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Abstract

Simulations of human behavior in water resources systems are challenged by uncertainty in model structure and parameters.

The increasing availability of observations describing these systems provides the opportunity to infer a set of plausible model

structures using data-driven approaches. This study develops a three-phase approach to the inference of model structures and

parameterizations from data: problem definition, model generation, and model evaluation, illustrated on a case study of land

use decisions in the Tulare Basin, California. We encode the generalized decision problem as an arbitrary mapping from a

high-dimensional data space to the action of interest and use multi-objective genetic programming to search over a family of

functions that perform this mapping for both regression and classification tasks. To facilitate the discovery of models that

are both realistic and interpretable, the algorithm selects model structures based on multi-objective optimization of (1) their

performance on a training set and (2) complexity, measured by the number of variables, constants, and operations composing

the model. After training, optimal model structures are further evaluated according to their ability to generalize to held-out

test data and clustered based on their performance, complexity, and generalization properties. Finally, we diagnose the causes

of good and bad generalization by performing sensitivity analysis across model inputs and within model clusters. This study

serves as a template to inform and automate the problem-dependent task of constructing robust data-driven model structures

to describe human behavior in water resources systems.
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Abstract13

Simulations of human behavior in water resources systems are challenged by uncertainty14

in model structure and parameters. The increasing availability of observations describ-15

ing these systems provides the opportunity to infer a set of plausible model structures16

using data-driven approaches. This study develops a three-phase approach to the infer-17

ence of model structures and parameterizations from data: problem definition, model18

generation, and model evaluation, illustrated on a case study of land use decisions in the19

Tulare Basin, California. We encode the generalized decision problem as an arbitrary20

mapping from a high-dimensional data space to the action of interest and use multi-objective21

genetic programming to search over a family of functions that perform this mapping for22

both regression and classification tasks. To facilitate the discovery of models that are23

both realistic and interpretable, the algorithm selects model structures based on multi-24

objective optimization of (1) their performance on a training set and (2) complexity, mea-25

sured by the number of variables, constants, and operations composing the model. Af-26

ter training, optimal model structures are further evaluated according to their ability to27

generalize to held-out test data and clustered based on their performance, complexity,28

and generalization properties. Finally, we diagnose the causes of good and bad gener-29

alization by performing sensitivity analysis across model inputs and within model clus-30

ters. This study serves as a template to inform and automate the problem-dependent31

task of constructing robust data-driven model structures to describe human behavior in32

water resources systems.33

1 Introduction34

Increasingly, water resources models combine observed data and computational ex-35

periments to support the development of theory regarding system processes (Clark et36

al., 2015a, 2015b), particularly those for which existing theory may insufficiently explain37

available observations (Karpatne et al., 2017; Schlüter et al., 2019). One such process38

is human behavior, which represents a significant source of uncertainty in simulation mod-39

els of water resources systems (Konar et al., 2019), as humans interact with and depend40

on water systems in numerous ways (Lund, 2015; Schill et al., 2019). Examples include41

urban and agricultural water demand (Chini et al., 2017; Marston & Konar, 2017), pop-42

ulation displacement (Müller et al., 2016), and the nonstationary behavior of individ-43

uals and institutions across multiple sectors and scales (Mason et al., 2018; Monier et44

al., 2018; Muneepeerakul & Anderies, 2020). The increasing availability of multi-sectoral45

data describing these processes provides the opportunity to complement theory by in-46

ferring plausible models from data (Brunton et al., 2016; Montáns et al., 2019).47

Many subfields of water resources have focused on the challenge of modeling hu-48

man behavior, including: dynamical systems models, as in socio-hydrology (Sivapalan49

et al., 2012) and social-ecological systems (Berkes & Folke, 1998); hydro-economic mod-50

els (Harou et al., 2009); and agent-based modeling (An, 2012). Each offers differing per-51

spectives on which system components should be treated as exogenous, controlled, or self-52

organized, and which behaviors can be adequately described by data versus theory (Anderies,53

2015). However, all share the goal of accurately describing observed dynamics of the sys-54

tem while managing the complexity of the spatial and temporal representation (Baumberger55

et al., 2017; Höge et al., 2018). These approaches are not necessarily exclusive, and can56

be connected through a common experimental framing—for example, Müller and Levy57

(2019) review how economic theory can be coupled with data-driven sociohydrologic mod-58

eling to support and develop theories of human influence in water systems. Similarly, agent-59

based modeling studies have integrated data-driven and theory-driven approaches to in-60

vestigate system processes (Gunaratne & Garibay, 2017; Schlüter et al., 2019; Vu et al.,61

2019). By extricating the processes driving emergent and interdependent behaviors in62

coupled systems, data-driven models can be used beyond the integration of observations63

to advance theory.64
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Several recent studies highlight the value and range of applications for data-driven65

approaches in water resources. For example, Giuliani et al. (2016) generate adaptive be-66

havioral rules from historical climate and land use data by coordinating reservoir deci-67

sions with downstream cropping decisions from an economic model. Similarly, Quinn et68

al. (2018) employ policy emulation methods for coupled reservoir and irrigation decisions69

to reduce the computational cost of exploring a range of future hydroclimate scenarios.70

Worland et al. (2019) combine heterogeneous attributes of stream gauge networks to re-71

construct observed flow duration curves under human influence with high accuracy us-72

ing multi-output neural networks. Finally, Zaniolo et al. (2018) use data-driven variable73

selection across hydroclimate indicators and observed state variables to automatically74

design Pareto-optimal drought indices (i.e., constructing a function) to balance trade-75

offs between complexity and performance. These studies have underscored the signifi-76

cant potential for data-driven methods to advance model design in water systems, while77

also identifying key challenges related to structure and complexity.78

Model accuracy alone does not engender trust (Baumberger et al., 2017), partic-79

ularly in the case of “black-box” models (Shen, 2018), though accuracy is often the pri-80

mary metric by which model structure is validated (Eker et al., 2018). By starting from81

fixed model structures, many data-driven methods bypass the question of structural un-82

certainty (Walker et al., 2003). This complicates any eventual reconciliation with avail-83

able theory or process knowledge to support interpretation and validation (Lipton, 2018;84

Knüsel et al., 2019; P. J. Schmidt et al., 2020). By contrast, data-driven methods for sys-85

tem identification are capable of searching both model structures and parameters to find86

candidate representations (Ljung, 2017). Methods have been demonstrated for systems87

in which the target relationships are well-known, such as the double pendulum (M. Schmidt88

& Lipson, 2009) and the Navier-Stokes equations (Rudy et al., 2017). In hydrology, data-89

driven system identification methods have been used to infer rainfall-runoff transfer func-90

tions (Klotz et al., 2017) and to automate the identification of rainfall-runoff model struc-91

tures using global optimization (Spieler et al., 2020).92

Generating model structures through data-driven system identification allows for93

the testing of multiple model structures and parameterizations as competing hypothe-94

ses (Beven, 2019), similar to how conceptual and theory-driven model components have95

been compared to reduce structural uncertainty (Clark et al., 2015a, 2015b; Nearing &96

Gupta, 2015; Knoben et al., 2020). Several specific challenges arise in the way candidate97

models are evaluated. First, data-driven system identification typically results in a trade-98

off between model performance and complexity (Hogue et al., 2006; Bastidas et al., 2006;99

Pande et al., 2009). Second, additional criteria may be required for model evaluation,100

such as interpretability and agreement with available theory (Khatami et al., 2019; Knüsel101

et al., 2019). Opportunities remain for data-driven methods to identify model structures102

of water resources system components for which theory is still being developed, such as103

varied human influences. There remains a need for a general approach capable of gen-104

erating and evaluating models of human interactions within water systems, with the si-105

multaneous goals of accuracy and interpretability across a broad spectrum of possible106

representations (Schill et al., 2019).107

This work contributes an approach to model generation and evaluation for the gen-108

eral challenge of deriving process representation and understanding from observed data109

in water resources systems. We focus on the particular challenge of modeling human be-110

havior, an influential system process which poses significant uncertainty in hydrologic111

systems (Konar et al., 2019; Schill et al., 2019; Herman et al., 2020). By generating many112

candidate models as competing hypotheses and simultaneously evaluating models for per-113

formance and complexity, we operationalize a preference for parsimonious model struc-114

tures in combinatorial search spaces. The structures resulting from search in broadly de-115

fined model spaces are consolidated through systematic decomposition and diagnostic116

assessment of plausible model sets to determine driving structure. The approach is demon-117
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strated for a case study of agricultural land use decisions in California, a complex spa-118

tially distributed process through which humans exert substantial influence on the sys-119

tem. This approach provides a foundation for future studies of model structural uncer-120

tainty, reconciliation with theory, and integrated systems modeling, particularly regard-121

ing the role of these challenges in planning and management for coupled human-water122

systems under uncertainty.123

2 Methodological Background124

We extend data-driven system identification approaches to generate and evaluate125

plausible model structures describing human behavior in water resources systems (Fig-126

ure 1). The experimental steps presented here share similarities with the problem of con-127

structing emulators (surrogates) of environmental systems models (Castelletti et al., 2012;128

Kleijnen, 2015), though with the additional goal of generating models that support the129

development of candidate theory regarding system processes. This requires an evalua-130

tion phase in which the structures of generated models are examined directly. By search-131

ing over the space of model structures for a given problem definition, the uncertainty as-132

sociated with selecting any given model can be visualized as a function of complexity and133

accuracy on held-out data.134

Model Generation

    Define search procedure

    Construct metrics to rank models

    Search parameters and structures

Problem Definition

    Formulate question

    Identify relevant data and scales

    Specify a family of models

Model Evaluation

    Analyze metric tradeoffs

    Decompose models into components

    Identify parametric/structural drivers

Figure 1. Flowchart of methodological steps involved in generating model structure from

data.

2.1 Problem Definition135

Problem definition for data-driven modeling includes the formulation of a question136

about the system, the collection and organization of available data at relevant spatial137

and temporal scales, and the specification of a family of models to answer the question.138

A data-driven system identification approach to problem definition can avoid human-139

intuited priors in the form of model structure and feature engineering, in favor of dis-140

covering useful constructions of both the data and the model simultaneously (Knüsel et141
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al., 2019). First, the heterogeneous feature types common to integrated settings and ob-142

served human behavior can be considered across spatio-temporal scales. Feature engi-143

neering is then performed by transforming the observations, typically along with some144

form of dimension reduction such as eigenvalue decomposition (Giuliani & Herman, 2018).145

Variables at incongruent spatial and temporal scales and categorical variables can also146

be incorporated, for example through encoding schemes (Cerda et al., 2018).147

In formulating the question, the model φ must be identified to map predictor vari-148

ables X (input samples) to the response variable y in a multivariate regression problem:149

φ : Rn → R1. For modeling dynamical systems, the problem might involve learning150

the next state or derivative of a state variable in time given the current and previous states.151

The goal is to automatically reverse-engineer structure in φ that enables novel insights152

of the system (Bongard & Lipson, 2007). Discovering the optimal φ without pre-specifying153

the form of the function invokes exploration over both the structure and parameteriza-154

tion of φ. This generalized multivariate regression problem is an instance of supervised155

learning. However, it could alternatively be cast as a multivariate control problem, where156

rather than learning a model, a policy is learned based on rewards received by an agent157

after taking actions in an environment (Barto & Dietterich, 2004). The relationships be-158

tween environmental observations and human decisions can also be framed in terms of159

causal inference, such as through instrumental variable and fixed effect experiments (Müller160

& Levy, 2019).161

There are a number of model families from which functions could be drawn to per-162

form this mapping, such as linear additive models or neural networks. Functions can be163

most generally encoded as trees or graphs, either of which can be used to represent a uni-164

versal approximator (Breiman, 2001; Huang et al., 2006, e.g.,) of highly complex, non-165

linear human behavior. A common approach for the automatic construction of models166

of arbitrary mathematical structure and complexity is to combine objects from a prim-167

itive set of basic functions (Quade et al., 2016). As an instance of a process influencing168

the natural system, human behavior is integrated in model computation graphs, the net-169

work representing model operations and numerical fluxes (Gupta & Nearing, 2014; Khatami170

et al., 2019), by defining representational nodes and specifying links. Taken together, nodes171

and links in a model’s graph form a natural measure of model integration (Claussen et172

al., 2002).173

2.2 Model Generation174

The model generation process involves inferring models from data. Within water175

resources, model inference has largely focused on parameter estimation for given model176

structures. This is a broad category, including deterministic data-driven models with train-177

able weights such as neural networks (Hsu et al., 1995, e.g.,), physically-based model struc-178

tures with probabilistic search procedures such as Markov Chain Monte Carlo (MCMC)179

(Vrugt & Beven, 2018, e.g.,), and general procedures for examining parametric uncer-180

tainty in conceptual linear and nonlinear model structures such as Generalized Likeli-181

hood Uncertainty Estimation (Beven & Binley, 1992). For example, Vrugt and Beven182

(2018) demonstrate the evolution and training of set-length Markov chains for different183

experiments, using differential evolution to explore a broadly-defined parameter space184

and maintaining a population of models in place of explicit structural search. These ap-185

proaches are thus a combination of theory-driven structure and data-driven parameter-186

ization, which enables analysis of complexity and equifinality among parameter sets (dis-187

cussed in Section 2.3).188

Model structure can also be generated through a number of data-driven search meth-189

ods that explicitly add or subtract elements—referred to as construction and pruning190

methods, respectively—which originate in the fields of machine learning and evolution-191

ary algorithms. Construction methods include decision trees, which successively add lin-192
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ear decision rules to accurately classify samples (Quinlan, 1986), and genetic program-193

ming, the use of a genetic algorithm to build and search over graphical model structures194

composed of simple mathematical elements and inputs (Koza, 1992, 1995), among oth-195

ers. Broadly, global optimization methods such as evolutionary algorithms have proven196

useful for this task (Reed et al., 2013), given the potentially non-convex or discontinu-197

ous objective surface that results from optimizing both structure and parameters simul-198

taneously. Though the target processes may be simple, basic implementations of these199

methods do not explicitly minimize model complexity. With increasing interest in model200

interpretability in machine learning (Lipton, 2018), pruning methods for the discovery201

of sparsely-connected sub-networks have been introduced that reproduce or improve per-202

formance of fully-connected neural networks after they have been trained (Frankle & Carbin,203

2018). In contrast, multiple objectives can be used with construction methods to eval-204

uate model structures simultaneously for error performance and structural complexity205

during optimization, codifying a preference during search for simpler models that per-206

form equally well.207

Genetic programming is particularly useful for its ability to conduct global multi-208

objective search over model structures of arbitrary complexity, i.e., symbolic regression209

(Quade et al., 2016). Symbolic regression uses linear and nonlinear operators as base func-210

tions, and can, for example, learn to compose nested functions and automate the pro-211

cess of feature engineering. Symbolic trees can also incorporate noise (M. D. Schmidt212

& Lipson, 2007), can be seeded with relations of interest during optimization (M. D. Schmidt213

& Lipson, 2009; Chadalawada et al., 2020, e.g.,), and can be strongly-typed to incorpo-214

rate and handle heterogeneous data types or function outputs (Montana, 1995). Model215

evaluations of symbolic regression trees are generally faster than traditional feed-forward216

neural networks because each model evolves a sparse input representation based only on217

the inputs that improve performance. These factors make symbolic trees suited for it-218

erative and exploratory model generation when using a gradient-free optimization method.219

The primitive set of structures for building symbolic trees determines the size of the search220

space, which grows combinatorially with the number of primitives (Vanneschi et al., 2010).221

In applications where the target functions are not known, as in the modeling of complex222

and highly nonlinear human behavior, the space of possible model structures can be broad-223

ened to include a large number of possible functional relationships.224

2.3 Model Evaluation225

Model evaluation consists of the examination of performance metrics and component-226

level behavior, and the identification of parametric and structural drivers. This section227

reviews different approaches and perspectives regarding model evaluation for data-driven228

system identification, recognizing that the implementation of this phase is problem-dependent,229

and that integrated systems models including human behavior may be difficult to val-230

idate against theoretical or conceptual results depending on their scale.231

The minimization of one or more error metrics between the model and data defines232

its proximity to the “true” model (Haussler & Warmuth, 1993; Kearns et al., 1994; Valiant,233

2013). The different methodological and philosophical details of model evaluation in these234

settings are reviewed by Höge et al. (2018). Since the potential for a model to overfit to235

training data increases with complexity, the foremost issue regarding model evaluation236

is the test error, the indicator of a model’s ability to generalize to unseen data by bal-237

ancing model bias and variance (Friedman, 1997; Pande et al., 2009). Generalization to238

unseen data is also required to appropriately accommodate non-stationarity in data, a239

necessity when seeking to describe dynamic human behavior over long time periods (Höge240

et al., 2018). Finally, standard error metrics can be supplemented by additional crite-241

ria such as the information content learned from a model (Nearing & Gupta, 2015; Near-242

ing et al., 2020), or when functional relationships are known, the evaluation of structural243
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error through tradeoffs between predictive and functional performance (Ruddell et al.,244

2019).245

For data-driven model structures describing human behavior, several extensions246

arise that deserve consideration during the model evaluation phase. The first is model247

complexity, recognizing that additional components or parameters do not necessarily re-248

sult in the ability to represent increasingly complex system behavior (Z. Sun et al., 2016).249

Instead, the goal is to find a parsimonious model, or the simplest model that still describes250

the data accurately. This has been identified as a challenge for heuristic approaches to251

data-driven system identification (Bongard & Lipson, 2007; M. D. Schmidt & Lipson,252

2008; M. Schmidt & Lipson, 2009).253

The second extension is model equifinality, or lack of uniqueness, which occurs when254

many model structures produce comparable predictions even after being tuned, trained,255

constrained, or optimized (Beven, 1993). This can suggest possible redundancy or over-256

simplification in the model, meaning that the parsimonious model may not have been257

found or the collected data is not diverse enough to fully represent the underlying pro-258

cess. For data-driven system identification this is especially challenging given the large259

space of possible model structures and conflicting performance metrics (Curry & Dagli,260

2014). The concept of equifinality has been widely explored in hydrology and water re-261

sources (Khatami et al., 2019), as well as in agent-based models (Williams et al., 2020).262

However, with the exception of a recent example from the social sciences (Vu et al., 2019),263

the equifinality problem is rarely approached in integrated studies by global search over264

model structures that considers both performance and complexity during training.265

Finally, when model generation results in a large number of plausible model struc-266

tures, a range of diagnostic tools can be applied to further assess the common structures267

and parameters driving model behavior. For example, Pruyt and Islam (2015) use clus-268

tering to partition exploratory model parameterizations based on their behavior as trans-269

fer functions mapping input to output. In the absence of well-characterized uncertainty,270

sensitivity analysis can diagnose model prediction behavior and provide a metric by which271

to justify the inclusion of parameters (Pianosi et al., 2016; Gupta & Razavi, 2018; Wa-272

gener & Pianosi, 2019). Dobson et al. (2019) design a scenario resampling strategy to273

show the importance of contextual uncertainty in the performance of operational rules274

of water systems. These and similar approaches assist with the evaluation of models of275

human behavior in the abstract, through which key structural elements can be identi-276

fied post-optimization.277

3 Experiment278

Figure 2 outlines the computational steps for the three experimental phases: prob-279

lem definition, model generation, and model evaluation. The Problem Definition phase280

includes the definition of prediction tasks, feature engineering, and the specification of281

function primitives. The Model Generation phase includes the selection of an encoding282

representation and search procedure, the definition of metrics to use for evaluating mod-283

els during search, and the search over candidate model structures in a multi-objective284

space. The Model Evaluation phase for these experiments focuses on the collection and285

analysis of many plausible model sets across many random trials. Clustering and sen-286

sitivity analysis techniques are employed to determine driving structure and features in287

different regions of the performance space.288

3.1 Problem Definition289

This approach is demonstrated on an application of agricultural land use change,290

one of the primary ways in which human decisions influence water resources systems, in291

addition to reservoir operations and urban consumption. Land use change represents a292
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Figure 2. Schematic of experimental setup and workflow

complex test case in spatially distributed, heterogeneous decision-making (Groeneveld293

et al., 2017). Additionally, models of land use change depend on heterogeneous sources294

of information, such as water availability and socioeconomic factors (Nelson & Burch-295

field, 2017; Jasechko & Perrone, 2020; Malek & Verburg, 2020). This problem has been296

approached from multiple perspectives, including theoretical models based on economics297

and psychology (Schlüter et al., 2017), as well as statistical models (B. Sun & Robin-298

son, 2018), which together suggest no clear agreement on process representation (Verburg299

et al., 2019). Economic models of land use change have been developed at the global scale300

(Prestele et al., 2017; Stehfest et al., 2019) and also at the regional scale (Howitt et al.,301

2012, e.g.,), and the integration of local and regional results into global models is cur-302

rently being explored (Melsen et al., 2018; Schlüter et al., 2019; Malek & Verburg, 2020).303

In both cases, parameters are calibrated against historical observations. However, it is304
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also acknowledged that land use decisions, like other water resources decisions, do not305

always follow the principle of full rationality (Groeneveld et al., 2017; Schlüter et al., 2017).306

By contrast, agent-based rules have also been developed for regional land use models,307

often ad hoc using expert judgment (Thober et al., 2017) informed by empirical stud-308

ies (Robinson et al., 2007). There remains an opportunity to automate this process via309

model generation techniques, as has been explored elsewhere in the social sciences (Gunaratne310

& Garibay, 2017; Vu et al., 2019, e.g.,). While land use change presents a challenging311

test case, the methods proposed here also generalize to other aspects of human behav-312

ior in water resources systems, contingent on the availability of scale-appropriate datasets.313

3.1.1 Case Study314

This approach is applied to the problem of understanding dynamic agricultural land315

use patterns in the Tulare Basin region of California. In this case study, we use data-316

driven system identification to discover a mathematical function to predict the year-to-317

year change in tree crop acreage for all continuously planted square-mile sections of land318

in the Tulare Basin from 1974 to 2016. This is a human response variable that is of par-319

ticular interest for water resources management because of a strong historical trend to-320

wards tree crops (Figure 3) that has exacerbated groundwater overdraft, especially in321

times of drought (Jasechko & Perrone, 2020).322

Figure 3. Historical change in crop type in the Tulare Basin, California from 1974 to 2016.

Each grid cell is 1 mi2, and tree crops are defined as in Mall and Herman (2019). The grey lines

indicate county boundaries within which crop prices are reported annually.
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3.1.2 Problem Definition323

The state of the system xt is defined as an n-tuple drawn from Rn that includes324

the current and previous state of tree crops (at, at−1, . . . ) and non-tree crops, the lagged325

change of tree-crops (a′t−1, a
′
t−2, . . . ) and non-tree crops since the current change is be-326

ing predicted, and other current and lagged information such as the current crop price,327

agricultural pumping, and surface water deliveries.328

xt :=
(
at, bt, ct, . . . , at−1, a

′
t−1, bt−1, ct−1, . . .

)
(1)

where at = at−1 +a′t−1. Given the state of the system xt representing all current and329

previous information at a given spatial index, in learning the dynamics of the system we330

aim to predict the annual change in acreage at the same spatial index, a′t, as a function331

of previous changes, current and previous states, and other features (more information332

about these feature variables is given in Section 3.1.3):333

Dxt
:=

∆xt
∆t

= F (xt) (2)

The notation Dxt is used to refer to the difference in tree crops a′t that would ad-334

vance the tree crop state forward in time, at+1 = at+a
′
t. xt includes lagged responses335

such as Dxt−1
, the response of the previous state at the same index. The problem of learn-336

ing model structure is therefore to determine the function F that maps a given set of337

features to the annual change in state. xt includes potentially high-dimensional infor-338

mation describing the current state and any number of previous states (Lusch et al., 2018).339

When the dynamics of F are unknown, general function forms are initialized randomly340

and trained to approximate system dynamics by learning from observed or measured data.341

We explore two different prediction tasks related to this problem, regression and342

classification. In the regression formulation, models predict the magnitude and direction343

of the annual change in tree crop acreage. In the classification problem, models predict344

the direction of change only–positive, negative, or no change–as displayed under Predic-345

tion Task in Figure 2. Regression is generally considered a more difficult problem as func-346

tions must predict a continuous value, whereas this classification task requires predict-347

ing the most likely of three classes.348

3.1.3 Feature Engineering349

Feature data describing land use, water availability, and economics were organized350

into samples to train and test candidate model structures. Land use data was taken from351

the California Pesticide Use Reports, available digitally beginning in 1974 and extracted352

by Mall and Herman (2019). Annual crop type data are taken from 1974-2016 at the square-353

mile scale for over 3000 grid cells in the Tulare Basin, and the target data are partitioned354

into tree and non-tree crops. Water availability data were taken from the C2VSim-IWFM355

groundwater model representing pumping and delivery estimates for the categories of356

urban, agricultural, rice crop, and refuge pumping and deliveries, further details for which357

are described in Kourakos et al. (2019). Lastly, county-level crop prices were taken from358

the California County Agricultural Commissioner reports, beginning in 1980 across Tu-359

lare, Fresno, Kings, and Kern counties (USDA National Agricultural Statistics Service360

- California Field Office, 2019). Crop prices were adjusted for inflation using the pro-361

ducer price index for agriculture, based on the year 2016, published by the U.S. Bureau362

of Labor Statistics (U.S. Bureau of Labor Statistics, 2019). A summary of trends for this363

heterogeneous data set is presented in Figure 4.364

Additional features were included to account for the space-time dependence of the365

problem. Samples were organized such that each grid-cell sample was tagged with its data,366
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Figure 4. Historical trends in heterogeneous feature data. (A) Tree crop acreage, non-tree

crop acreage, and total acreage planted; (B) Yearly total agricultural water deliveries and pump-

ing; (C-D) Inflation-adjusted prices and total crop values for a selection of crops.

the previous six years of data, and the same data from each of 5 neighboring grid cells367

in space. Since economic information is only available from 1980 onward and spatially368

distributed at the county scale, this space-time extension was only implemented for land369

and water data. Absolute data, such as the year and location, were excluded from the370

set of features to avoid overfitting. The resulting dimensions of the data were on the or-371

der of 500 predictor variables and 130,000 samples. No explicit dimension reduction steps372

were implemented in order to maintain the interpretation of feature variables within the373

eventual model structures generated by this approach. Samples were split into 50% train-374

ing and 50% test, and both the features and response variable were standardized to N (0, 1).375

Other than the bias introduced by constructing variables representing temporal lags and376

spatial neighborhoods, no empirical or theoretical priors were provided to inform the search.377

This spatiotemporal construction process also adds redundancy into the feature set, and378

we rely on the model search (Section 3.2.2) to navigate this redundancy to identify the379

most informative features while retaining interpretability.380

3.1.4 Model Structural Elements381

In addition to the feature variables, the primitive set of functions composing the382

feasible model structures must also be specified. The primitive set includes the math-383

ematical relationships detailed in Table 1.384

To include relational and logical operators in addition to mathematical operators385

in the primitive set, the functions are strongly typed, meaning that intermediate vari-386

ables must match data types for the input and output of each component function. Con-387
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Functions

[float] = add([float],[float]) [float] = sin([float])
[float] = subtract([float],[float]) [float] = cos([float])
[float] = multiply([float],[float]) [float] = negative([float])
[float] = divide([float],[float]) [bool] = less than([float],[float])

[float] = if then else([bool],[float],[float])

Constants

(1,[bool]) (RandInt(0,100)/10.,[float])
(0,[bool]) (RandInt(0,100)/1.,[float])

Table 1. The primitive set functions and constants, as defined for both regression and classi-

fication experiments. The space of feasible models is constrained by strong typing. The function

RandInt(a, b) generates a uniform random integer on (a, b).

stants are also defined as either boolean or floating point values as indicated in Table388

1 and appear as terminal nodes in an expression, as do the model inputs (features). Con-389

stants are drawn from a distribution, though the resulting model is deterministic after390

the constants have been generated. However, the distributions themselves can be included391

in the primitive set, allowing the automatic construction of stochastic models (M. D. Schmidt392

& Lipson, 2007). In addition, search over the model space can be biased by providing393

a specific set of operators, inputs, or constants as seeds (M. D. Schmidt & Lipson, 2009).394

By defining the primitive set and input space in this way, we ensure that search over the395

model space covers a broad general space of models, including linear and higher-order396

combinations of inputs and discontinuous functions.397

3.2 Model Generation398

3.2.1 Search Objectives399

For the regression problem, the performance objective used to train model struc-400

tures is the mean squared error (MSE), a commonly-used error metric that emphasizes401

larger residuals. A baseline performance value for MSE on the response variable—standardized402

to N (0, 1)—is 1.0, which results from using the average prediction (zero) for every sam-403

ple. For a given regressor F : Rn → R1:404

MSEtrain := avext∈Xtrain
(D̂xt

−Dxt
)2 (3)

In the classification experiment, the multi-class output is addressed via ensemble405

learning, a common method in genetic programming studies (Espejo et al., 2010). The406

performance objective is the percent of misclassified samples. This is equivalent to 1−407

Accuracy, where accuracy is the percentage of classes predicted correctly. A baseline per-408

formance for misclassification percentage for this application is approximately 0.54, which409

results from predicting the most common class (no change) for every sample. The mis-410

classification percentage can be calculated using the Hamming loss, l(ŷ, y), which takes411
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the value 1 for predictions that do not match the response and 0 otherwise. For a given412

classifier F : Rn → {Negative,No Change, Positive}:413

MCPtrain := avext∈Xtrain
l(D̂xt

, Dxt
) (4)

Though the three classes are relatively balanced in this experiment {Negative ∼414

25%, No Change ∼ 47%, Positive ∼ 28%}, this simple accuracy metric might pro-415

mote models that perform well on only a subset of classes. This can be a problem par-416

ticularly when classes are not equally represented in the training set (Provost & Fawcett,417

2001). Multi-class metrics such as the macro/micro-averaged F1-measure (Lipton et al.,418

2014) and receiver operating characteristic (ROC) curve (Fawcett, 2006) can account for419

class imbalance by weighting measures based on individual class accuracies. However,420

we find that for this problem, alternate metrics do not significantly change the rank or-421

der of models within each class (see Supplemental Material). In regard to improving re-422

gression metrics, the water resources field has thoroughly considered how error metrics423

for natural process models can incorporate available process knowledge (Gupta et al.,424

2009; Khatami et al., 2019; Lamontagne et al., 2020, e.g.,). These approaches are also425

relevant in scenarios lacking process knowledge but with known statistical relationships426

in the error signals.427

A second objective, model complexity, is formulated and optimized concurrently428

with the performance objectives above using multi-objective optimization. The complex-429

ity metric is taken to be the representation length, a commonly used surrogate for com-430

putational or algorithmic complexity of a model (Vanneschi et al., 2010), which in this431

case is the number of elements (nodes) in the ordered list representing the model. The432

complexity value is normalized by the maximum depth of recursive function calls in Python433

(90) to roughly match the scale and precision of the performance objectives.434

3.2.2 Search Algorithm435

The search over candidate model structures and parameterizations employs a cus-436

tomized genetic programming algorithm, an evolutionary approach that encodes math-437

ematical expressions in a tree structure to support symbolic regression. Modular com-438

ponents of the algorithm were drawn from the package Distributed Evolutionary Algo-439

rithms in Python, or DEAP (De Rainville et al., 2012). As depicted in the Model Gen-440

eration panel of Figure 2, mutation and crossover operators act on ordered representa-441

tions of models, where each tree is flattened into an ordered list of elements, to gener-442

ate new structures from promising candidates and explore the model space during op-443

timization. The mutation operator adds a randomly initialized sub-tree of depth 1-2, rep-444

resenting a random addition into the model element list. Single-point crossover randomly445

selects a location along paired model element lists and exchanges the elements beyond446

this location to generate a new model, an example of which is depicted in Figure 5. Mu-447

tation explores the model space by introducing new model structures, and crossover ex-448

ploits the attributes of current models by testing new combinations of existing model struc-449

tures. The mutation and crossover operations can result in invalid models according to450

the strong typing criteria, where intermediate data types among tree operations do not451

match; these models are discarded before evaluation.452

During training, the performance and complexity objectives are both minimized.453

This has two implications: (1) the minimum complexity (maximum interpretability) model454

is preferred among two models with the same performance, (2) if the space of possible455

models is searched exhaustively, the resulting tradeoffs between models should be the456

minimum complexity model for a given level of performance. The algorithm follows a457

µ+λ evolution strategy, which allows parents to persist in the population. At each gen-458

eration, a number of offspring µ are generated from λ parents in the population by ap-459
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Figure 5. Detailed view of crossover operations, expanded from Figure 2. Two models from

the population are used to generate a new model by splitting and recombining the ordered list

representations at a random location, a process repeated throughout the search. Mutation oper-

ates similarly by adding a random sub-tree at a random location in a single model.

plying mutation and crossover with a given probability. The population is updated by460

applying deterministic crowding selection analogous to NSGA-II (Deb et al., 2000) to461

the collection of individuals µ+λ, selecting λ individuals to be used as parents in the462

next generation. The use of deterministic crowding for selection is intended to promote463

diversity within populations by spacing out models along the Pareto front. This ensures464

that no single model dominates in all objectives and is therefore used to generate all new465

individuals in the next generation. Separately from the population, an archive of Pareto-466

approximate model structures is maintained and updated through strict non-dominated467

sorting of the archive and population together in each generation, with no crowding dis-468

tance selection applied. This archive represents the best approximation of the Pareto front469

at each iteration of the optimization (including the final result), and allays degradation470

known to occur in populations when using deterministic crowding for selection.471

Experiments were run using the UC Davis College of Engineering HPC1 Cluster472

with 96 processors, employing DEAP package support for distributed computing. Each473

population of models contains 96 individuals, and each tree is initialized randomly with474

depth 1-3. Trials run for a maximum of 20,000 generations with a stagnation convergence475

criterion of 2,500 generations, which will stop the algorithm if performance improvements476

are not detected during this time. Performance improvements can be found throughout477

the optimization, but can become exceedingly small as models start to overfit. As in many478

high-dimensional sampling problems, it is not possible to prove that the global optimum479

has been reached. Though the algorithm is likely to comprehensively sample low-complexity480

models, the size of the primitive set (number of inputs, constants, and functions) dic-481

tates that the sampling coverage of possible models decreases at least factorially with482

additional model primitives (Knuth, 2011). Combinatorial expansion reflects the curse483

of dimensionality, and complicates the search for medium- and high-complexity models,484

though more efficient algorithms are an active area of research (Hadka & Reed, 2013; Vrugt485

& Beven, 2018; Conti et al., 2018, e.g.,). This complexity increases the likelihood of op-486

timization trials getting stuck in local minima as trees grow, and emphasizes the impor-487

tance of appropriately defining the model space during problem definition. To account488

for this stochasticity in optimization, 21 randomized trials are performed, which includes489

the initialization of the train-test split. The code to reproduce this study can be found490

at DOI: 10.5281/zenodo.3887360.491

This algorithm configuration may generate spurious structure and/or redundant492

features within the same model. The Supplemental Material includes more details about493

the feature variables and their correlation. However, the algorithm performs variable se-494

lection to some extent when feature variables that lead to improved objective performance495

are introduced through mutation or crossover, suggesting an informative relationship.496

Even with correlated features, we expect that over the course of many iterations of the497
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mutation operator, and multiple random seeds, the most informative features will oc-498

cur most often in the resulting sets of models. This stochasticity in model structural iden-499

tification reinforces the need for multiple trials, ensemble averaging across optimization500

trials during model evaluation, and summary statistics describing high-complexity re-501

gions of the model space, as any one model structure by itself may be subject to feature502

redundancy.503

3.3 Model Evaluation504

Following the model training, candidate structures are evaluated in three ways: trade-505

offs between performance objectives, model behavior in the metric space, and decom-506

position and sensitivity of the underlying structure and features. The approach to model507

evaluation taken during this phase depends on modeling decisions during problem def-508

inition and model generation. In these experiments, the feature data and primitive set509

together define a combinatorially large space of possible models, creating substantial un-510

certainty that must be acknowledged in the analysis that follows.511

3.3.1 Performance-Complexity Tradeoff512

After evaluating performance on the test set, models are placed in a three-dimensional513

performance-complexity tradeoff, as illustrated under Model Evaluation in Figure 2. Along514

the Pareto front, training error within a given trial will strictly decrease as complexity515

increases. However, as complexity of the model increases, test error can diverge from train-516

ing error if the model overfits. If error performance changes relatively little across a broad517

range of model structures, this is an indicator of equifinality. To investigate this outcome518

further, candidate models can be clustered into groups with similar behavior. Specifi-519

cally, k-means clustering is used to separate models according to training error, test er-520

ror, and complexity.521

3.3.2 Model Decomposition and Sensitivity Analysis522

The collection of Pareto-optimal sets of models constitutes a new high-dimensional523

data set of structured model components and their associated performance metrics. Among524

many network analysis tools for structural and dynamic analysis of graphical models,525

model decomposition is a very simple initial step. The driving structural properties of526

each model—number of metrics, attributes, inputs, functions, and constants—are linked527

to their behavior cluster as described above. Each model is also tested for its sensitiv-528

ity to individual features and their interactions using Sobol sensitivity analysis with the529

Python package SALib (Herman & Usher, 2017). The goal of this sensitivity analysis530

is to determine whether the different clusters of model behavior are influenced by dif-531

ferent feature variables, for example if certain features appear primarily in overfit mod-532

els. To perform this step, each model is re-evaluated with 1000 samples scaled by the533

cardinality of its unique feature set to ensure sufficient coverage of the sample space. For534

example, if a model has 5 unique inputs, the model would be tested with 5000 samples535

for each unique input to appropriately characterize pairwise and total-order sensitivi-536

ties in the Sobol method.537

4 Results538

4.1 Model Performance-Complexity Tradeoff539

Figure 6 shows the tradeoff between model performance and complexity across the540

Pareto set of candidate model structures for both (a) regression and (b) classification541

experiments. Each point represents the performance (MSE) on the test data, while the542

gold background shading shows the distribution of performance for the same set of mod-543
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els on the training data. Figure 6 highlights four different regions: Parsimonious, Over-544

fit, Equifinal, and Dominated model clusters. These designations are subjective, but sep-545

arate the models for discussion according to their primary evaluation characteristics. Dur-546

ing each trial, initial structure building occurs in the Parsimonious cluster in both Fig-547

ure 6a and 6b. The Overfit clusters in Figure 6 are highlighted as the regions where mod-548

els begin to rely on spurious structure discovered later in the trial. The Equifinal clus-549

ter in Figure 6a represents a region where multiple model structures exist at roughly the550

same level of performance. The Dominated cluster in Figure 6b represents models that551

are both relatively complex and do not generalize well to unseen data.552

Figure 6. Tradeoff between performance (test error) and complexity for model structures

across (A) all regression trials and (B) all classification trials. Light gold shading indicates the

distribution of the same models evaluated on the training data. Models are clustered according to

their behavior in this three-dimensional space (training error, test error, and complexity).
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These results indicate several points. First, regression trials in Figure 6a exhibit553

better robustness to test data, with most models remaining within the region of the train-554

ing error displayed in the gold background. Classification experiments show diminish-555

ing returns to increasing complexity much faster than regression experiments. The progress556

of the optimization trials is determined by the model structures developed in the Par-557

simonious clusters; insufficient exploration may explain why significant overfitting oc-558

curs in Figure 6b. Equifinal model structures are observed in both cases, as many mod-559

els with increasing complexity demonstrate similar performance.560
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Figure 7. (a) Histograms of standardized feature data (x−µ
σ

) represented in the models;

(b) Training and test error for models in the Parsimonious cluster; (c-e) selection of mod-

els from the Parsimonious cluster. Feature constructions are annotated as {State/Change |
Neighbor 0–5 | Lag 1-5}. In (a), some of these distributions are asymmetric even after stan-

dardization; skewed features such as refuge deliveries and pumping occur more infrequently than

the relatively balanced tree acreage changes. In (c-e), the arg max operator returns the class

{Negative,No Change, Positive} of maximum value for a given sample.

The classification results in Figure 6b show model structures with a variety of macro-561

scopic behavior that can be investigated further. We proceed with the classification re-562

sults to determine the drivers of model behavior, and also to examine the structure of563

three models selected from the Parsimonious cluster that perform well on both training564
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and test data in Figure 7. These three classification models depend on a variety of fea-565

ture variables and structural elements. Figure 7a displays a histogram of standardized566

feature data represented in the models to understand any patterns shared among the dis-567

tributions of feature variables selected by the algorithm for these three model structures.568

While the models occasionally rely on sparse, skewed feature distributions such as non-569

agricultural water use, they mainly rely on tree acreage changes. Specifically, all three570

models use the acreage change in the previous timestep (lag-1) and same location, in-571

dicating that decision-making agents are informed by past decisions. Additionally, the572

tree acreage change feature tends to occur closer to the output of each model structure573

(Figure 7c-e), and as a result is less modified than other features by the sequence of arith-574

metic operations in each model.575

4.2 Feature Occurrence and Sensitivity576

Large differences among models regarding the selection of other feature variables577

indicate that some of these structural components may be spurious. The distribution of578

features chosen by the algorithm might be a result of their different spatiotemporal res-579

olutions. For example, the lack of consensus on the use of economic data could be due580

to its coarser resolution in space and limited coverage in time, or the inability of the search581

method to find informative features beyond the lag-1 tree acreage change. To investi-582

gate this further, we aim to identify the structural drivers separating robust models in583

the Parsimonious and Overfit Clusters from models that do not generalize well (i.e., the584

Dominated cluster). First, we start by analyzing the occurrence of features and function585

primitives among models in each cluster, displayed in Figure 8.586

10
0

10
1

10
2

Occurrence

Tree Acreage

Non-Tree Acreage

Tree Prices/Values

Non-Tree Prices/Values

Water Deliveries

Water Pumping

C
at

eg
or

y

(A)

100 200 300
Occurrence

Less Than

If-Then-Else

Addition

Subtraction

Multiplication

Division

Negative

Sine

Cosine

Fu
nc

tio
n

(B)

Cluster Parsimonious Cluster Dominated Cluster Overfit Cluster

Figure 8. Occurrence of feature variables and function primitives among classification models.

(A) Distribution of occurrence by feature category; (B) occurrence of functions. The former is a

distribution because each feature category contains multiple feature variables, while the functions

are not grouped.

Figure 8a shows the distribution of feature occurrence counts in each model clus-587

ter, where the features are grouped into categories (y-axis). The boxplots and ranges sug-588

gest several key points. All model clusters show a dependence on the group of inputs re-589
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lated to tree acreage data (all lagged and neighboring states and values for tree crops).590

The lag-1 tree acreage change in the same location (categorized under Tree Acreage) ap-591

pear in every model across all clusters, indicated by the range of the whiskers at the top592

of Figure 8a. The Overfit cluster contains more instances of features from each category593

as compared to the Dominated and Parsimonious clusters, suggesting a higher level of594

feature complexity overall. Lastly, the largest differences in feature usage between the595

Parsimonious cluster and the Overfit cluster is in the tree and non-tree prices/values and596

water pumping feature categories.597

Figure 8b shows the occurrence count of function primitives for models in each clus-598

ter; the primitives are not categorized into groups, so the values are a single count rather599

than a distribution. The Overfit cluster exhibits a more even distribution of function oc-600

currence across primitives than the Parsimonious and Dominated clusters, suggesting601

an increase in the diversity of function primitives relative to the Parsimonious cluster.602

Both the Overfit cluster and Dominated cluster learn a dependence on the two condi-603

tional primitives. Finally, models in the Dominated cluster contain more instances of nearly604

every function type, particularly deviating from the Overfit and Parsimonious clusters605

for single-input functions, suggesting a higher level of functional complexity and feature606

transformations than either the Overfit or Parsimonious clusters.607

Figure 8a-b together indicate that robustness to test data may be extended for mod-608

els in the Parsimonious cluster by increasing reliance on feature complexity versus func-609

tional complexity. This contrast may also explain why additional complexity in two- and610

three-input functions for combining features is warranted over single-input functions that611

merely transform individual features. However, feature occurrence alone does not explain612

which features drive model output. Model responses to feature variable changes are quan-613

tified using Sobol sensitivity analysis. Results for total sensitivity indices are presented614

in Figure 9 as empirical cumulative distributions. The sensitivities are presented for two615

categories of feature variables, tree acreage and non-tree acreage, across the three clus-616

ters of classification models.617

Figure 9 shows that over 60% of the tree acreage features (including lagged and618

neighboring feature occurrences) in models from the Overfit cluster have a total-order619

sensitivity index near zero, meaning that these features have a negligible effect on the620

class prediction. Both the Overfit and Dominated models show lower sensitivity to both621

categories of features relative to the Parsimonious cluster, indicating that the best-performing622

models are driven by a wider range of features. In the case of tree acreage inputs, over623

70% of features in the Overfit cluster show small sensitivities (ST < 0.2) compared to624

less than 50% for the model structures from the Dominated and Parsimonious clusters.625

However, at least 20% of tree acreage inputs to both the Overfit and Dominated mod-626

els are high (ST > 0.8), illustrating a high reliance on fewer feature variables, which627

may reduce the ability of these models to generalize out-of-sample. Conversely, both the628

Overfit and Dominated models do not show the same high sensitivities to non-tree acreage629

data that appear in the Parsimonious models.630

This result confirms the conclusion from Figure 8 that previous tree acreage states631

and changes are a main driver for this problem. The results also indicate a partition in632

the information important to the decision problem; since crop switching requires respe-633

cializing and alternate scheduling, it is perhaps unexpected that over 60% of non-tree634

crop features had negligibly small impacts on the class prediction. Similarly, there were635

very few features with sensitivity indices greater than 0.6 among the Overfit or Dom-636

inated models. Sensitivity testing was only applied to features selected during the gen-637

eration of each model, so the distributions of sensitivity indices are not affected by the638

frequency with which a feature is included in each model cluster.639

Finally, the average total-order sensitivity indices within each feature category and640

variable construction are displayed across model clusters in Figure 10. Parsimonious mod-641
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Figure 9. Empirical cumulative distribution of total-order sensitivity indices for two cate-

gories of feature variables: tree acreage and non-tree acreage, separated by model cluster (color).

Only the feature variables appearing in each model were included in the sensitivity analysis.
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Figure 10. Average total-order sensitivity indices of feature variables across input categories

for each cluster of model structures. In the feature grouping labels, “data” refers to the combina-

tion of state, change, temporal lags, and spatial neighbors for each type of feature.

els demonstrate elevated sensitivities across many of the feature categories and construc-642

tions. Since Parsimonious models are less complex than either Overfit or Dominated mod-643

els, that their predictions are highly affected by a wide range of input variables makes644

intuitive sense, as Parsimonious models explain a similar fraction of total variance with645

fewer features. Parsimonious models are also particularly sensitive to tree acreage fea-646

tures from the previous year, as shown in prior figures. Though we might expect high647

bias in these Parsimonious models, bias seems to be minimized fairly quickly by selec-648

tive inclusion of feature variables.649
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Models in the Dominated cluster share high average sensitivity for only some fea-650

ture categories but not others, as do models from the Overfit cluster to a lesser degree.651

Models from the Overfit cluster exhibit relatively equal sensitivities across all feature cat-652

egories as compared to the range of sensitivities represented in the Parsimonious and Dom-653

inated clusters. This, combined with the function occurrence result from Figure 8b, sug-654

gests that the Overfit models avoid becoming overly sensitive to individual features from655

any one category by over-engineering the function structure, which likely leads to their656

improved generalization ability over the Dominated models. This result demonstrates657

how averaging sensitivity to certain categories of features within model clusters can re-658

veal the extent to which models should be sensitive to feature data given target prop-659

erties, such as model robustness to unseen data. However, averaging across the set of mod-660

els may obscure the sensitivities of individual models, the distribution of which is bet-661

ter shown in Figure 9.662

5 Discussion663

There is a distinct need for integrated systems models when descriptions of the phys-664

ical system are incomplete without consideration of the human component (Konar et al.,665

2019; Herman et al., 2020). This must include representations (Schill et al., 2019) and666

feedbacks (Calvin & Bond-Lamberty, 2018) that may not be implemented in existing model667

structures. This study proposes methods to automate the exploration of model struc-668

ture along the canonical tradeoff between performance and complexity to describe hu-669

man behavior. In this illustrative case study focused on agricultural land use and wa-670

ter demand, enumerating the range of model performance with increasing model com-671

plexity by drawing structures from a general, unconstrained space provides context for672

any prior-informed solutions that might arise in the same context. The relative perfor-673

mance demonstrated here thus forms a basis for the analysis of model structural uncer-674

tainty (Walker et al., 2003) by considering model structures as competing hypotheses675

(Beven, 2019), which could be compared alongside theory-based models.676

Generating candidate model structures includes automatic feature selection and677

requires no prior knowledge of the system’s mechanics, constraints, or information re-678

quirements beyond the basic provision of feature data and primitives (Bongard & Lip-679

son, 2007; M. Schmidt & Lipson, 2009), though informing and bounding search through680

process understanding and structural priors (Knüsel et al., 2019), constrained problem681

framings (Dobson et al., 2019; Müller & Levy, 2019, e.g.,), and structured generation schemes682

(Chadalawada et al., 2020; Spieler et al., 2020, e.g.,), and using advanced interpretation683

tools post-search (Worland et al., 2019; Quinn et al., 2019, e.g.,) could uncover more spe-684

cific emergent phenomena in the data and resulting models. However, framing model struc-685

tural experimentation according to this generic framework enables a baseline contextu-686

alization of the complex integrated systems problem. In this way, a data-driven approach687

to generating and evaluating model structure can support the design of integrated sys-688

tem models such as agent-based or hydro-economic models.689

This case study was encumbered by two primary sources of difficulty: (1) algorith-690

mic search in combined parametric-structural model spaces, and (2) heterogeneous fea-691

ture data across multiple temporal and spatial scales. First, the search space of candi-692

date model structures grows combinatorially with the number of features and primitives,693

making it extremely unlikely to identify unique optimal solutions. In this study, the sud-694

den failure to improve in performance past a given level of complexity in the classifica-695

tion experiment (Figure 6b), a saturation often interpreted as convergence, could be driven696

by a structural boundary beyond which improvements could not easily be found. Since697

search effectiveness is partially determined by the size of the model space, available the-698

ory regarding target or related processes can be used to plausibly constrain model gen-699

eration, reinforcing the need for process knowledge alongside data in data-driven anal-700

ysis (Karpatne et al., 2017; Knüsel et al., 2019). Additionally, studies have argued for701
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an upper limit on the description length of a model (Vanneschi et al., 2010) as done in702

Chadalawada et al. (2020), though this limit is difficult to identify a priori. Hybrid meth-703

ods, such as evolutionary strategies to approximate a gradient, are promising for tractable704

search in combined model-parameter spaces (Conti et al., 2018; Miikkulainen et al., 2019),705

as well as approaches that asynchronously tune parameters and structure (Frankle & Carbin,706

2018). However, even when appropriately complex models can be identified, their often707

black-box nature does not guarantee interpretability. The results presented here indi-708

cate how increasing equifinality as a function of complexity can inhibit interpretability.709

Diminishing returns to model accuracy as complexity increases highlight the importance710

of parsimony as a key model evaluation and selection mechanism. More strategic anal-711

ysis can be done to interpret the underlying logic behind model predictions, such as ex-712

plaining the importance of features and structure in neural networks (Montavon et al.,713

2018; Worland et al., 2019, e.g.,), and using sensitivity analysis to explicate structural714

dependence in space and time (Quinn et al., 2019, e.g.,).715

Second, the performance-complexity tradeoff of candidate model structures is tied716

to the choice of feature variables at the appropriate scale, and observed with the nec-717

essary accuracy, to generate acceptable test performance (Höge et al., 2018). This is also718

the case when the relations that would model such data do not exist or are not included719

in the primitive set (Kearns et al., 1994). This study incorporates land use and economic720

data across multiple decades and at a relatively fine spatial resolution to derive a sin-721

gle decision model, a task which may be better served by developing an ensemble of func-722

tions across the spatial region. Additionally, while the feature engineering applied to the723

data helps discern the importance of correlations in space and time, it also obfuscates724

the resulting model structures by increasing the interdependence among features. This725

could be resolved in future work with dimension reduction techniques (Giuliani & Her-726

man, 2018; Cominola et al., 2019), potentially at the cost of feature interpretability. The727

feature data itself may not provide the right signal to adequately model the underlying728

process in this setting, due to noise in measurement or observation error, or the choice729

of inadequate features. However, examining multiple problem formulations allows the730

comparison of relative performance, as in the regression and classification experiments731

in this study; while classification is the easier problem, it shows higher potential for over-732

fitting and may be underrepresenting the complexity in the data. Many-class classifica-733

tion could provide a middle ground between these two tasks, as well as the incorpora-734

tion of metrics that more realistically reflect model accuracy across classes, such as weight-735

ing by class prevalence (Provost & Fawcett, 2001; Lipton et al., 2014) or adding process-736

informed definitions of model error as objectives (Gupta et al., 2009; Lamontagne et al.,737

2020). Using heterogeneous data to identify the model structure of integrated systems738

is not simple or straightforward, but the explanation of decisions made by complex be-739

havioral agents based on multiple sources of information is enabled by the methodolog-740

ical template presented here.741

6 Conclusion742

This study develops an approach to the inference of model structures and param-743

eterizations from data describing human behavior in water resources systems. Three phases744

are considered: problem definition, model generation, and model evaluation, demonstrated745

on a case study of land use decisions in the Tulare Basin, California. No priors are as-746

sumed on the model search space beyond the function primitives and feature data, in-747

cluding some feature engineering to build a high-dimensional dataset reflecting land use,748

water use, and crop prices. Results indicate a tradeoff between model performance and749

complexity, with substantial equifinality in model structures that require additional di-750

agnostic analysis. To this end, model structures are clustered according to similar be-751

havior, and driving structural features are diagnosed by considering function importance752

and input sensitivity. Specific challenges arise due to identifying spatially distributed de-753

–22–



manuscript submitted to

cisions from heterogeneous, multi-sectoral data, generally preventing the identification754

of a single “best” model from the performance-complexity tradeoff. This provides a ba-755

sis for analyzing structural uncertainty under broadly-defined problem contexts, and a756

possible path forward for the generation of model components from observed data to sup-757

port integrated representations of human actors in water systems.758
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Cerda, P., Varoquaux, G., & Kégl, B. (2018). Similarity encoding for learning827

with dirty categorical variables. Machine Learning , 107 (8), 1477–1494.828

Retrieved from https://doi.org/10.1007/s10994-018-5724-2 doi:829

10.1007/s10994-018-5724-2830

Chadalawada, J., Herath, H. M. V. V., & Babovic, V. (2020). Hydrologi-831

cally informed machine learning for rainfall-runoff modeling: A genetic832

programming-based toolkit for automatic model induction. Water Re-833

sources Research, 56 (4), e2019WR026933. Retrieved from https://834

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933835

(e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933836

Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water837

footprints of the United States. Water Resources Research, 53 (1), 316-327.838

Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/839

10.1002/2016WR019473 doi: 10.1002/2016WR019473840

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods,841

R. A., . . . Rasmussen, R. M. (2015a). A unified approach for process-based842

hydrologic modeling: 1. Modeling concept. Water Resources Research, 51 (4),843

2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/844

doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198845

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods,846

R. A., . . . Marks, D. G. (2015b). A unified approach for process-based847

hydrologic modeling: 2. Model implementation and case studies. Wa-848

ter Resources Research, 51 (4), 2515-2542. Retrieved from https://849

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017200 doi:850

10.1002/2015WR017200851

Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M. F., . . .852

Wang, Z. (2002). Earth system models of intermediate complexity: Closing853

the gap in the spectrum of climate system models. Climate Dynamics, 18 (7),854

579–586. Retrieved from https://doi.org/10.1007/s00382-001-0200-1855

doi: 10.1007/s00382-001-0200-1856

Cominola, A., Nguyen, K., Giuliani, M., Stewart, R. A., Maier, H. R., & Castel-857

letti, A. (2019). Data mining to uncover heterogeneous water use behav-858

iors from smart meter data. Water Resources Research, 55 (11), 9315-9333.859

–24–



manuscript submitted to

Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/860

10.1029/2019WR024897 doi: 10.1029/2019WR024897861

Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley, K., & Clune, J. (2018).862

Improving exploration in evolution strategies for deep reinforcement learning863

via a population of novelty-seeking agents. In Advances in neural information864

processing systems (pp. 5027–5038).865

Curry, D. M., & Dagli, C. H. (2014). Computational complexity measures for many-866

objective optimization problems. Procedia Computer Science, 36 , 185 - 191.867

Retrieved from http://www.sciencedirect.com/science/article/pii/868

S187705091401326X (Complex Adaptive Systems Philadelphia, PA November869

3-5, 2014) doi: https://doi.org/10.1016/j.procs.2014.09.077870

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-871

dominated sorting genetic algorithm for multi-objective optimization: NSGA-872

II. In (pp. 849–858). Springer.873

De Rainville, F.-M., Fortin, F.-A., Gardner, M.-A., Parizeau, M., & Gagné, C.874
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Höge, M., Wöhling, T., & Nowak, W. (2018). A primer for model selection: The962

decisive role of model complexity. Water Resources Research, 54 (3), 1688-963

1715. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/964

10.1002/2017WR021902 doi: 10.1002/2017WR021902965

Hogue, T. S., Bastidas, L. A., Gupta, H. V., & Sorooshian, S. (2006). Evaluating966

model performance and parameter behavior for varying levels of land surface967

model complexity. Water Resources Research, 42 (8). Retrieved from https://968

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005WR004440 doi:969

–26–



manuscript submitted to

10.1029/2005WR004440970
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Malek, Ž., & Verburg, P. H. (2020). Mapping global patterns of land use decision-1059

making. Global Environmental Change, 65 , 102170. Retrieved from1060

http://www.sciencedirect.com/science/article/pii/S09593780203075361061

doi: https://doi.org/10.1016/j.gloenvcha.2020.1021701062

Mall, N. K., & Herman, J. D. (2019, oct). Water shortage risks from perennial1063

crop expansion in California’s Central Valley. Environmental Research Letters,1064

14 (10), 104014. Retrieved from https://doi.org/10.1088%2F1748-9326%1065

2Fab4035 doi: 10.1088/1748-9326/ab40351066

Marston, L., & Konar, M. (2017). Drought impacts to water footprints and vir-1067

tual water transfers of the Central Valley of California. Water Resources Re-1068

search, 53 (7), 5756-5773. Retrieved from https://agupubs.onlinelibrary1069

.wiley.com/doi/abs/10.1002/2016WR020251 doi: 10.1002/2016WR0202511070

Mason, E., Giuliani, M., Castelletti, A., & Amigoni, F. (2018). Identifying and1071

modeling dynamic preference evolution in multipurpose water resources sys-1072

tems. Water Resources Research, 54 (4), 3162-3175. Retrieved from https://1073

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR021431 doi:1074

10.1002/2017WR0214311075

Melsen, L. A., Vos, J., & Boelens, R. (2018). What is the role of the model in socio-1076

hydrology? Discussion of “Prediction in a socio-hydrological world”. Hydrolog-1077

ical Sciences Journal , 63 (9), 1435-1443. Retrieved from https://doi.org/101078

.1080/02626667.2018.1499025 doi: 10.1080/02626667.2018.14990251079

–28–



manuscript submitted to

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., . . . oth-1080

ers (2019). Evolving deep neural networks. In Artificial intelligence in the age1081

of neural networks and brain computing (pp. 293–312). Elsevier.1082

Monier, E., Paltsev, S., Sokolov, A., Chen, Y. H. H., Gao, X., Ejaz, Q., . . . Haigh,1083

M. (2018). Toward a consistent modeling framework to assess multi-sectoral1084

climate impacts. Nature Communications, 9 (1), 660. Retrieved from https://1085

doi.org/10.1038/s41467-018-02984-9 doi: 10.1038/s41467-018-02984-91086

Montana, D. J. (1995). Strongly typed genetic programming. Evolutionary Compu-1087

tation, 3 (2), 199-230. Retrieved from https://doi.org/10.1162/evco.19951088

.3.2.199 doi: 10.1162/evco.1995.3.2.1991089
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X - 2 :

Land Feature Data Water Feature Data Economic Feature Data

Tree Crops Non-Tree Crops Non-Ponded Crop Deliveries Alfalfa Almond
Non-Ponded Crop Pumping Apricot Beeswax
Rice Crop Deliveries Cotton Grape
Rice Crop Pumping Honey Milk
Urban Deliveries Nectarine Pistachio
Urban Pumping Plum Walnut
Refuge Deliveries Wheat

Refuge Pumping
Total Pumping

Table S1. Feature data used to generate models during the experiment.
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Almond Price

Almond Value

Cotton Price

Cotton Value

Nectarine Price

Nectarine Value

Pistachio Price

Pistachio Value

Walnut Price

Walnut Value

Wheat Price

Wheat Value

Agricultural Deliveries

Agricultural Pumping

Total Pumping

Refuge Deliveries

Refuge Pumping

Rice Deliveries

Rice Pumping

Urban Deliveries

Urban Pumping

Tree State - Lag 1

Tree Change - Lag 1

Non-Tree State - Lag 1

Non-Tree Change - Lag 1

Tree State - Present

Tree Change - Present

0.19 0.61 0.45 -0.57 0.22 0.19 -0.28 0.80 0.31 0.27 -0.09 -0.08 0.25 0.27 0.06 -0.51 -0.53 0.39 0.12 -0.25 0.12

0.19 0.25 0.30 -0.07 0.11 0.14 0.17 0.18 0.49 0.18 0.09 -0.29 -0.06 -0.07 -0.08 0.06 -0.05

0.61 0.25 0.36 -0.10 0.33 0.18 -0.11 0.73 0.29 -0.34 0.09 0.05 -0.26 -0.28 0.19 0.12 -0.21 0.13
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0.27 0.18 -0.34 -0.54 -0.24 0.37 0.10 0.23 -0.23 -0.14 0.22 0.24 -0.22 -0.22 0.18 0.05 -0.10 0.05

0.09 0.09 0.36 -0.07 0.37 0.27 0.40 0.18 0.19 -0.13

-0.09 -0.29 0.08 0.11 -0.18 -0.17 -0.08 -0.23 0.40 0.16 -0.10 -0.11 0.16 0.16 -0.08

-0.08 -0.06 -0.09 0.19 -0.15 -0.10 -0.10 -0.14 0.16 -0.43 -0.43 0.10

0.25 0.17 -0.36 0.14 0.06 0.19 0.22 -0.10 -0.43 0.98 -0.20 -0.14 0.17 0.25 -0.20 0.25

0.27 0.17 -0.37 0.14 0.20 0.05 0.24 -0.11 -0.43 0.98 -0.22 -0.17 0.29 0.27 -0.24 0.27

0.09 0.87 -0.06 -0.06

0.06 0.05 0.11 0.87 -0.06 -0.06

-0.51 -0.07 -0.26 -0.19 0.38 -0.19 -0.09 0.27 -0.41 -0.10 -0.22 0.18 0.16 0.10 -0.20 -0.22 0.93 -0.27 -0.22 0.28 -0.22

-0.53 -0.08 -0.28 -0.20 0.42 -0.20 -0.06 0.28 -0.45 -0.10 -0.22 0.19 0.16 -0.14 -0.17 0.93 -0.28 -0.21 0.28 -0.21

0.17
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Figure S1. Nonlinear correlations for a subset of the features represented in the table above.
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Figure S2. Visualization of classification model performance metrics in relation to the simple

accuracy metric used in the paper.
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Figure S3. Visualization of the effect of classification model performance metric selection on

the resultant performance-complexity tradeoff.
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