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Abstract

Natural variability of fault friction and slip uncertainty exist in the Earth’s crust. To what extent it influences crustal stress and

its evolution is intriguing. We established a quasi-static, 2D model to simulate the stress evolution due to Coulomb frictional

slips in the brittle crust. The model simply features randomly-oriented fractures with heterogeneous frictional coefficients. We

emphasized the global stress response by summing the contribution of cascades of local frictional slip under specific boundary

conditions. We illustrated that the decrease in stress difference manifests as a self-organized process that ultimately leads to

frictional equilibrium. The model informs that the frictional equilibrium of a stochastic system can depart substantially from

a deterministic estimation. Although the model quantitatively corroborates the notion of frictional equilibrium in places where

fracture slip is the dominant mechanism for stress release, it reveals far more profound influence of system heterogeneity on the

local and global stress evolution.

1



Confidential manuscript submitted to Geophysical Research Letters 

 

Global Frictional Equilibrium via Stochastic, Local Coulomb Frictional Slips 1 

  2 

Shihuai Zhang and Xiaodong Ma* 3 

  4 

Department of Earth Sciences, ETH Zürich, Zürich, Switzerland 5 

  6 

*Corresponding author: Xiaodong Ma (xiaodongma.rocks@gmail.com)  7 

  8 

Key Points: 9 

• A simple quasi-static 2D model is introduced, quantifying and extending the classic notion 10 

of frictional equilibrium of the brittle crust 11 

• We investigate the global scale stress evolution due to stochastic, local scale frictional slips 12 

in the crustal rock masses 13 

• Frictional equilibrium of a stochastic system is greatly affected by its intrinsic friction 14 

heterogeneity 15 
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Abstract 17 

Natural variability of fault friction and slip uncertainty exist in the Earth’s crust. To what extent it 18 

influences crustal stress and its evolution is intriguing. We established a quasi-static, 2D model to 19 

simulate the stress evolution due to Coulomb frictional slips in the brittle crust. The model simply 20 

features randomly-oriented fractures with heterogeneous frictional coefficients. We emphasized 21 

the global stress response by summing the contribution of cascades of local frictional slip under 22 

specific boundary conditions. We illustrated that the decrease in stress difference manifests as a 23 

self-organized process that ultimately leads to frictional equilibrium. The model informs that the 24 

frictional equilibrium of a stochastic system can depart substantially from a deterministic 25 

estimation. Although the model quantitatively corroborates the notion of frictional equilibrium in 26 

places where fracture slip is the dominant mechanism for stress release, it reveals far more 27 

profound influence of system heterogeneity on the local and global stress evolution. 28 

 29 

Plain Language Summary 30 

Knowledge of crustal stress and its uncertainty is of fundamental importance to a wide range of 31 

problems. It is recognized that the intra-plate continental crust is generally in a state of frictional 32 

failure, the stress magnitudes of which usually cannot accumulate beyond the frictional strength. 33 

As a conventional practice, Coulomb theory is adopted together with laboratory-derived frictional 34 

coefficients for crustal stress estimations. Although it is able to attain a first-order agreement, such 35 

a practice has been primarily employed in a deterministic sense, which overlooks the fact that 36 

stress distribution is highly complex and spatially heterogeneous at different scales in the Earth’s 37 

crust. In addition, how the upper crust keeps its stress magnitudes at its frictional strength is yet 38 

well understood. To this end, we proposed a simple quasi-static 2D model with distributed 39 

frictional coefficient as a proxy of the intrinsic system heterogeneity. By quantitatively 40 

investigating the global-scale stress evolution due to stochastic, local-scale frictional slips, this 41 

study shows that the magnitudes and uncertainties of both local- and global-scale stresses of the 42 

system can be greatly controlled by its friction heterogeneity. This model is believed to quantify 43 

and extend the classic notion of frictional equilibrium within the brittle crust. 44 

 45 

1 Introduction 46 

Fault slip is one of the dominant mechanisms for stress release in the Earth’s upper crust. 47 

The stress of the fractured crust is often considered under ‘frictional equilibrium’, a dynamic status 48 

induced by ongoing tectonic/gravity loading and resulting fault slips (Zoback and Townend, 2001). 49 

Via the simple Coulomb frictional failure theory, the limiting state of stress can be conveniently 50 

expressed as: 51 

σ1 σ3⁄ = (√μ2+1+μ)
2

      (1) 52 

where σ1 and σ3 are the effective major and minor principal stress, respectively, and μ is the 53 

frictional coefficient. Adopting laboratory-derived frictional coefficient values (μ = 0.6-1.0) 54 

(Byerlee, 1978), Eq.(1) has enabled the estimation of in situ stress and vice versa, the analysis of 55 

fault criticality (Brace and Kohlstedt, 1980; Townend and Zoback, 2000). However, to what spatial 56 

and temporal scale a deterministic use of Eq.(1) applies to is questionable, and has been often 57 
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misused and mis-interpreted. Evidently, the value of μ varies spatially and temporally in the 58 

Earth’s crust (Dieterich, 1979; Rivera and Kanamori, 2002), which underscores that such 59 

variability in a natural system must be considered. 60 

To reflect such variability, recent attempts in stress estimation and/or fault slip analysis 61 

incorporated uncertainties in geomechanical parameters with a probabilistic approach (e.g., Walsh 62 

and Zoback, 2016; Hosseini et al., 2018; Luo and Ampuero, 2018), which offers more insights 63 

than a pure deterministic application of Eq.(1). However, one aspect still missing from existing 64 

stress models is how such system variability and heterogeneity influence the evolution of the in 65 

situ stress. How fault slip leads to frictional equilibrium, if possible, and whether it is attained is 66 

intriguing. The understanding of this evolution requires not only the influence of the far-field stress 67 

on the local fault slip, but also the feedback from the local slip to the global stress release. In this 68 

paper, we present a quasi-static, 2D model to simulate the stress evolution due to Coulomb 69 

frictional slip in the crustal rock masses. We explicitly consider frictional coefficient 70 

heterogeneity, as a proxy of the combined system uncertainties and variabilities, and emphasize 71 

the connection between the global and local stress response. 72 

2 Methods 73 

2.1 Model Configuration 74 

c

b
a

plane strain

σv

σh

F
ig. 1B

fracture length: 2a

σn

τ 

xn

xs

0.5 0.6 0.7 0.80.4
0

0.9 1.0 1.10.3

0.01

0.02

0.03

0.04

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 f
u

n
c
ti
o

n normal distribution

N(0.6,0.05
2
)

normal distribution

N(0.8,0.06
2
)

Weibull distribution

(λ: 0.8, k: 10)

Frictional coefficient μ 

un

us

 75 
Figure 1. a Schematics of the plane strain model: randomly-distributed fractures in an elastic 76 

matrix subject to uniform stresses at the boundary. b Close-up of a fracture with its geometrical 77 

and mechanical features. c Distributions of frictional coefficient (μ) of fractures adopted to in the 78 

model. 79 

 80 

The model we present is a fractured, elastic matrix configured under plane strain condition 81 

(Figure 1A). The embedded fractures are linear, planar, and cohesion-less. They are perpendicular 82 

to the plane section and through-going. The fractures are spatially characterized only by their 83 
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orientations and their actual positions in the plane are irrelevant, see Text S1. This treatment 84 

follows Wiebols and Cook (1968) and other work on effective medium (Kachanov, 1992; Davy et 85 

al., 2018). Deemed essential to our model, the embedded fractures differ in their frictional 86 

coefficient μ, which can follow any arbitrary distribution, e.g., Figure 1C, as a proxy for the 87 

inherent heterogeneity in the system. The elastic matrix is simply characterized by its shear 88 

modulus G and Poisson’s ratio v. As a quasi-static model for stress relaxation of much longer time 89 

scales, complex dynamic issues such as fracture initiation, propagation and termination are not 90 

addressed. 91 

2.2 Local Slip – Shear Displacement 92 

Given a remotely applied effective stress tensor σ at the model boundary, local shear and 93 

normal stresses (σn and τ) acting on individual fractures are mathematically expressed via the unit 94 

normal and shear vector, n and s, of each fracture. We are cognizant of stress perturbation near 95 

fractures, but considered it trivial in the context of upscaling (see Text S1). We simply adopt the 96 

classic Coulomb frictional failure criterion to determine whether slip occurs on a fracture. If 97 

  ·n, the fracture is identified as critical and frictional slip occurs, otherwise the fracture stays 98 

perfectly bonded, behaving as part of the elastic matrix with no relative displacement occurring 99 

between opposite fracture sides. We assume that the shear stress on the fracture will drop to its 100 

frictional resistance after the slip, so that the shear stress difference  =  − ·n drives the 101 

relative displacement across the fracture.  102 

Based on elastic crack theory (Pollard and Segall, 1987), the normal and shear 103 

displacements (un and us) on opposite sides of a fracture associated with the slip can be analyzed 104 

conveniently in the local fracture coordinates (xn, xs) (Figure 1B). Specifically, they are: 105 

un=∆τ
1-2v

2G
xs       (2a) 106 

us
±=±∆τ

1-v

G
√a2-xs

2       (2b) 107 

where xs  [-a, a], a is the fracture half-length, and the superscript ‘±’ of us refers to 108 

displacement along the upper and lower fracture side (xn = ), respectively. The average relative 109 

shear displacement between opposite sides ds is from integrating the relative shear displacement 110 

(us
+-us

-) across the fracture length: 111 

d̅s= (
1

a
∫ ∆τ

2(1-v)

G
√a2-xs

2a

0
dxs) s= (∆τ

aπ(1-v)

2G
) s    (3a) 112 

To reflect shear-induced dilatancy commonly observed in the brittle rock mass (Scholz, 113 

1974; Fielding et al., 2009), we utilize dilatancy factor  to relate ds to the average relative normal 114 

displacement dn: 115 

 d̅n=β|d̅s|n=β (∆τ
aπ(1-v)

2G
)n            (3b) 116 

2.3 Upscaling Local Slips 117 

We invoke Gaussian theorem (Hill, 1963; Kachanov, 1992) to relate the contribution of 118 

local displacement incurred by individual frictional slip to the global strain at the model boundary 119 

: 120 
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∆ε=
a

A
(d̅⊗n+n⊗d̅)      (4) 121 

where A is the cross-section area of the model and d̅=d̅s+d̅n. 122 

The total global strain at the model boundary comprises the strain of the intact elastic 123 

matrix m and, if critical fractures exist, the summed strain  induced by successive, individual 124 

slips of a cascade of critical fractures: 125 

εi=εm+∑
ai

A
(d̅i⊗ni+ni⊗d̅i)i             (5) 126 

where subscript i denotes the ith fracture in a cascade of slips. The intact elastic matrix strain m is 127 

simply regulated by Hooke’s law under plane strain. Details on the slip cascades and upscaling are 128 

expanded in Text S2. 129 

2.4 Slip Iterations, Time Steps 130 

If stress and/or strain is mandated constant at the model boundary, the contribution of local 131 

fracture slips requires adjustment of stress/strain in the intact elastic matrix. This entails global 132 

stress adjustment at the model boundary and further modifies the criticality of individual fractures 133 

locally, necessitating a frequent re-evaluation of the fracture criticality. To this end, we impose an 134 

iterative process to accommodate the interplay between local fracture criticality, global stress and 135 

strain, and fractured matrix, tailored to the model experimentation below of specific boundary 136 

conditions (Text S2). We predicate the termination of the iteration when the shear stress difference 137 

Δτ of the most critical fracture is below 0.01 MPa. Constant slip rate depending on the global 138 

effective properties and local stress is assumed for each critical fracture within a time step, at the 139 

end of which the contribution of multiple slips is summed by the non-interaction approximation 140 

(Bristow, 1960) (expanded in Text S2). 141 

3 Results 142 

3.1 Model Experimentation in the Context of Normal Faulting Stress Regime 143 

We start experimenting our model by simulating the simple scenario of stable intra-plate 144 

region with normal faulting stress environment (v = 1 > h = 3). The boundary condition is set 145 

with constant vertical stress and constant lateral strain. We assign the model with size A of 146 

100×100 (in unit length), and 10,000 randomly-oriented fractures with equal length (ai ≡ a = 1, 147 

unit length). The frictional coefficients of all fractures are normally distributed: the mean and the 148 

standard deviation of the distribution are 0.6 and 0.05, respectively, i.e., N(0.6, 0.052) shown in 149 

Figure 1C. The dilatancy factor of fractures β is 0.05. The (intact) elastic matrix is assigned shear 150 

modulus G = 20 GPa and Poisson’s ratio ν = 0.3. 151 

We arbitrarily apply an effective stress tensor σ (σ3,0 = 20 MPa, and σ1,0 = 100 MPa) at the 152 

model boundary instantaneously at initial time t0. It will become clear later in the text that the 153 

starting stress difference hardly matters to the final frictional equilibrium. Since no fracture slip 154 

occurs at t0, 1,0 and 3,0 at the model boundary are only related to the elastic matrix response, i.e., 155 

1,0 = ε1
m and 3,0 = ε3

m. An initial evaluation of fracture criticality allows the iterative slip process 156 

to begin. Mohr diagrams are used to illustrate the first two time steps as an example (Figure 2). 157 

The slip of critical fractures reduces the shear stresses on themselves to their frictional resistance, 158 

revealing local stress heterogeneities in the system. Upon the end of a time step, i.e., a cascade of 159 

slips, boundary stress σ3 is increased to maintain constant lateral strain and fracture criticality 160 
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evaluation re-iterates. With the starting stress difference substantially above the possible 161 

equilibrium state, the stress evolution undergoes multiple time steps (1, 2, …, j, …) before it 162 

terminates (see details in Text S2). As the vertical stress σ1 is held constant, the horizontal stress 163 

σ3, j increases, or, the stress difference (σ1, j - σ3, j) relaxes monotonically. The stress evolution at 164 

the model boundary manifests itself as a series of contracting Mohr diagrams (Figure 3A). The 165 

number of fracture slips and the amount of stress relaxation of each time step diminishes 166 

significantly as the iteration continues. Numerous fracture slips induce the accumulation of vertical 167 

strain and the reduction of system stiffness, as illustrated in Figure 3B. Such response is 168 

characteristic of the absence of tectonic loading. 169 

 170 
Figure 2. Mohr diagrams illustrating the first two iterations of stress evolution from an arbitrary, 171 

initial stress condition within the normal faulting stress regime. The fractures in the system follow 172 

a normally distributed frictional coefficient N(0.6, 0.052). a, c: Beginning each time step, critical 173 

fractures (red) are identified. b, d: After a cascade of local fracture slips within the time step, shear 174 

stress of each critical fracture drops to its frictional resistance, which results in the global stress 175 

update, i.e., σ3 increase. 176 

The model’s final stress state, or frictional equilibrium, is attained when iterations 177 

terminate. The most critical fracture in the system can be located. Retrospectively, the stress state 178 

and frictional resistance of the most critical fracture through the iterations can be traced, as 179 

illustrated in Figure 3A. Evidently, the fracture keeps slipping as long as its shear stress is larger 180 

than but converges towards its frictional resistance. The linear trace of the fracture frictional 181 

resistance can be interpreted as the equivalent frictional strength of the system, that is, μ = 0.43. 182 
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 183 
Figure 3. Overview of the temporal evolution of the model specified in Figure 2. a The stress 184 

relaxation due to cascades of fracture slips is illustrated by contracting Mohr diagrams. The final 185 

stress state rests on the frictional envelop (μ = 0.43), which is in fact controlled by the most critical 186 

fracture in the system. Red and green circles represent the resolved stress state and frictional 187 

resistance on the most critical fracture at each time step. b Evolving stress (σ), strain (ε), Young’s 188 

modulus (E), and Poisson’s ratio (ν) through iterations. Note the rate of change in these parameters 189 

gradually diminishes towards the final stress state. Gray scale color scheme in a and b corresponds 190 

to iterations (logarithmic). 191 

3.2 More on Heterogeneous Frictional Coefficient 192 

Comparing this stochastic treatment with the deterministic case in which the frictional 193 

coefficients of all fractures are homogeneous (μ = 0.6, see Text S3), the final σ3 upon equilibrium 194 

of the former is smaller than that of the latter, intuitively indicated in Figure 4A. Apparently, the 195 

maximum stress difference that can be sustained by the stochastic system does not depend on the 196 

mean or the upper bound of the frictional coefficient distribution. This is further demonstrated by 197 

two additional distributions, i.e., normal distribution N(0.8, 0.062) and Weibull distribution with 198 

scale parameter  = 0.8 and shape parameter k = 10, as illustrated in Figure 4B and 4C, 199 

respectively. 200 

Further reviewing the stress evolution of each distribution, we identified that the frictional 201 

coefficient of the most critical fracture does not necessarily correspond to the lowest value, as one 202 

would assume, but it is located close to the lower bound of the distribution. Monte Carlo 203 

simulations shows such an observation is of high probability (Text S4). This suggests that the most 204 

critical fracture is determined jointly by its frictional coefficient and orientation with respect to the 205 

global stress. That said, the equivalent frictional strength of the fractured matrix is dependent on 206 

the combination of frictional coefficient distribution and orientations of all fractures. As indicated 207 
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by Figure 4, the uncertainty of the equivalent frictional strength becomes more evident when the 208 

μ distribution departs further from uniformity, which also implies the degree of heterogeneity of 209 

global stress in such a stochastic system. Therefore, when inferring the state of stress in situ 210 

assuming frictional equilibrium, the practical value of frictional coefficient to be adopted is of utter 211 

importance. 212 

 213 
Figure 4. Initial (gray) and final (black) stress state for the same model configuration but different 214 

frictional coefficient distributions. The most probable final stress state, bounded by the 215 

corresponding equivalent frictional coefficient of the system, is associated with uncertainties 216 

(fuzzy lines or the distribution of σ3, see Figure S6 for more details). 217 

4 Conclusions 218 

The model extends the notion of frictional equilibrium. For the deterministic interpretation 219 

in which the frictional coefficient is homogeneous, the frictional equilibrium refers to a state 220 

prescribed by Eq. (1). In a heterogeneous system, the frictional equilibrium can be understood as 221 

a dynamic process as illustrated in the model experimentation, spanning from the very first 222 

frictional slip to the final one possibly allowed by the prevailing in situ stress difference. The use 223 



Confidential manuscript submitted to Geophysical Research Letters 

 

of Eq. (1) in this instance therefore incurs great uncertainty. Informed by the numerous time steps 224 

leading to the final frictional equilibrium, the most critical fracture or fault stays critical while the 225 

rest of the crust experiences practically few slips, i.e., little global stress reduction. The apparent 226 

discrepancy between the local and global response reflects the stress heterogeneity within the 227 

system, which is jointly regulated by the variability of frictional coefficient and orientation of the 228 

fractures. To this end, the controversy over whether the upper crust is critically stressed is plausibly 229 

resolved. Again, we emphasize that the dominant mechanism of stress release in this context is 230 

frictional slip. Other mechanisms that may further lower the stress difference below frictional 231 

equilibrium in certain lithologies, such as viscoplastic deformation in shales (Sone and Zoback, 232 

2014; Ma and Zoback, 2017), pressure solution in carbonates (Gunzburger and Cornet 2007; 233 

Gratier et al., 2013; Brantut et al., 2014), are not addressed here. 234 

The evolution of stress reduction raises questions about the stage at which the current state 235 

of stress is with respect to the equilibrium. This is informative to stress estimation and fault slip 236 

tendency analysis. Note that in our model, the evolution iterates through ‘pseudo’ time steps and 237 

is not calibrated against real time. This is a compromise for computational feasibility and 238 

efficiency, so the interpretation in a temporal sense should be executed with caution. Nonetheless, 239 

the time-dependent stress reduction and matrix response appears to be reasonable and is deemed 240 

of first-order importance. Because of the difficulty to impose real time in the model, we were 241 

unable to experiment boundary conditions with prescribed strain or stress rate, which is more 242 

realistic in tectonically active regions. It is worth noting that no fracture interaction, extension and 243 

matrix damage was allowed in the model. If that was the case, the expected stress reduction will 244 

be more significant due to increased number and length of fractures and lowered equivalent matrix 245 

stiffness. The equivalent frictional strength of the crust will be even lower, in other words, the 246 

difference between the reality and the deterministic model will be more substantial. 247 

Acknowledgments 248 

This work is supported by Swiss National Science Foundation (grant No. 182150) and benefited 249 

from discussions with Norman Sleep and Hiroki Sone. This is a theoretical study and contains no 250 

collected data. The scripts used to produce the results can be requested from the authors. 251 

References 252 

Brace, W. F., & Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory 253 

experiments. Journal of Geophysical Research: Solid Earth, 85(B11), 6248-6252. doi: 254 

10.1029/JB085iB11p06248. 255 

Brantut, N., Heap, M. J., Baud, P., & Meredith, P. G. (2014). Mechanisms of time‐dependent 256 

deformation in porous limestone. Journal of Geophysical Research: Solid Earth, 119(7), 257 

5444-5463. doi: 10.1002/2014JB011186. 258 

Bristow, J. R. (1960). Microcracks, and the static and dynamic elastic constants of annealed and 259 

heavily cold-worked metals. British Journal of Applied Physics, 11(2), 81. 260 

Byerlee, J. (1978). Friction of rocks. In Rock friction and earthquake prediction (pp. 615-626). 261 

Birkhäuser, Basel. doi: 10.1007/978-3-0348-7182-2_4. 262 

Davy, P., Darcel, C., Le Goc, R., & Mas Ivars, D. (2018). Elastic properties of fractured rock 263 

masses with frictional properties and power law fracture size distributions. Journal of 264 

Geophysical Research: Solid Earth, 123(8), 6521-6539. doi: 10.1029/2017JB015329. 265 



Confidential manuscript submitted to Geophysical Research Letters 

 

Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive 266 

equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161-2168. doi: 267 

10.1029/JB084iB05p02161. 268 

Fielding, E. J., Lundgren, P. R., Bürgmann, R., & Funning, G. J. (2009). Shallow fault-zone 269 

dilatancy recovery after the 2003 Bam earthquake in Iran. Nature, 458(7234), 64-68. doi: 270 

10.1038/nature07817. 271 

Gratier, J. P., Dysthe, D. K., & Renard, F. (2013). The role of pressure solution creep in the 272 

ductility of the Earth’s upper crust. In Advances in Geophysics (Vol. 54, pp. 47-179). Elsevier. 273 

doi: 10.1016/B978-0-12-380940-7.00002-0. 274 

Grechka, V., & Kachanov, M. (2006). Effective elasticity of fractured rocks: A snapshot of the 275 

work in progress. Geophysics, 71(6), W45-W58. doi: 10.1190/1.2360212. 276 

Gunzburger, Y., & Cornet, F. H. (2007). Rheological characterization of a sedimentary formation 277 

from a stress profile inversion. Geophysical Journal International, 168(1), 402-418. doi: 278 

10.1111/j.1365-246X.2006.03140.x. 279 

Healy, D. (2008). Damage patterns, stress rotations and pore fluid pressures in strike‐slip fault 280 

zones. Journal of Geophysical Research: Solid Earth, 113(B12). doi: 281 

10.1029/2008JB005655. 282 

Hill, R. (1963). Elastic properties of reinforced solids: some theoretical principles. Journal of the 283 

Mechanics and Physics of Solids, 11(5), 357-372. doi: 10.1016/0022-5096(63)90036-X. 284 

Hosseini, S. M., Goebel, T. H. W., Jha, B., & Aminzadeh, F. (2018). A Probabilistic Approach to 285 

Injection‐Induced Seismicity Assessment in the Presence and Absence of Flow Boundaries. 286 

Geophysical Research Letters, 45(16), 8182-8189. doi: 10.1029/2018GL077552. 287 

Kachanov, M. (1992). Effective elastic properties of cracked solids: critical review of some basic 288 

concepts. Applied Mechanics Reviews, 45(8), 304-335. doi: 10.1115/1.3119761. 289 

Katz, O., & Reches, Z. E. (2004). Microfracturing, damage, and failure of brittle granites. Journal 290 

of Geophysical Research: Solid Earth, 109(B1). doi: 10.1029/2002JB001961. 291 

Luo, Y., & Ampuero, J. P. (2018). Stability of faults with heterogeneous friction properties and 292 

effective normal stress. Tectonophysics, 733, 257-272. doi: 10.1016/j.tecto.2017.11.006. 293 

Ma, X., & Zoback, M. D. (2017). Lithology-controlled stress variations and pad-scale faults: A 294 

case study of hydraulic fracturing in the Woodford Shale, OklahomaWoodford Shale case 295 

study. Geophysics, 82(6), ID35-ID44. doi: 10.1190/geo2017-0044.1. 296 

Napier, J. A. L., & Malan, D. F. (1997). A viscoplastic discontinuum model of time-dependent 297 

fracture and seismicity effects in brittle rock. International Journal of Rock Mechanics and 298 

Mining Sciences, 34(7), 1075-1089. doi: 10.1016/S1365-1609(97)90201-X. 299 

Perzyna, P. (1966). Fundamental problems in viscoplasticity. In Advances in applied mechanics 300 

(Vol. 9, pp. 243-377). Elsevier.  301 

Pollard, D. D., & Segall, P. (1987). Theoretical displacements and stresses near fractures in rock: 302 

with applications to faults, joints, veins, dikes, and solution surfaces. In Fracture mechanics 303 

of rock (pp. 277-347).  304 



Confidential manuscript submitted to Geophysical Research Letters 

 

Rivera, L., & Kanamori, H. (2002). Spatial heterogeneity of tectonic stress and friction in the crust. 305 

Geophysical research letters, 29(6), 12-1. doi: 10.1029/2001GL013803. 306 

Ruina, A. L. (1980). Friction laws and instabilities: a quasi-static analysis of some dry friction 307 

behaviour. Ph. D. thesis, Division of Engineering, Brown University.  308 

Scholz, C. H. (1974). Post-earthquake dilatancy recovery. Geology, 2(11), 551-554. doi: 309 

10.1130/0091-7613(1974)2<551:PDR>2.0.CO;2. 310 

Sleep, N. H. (2006). Real contacts and evolution laws for rate and state friction. Geochemistry, 311 

Geophysics, Geosystems, 7(8). doi: 10.1029/2005GC001187. 312 

Sone, H., & Zoback, M. D. (2014). Time-dependent deformation of shale gas reservoir rocks and 313 

its long-term effect on the in situ state of stress. International Journal of Rock Mechanics and 314 

Mining Sciences, 69, 120-132. doi: 10.1016/j.ijrmms.2014.04.002. 315 

Townend, J., & Zoback, M. D. (2000). How faulting keeps the crust strong. Geology, 28(5), 399-316 

402. doi: 10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2. 317 

Walsh III, F. R., & Zoback, M. D. (2016). Probabilistic assessment of potential fault slip related 318 

to injection-induced earthquakes: Application to north-central Oklahoma, USA. Geology, 319 

44(12), 991-994. doi: 10.1130/G38275.1. 320 

Wiebols, G. A., & Cook, N. G. W. (1968, November). An energy criterion for the strength of rock 321 

in polyaxial compression. In International Journal of Rock Mechanics and Mining Sciences 322 

& Geomechanics Abstracts (Vol. 5, No. 6, pp. 529-549). Pergamon. doi: 10.1016/0148-323 

9062(68)90040-5. 324 

Zoback, M. D., & Townend, J. (2001). Implications of hydrostatic pore pressures and high crustal 325 

strength for the deformation of intraplate lithosphere. Tectonophysics, 336(1-4), 19-30. doi: 326 

10.1016/S0040-1951(01)00091-9. 327 

 328 



 

 

1 

 

 

Geophysical Research Letters 

Supporting Information for 

Global Frictional Equilibrium via Stochastic, Local Coulomb Frictional Slips 

Shihuai Zhang and Xiaodong Ma 

Department of Earth Sciences, ETH Zürich, Zürich, Switzerland 

  

 

Contents of this file  

 
Text S1 to S5 

Figures S1 to S10 

 

 

Introduction  

In this supplementary material, we expand on the methods and results to complement the main 

manuscript. In Text S1, we describe how to calculate the shear and normal stresses on fractures and 
discuss the major assumptions adopted in this model. In Text S2, we elaborate on the slip cascades 

and their contribution to the global stress/strain fields, followed by an example displaying the 

iterative process in the context of normal faulting stress regime. We then show the stress evolution 
in the deterministic case where all fractures have the same frictional coefficient in Text S3. Monte 

Carlo simulation and system uncertainty analysis are detailed in Text S4. For each frictional 

coefficient distribution, finally in Text S5, simulation results in the context of reverse faulting 

regime are provided for comparison.
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Text S1. Individual Fractures, Local Frictional Slips 

Given a stress tensor 𝛔 applied remotely at the model boundary, the stress acting on any 

arbitrarily-oriented fictitious fracture plane can be resolved by transformation. The normal and 

shear stress component (𝜎n and 𝜏) on a fracture plane can be resolved with the plane’s unit normal 
and shear vector (n and s) (Davy et al., 2018): 

𝜎n = 𝐧 ∙ 𝛔 ∙ 𝐧                                                        (S1) 

𝜏 = 𝐧T ∙ 𝛔 ∙ 𝐬                                                        (S2) 

where 

𝐬 =
𝐬𝑔

|𝐬𝑔|
,  𝐬𝑔

T = 𝐧T ∙ 𝛔 ∙ (𝐈 − 𝐧⨂𝐧T)                                        (S3) 

where I is the identity matrix. Intuitively, the Mohr diagram graphically represents the initial 

stresses acting on fractures, as shown in Figure 2.  In our model, the fracture orientation is 

differentiated by the angle (θ) between the normal to the fracture and the positive hortizontal axis 

of the model’s global coordinates (Figure S1). Note that, for convenience, we only consider the 

normal vector of the upward facing fracture side, i.e., [0,180°]. 
Local stress fluctuations induced by nearby fracture interactions can be profound in a rock 

mass. However, such effect is not considered in this model. By assuming a uniform spatial 

distribution of fracture centers, i.e., no fracture clusters exist, strong fracture interactions can be 

plausibly circumvented. The mutually opposite effects of stress shielding and amplification near 
fractures tend to balance out globally, given the statistical significance of assuming uniform 

fracture orientations (Kachanov, 1992). Such assumptions have been validated by comparing the 

theoretically predicted results either with numerical simulations (Grechka and Kachanov, 2006) or 
with laboratory observations (Katz and Reches, 2004), and have been widely adopted to quantify 

the effective properties of fractured rock masses (e.g., Healy, 2008; Davy et al., 2018). 
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Text S2. More on Upscaling Slip Cascades and Iterative Time Steps  

Slip rate within a time step 

The slip rate is considered variable, which is dependent on the past slip history and stress 

state (Dieterich, 1979; Ruina, 1980, Sleep, 2006). To reflect this in the iterations, a simple linear 

relationship between fracture slip rate and shear stress difference  is proposed: 
𝑑𝐝̅

s

𝑑𝑡
= (𝜂∆𝜏)𝐬                                                       (S4a) 

𝑑𝐝̅
n

𝑑𝑡
= (𝛽 ∙ 𝜂∆𝜏)𝐧                                                  (S4b) 

where  is defined as slip rate parameter with the dimension of length/(stress·time), similar to the 
fluidity parameter of classical viscoplasticity theory (Perzyna, 1966; Napier and Malan, 1997).  

In discrete form, the relative shear and normal displacement increments can be further 

expressed as: 

∆|�̅�s|
𝑗

= (𝜂𝑗∆𝜏𝑗−1) ∙ ∆𝑡                                                (S5a) 

∆|�̅�n|
𝑗

= (𝛽 ∙ 𝜂𝑗∆𝜏𝑗−1) ∙ ∆𝑡                                            (S5b) 

where 

∆𝑡 = 𝑡𝑗 − 𝑡𝑗−1, 𝑗 = 1,2,3, …                                           (S5c) 

which implies that the updated results at the end of the previous time step (j-1) serve as the new 

input and are kept constant over the current time step (j). If frictional slip is assumed to occur 

completely and reach the final steady state at the end of each time step, the slip rate parameter j 
can be simply specified according to Eq. (3) as: 

𝜂𝑗 =
𝑎𝜋(1−𝑣𝑗−1)

2𝐺𝑗−1
                                                       (S6) 

which means that  at the jth time step is the function of the current effective elastic properties, 
qualitatively incorporating the effect of slip history to some extent although the frictional 

coefficient is kept constant.  
 

Non-Interaction Approximation (NIA) 

In addition, the Non-Interaction Approximation (NIA) is adopted at the end of the jth time 

step to calculate the eventual global strain by summing the contribution of all fractures slips. NIA 
originally assumes that any new fracture is surrounded by an undamaged elastic medium. Here we 

hypothesize that, within the jth time step, all critical fractures slip in an unchanged, homogeneous 

effective medium, which are the average properties updated at the end of the (j-1)th time step. 
 

An example of iterative process 

At the beginning of each time step, the elastic matrix strain m is first estimated according 
to Hooke’s law under the plane strain condition: 

𝛆𝑚 = [
𝜀1

𝑚

𝜀3
𝑚] =

1−𝑣

2𝐺
[

1 −𝑣 (1 − 𝑣)⁄

−𝑣 (1 − 𝑣)⁄ 1
] [

𝜎1

𝜎3
]                            (S7) 

The relative displacement increments of each critical fracture within the time step are 
obtained based on Eq. (S5), Eq. (S6), and NIA, which are related to the global strain increments by 

Eq. (4) and further summed up to quantify the eventual additional strain tensortotal, j: 

∆𝛆total = [
∆𝜀1

∆𝜀3
]                                                       (S8) 

Taking compression as positive, 3 is always negative due to the fracture-induced dilation 
in the direction of the minor principal stress (σ3). In the context of normal faulting stress regime, in 

which horizontal strain h 3 at boundary is maintained constant, the hortizontal strain of the 

elastic matrix 𝜀3
𝑚 needs to increase to accommodate 3, which is self-regulated by σ3 increase. 
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Treating the model as an effective medium and invoking Hooke’s law, we have the strain 

response at the jth time step as: 

𝜀3,𝑗 =
1−𝑣𝑗−1

2𝐺𝑗−1
(

−𝑣𝑗−1

1−𝑣𝑗−1
𝜎1,𝑗−1 + (𝜎3,𝑗−1 − ∆𝜎3,𝑗)) + ∆𝜀3,𝑗 = 𝜀3,0                 (S9) 

which further gives: 

∆𝜎3,𝑗 =
2𝐺𝑗−1

1−𝑣𝑗−1
∆𝜀3,𝑗                                                    (S10) 

and 

𝜎3,𝑗 = 𝜎3,𝑗−1 − ∆𝜎3,𝑗 = 𝜎3,𝑗−1 −
2𝐺𝑗−1

1−𝑣𝑗−1
∆𝜀3,𝑗                             (S11) 

It implies a monotonic increase of σ3 after each time step given a dilational 3, j. 

Accordingly, the updated strain 1, j can be calculated by: 

𝜀1,𝑗 = 𝜀1,𝑗−1 +
𝑣𝑗−1

2𝐺𝑗−1
∆𝜎3,𝑗 + ∆𝜀1,𝑗                                     (S12) 

where the second right-hand term reflects the Poisson effect induced by the increase of σ3 and the 

third term is the slip-contributed strain increase. It should be noted that, the vertical stress is always 

constant in the normal faulting regime, i.e., 𝜎𝑣 = 𝜎1,0 = 𝜎1,1 = ⋯ = 𝜎11,𝑗−1 = 𝜎11,𝑗 . With the 

updated global stress and strain at the boundary, effective elastic parameters (Gj-1 and νj-1) are 
updated by solving equations in Eq. (S7) at the end of the jth time step, acting as the input of the 

(j+1)th time step. 

In addition to Figure 3b, more detailed information about the iterative process for frictional 

coefficient distribution N(0.6, 0.052) can be found in Figure S2. The temporal variations of the slip 
rate parameter, slip rate, and shear stress difference of the most critical fracture show that the drastic 

rate of change in the first 1,000 time steps. The number of critical fractures within each time step 

further shows that it decreases rapidly from initially about 4,300 to 3 at around the 900th time step, 
explaining the slow growth of mechanical parameters during the subsequent tens of thousands of 

time steps as shown in Figure 3b. We also present the stochastic cases with frictional coefficient 

distribution (1) normal distribution N(0.8, 0.062) and (2) Weibull distribution (scale parameter  = 
0.8 and shape parameter k = 10) in Figure S3 and Figure S4, respectively, where the first two 

iterations and the complete stress evolution process are included. As with the case specified in 
Figure 2, it confirms that the stochastic treatment of frictional coefficient is able to enable the model 

with local stress heterogeneity. 
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Text S3. Stress evolution for the deterministic case 

For comparison, uniform frictional coefficient is assigned to all fractures while the model 

configuration remains the same. In Figure S5a-d, the first two iterations suggest a deterministic 

stress evolution process for the deterministic case. In other words, the equivalent frictional strength 
of the model is doubtlessly 0.6. At the beginning of each time step, all fractures lying above the 

frictional failure envelope are critical, which is not the case in the stochastic systems as shown in 

Figure 2 (or Figure S3 and Figure S4). In addition, shear stresses of all critical fractures will drop 
onto the single frictional failure line, i.e., frictional resistance. Due to the absence of heterogeneity, 

the deterministic system takes only 98 time steps to reach the final frictional equilibrium, as shown 

in Figure S5e. This gives a quantitative interpretation of the classic notion of frictional equilibrium 

and also confirms that the very control of the most critical fracture on the global stress state. 
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Text S4. Monte Carlo simulation, system uncertain analysis 

Whether a fracture is critical or not depends on its frictional coefficient and orientation 

with respect to the global stress field. As both parameters are randomly generated in each 

experimentation, it is imperative to examine the uncertainty associated with this stochastic model. 
To this end, we run 10,000 Monte Carlo simulations to repeat the iterative process. Primarily, we 

quantify the probability of the frictional coefficient and orientation of the most critical fracture, to 

see if it stays invariant to support our conclusions.  
For each simulation, the frictional coefficient and orientation of the fractures are randomly 

generated according to the respective distribution. We apply the same initial stress difference (h = 

1,0 = 100 MPa > v = 3,0 = 20 MPa) in the normal faulting scenario (shown in Figure 4). It is then 

able to identify the most critical fracture by determining the largest shear stress difference . 
Figure S6 shows the distributions of the frictional coefficient and orientation of the most critical 
fracture in different cases. In Figure S6a-c, we confirm that the frictional coefficient of the most 

critical fracture falls at the lower end of its distribution. With regard to the orientation, the most 

critical fracture orients approximately at an angle of 60 or 120 to the global horizontal axis, as 
shown in Figure S6d-f. In addition, the uncertainty of both parameters increases as the system 

becomes more heterogeneous. It should be noted that the final Mohr circle is not necessary tangent 
to the frictional failure envelope in the stochastic case. As an end-member, the frictional coefficient 

and orientation of the most critical fracture in the deterministic case are also deterministic (Figure 

S5). Since frictional coefficient distribution is used as a proxy of system heterogeneity, it is 
concluded that the global response also has remarkable uncertainty which depends largely on the 

intrinsic heterogeneity. In the context of normal faulting stress regime, such uncertainty can be 

represented by distributed frictional failure envelope, or more quantitatively, by the probability 
density function of effective minor principal stress σ3 determined at the end of each simulation, as 

shown in Figure 4. 
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Text S5. Stress evolution in the context of reverse faulting stress regime 

For each distribution, we also experimented the model in the context of reverse faulting 

regime. To facilitate comparison, we set the same starting stress difference (h = 1,0 = 100 MPa > 

v = 3,0 = 20 MPa). We maintain the boundary condition of constant vertical stress and constant 
lateral strain. Based on the expressions in the normal faulting case, we can obtain similar 

derivations simply by switching the numeric subscripts ‘1’ and ‘3’ of each term in Eq. (S11), which 

gives: 

𝜎1,𝑗 = 𝜎1,𝑗−1 − ∆𝜎1,𝑗 = 𝜎1,𝑗−1 −
2𝐺𝑗−1

1−𝑣𝑗−1
∆𝜀1,𝑗                                 (S13) 

Note that, 1, j is positive due to compression in this scenario. Therefore, σ1 will decrease and the 

updated strain 3, j can be calculated by: 

𝜀3,𝑗 = 𝜀3,𝑗−1 +
𝑣𝑗−1

2𝐺𝑗−1
∆𝜎1,𝑗 + ∆𝜀3,𝑗                                         (S14) 

Figure S7-S9 show the first two iterations and the whole stress evolution process for 

frictional coefficient distribution (1) normal distribution N(0.8, 0.062), (2) normal distribution N(0.6, 
0.052), and (3) Weibull distribution (λ = 0.8, k = 10), respectively. As expected, lateral stress σ1, j 

decreases to allow for the reduction of stress difference due to frictional slip. The final stress 

difference is smaller than that of the normal faulting scenario, for any distribution, and it takes 
much more time steps reach the final frictional equilibrium. We further note that, for each 

distribution, the frictional equilibrium in both stress regimes is bounded by the same equivalent 

frictional strength. This reveals that the equivalent frictional strength of the model is independent 
of the applied boundary conditions, but characteristic of the stochastic nature of the fractures therein. 

In addition, the deterministic case in reverse faulting regime is shown in Figure S10. As with the 

stochastic cases, it takes much more time steps to reach the final frictional equilibrium than the 

normal faulting scenario. 
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Figure S1. Uniform distribution of fracture orientation, which is defined schematically in the 

inset. 
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Figure S2. Evolution of slip rate parameter, slip rate, and shear stress difference of the most critical 

fracture, and critical fracture number in each time step in the stochastic case specified in Figure 2. 
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Figure S3. Stochastic case with normally distributed frictional coefficient N(0.8, 0.062) in normal 

faulting stress regime: a-d Identification of critical fractures and stress evolution in the first two 

iterations. For each time step, critical fractures are identified at its beginning, which are marked as 

red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture is colored 
according to its frictional coefficient. e Complete process of stress evolution. Red circle represents 

the resolved stress state surrounding the most critical fracture at each time step, while green circle 

is its frictional resistance. As a reference, the frictional coefficient of the most critical fracture is 
plotted as a solid blue line. Gray colormap is also shown with color scaled to time step. The total 

number of time steps is 18,780. 
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Figure S4. Stochastic system with frictional coefficient following Weibull distribution (λ = 0.8, k 

= 10) in normal faulting stress regime: a-d Identification of critical fractures and stress evolution 
in the first two iterations. For each time step, critical fractures are identified at its beginning, which 

are marked as red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture 

is colored according to its frictional coefficient. e Complete process of stress evolution. Red circle 
represents the resolved stress state surrounding the most critical fracture at each time step, while 

green circle is its frictional resistance. As a reference, the frictional coefficient of the most critical 

fracture is plotted as a solid magenta line. Gray colormap is also shown with color scaled to time 
step. The total number of time steps is 27,513. 
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Figure S5. Deterministic case with equal frictional coefficient (0.6) in normal faulting stress regime: 
a-d Identification of critical fractures and stress evolution in the first two iterations. For each time 

step, critical fractures are identified at its beginning, which are marked as red dot on the Mohr 

diagram. After frictional slip, all critical fractures are represented as red dots on the frictional failure 
line (black dashed line). e Complete process of stress evolution. Red circle represents the resolved 

stress state surrounding the most critical fracture at each time step, while green circle is its frictional 

resistance. Gray colormap is shown with color scaled to time step. The total number of time steps 
is 98. 
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Figure S6. Probability density function of the (a-c) frictional coefficient and (d-f) orientation of 

the most critical fracture based on 10,000 calculations for each frictional coefficient distribution, 

using Monte Carlo method. The color gradient of each bin in (a-c) is scaled to its probability. 
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Figure S7. Stochastic system with normally distributed frictional coefficient N(0.6, 0.052) in 
reverse faulting stress regime: a-d Identification of critical fractures and stress evolution in the first 

two iterations. For each time step, critical fractures are identified at its beginning, which are marked 

as red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture is colored 
according to its frictional coefficient. e Complete process of stress evolution. Red circle represents 

the resolved stress state surrounding the most critical fracture at each time step, while green circle 

is its frictional resistance. As a reference, the frictional coefficient of the most critical fracture is 

plotted as a solid red line. Gray colormap is also shown with color scaled to time step. The total 
number of time steps is 40,302. 
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Figure S8. Stochastic system with normally distributed frictional coefficient N(0.8, 0.062) in 

reverse faulting stress regime: a-d Identification of critical fractures and stress evolution in the first 
two iterations. For each time step, critical fractures are identified at its beginning, which are marked 

as red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture is colored 

according to its frictional coefficient. e Complete process of stress evolution. Red circle represents 

the resolved stress state surrounding the most critical fracture at each time step, while green circle 
is its frictional resistance. As a reference, the frictional coefficient of the most critical fracture is 

plotted as a solid blue line. Gray colormap is also shown with color scaled to time step. The total 

number of time steps is 61,273. 
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Figure S9. Stochastic system with frictional coefficient following Weibull distribution (λ = 0.8, k 

= 10) in reverse faulting stress regime: a-d Identification of critical fractures and stress evolution 

in the first two iterations. For each time step, critical fractures are identified at its beginning, which 
are marked as red dot on the Mohr diagram. After frictional slip, stress state of each critical fracture 

is colored according to its frictional coefficient. e Complete process of stress evolution. Red circle 

represents the resolved stress state surrounding the most critical fracture at each time step, while 
green circle is its frictional resistance. As a reference, the frictional coefficient of the most critical 

fracture is plotted as a solid red line. Gray colormap is also shown with color scaled to time step. 

The total number of time steps is 52,114. 
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Figure S10. Deterministic case with equal frictional coefficient (0.6) in reverse faulting stress 

regime: a-d Identification of critical fractures and stress evolution in the first two iterations. For 
each time step, critical fractures are identified at its beginning, which are marked as red dot on the 

Mohr diagram. After frictional slip, all critical fractures are represented as red dots on the frictional 

failure line (black dashed line). e Complete process of stress evolution. Red circle represents the 
resolved stress state surrounding the most critical fracture at each time step, while green circle is 

its frictional resistance. Gray colormap is shown with color scaled to time step. The total number 

of time steps is 282. 


