture limitation, and performs relatively well in arid areas385

(Zhu et al., 2019). Finally, plants have deep roots in arid regions (Fan et al., 2013,386

2017) and can utilize deeper soil moisture or even groundwater to maintain growth387

(Thompson et al., 2011). However, only SiTH among the three models took the388

influences of groundwater into account during ET modeling .389

4.2 Impact of the uncertainties of forcing data on ET390

Models tend to exhibit different behavior when forced with different input data391

(Vinukollu et al., 2011b; Ferguson et al., 2010; Ershadi et al., 2014). From the392

evaluation of monthly estimated ET by the three models using different combinations393

of forcing datasets at local and catchment scales (Figure 2 and Figure 4), the SiTH394

model overestimated ET with all forcing datasets. The differences of simulated ET by395

SiTH model are relatively small by using different forcing data, although a slight396

improvement in performances were observed by using ERA5 meteorological dataset.397

The MOD16 model performed well and robust using different combinations of the398
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forcing datasets, especially using the MERRA-2 meteorological data. Then, it seemed399

that MOD16 model is relatively non-sensitive and stable to the forcing datasets. On400

the contrary, the differences in ET estimated by PT-JPL model are large when using401

different meteorological forcing datasets. The PT-JPL performs well when using the402

ERA5 meteorological datasets. Generally, the forcing data had relatively little403

influence on the estimated ET in the SiTH and MOD16 models. But the404

meteorological data has more influence on the estimated ET at monthly scale than405

LAI data in PT-JPL model.406

Moreover, the differences were found in estimated global ET anomalies by407

three models using different combination of forcing datasets, but the ensemble median408

of global ET anomalies agreed well with the MTE-estimated global land ET409

anomalies (Figure 7a). It indicates that ensemble-model method can well capture the410

uncertainties in ET estimates (Ershadi et al., 2014; Zhang et al., 2016; Vinukollu et al.,411

2011b; Mueller et al., 2013). Generally, the global ET shows an increasing trend from412

1982 to 1998. After the summit in 1998, global ET shows a decreasing trend from413

1998 to 2008. (Figure 7a). This agrees well with the results of previous studies (Jung414

et al., 2010; Yan et al., 2013; Zhang et al., 2015; Zhang et al., 2016). Some authors415

thought that the decline in global ET from 1998 to 2008 was caused by416

ENSO-induced anomalous dry conditions and consequent limited moisture supply,417

especially in the Southern Hemisphere (Jung et al., 2010; Yan et al., 2013). However,418

the decline of ET was transient, and global land ET reached another summit in 2010419

(Figure 7a). It demonstrated a transition from El Niño phase to the La Niña phase in420
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2010 with high precipitation (Poulter et al., 2014), leading to a high ET (Yan et al.,421

2013). Thus, the decline of ET after 1998 was a transient variation but not a constant422

decline signal.423

Comparing the global ET anomalies at annual scale under different forcing424

datasets, we found that the influences of LAI datasets on the estimated long-term425

variations in global ET were higher than those of meteorological datasets (Figure 7b426

and c). This result was consistent with previous studies which found that vegetation427

greening is main driver to the multi-decadal ET trend since 1980s (Zhang et al., 2015;428

Zhang et al., 2016; Zeng et al., 2018; Forzieri et al., 2020; Piao et al., 2020). The429

different meteorological variables (i.e., net radiation, temperature,precipitation and430

relative humidity ) have opposite or negative effects on ET process, which may blur431

the capabilities of ET to identify climate trends at the annual scale (Zhang et al., 2015).432

In Figure 7b, the estimates of ET anomalies using the GLASS dataset showed large433

inconsistency with those using the GIMMS and GLOBMAP LAI datasets. Comparing434

the four long-term LAI products, Jiang et al. (2017) found that interannual435

variabilities of GLASS LAI products shows large differences with other LAI products.436

The differences of estimated ET anomalies using the different meteorological datasets437

is relatively small. The ensemble median values of global ET using ERA5 and438

MERRA-2 datasets are in agreement with the MTE-estimated global land ET439

anomalies. Thus, it seemed that the influences of meteorological datasets on global ET440

estimates can be ignored partially due to their relatively good qualities.441

442
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5. Conclusions443

In this study, we evaluated the performances of three process-based ET models in444

ET simulations at multiple scales by using variuos LAI and meteorological forcing445

datasets. The results showed that SiTH simulated well in dryland short vegetation446

ecosystems, but overestimated ET in forest ecosystems because the P-T coefficient (α)447

may be set too high in this model. The PT-JPL and MOD16 models performed well in448

forests, but poorly in dryland biomes due to their improper description of soil449

moisture stress based on atmospheric moisture conditions. Similar model450

performances were observed at both catchment and global scales. To obtain proper451

long-term global ET estimates, the multi-model ensemble approach is a proper choice.452

We found that the ensembles median of global ET anomalies from different models453

and forcing datasets showed good consistency with that obtained by the MTE method.454

Generally, the LAI datasets have larger influences on the global ET estimates than the455

meteorological datasets. In further studies, we will pay more attentions in optimizing456

the P-T coefficient (α) over different vegetation types for SiTH to improve its457

accuracy in ET simulations over forest ecosystems. Finally, more studies are need to458

quantify the contributions of different driving factors to the variations in global ET,459

and to figure out the mechanisms in controlling global ET changes.460
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753

Figure lists754

Figure 1. Location of the 43 FLUXNET sites. The biomes types are identified based755

on the International Geosphere-Biosphere Programme (IGBP) biome classification.756

Figure 2. Scatter plots of the simulated ET of three models using different forcing757

datasets versus measured ET at 43 flux sites. On the left panels, the same758

meteorological dataset of ERA5 and LAI datasets of (a) GLOBMAP, (c) GLASS,759

and (e) GIMMS was used to simulate ET, respectively. On the right panels, the same760

meteorological dataset of MERRA-2 and LAI datasets of (b) GLOBMAP, (d) GLASS,761

and (f) GIMMS was used to estimate ET, respectively. The black dotted line762

represents the 1:1 line.763

Figure 3. Comparison of the simulated ET by three models using different forcing764

datasets versus observed ET at different biomes. Boxplots show the slope, R2 and765

NSE statistical significance of simulated ET. The central solid line of each box shows766

the the median. The bottom and top of boxes represent the 25th and 75th percentiles,767

respectively. The lower and upper whiskers indicate the minimum and maximum768

values, respectively. The circles represent outliers.769

Figure 4. Scatter plots of the simulated ET by three models using different forcing770

datasets versus measured ET at 32 catchments. On the left panels, the same771

meteorological datasets of ERA5 and different LAI datasets of (a) GLOBMAP, (c)772

https://doi.org/10.1038/nclimate3004
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GLASS, and (e) GIMMS was used to estimate ET, respectively. On the right panels,773

the same meteorological datasets of MERRA-2 and different LAI datasets of (b)774

GLOBMAP, (d) GLASS, and (f) GIMMS was used to estimate ET, respectively. The775

black dotted line represents the 1:1 line.776

Figure 5. Comparison of the simulated ET of three models versus water balance ET at777

32 catchments. The bottom, middle, and top panels represent the slope, R2, and NSE,778

respectively. The dots are the median of simulated ET under different forcing datasets.779

Error bar illustrates the mean ±1 s.d.780

Figure 6. Spatial patterns of annual mean land evapotranspiration for the SiTH,781

MOD16, PT-JPL, MTE, and GLEAM from 1982 to 2011. The right panel shows the782

latitudinal profiles of ET from each models between 55°S and 80°N.783

Figure 7. Global land ET anomalies. (a). Ensembles of global ET anomalies from784

1982 to 2017 under all models and the forcing datasets. (b). The estimates of ET785

anomalies from three LAI datasets with different combinations of models and786

meteorological datasets. The green line (GIMMS), blue line (GLASS) and red line787

(GLOBMAP) represent the median of ET ensembles using the GIMMS, GLASS and788

GLOBMAP LAI datasets, respectively. (c). The estimates of ET anomalies from two789

meteorological datasets with different combinations of models and LAI datasets. The790

blue line (MERRA-2) and pink line (ERA5) is the median of ET ensembles using the791

MERRA-2 and ERA5, respectively. The shading area indicates the inter-quartile of792

ET ensembles using different LAI and meteorological datasets.793



Supplementary
Table 1. Variables used as input to derive ET in three models.

Table 2. Details of the input datasets combinations for each ensemble members.

Models
Ensemble

No.

Meteorological datasets Leaf Area Index datasets
period

ERA5 MERRA2 GLOBMAP GLASS GIMMS

SiTH

e1 √ √ 1982-2017

e2 √ √ 1982-2015

e3 √ √ 1982-2011

e4 √ √ 1982-2017

e5 √ √ 1982-2015

e6 √ √ 1982-2011

MOD16

e7 √ √ 1982-2017

e8 √ √ 1982-2015

e9 √ √ 1982-2011

e10 √ √ 1982-2017

e11 √ √ 1982-2015

e12 √ √ 1982-2011

PT-JPL

e13 √ √ 1982-2017

e14 √ √ 1982-2015

e15 √ √ 1982-2011

e16 √ √ 1982-2017

e17 √ √ 1982-2015

e18 √ √ 1982-2011

Models
Leaf Area

Index

Meteorological variables
Land Cover

Ta P Pa RH Rn

SiTH √ √ √ √ √ √

MOD16 √ √ √ √ √ √

PT-JPL √ √ √ √ √ √



Table 3. Details of 32 river catchments.

Number Basin Location Area (km2) KG Climate

1 Amazon South America 5,854,000 Af

2 Congo Africa 3,699,000 Af/Aw

3 Mekong Asia 759,000 Aw

4 Aral Asia 2,148,000 Bwk

5 Columbia North America 732,000 Bsk

6 Indus Asia 1,143,000 Bwh

7 Limpopo Africa 420,000 Bsh

8 Murray Oceania 1,032,000 Bsk

9 Niger Africa 2,240,000 Bwh

10 Nile Africa 3,826,000 Bwh

11 Senegal Africa 847,000 Bwh

12 Changjiang Asia 1,794,000 Cfa

13 Danube Europe 788,000 Cfb

14 Huang Asia 795,000 Cwa

15 Mississippi North America 3,203,000 Cfa

16 Parana South America 2,664,000 Cfa

17 Zhujiang Asia 450,000 Cfa

18 Amur Asia 1,755,000 Dwa

19 Dnieper Europe 500,000 Dfb

20 Don Asia 500,000 Dfa

21 Indigirk Asia 334,000 Dfd

22 Kolyma Asia 666,000 Dfc

23 Lena Asia 2,442,000 Dfc

24 MacKenz North America 1,695,000 Dfc

25 Ndavina Asia 288,000 Dfc

26 Ob Asia 3,026,000 Dfb

27 Olenek Asia 223,000 Dfd

28 Pechora Asia 314,000 Dfc

29 Ural Asia 296,000 Dfb

30 Volga Europe 1,476,000 Dfb

31 Yenisei Asia 2,579,000 Dfc

32 Yukon North America 856,000 Dfc




