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Abstract

The projection of extreme convective precipitation by global climate models (GCM) exhibits significant uncertainty due to

coarse resolutions. Direct dynamical downscaling (DDD) of regional climate at kilometer-scale resolutions provides valuable

insight into extreme precipitation changes, but its computational expense is formidable. Here we document the effectiveness

of machine learning in enabling smart dynamical downscaling (SDD), which selects a small subset of GCM data to conduct

downscaling. Trained with data for three subtropical/tropical regions, convolutional neural networks (CNNs) can retain 92% to

98% of extreme precipitation events (rain intensity higher than the 99th percentile) while filtering out 88% to 95% of circulation

data. When applied to two different reanalysis data sets, the CNNs’ skill in retaining extremes decreases modestly in subtropical

regions but sharply in the deep tropics. Nonetheless, one of the CNNs can still retain 62% of all extreme events in the deep

tropical region in the worst case.
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Key Points:6

∙ Dynamical downscaling at ∼1 km resolution produces reliable estimations of extreme rainfall7

but is computationally expensive.8

∙ Machine learning (ML) makes smart dynamical downscaling (SDD) possible, where ML9

models filter out irrelevant large-scale patterns.10

∙ We demonstrate that SDD can be enabled by deep neural networks, which do not necessarily11

have to involve sophisticated structures.12
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Abstract13

The projection of extreme convective precipitation by global climate models (GCM) exhibits sig-14

nificant uncertainty due to coarse resolutions. Direct dynamical downscaling (DDD) of regional15

climate at kilometer-scale resolutions provides valuable insight into extreme precipitation changes,16

but its computational expense is formidable. Here we document the effectiveness of machine learn-17

ing to enable smart dynamical downscaling (SDD), which selects a small subset of GCM data to18

conduct downscaling. Trained with data for three subtropical/tropical regions, convolutional neural19

networks (CNNs) retained 92% to 98% of extreme precipitation events (rain intensity higher than20

the 99th percentile) while filtering out 88% to 95% of circulation data. When applied to reanalysis21

data sets differing from training data, the CNNs’ skill in retaining extremes decreases modestly in22

subtropical regions but sharply in the deep tropics. Nonetheless, one of the CNNs can still retain23

62% of all extreme events in the deep tropical region in the worst case.24

Plain Language Summary25

Climate scientists use supercomputers to simulate the climate and predict how it may change un-26

der global warming. Extreme precipitation, which can disrupt society by causing disasters like floods27

and landslides, is of great interest in climate studies. However, replicating severe rainstorms on a28

supercomputer, especially the storms in tropical and subtropical areas, is not easy. This is because29

those rainstorms often contain fine-scale details that cannot be represented confidently without ex-30

tensive computational resources. If we use computationally affordable computer models to simulate31

those rainstorms, we obtain results with substantial uncertainties. If we use computationally expen-32

sive ones, we cannot simulate many scenarios and cannot be confident about the results. The power33

of machine learning in pattern recognition is here used to help modelers use their computational34

resources more efficiently. Instead of simulating all kinds of weather events, including unimportant35

ones, at high resolutions, we usemachine learning algorithms to search coarse resolution climate data36

for those large-scale weather patterns that are more likely to cause severe rainstorms. Then modelers37

can make more efficient use of supercomputing resources by simulating severe weather events only38

and advance our understanding of them.39

1 Introduction40

Extreme precipitation events often disrupt society by causing disasters such as floods and land-41

slides. Thus, predicting the response of precipitation extremes to global warming is crucial for our42

adaptation to climate change. Climate models agree well with each other on the potential response43

of extreme extratropical precipitation to global warming, but their results for subtropical and tropical44

extremes diverge (O’Gorman & Schneider, 2009). Predicting such changes is not straightforward,45

because the performance of numerical simulation of extreme precipitation is sensitive to model res-46

olution (Li et al., 2018; Van Der Wiel et al., 2016), and grid spacings of current-generation climate47

models are still at coarse ∼1◦ resolutions. Previous studies have demonstrated that to accurately48

predict future changes in extreme precipitation events, especially those associated with severe con-49

vection, it is necessary to resolve local storm dynamics with kilometer-scale grid spacings (Kendon50

et al., 2014, 2017). Such a high resolution is necessary not only because of the small spatial scale51

of convective cells, but also because the essential roles played by the interaction between convection52

and large-scale dynamics, air-sea coupling, and topographic forcing in determining the intensity of53

extreme events (Nie et al., 2016; Kendon et al., 2017; Rainaud et al., 2017).54

Modelers have been attempting to refine global climate models’ resolution, but the current high-55

est resolution is only ∼ 25 km (Haarsma et al., 2016). A direct dynamical downscaling (DDD) ap-56

proach has been adopted in the regional climate simulations at convection-permitting resolutions.57

Valuable findings have been obtained due to improved representation of fine-scale processes, but58

DDD at the convection-permitting resolution has a very high demand on computational resources59

(Prein et al., 2015).60
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Is there a way to avoid the expensive computational cost of long-term DDD but still allow61

a convection-permitting resolution? This question is the core problem we want to address in this62

study. When our concern is not the mean climate but instead a special kind of weather (e.g., extreme63

precipitation), we can save a tremendous amount of computational resources if we do not have to64

perform the DDD for every day of an extended period. In this study, we harness machine learning’s65

power to fulfill the goal of selecting a small subset of GCM data for the dynamic downscaling of66

extreme precipitation events. We call this strategy smart dynamical downscaling (SDD).67

Machine learning has been increasingly used in geoscience in recent years. In the atmospheric68

science community, it has applied to real-time nowcasting (Han et al., 2017; McGovern et al., 2017),69

physical parameterization (Brenowitz & Bretherton, 2019; Gagne et al., 2020), and weather fore-70

casting (Weyn et al., 2019; Chattopadhyay et al., 2020). Previous authors have documented machine71

learning’s potential to identify synoptic-scale patterns associated with extreme rainfall in the extra-72

tropics (Agel et al., 2018; Conticello et al., 2018; Knighton et al., 2019). The current study differs73

from previous ones in that we intentionally chose subtropical and tropical regions for potential ap-74

plications on convective rainfall, which might be more challenging to capture based on large-scale75

circulation. Also, because the purpose of this study is to evaluate the potential of SDD, we used ma-76

chine learning for the classification problem of circulation patterns, instead of attempting to predict77

the exact precipitation amount like other statistical downscaling studies (e.g., Sachindra et al., 2018).78

We evaluated three machine learning models, a dual support vector machine (SVM) model,79

an 8-layer deep convolutional neural network (CNN), and a sophisticated 58-layer deep CNN, in80

classifying circulation patterns responsible for 6-hourly precipitation extremes. The performance of81

these machine learning models with increasing complexity is documented, and we found the deep82

CNN with a structure of intermediate-level complexity appears to suffice for SDD.83

2 Data and Methods84

2.1 Reanalysis and Satellite Data85

We train machine learning models with reanalysis data of circulation and satellite data of 6-86

hourly precipitation. Our study focused on the areas surrounding three Asian cities, Hong Kong87

(HK), Manila (MN), and Singapore (SG), where extreme rainfall is often related to intense convec-88

tion, to contrast applicability of the methodology developed here for subtropical and tropical climate.89

The precipitation data we used are the final precipitation, Level 3 data of the Integrated Multi-90

satellitE Retrievals for Global PrecipitationMeasurement (GPM IMERG;Huffman et al., 2019). This91

data set have 0.1◦ spatial resolution and 30min temporal resolution originally. We used the data set92

between the period of June 2000 to May 2019. Because the reanalysis data have a 6-hour temporal93

resolution, we average the original data in time to get the mean precipitation rate in 6-hour intervals.94

We also used area averaging of the precipitation data to coarse-grain the data onto a 0.5◦ × 0.5◦ grid95

to ignore sporadic events that affect only a small area.96

Multiple reanalysis data sets were used in the training and evaluation of machine learning mod-97

els. For the SVMs’ training, we use the NCEP/NCAR (National Centers for Environmental Predic-98

tion/National Center for Atmospheric Research) Global Reanalysis Products (Kalnay et al., 1996)99

to represent the state of the atmospheric circulation. This data set has 2.5◦ × 2.5◦ horizontal reso-100

lution. We use data on eight pressure levels between 1000 hPa to 300 hPa. The variables we chose101

to depict the large-scale circulation include 7 three dimensional variables: geopotential height, rel-102

ative humidity, temperature, u- and v-components of horizontal wind, vertical (pressure) velocity,103

and vorticity, in addition to 3 single-level variables — surface pressure, tropopause pressure, and104

precipitable water. The temporal resolution of the reanalysis data is 6 hours. The circulation vari-105

ables were normalized with the mean and standard deviation at each level. The precipitation data106

from reanalysis were not used because they represent precipitation from large-scale circulation and107

significantly biased. Supplementary Figure S1 shows that precipitation data from the reanalysis data108

suggest inaccurate timing and intensities compared with GPM observation.109
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For the training of deep neural networks (RaNet and RxNet described below), we used theNCEP110

final (FNL) operational analysis data on 1◦×1◦ grids (NCEP/NWS/NOAA, 2000). TheNCEP/NCAR111

reanalysis data were not used for the training of CNNs, because its coarse resolution hampers the use112

of multiple convolutional layers. To reduce the computational cost in training the CNNs, we only113

used five variables (geopotential height, temperature, relative humidity, and u- and v-components of114

wind) on six pressure levels (300, 500, 700, 850, 925 and 1000 hPa).115

Finally, to evaluate the sensitivity of the trained neural networks to potential model biases in116

climate simulations, we evaluated the performance of the FNL-trained neural networks with another117

two reanalysis data sets, ERA5 (Copernicus Climate Change Service, 2017) and JRA-55 (Japan118

Meteorological Agency, 2013). Those data were spline interpolated onto 1◦ × 1◦ grid and used by119

the FNL-trained CNNs to make predictions.120

2.2 Support Vector Machine121

An SVM is a machine learning model for classification problems (Cristianini et al., 2000). At its122

core, an SVM finds a hyperplane in the feature space of data and separate points in the feature space123

into different groups. The hyperplane in feature space is defined as the set of points x satisfying124

w ⋅ x + b = 0 (1)125

The vector w and scalar b for the best hyperplane are determined by an optimization procedure that126

maximizes the margin between two classes in the feature space. For a linearly separable problem, w127

and b are entirely determined by those sample points that are closest to the best hyperplane. Those128

sample points are called support vectors. When data are not linearly separable, one can use a soft129

margin technique to allow a small number of misclassified instances.130

Furthermore, in nonlinear classification problems, it is common to use a kernel function to131

replace dot product for operating the optimization algorithm in a transformed feature space implicitly.132

In our application, we used the Gaussian radial basis function,133

G(xi, xj) = exp

(

−
||xi − xj||2

2�2

)

(2)134

where
√

2� is called kernel scale. Besides �, the other hyperparameter for training an SVM is135

the box constraint which appears in the soft margin formula and determines the tolerance level of136

misclassification.137

An SVM takes the NCEP/NCAR reanalysis data in the 15◦ × 15◦ square region centered at138

one of the three cities as input. Each time slice is categorized as producing “significant rain” or139

“no significant rain” (with the 30th percentile of rain rate as the threshold), “light rain” or “heavy140

rain” (with the 60th, 70th, or 80th percentile as the threshold, see Section 3.1), based on next-6-hour141

precipitation in the 0.5◦ × 0.5◦ cell centered at the same city. The SVMs were trained to classify the142

large-scale circulation patterns accordingly.143

MATLAB R2019b was used to train SVMs. The SVMs were trained using Bayesian opti-144

mization to find out the best hyperparameters. Their performance was evaluated with 10-fold cross-145

validation, in which the input data set was partitioned into ten subsets. Each subset was sequentially146

used as the validation set, while the other nine were used for training. Performance metrics are based147

on ten-time averages.148

2.3 Convolutional Neural Network149

In its essence, a neural network transforms the signal from one layer of neurons to the next150

through a linear transformation and the use of a nonlinear activation function,151

z[k] = W[k]a[k−1] + b[k] , a[k] = g[k](z[k]) (3)152

–4–



manuscript submitted to Geophysical Research Letters

where a[k] is the activation of Layer k, W[k] is a weight matrix, and b[k] is a bias vector. g[k] is153

a non-linear activation function. For Layer 0, the activation a[0] is the vector of input data x. A154

fully connected layer in a deep neural network connects every neuron in the previous layer to every155

neuron in the current layer. A convolutional layer, by contrast, has multiple filters, which are used to156

convolve a sub-block of the activation data from the previous layer and connect that subset of neurons157

to a neuron in the current layer.158

Figure 1. Structure of a) RaNet and b) RxNet. RaNet uses three-dimensional filters in the convolutional layers
and leaky ReLU activation for all layers; the first two convolutional layers are followed by batch normalization
layers which are not shown. RxNet uses two-dimensional filters in its regular convolution and channel-wise
separable convolution operations, and used the ReLU activation function for all layers; all convolutional layers
are followed by batch normalization layers which are not shown. Blue-font values before @ indicate the number
of channels of each layer. The expression after @ indicates the size of activation arrays of a channel. The
expression in brackets indicates the size of filters used by convolutional layers.

Two CNN structures are tested in this study (Fig. 1). They are motivated by the AlexNet159

(Krizhevsky et al., 2012) and Xception (Chollet, 2017) models, respectively, which showed excellent160

performance in computer vision competitions. This first CNN used in this study is named as RaNet161

(motivated by AlexNet, Fig. 1a). It has 3 convolution layers and 5 fully connected layers. Differing162

from the original AlexNet, RaNet uses three-dimensional filters in its convolutional layers; thus, its163

input layer has five channels (variables). By contrast, RxNet (motivated by Xception, Fig. 1b) treats164

the data on each pressure level as one individual variable; thus its input layer has 30 channels (5165

–5–



manuscript submitted to Geophysical Research Letters

variables × 6 levels). Such a design of RxNet is used for closely following the original Xception166

model, which was applied to two-dimensional images. RxNet is 58-layer deep and includes multiple167

residual connections.168

When training the CNNs, we included the precipitation data for about 40 to 50 additional169

0.5◦ × 0.5◦ grid cells surrounding each of those three cities (and the accompanying circulation data)170

to obtain more samples, which helps prevent overfitting. The extent of the surrounding areas was171

determined by applying the trained SVMs to new nearby grid cells and evaluating the performance of172

the SVMs. Relatively high performance suggests the weather patterns governing precipitation at the173

new locations are similar to those at the original training location. Thus, it is appropriate to include174

the new grid cells’ data to increase the total sample size. The exact extent of the selected HK, MN,175

and SG regions is shown in Supplementary Figure S2, with the selection threshold provided in the176

caption of Fig. S2.177

6-hourly precipitation data of each 0.5◦×0.5◦ cell within a selected region are used to categorize178

the corresponding time and location as producing “extreme rain” or “non-extreme rain” (with the179

90th percentile of rain rate as the threshold). The input data for the neural networks are the FNL180

data spline-interpolated onto 12◦ × 12◦ square regions, which are centered at each of the 0.5◦ × 0.5◦181

rain data cells and have 1◦ × 1◦ resolution (Supplementary Figure S3). Input data for RaNet are182

scaled perturbations. We define base-state profiles of geopotential height and temperature as their183

climatological means and the base-state profiles for u, v, and relative humidity as zero. The deviations184

of variables from base states are defined as perturbations and then scaled by their root-mean-square185

amplitudes. Because RxNet treats the data on each pressure level as separate variables, input data186

of each channel for RxNet are rescaled to be in the range of −1 to 1 using minimum and maximum187

values. When the FNL-trained CNNs are applied to ERA5 and JRA-55 data sets, leading-order188

model “biases” in these two data sets were removed by adjusting their mean and root-mean-square189

perturbation amplitude at each pressure level to be the same as FNL data.190

For these two CNNs, 60% of the FNL data were used to train the models, and 20% used for191

validation, which helped decide if early stopping was needed during training. The other 20% data192

were held out as a test data set for evaluating trained models’ performance. 70-15-15 partitioning193

of the train-validation-test data sets was also evaluated and did not cause a significant difference in194

results.195

The two CNNswere trained to partition data into the categories of “extreme” and “non-extreme”196

rain, by iterating to minimize the weighted cross-entropy loss function,197

L = − 1
N

N
∑

i=1

K
∑

j=1
wjTij log(Yij) . (4)198

T is training targets, Y is predicted probability, N is the number of instances, K is the number of199

classes, and w is the weighting factor. Instead of an unweighted loss function, this weighted loss200

function was used because the number of non-extreme events is much larger than that of extremes.201

The weighting factor w is set to 0.95 for extreme events and 0.05 for non-extreme events. These202

weighting factors are determined by the approximate ratio of the number of events in the two cat-203

egories. Therefore, predicting an extreme event wrong causes a much larger increase in the loss204

function than doing the same to a non-extreme event.205

RaNet and RxNet were optimized using the Adam (adaptive moment estimation) optimizer in206

MATLAB through 30 epochs of iteration and with a learning rate of 1 × 10−4. Training them with207

more iteration cycles can increase their accuracy and precision, but leads to deterioration in the recall,208

which suggests overfitting and is not favorable for retaining extreme events. Because of the high209

computational expense in training CNNs, we did not apply the Bayesian optimization here. Instead,210

the learning rate, CNN structures, and the number of training epochs were determined empirically211

through several rounds of experiments.212
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2.4 Performance Metrics213

In the training of SVMs and CNNs, algorithms try to achieve the highest classification accuracy.214

However, because extreme events are only a small fraction of the data, accuracy of trained models215

is always intuitively high. Thus, in our discussion, we report the performance of trained models216

primarily with precision and recall. Precision quantifies the skill of a trained model in filtering out217

irrelevant circulation patterns, whereas recall quantifies how well the relevant patterns are retained.218

Specifically,219

PM
y =

|{r > ry} ∩ {r′ > ry}|
|{r′ > ry}|

, (5)220

221

RM
y =

|{r > ry} ∩ {r′ > ry}|
|{r > ry}|

, (6)222

where PM
y and RM

y are precision and recall of the model M when cases with precipitation rates223

greater than the y-th percentile, ry, are labeled as positive. ry may differ from the actual threshold224

used in labelling data when training M. {r > ry} represent the set of instances for which real rain225

rate (r) exceeds ry, and {r′ > ry} is the set of instances for which the model M predicts rain rate226

(r′) exceeding ry. r′ was not computed by the machine learning models explicitly, but rather the227

condition, r′ > ry, was judged by the model M.228

3 Results229

3.1 Dual SVM Model230

We trained a pair of SVMs to select instances for extreme events. The first SVM (SVM1) tells231

whether the circulation at a time can produce “significant” rainfall or not, with the 30th percentile of232

rain rate as the threshold. The subset of circulation data, which SVM1 predicts to produce significant233

rain, is then adopted by the second SVM (SVM2), which uses a higher percentile (60th, 70th, or 80th)234

as its threshold for “extremes”. We found that this dual-SVM strategy can yield higher precision and235

recall than using a single SVM to directly predict “extremes”.236

Figure 2 shows the performance of the Dual SVM model trained with the data for the three237

cities, HK, MN, and SG. The precision of SVM1 for its training criteria, P SVM1
30 , is around 0.7, and238

the recall of SVM1 for its training criteria, RSVM1
30 , is between 0.48 and 0.59. These recall values are239

not very high. However, if we target to retrieve precipitation event with rain rate higher than the 90th240

and 99th percentiles, we can find that the corresponding recall, RSVM1
90 and RSVM1

99 , is between 0.82241

and 0.92 for HK and MN, and between 0.69 and 0.79 for SG. It should be noted that because we did242

not include rain rate lower than 0.05mmh−1 in calculating the percentiles, SVM1 eliminates much243

more than 30% circulation data from all time slices. Precipitation rates in HK, MN, and SG exceed244

the corresponding 30th percentiles only in 14.5%, 28.9%, and 29.4%, respectively, of time slices of245

the 19 years (not shown).246

Figure 2 also shows the performance of SVM2 for training criteria, and real extreme events247

defined by the 90th and 99th percentiles. For SG, we could not obtain a converged solution when the248

training criterion was set as the 80th percentile. Therefore, it is likely that those circulation patterns,249

responsible for the extreme events defined with the 80th percentile, are inseparable from others by250

an SVM.251

The precision of SVM2 for the 90th and 99th percentiles (red and yellow bars in Fig. 2a-c)252

increases as the training criteria increase to become close to the evaluation criteria. However, those253

values are relatively low because SVM2 was trained with different criteria (e.g., the 70th percentile).254

The recall of SVM2 decreases as the training criteria increases. A higher training threshold means255

that we can filter out more “irrelevant” instances. However, it also increases our chance of losing256

actual extreme events due to misclassification. Based on Fig. 2, the SVM2 trained with the 70th257

percentile of rain rate appears to be the most balanced model for applications. If we target to retrieve258

extreme events defined by the 99th percentile in the selection, the SVM1 and the SVM2 trained259
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Figure 2. Precision (a–c) and recall (d–f) of the trained SVMs. a) and d) are the SVMs for HK, b) and e) for
MN, c) and f) for SG. The SVMs were trained for the thresholds indicated below the horizontal axis, but their
performance is evaluated against the training criteria and the 90th and 99th percentiles of rain rates.

with the 70th percentile can yield combined recall (product of the recall of SVM1 and SVM2) of260

RSVM1
99 RSVM2

99 = 0.81, 0.79, and 0.31, for HK, MN, and SG, respectively.261

The Dual SVM model’s unsatisfactory performance for SG data suggests we cannot obtain a262

very reliable subset of data if we want to study extreme rainfall in the deep tropics with SVMs.263

Moreover, because we can only use the 70th percentile of rain rate in the training of SVM2, we still264

need to “waste” a substantial fraction of our computation to ensure the SVMs keep the most extreme265

events. Can we overcome these difficulties with deep neural networks?266

3.2 Convolutional Neural Networks267

The performance of RaNet and RxNet is shown in Table 1. For the test set of FNL data, the pre-268

cision of the two CNNs, PRaNet
90 and PRxNet

90 , is between 0.23 and 0.33, which is not very impressive,269

but their recall, RRaNet
90 andRRxNet

90 , is high, between 0.75 and 0.92. When evaluated for the 99th per-270

centile, the recall of the CNNs, RRaNet
99 and RRxNet

99 , reaches 0.93 to 0.98. Those high values contrast271

with the much lower recall values of the dual SVM models, especially for the SG region. Therefore,272

the deep neural networks RaNet and RxNet are indeed more powerful in recognizing large-scale pat-273

terns responsible for extreme events. The relatively low precision values partially result from the274

weighted cross-entropy loss, which ensures the high values of recall. We trained RaNet with un-275

weighted cross-entropy loss. It exhibits a precision of 0.38–0.49, and recall (for the 90th percentile)276

drops to 0.58–0.67, leading to the misclassification of many extreme events.277

Different climate models potentially have their intrinsic biases — can the CNNs trained with278

FNL data perform well when applied to climate simulation data? To evaluate the tolerance of RaNet279

and RxNet to potential GCM biases, we apply them to another two reanalysis datasets, ERA5 and280

JRA-55, to compute the performance metrics of the FNL-trained CNNs (while still using the GPM281

precipitation to label instances). Different reanalysis data sets are known to represent some parts of282

the general circulation differently (Kossin, 2015). Although we have adjusted the mean and ampli-283

–8–
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Table 1. Performance metrics of RaNet and RxNet. Three data sets, FNL, ERA5, and JRA-55, were used to
evaluate the models. For FNL, only the test dataset (20% of all) was used to evaluate the performance of trained
models, whereas, for ERA5 and JRA-55, entire data sets were used. The rows of “precision” and “recall” are
computed for the training threshold, the 90th percentile values. The rows of “recall (99%)” is the recall when
the trained models are evaluated for the 99th percentile values. “retention” refers to the fraction of data retained
(as relevant to extreme events) by the trained models.

HK Region MN Region SG Region

RaNet RxNet RaNet RxNet RaNet RxNet

accuracy
FNL 0.936 0.961 0.897 0.933 0.900 0.920
ERA5 0.948 0.964 0.904 0.938 0.905 0.931
JRA-55 0.950 0.957 0.907 0.931 0.883 0.926

precision
FNL 0.238 0.331 0.229 0.307 0.230 0.274
ERA5 0.257 0.326 0.224 0.292 0.201 0.238
JRA-55 0.259 0.276 0.217 0.241 0.148 0.180

recall
FNL 0.921 0.858 0.832 0.748 0.770 0.749
ERA5 0.777 0.663 0.725 0.553 0.557 0.428
JRA-55 0.738 0.645 0.650 0.462 0.475 0.299

recall
(99%)

FNL 0.985 0.983 0.955 0.935 0.927 0.936
ERA5 0.927 0.843 0.904 0.800 0.742 0.643
JRA-55 0.901 0.798 0.864 0.695 0.622 0.465

retention
FNL 0.082 0.055 0.126 0.084 0.120 0.098
ERA5 0.064 0.043 0.112 0.065 0.099 0.064
JRA-55 0.060 0.049 0.104 0.066 0.115 0.059

tude of ERA5 and JRA-55 data (Section 2.1) to correct leading order biases, significant changes in284

the performance of trained CNNs can still be found when applied to the ERA5 and JRA-55 data.285

In Table 1, application of the FNL-trained CNNs to ERA5 data does not result in a large decrease286

in the accuracy and precision, but leads to a sharp drop in the recall, especially for the SG region.287

The recall corresponding to the training criterion (90th percentile) for the SG region is around 0.76288

for the FNL test data set but drops to 0.56 and 0.43 for RaNet and RxNet, respectively, for the ERA5289

data. When considering the 99th percentile, RRaNet
99 and RRxNet

99 are higher than 0.80 for the HK and290

MN regions with the ERA5 data, but are only 0.74 and 0.64, respectively, for the SG region.291

The JRA-55 data set appears to differ from the FNL data even more than the ERA5 data. Recall292

values of RaNet and RxNet, when applied to the JRA-55 data, become even lower than those for293

ERA5. For the HK region, the recall RRaNet
99 and RRxNet

99 are 0.90 and 0.80, respectively, with the294

JRA-55 data, which are still satisfactory. However for the SG region,RRaNet
99 andRRxNet

99 are only 0.62295

and 0.47, respectively, with the JRA-55 data. These results suggest that if the CNNs are trained with296

one circulation data set and applied to the deep tropics in climate simulations, they may not capture297

all the circulation patterns in climate models that can generate extreme events when dynamically298

downscaled.299

Overall, RxNet exhibits higher accuracy and precision than RaNet for all three regions. How-300

ever, RaNet exhibits higher recall values and appears to be more resilient to potential model biases.301

For example, RRaNet
99 is consistently higher than RRxNet

99 by more than 0.10 in all three regions. How-302

ever, the relatively higher recall comes with a price in computational cost, that is, less “irrelevant”303

data can be filtered out if the recall needs to be high. For example, when using ERA5 data for the304

MN region, RaNet retains twice as much data as RxNet.305
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4 Discussion and Summary306

In this study, we demonstrated that the smart dynamical downscaling (SDD) of extreme rainfall307

is viable through deep neural networks, though the reliability of this method depends on climate308

regimes. For the subtropical regions (HK and MN), this methodology appears to be promising. The309

trained CNNs performed well, even when different reanalysis data sets were used to evaluate their310

performance. In the HK region, for example, 92% to 96% of circulation data can be filtered out as311

irrelevant patterns for extreme events. However, for the deep tropics (SG region), the CNNs’ skill312

in retaining extremes significantly deteriorates when applied to different reanalysis data sets. For313

instance, RxNet has a recall of 0.94 for the 99th-percentile extreme events for FNL data but drops to314

0.47 for JRA-55 data.315

From simple SVMs to sophisticated CNNs, the model performance is always worse for the316

SG region than the other two regions. We speculate this is because the link between large-scale317

circulation and local precipitation in the deep tropics is just not as strong as those in subtropics. k-318

medoid clustering analysis (Supplementary Figure S4-S6) suggests that extreme precipitation events319

in the HK region are typically associated with warm-sector convection, frontal rainfall, and tropical320

cyclones (Fig. S4), of which the first type comprises the majority (Wu et al., 2020). Those weather321

patterns have distinct large-scale features. In contrast, extreme precipitation appears to be connected322

with squall lines and cold pools for the SG region (Porson et al., 2019), which exhibit significant323

variability at smaller grid scales (Fig. S6). It is probably not surprising that fitting small-scale features324

is more complicated than fitting large-scale ones.325

Therefore, the SDD of extreme precipitation in the deep tropics appears to be challenging. One326

could use a threshold that is even lower than the 90th percentile to train CNNs to increase the recall for327

the 99th-percentile extreme events. However, such a strategy may not always be desirable because it328

increases the recall by sacrificing precision, thereby increasing the computational cost of downscaling329

simulations. It is also possible to include multiple reanalysis data when training CNNs to alleviate330

the problem of low tolerance to potential model biases. Lastly, using a model structure with an331

intermediate level of sophistication, like the RaNet here, may also be beneficial.332

In subtropical regions, the potential of advanced deep neural networks, such as RxNet here, can333

be fully exploited to reduce computational expense while confidently retainingmost of the circulation334

patterns causing extreme rainfall. In our study, the recall RRxNet
99 ≥ 0.80 for the HK region with all335

circulation data sets. The next step for our research is to apply deep neural networks to SDD of336

climate simulations and explore the response of extreme rainfall to global warming.337
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