Toward data-driven generation and evaluation of model structure for integrated representations of human behavior in water resources systems

Liam Ekblad^{1,2} and Jonathan $\mathrm{Herman}^{1,1}$

¹University of California, Davis ²University of California

November 30, 2022

Abstract

Simulations of human behavior in water resources systems are challenged by uncertainty in model structure and parameters. The increasing availability of observations describing these systems provides the opportunity to infer a set of plausible model structures using data-driven approaches. This study develops a three-phase approach to the inference of model structures and parameterizations from data: problem definition, model generation, and model evaluation, illustrated on a case study of land use decisions in the Tulare Basin, California. We encode the generalized decision problem as an arbitrary mapping from a high-dimensional data space to the action of interest and use multi-objective genetic programming to search over a family of functions that perform this mapping for both regression and classification tasks. To facilitate the discovery of models that are both realistic and interpretable, the algorithm selects model structures based on multi-objective optimization of (1) their performance on a training set and (2) complexity, measured by the number of variables, constants, and operations composing the model. After training, optimal model structures are further evaluated according to their ability to generalize to held-out test data and clustered based on their performance, complexity, and generalization properties. Finally, we diagnose the causes of good and bad generalization by performing sensitivity analysis across model inputs and within model clusters. This study serves as a template to inform and automate the problem-dependent task of constructing robust data-driven model structures to describe human behavior in water resources systems.

Toward data-driven generation and evaluation of model structure for integrated representations of human behavior in water resources systems

Liam Ekblad¹, Jonathan D. Herman¹

¹Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

Key Points:

4

5

6

7	•	Automated generation of model structure from data to describe human behavior
8		in water systems.
9 10	•	Systematic model evaluation along performance-complexity tradeoff by cluster- ing models with similar behavior.
11 12	•	Diagnostic assessment of model generalization skill using global sensitivity anal- ysis of features.

 $Corresponding \ author: \ Liam \ Ekblad, \ \texttt{wdlynch@ucdavis.edu}$

13 Abstract

Simulations of human behavior in water resources systems are challenged by uncertainty 14 in model structure and parameters. The increasing availability of observations describ-15 ing these systems provides the opportunity to infer a set of plausible model structures 16 using data-driven approaches. This study develops a three-phase approach to the infer-17 ence of model structures and parameterizations from data: problem definition, model 18 generation, and model evaluation, illustrated on a case study of land use decisions in the 19 Tulare Basin, California. We encode the generalized decision problem as an arbitrary 20 mapping from a high-dimensional data space to the action of interest and use multi-objective 21 genetic programming to search over a family of functions that perform this mapping for 22 both regression and classification tasks. To facilitate the discovery of models that are 23 both realistic and interpretable, the algorithm selects model structures based on multi-24 objective optimization of (1) their performance on a training set and (2) complexity, mea-25 sured by the number of variables, constants, and operations composing the model. Af-26 ter training, optimal model structures are further evaluated according to their ability to 27 generalize to held-out test data and clustered based on their performance, complexity, 28 and generalization properties. Finally, we diagnose the causes of good and bad gener-29 alization by performing sensitivity analysis across model inputs and within model clus-30 ters. This study serves as a template to inform and automate the problem-dependent 31 task of constructing robust data-driven model structures to describe human behavior in 32 water resources systems. 33

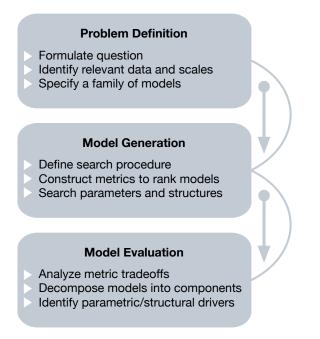
34 1 Introduction

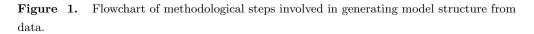
Increasingly, water resources models combine observed data and computational ex-35 periments to support the development of theory regarding system processes (Clark et 36 al., 2015a, 2015b), particularly those for which existing theory may insufficiently explain 37 available observations (Karpatne et al., 2017; Schlüter et al., 2019). One such process 38 is human behavior, which represents a significant source of uncertainty in simulation mod-39 els of water resources systems (Konar et al., 2019), as humans interact with and depend 40 on water systems in numerous ways (Lund, 2015; Schill et al., 2019). Examples include 41 urban and agricultural water demand (Chini et al., 2017; Marston & Konar, 2017), pop-42 ulation displacement (Müller et al., 2016), and the nonstationary behavior of individ-43 uals and institutions across multiple sectors and scales (Mason et al., 2018; Monier et al., 2018; Muneepeerakul & Anderies, 2020). The increasing availability of multi-sectoral 45 data describing these processes provides the opportunity to complement theory by in-46 ferring plausible models from data (Brunton et al., 2016; Montáns et al., 2019). 47

Many subfields of water resources have focused on the challenge of modeling hu-48 man behavior, including: dynamical systems models, as in socio-hydrology (Sivapalan 49 et al., 2012) and social-ecological systems (Berkes & Folke, 1998); hydro-economic mod-50 els (Harou et al., 2009); and agent-based modeling (An, 2012). Each offers differing per-51 spectives on which system components should be treated as exogenous, controlled, or self-52 organized, and which behaviors can be adequately described by data versus theory (Anderies, 53 2015). However, all share the goal of accurately describing observed dynamics of the sys-54 tem while managing the complexity of the spatial and temporal representation (Baumberger 55 et al., 2017; Höge et al., 2018). These approaches are not necessarily exclusive, and can 56 be connected through a common experimental framing—for example, Müller and Levy 57 (2019) review how economic theory can be coupled with data-driven sociohydrologic mod-58 eling to support and develop theories of human influence in water systems. Similarly, agent-59 based modeling studies have integrated data-driven and theory-driven approaches to in-60 vestigate system processes (Gunaratne & Garibay, 2017; Schlüter et al., 2019; Vu et al., 61 2019). By extricating the processes driving emergent and interdependent behaviors in 62 coupled systems, data-driven models can be used beyond the integration of observations 63 to advance theory. 64

Several recent studies highlight the value and range of applications for data-driven 65 approaches in water resources. For example, Giuliani et al. (2016) generate adaptive be-66 havioral rules from historical climate and land use data by coordinating reservoir deci-67 sions with downstream cropping decisions from an economic model. Similarly, Quinn et 68 al. (2018) employ policy emulation methods for coupled reservoir and irrigation decisions 69 to reduce the computational cost of exploring a range of future hydroclimate scenarios. 70 Worland et al. (2019) combine heterogeneous attributes of stream gauge networks to re-71 construct observed flow duration curves under human influence with high accuracy us-72 ing multi-output neural networks. Finally, Zaniolo et al. (2018) use data-driven variable 73 selection across hydroclimate indicators and observed state variables to automatically 74 design Pareto-optimal drought indices (i.e., constructing a function) to balance trade-75 offs between complexity and performance. These studies have underscored the signifi-76 cant potential for data-driven methods to advance model design in water systems, while 77 also identifying key challenges related to structure and complexity. 78

Model accuracy alone does not engender trust (Baumberger et al., 2017), partic-79 ularly in the case of "black-box" models (Shen, 2018), though accuracy is often the pri-80 mary metric by which model structure is validated (Eker et al., 2018). By starting from 81 fixed model structures, many data-driven methods bypass the question of structural un-82 certainty (Walker et al., 2003). This complicates any eventual reconciliation with avail-83 able theory or process knowledge to support interpretation and validation (Lipton, 2018; 84 Knüsel et al., 2019; P. J. Schmidt et al., 2020). By contrast, data-driven methods for sys-85 tem identification are capable of searching both model structures and parameters to find 86 candidate representations (Ljung, 2017). Methods have been demonstrated for systems 87 in which the target relationships are well-known, such as the double pendulum (M. Schmidt & Lipson, 2009) and the Navier-Stokes equations (Rudy et al., 2017). In hydrology, data-89 driven system identification methods have been used to infer rainfall-runoff transfer func-90 tions (Klotz et al., 2017) and to automate the identification of rainfall-runoff model struc-91 tures using global optimization (Spieler et al., 2020). 92


Generating model structures through data-driven system identification allows for 93 the testing of multiple model structures and parameterizations as competing hypothe-94 ses (Beven, 2019), similar to how conceptual and theory-driven model components have 95 been compared to reduce structural uncertainty (Clark et al., 2015a, 2015b; Nearing & 96 Gupta, 2015; Knoben et al., 2020). Several specific challenges arise in the way candidate 97 models are evaluated. First, data-driven system identification typically results in a trade-98 off between model performance and complexity (Hogue et al., 2006; Bastidas et al., 2006; 99 Pande et al., 2009). Second, additional criteria may be required for model evaluation, 100 such as interpretability and agreement with available theory (Khatami et al., 2019; Knüsel 101 et al., 2019). Opportunities remain for data-driven methods to identify model structures 102 of water resources system components for which theory is still being developed, such as 103 varied human influences. There remains a need for a general approach capable of gen-104 erating and evaluating models of human interactions within water systems, with the si-105 multaneous goals of accuracy and interpretability across a broad spectrum of possible 106 representations (Schill et al., 2019). 107


This work contributes an approach to model generation and evaluation for the gen-108 109 eral challenge of deriving process representation and understanding from observed data in water resources systems. We focus on the particular challenge of modeling human be-110 havior, an influential system process which poses significant uncertainty in hydrologic 111 systems (Konar et al., 2019; Schill et al., 2019; Herman et al., 2020). By generating many 112 candidate models as competing hypotheses and simultaneously evaluating models for per-113 formance and complexity, we operationalize a preference for parsimonious model struc-114 tures in combinatorial search spaces. The structures resulting from search in broadly de-115 fined model spaces are consolidated through systematic decomposition and diagnostic 116 assessment of plausible model sets to determine driving structure. The approach is demon-117

strated for a case study of agricultural land use decisions in California, a complex spatially distributed process through which humans exert substantial influence on the system. This approach provides a foundation for future studies of model structural uncertainty, reconciliation with theory, and integrated systems modeling, particularly regarding the role of these challenges in planning and management for coupled human-water systems under uncertainty.

¹²⁴ 2 Methodological Background

We extend data-driven system identification approaches to generate and evaluate 125 plausible model structures describing human behavior in water resources systems (Fig-126 ure 1). The experimental steps presented here share similarities with the problem of con-127 128 structing emulators (surrogates) of environmental systems models (Castelletti et al., 2012; Kleijnen, 2015), though with the additional goal of generating models that support the 129 development of candidate theory regarding system processes. This requires an evalua-130 tion phase in which the structures of generated models are examined directly. By search-131 ing over the space of model structures for a given problem definition, the uncertainty as-132 sociated with selecting any given model can be visualized as a function of complexity and 133 accuracy on held-out data. 134

135

2.1 Problem Definition

Problem definition for data-driven modeling includes the formulation of a question about the system, the collection and organization of available data at relevant spatial and temporal scales, and the specification of a family of models to answer the question. A data-driven system identification approach to problem definition can avoid humanintuited priors in the form of model structure and feature engineering, in favor of discovering useful constructions of both the data and the model simultaneously (Knüsel et al., 2019). First, the heterogeneous feature types common to integrated settings and observed human behavior can be considered across spatio-temporal scales. Feature engineering is then performed by transforming the observations, typically along with some
form of dimension reduction such as eigenvalue decomposition (Giuliani & Herman, 2018).
Variables at incongruent spatial and temporal scales and categorical variables can also
be incorporated, for example through encoding schemes (Cerda et al., 2018).

In formulating the question, the model ϕ must be identified to map predictor vari-148 ables X (input samples) to the response variable y in a multivariate regression problem: 149 $\phi : \mathbb{R}^n \to \mathbb{R}^1$. For modeling dynamical systems, the problem might involve learning 150 the next state or derivative of a state variable in time given the current and previous states. 151 The goal is to automatically reverse-engineer structure in ϕ that enables novel insights 152 of the system (Bongard & Lipson, 2007). Discovering the optimal ϕ without pre-specifying 153 the form of the function invokes exploration over both the structure and parameteriza-154 tion of ϕ . This generalized multivariate regression problem is an instance of supervised 155 learning. However, it could alternatively be cast as a multivariate control problem, where 156 rather than learning a model, a policy is learned based on rewards received by an agent 157 after taking actions in an environment (Barto & Dietterich, 2004). The relationships be-158 tween environmental observations and human decisions can also be framed in terms of 159 causal inference, such as through instrumental variable and fixed effect experiments (Müller 160 & Levy, 2019). 161

There are a number of model families from which functions could be drawn to per-162 form this mapping, such as linear additive models or neural networks. Functions can be 163 most generally encoded as trees or graphs, either of which can be used to represent a uni-164 165 versal approximator (Breiman, 2001; Huang et al., 2006, e.g.,) of highly complex, nonlinear human behavior. A common approach for the automatic construction of models 166 of arbitrary mathematical structure and complexity is to combine objects from a prim-167 itive set of basic functions (Quade et al., 2016). As an instance of a process influencing 168 the natural system, human behavior is integrated in model computation graphs, the net-169 work representing model operations and numerical fluxes (Gupta & Nearing, 2014; Khatami 170 et al., 2019), by defining representational nodes and specifying links. Taken together, nodes 171 and links in a model's graph form a natural measure of model integration (Claussen et 172 al., 2002). 173

174

2.2 Model Generation

The model generation process involves inferring models from data. Within water 175 resources, model inference has largely focused on parameter estimation for given model 176 structures. This is a broad category, including deterministic data-driven models with train-177 able weights such as neural networks (Hsu et al., 1995, e.g.,), physically-based model struc-178 tures with probabilistic search procedures such as Markov Chain Monte Carlo (MCMC) 179 (Vrugt & Beven, 2018, e.g.,), and general procedures for examining parametric uncer-180 tainty in conceptual linear and nonlinear model structures such as Generalized Likeli-181 hood Uncertainty Estimation (Beven & Binley, 1992). For example, Vrugt and Beven 182 (2018) demonstrate the evolution and training of set-length Markov chains for different 183 experiments, using differential evolution to explore a broadly-defined parameter space 184 and maintaining a population of models in place of explicit structural search. These ap-185 proaches are thus a combination of theory-driven structure and data-driven parameter-186 ization, which enables analysis of complexity and equifinality among parameter sets (dis-187 cussed in Section 2.3). 188

Model structure can also be generated through a number of data-driven search methods that explicitly add or subtract elements—referred to as construction and pruning methods, respectively—which originate in the fields of machine learning and evolutionary algorithms. Construction methods include decision trees, which successively add lin-

ear decision rules to accurately classify samples (Quinlan, 1986), and genetic program-193 ming, the use of a genetic algorithm to build and search over graphical model structures 194 composed of simple mathematical elements and inputs (Koza, 1992, 1995), among oth-195 ers. Broadly, global optimization methods such as evolutionary algorithms have proven 196 useful for this task (Reed et al., 2013), given the potentially non-convex or discontinu-197 ous objective surface that results from optimizing both structure and parameters simul-198 taneously. Though the target processes may be simple, basic implementations of these 199 methods do not explicitly minimize model complexity. With increasing interest in model 200 interpretability in machine learning (Lipton, 2018), pruning methods for the discovery 201 of sparsely-connected sub-networks have been introduced that reproduce or improve per-202 formance of fully-connected neural networks after they have been trained (Frankle & Carbin, 203 2018). In contrast, multiple objectives can be used with construction methods to eval-204 uate model structures simultaneously for error performance and structural complexity 205 during optimization, codifying a preference during search for simpler models that per-206 form equally well. 207

Genetic programming is particularly useful for its ability to conduct global multi-208 objective search over model structures of arbitrary complexity, i.e., symbolic regression 209 (Quade et al., 2016). Symbolic regression uses linear and nonlinear operators as base func-210 tions, and can, for example, learn to compose nested functions and automate the pro-211 cess of feature engineering. Symbolic trees can also incorporate noise (M. D. Schmidt 212 & Lipson, 2007), can be seeded with relations of interest during optimization (M. D. Schmidt 213 & Lipson, 2009; Chadalawada et al., 2020, e.g.,), and can be strongly-typed to incorpo-214 rate and handle heterogeneous data types or function outputs (Montana, 1995). Model 215 evaluations of symbolic regression trees are generally faster than traditional feed-forward 216 neural networks because each model evolves a sparse input representation based only on 217 the inputs that improve performance. These factors make symbolic trees suited for it-218 erative and exploratory model generation when using a gradient-free optimization method. 219 The primitive set of structures for building symbolic trees determines the size of the search 220 space, which grows combinatorially with the number of primitives (Vanneschi et al., 2010). 221 In applications where the target functions are not known, as in the modeling of complex 222 and highly nonlinear human behavior, the space of possible model structures can be broad-223 ened to include a large number of possible functional relationships. 224

225

2.3 Model Evaluation

Model evaluation consists of the examination of performance metrics and componentlevel behavior, and the identification of parametric and structural drivers. This section reviews different approaches and perspectives regarding model evaluation for data-driven system identification, recognizing that the implementation of this phase is problem-dependent, and that integrated systems models including human behavior may be difficult to validate against theoretical or conceptual results depending on their scale.

The minimization of one or more error metrics between the model and data defines 232 its proximity to the "true" model (Haussler & Warmuth, 1993; Kearns et al., 1994; Valiant, 233 2013). The different methodological and philosophical details of model evaluation in these 234 settings are reviewed by Höge et al. (2018). Since the potential for a model to overfit to 235 training data increases with complexity, the foremost issue regarding model evaluation 236 is the test error, the indicator of a model's ability to generalize to unseen data by bal-237 ancing model bias and variance (Friedman, 1997; Pande et al., 2009). Generalization to 238 unseen data is also required to appropriately accommodate non-stationarity in data, a 239 necessity when seeking to describe dynamic human behavior over long time periods (Höge 240 et al., 2018). Finally, standard error metrics can be supplemented by additional crite-241 ria such as the information content learned from a model (Nearing & Gupta, 2015; Near-242 ing et al., 2020), or when functional relationships are known, the evaluation of structural 243

error through tradeoffs between predictive and functional performance (Ruddell et al.,
2019).

For data-driven model structures describing human behavior, several extensions 246 arise that deserve consideration during the model evaluation phase. The first is model 247 complexity, recognizing that additional components or parameters do not necessarily re-248 sult in the ability to represent increasingly complex system behavior (Z. Sun et al., 2016). 249 Instead, the goal is to find a parsimonious model, or the simplest model that still describes 250 the data accurately. This has been identified as a challenge for heuristic approaches to 251 data-driven system identification (Bongard & Lipson, 2007; M. D. Schmidt & Lipson, 252 2008; M. Schmidt & Lipson, 2009). 253

The second extension is model equifinality, or lack of uniqueness, which occurs when 254 many model structures produce comparable predictions even after being tuned, trained, 255 constrained, or optimized (Beven, 1993). This can suggest possible redundancy or over-256 simplification in the model, meaning that the parsimonious model may not have been 257 found or the collected data is not diverse enough to fully represent the underlying pro-258 cess. For data-driven system identification this is especially challenging given the large 259 space of possible model structures and conflicting performance metrics (Curry & Dagli, 260 2014). The concept of equifinality has been widely explored in hydrology and water re-261 sources (Khatami et al., 2019), as well as in agent-based models (Williams et al., 2020). 262 However, with the exception of a recent example from the social sciences (Vu et al., 2019), 263 the equifinality problem is rarely approached in integrated studies by global search over 264 model structures that considers both performance and complexity during training. 265

Finally, when model generation results in a large number of plausible model struc-266 tures, a range of diagnostic tools can be applied to further assess the common structures 267 and parameters driving model behavior. For example, Pruyt and Islam (2015) use clus-268 tering to partition exploratory model parameterizations based on their behavior as trans-269 fer functions mapping input to output. In the absence of well-characterized uncertainty, 270 sensitivity analysis can diagnose model prediction behavior and provide a metric by which 271 to justify the inclusion of parameters (Pianosi et al., 2016; Gupta & Razavi, 2018; Wa-272 gener & Pianosi, 2019). Dobson et al. (2019) design a scenario resampling strategy to 273 show the importance of contextual uncertainty in the performance of operational rules 274 of water systems. These and similar approaches assist with the evaluation of models of 275 human behavior in the abstract, through which key structural elements can be identi-276 fied post-optimization. 277

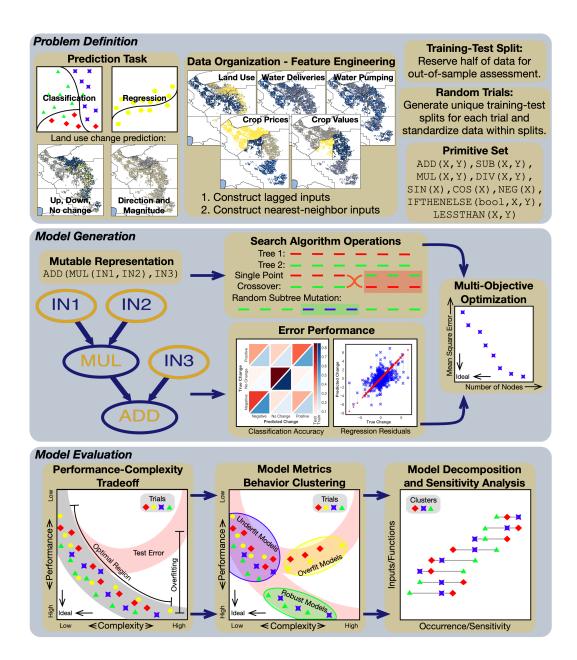
278 **3 Experiment**

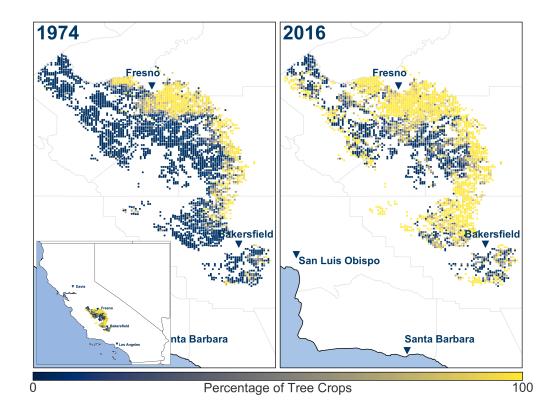
289

Figure 2 outlines the computational steps for the three experimental phases: prob-279 lem definition, model generation, and model evaluation. The Problem Definition phase 280 includes the definition of prediction tasks, feature engineering, and the specification of 281 function primitives. The Model Generation phase includes the selection of an encoding 282 representation and search procedure, the definition of metrics to use for evaluating mod-283 els during search, and the search over candidate model structures in a multi-objective space. The Model Evaluation phase for these experiments focuses on the collection and 285 analysis of many plausible model sets across many random trials. Clustering and sen-286 sitivity analysis techniques are employed to determine driving structure and features in 287 different regions of the performance space. 288

3.1 Problem Definition

This approach is demonstrated on an application of agricultural land use change, one of the primary ways in which human decisions influence water resources systems, in addition to reservoir operations and urban consumption. Land use change represents a




Figure 2. Schematic of experimental setup and workflow

complex test case in spatially distributed, heterogeneous decision-making (Groeneveld 293 et al., 2017). Additionally, models of land use change depend on heterogeneous sources 294 of information, such as water availability and socioeconomic factors (Nelson & Burch-295 field, 2017; Jasechko & Perrone, 2020; Malek & Verburg, 2020). This problem has been 296 approached from multiple perspectives, including theoretical models based on economics 297 and psychology (Schlüter et al., 2017), as well as statistical models (B. Sun & Robin-298 son, 2018), which together suggest no clear agreement on process representation (Verburg 200 et al., 2019). Economic models of land use change have been developed at the global scale 300 (Prestele et al., 2017; Stehfest et al., 2019) and also at the regional scale (Howitt et al., 301 2012, e.g.,), and the integration of local and regional results into global models is cur-302 rently being explored (Melsen et al., 2018; Schlüter et al., 2019; Malek & Verburg, 2020). 303 In both cases, parameters are calibrated against historical observations. However, it is 304

also acknowledged that land use decisions, like other water resources decisions, do not 305 always follow the principle of full rationality (Groeneveld et al., 2017; Schlüter et al., 2017). 306 By contrast, agent-based rules have also been developed for regional land use models, 307 often ad hoc using expert judgment (Thober et al., 2017) informed by empirical stud-308 ies (Robinson et al., 2007). There remains an opportunity to automate this process via 309 model generation techniques, as has been explored elsewhere in the social sciences (Gunaratne 310 & Garibay, 2017; Vu et al., 2019, e.g.,). While land use change presents a challenging 311 test case, the methods proposed here also generalize to other aspects of human behav-312 ior in water resources systems, contingent on the availability of scale-appropriate datasets. 313

314 3.1.1 Case Study

This approach is applied to the problem of understanding dynamic agricultural land 315 use patterns in the Tulare Basin region of California. In this case study, we use data-316 driven system identification to discover a mathematical function to predict the year-to-317 year change in tree crop acreage for all continuously planted square-mile sections of land 318 in the Tulare Basin from 1974 to 2016. This is a human response variable that is of par-319 ticular interest for water resources management because of a strong historical trend to-320 wards tree crops (Figure 3) that has exacerbated groundwater overdraft, especially in 321 times of drought (Jasechko & Perrone, 2020). 322

Figure 3. Historical change in crop type in the Tulare Basin, California from 1974 to 2016. Each grid cell is 1 mi², and tree crops are defined as in Mall and Herman (2019). The grey lines indicate county boundaries within which crop prices are reported annually.

323 3.1.2 Problem Definition

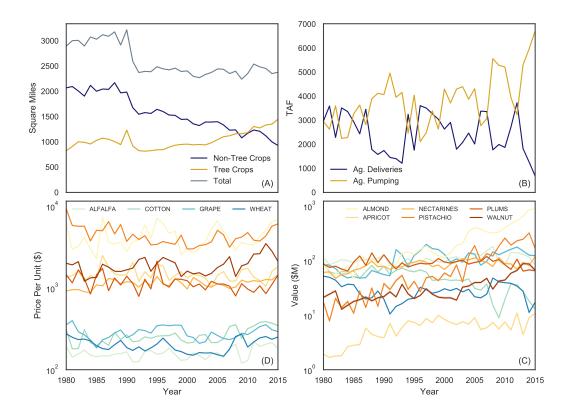
The state of the system x_t is defined as an *n*-tuple drawn from \mathbb{R}^n that includes the current and previous state of tree crops $(a_t, a_{t-1}, ...)$ and non-tree crops, the lagged change of tree-crops $(a'_{t-1}, a'_{t-2}, ...)$ and non-tree crops since the current change is being predicted, and other current and lagged information such as the current crop price, agricultural pumping, and surface water deliveries.

$$x_t \coloneqq (a_t, b_t, c_t, \dots, a_{t-1}, a'_{t-1}, b_{t-1}, c_{t-1}, \dots)$$
(1)

where $a_t = a_{t-1} + a'_{t-1}$. Given the state of the system x_t representing all current and previous information at a given spatial index, in learning the dynamics of the system we aim to predict the annual change in acreage at the same spatial index, a'_t , as a function of previous changes, current and previous states, and other features (more information about these feature variables is given in Section 3.1.3):

$$D_{x_t} \coloneqq \frac{\Delta x_t}{\Delta t} = F(x_t) \tag{2}$$

The notation D_{x_t} is used to refer to the difference in tree crops a'_t that would ad-334 vance the tree crop state forward in time, $a_{t+1} = a_t + a'_t$. x_t includes lagged responses 335 such as $D_{x_{t-1}}$, the response of the previous state at the same index. The problem of learn-336 ing model structure is therefore to determine the function F that maps a given set of 337 features to the annual change in state. x_t includes potentially high-dimensional infor-338 mation describing the current state and any number of previous states (Lusch et al., 2018). 339 When the dynamics of F are unknown, general function forms are initialized randomly 340 and trained to approximate system dynamics by learning from observed or measured data. 341


We explore two different prediction tasks related to this problem, regression and classification. In the regression formulation, models predict the magnitude and direction of the annual change in tree crop acreage. In the classification problem, models predict the direction of change only-positive, negative, or no change-as displayed under Prediction Task in Figure 2. Regression is generally considered a more difficult problem as functions must predict a continuous value, whereas this classification task requires predicting the most likely of three classes.

349

3.1.3 Feature Engineering

Feature data describing land use, water availability, and economics were organized 350 into samples to train and test candidate model structures. Land use data was taken from 351 the California Pesticide Use Reports, available digitally beginning in 1974 and extracted 352 by Mall and Herman (2019). Annual crop type data are taken from 1974-2016 at the square-353 mile scale for over 3000 grid cells in the Tulare Basin, and the target data are partitioned into tree and non-tree crops. Water availability data were taken from the C2VSim-IWFM 355 groundwater model representing pumping and delivery estimates for the categories of 356 urban, agricultural, rice crop, and refuge pumping and deliveries, further details for which 357 are described in Kourakos et al. (2019). Lastly, county-level crop prices were taken from 358 the California County Agricultural Commissioner reports, beginning in 1980 across Tu-359 lare, Fresno, Kings, and Kern counties (USDA National Agricultural Statistics Service 360 - California Field Office, 2019). Crop prices were adjusted for inflation using the pro-361 ducer price index for agriculture, based on the year 2016, published by the U.S. Bureau 362 of Labor Statistics (U.S. Bureau of Labor Statistics, 2019). A summary of trends for this 363 heterogeneous data set is presented in Figure 4. 364

Additional features were included to account for the space-time dependence of the problem. Samples were organized such that each grid-cell sample was tagged with its data,

Figure 4. Historical trends in heterogeneous feature data. (A) Tree crop acreage, non-tree crop acreage, and total acreage planted; (B) Yearly total agricultural water deliveries and pumping; (C-D) Inflation-adjusted prices and total crop values for a selection of crops.

the previous six years of data, and the same data from each of 5 neighboring grid cells 367 in space. Since economic information is only available from 1980 onward and spatially 368 distributed at the county scale, this space-time extension was only implemented for land 369 and water data. Absolute data, such as the year and location, were excluded from the 370 set of features to avoid overfitting. The resulting dimensions of the data were on the or-371 der of 500 predictor variables and 130,000 samples. No explicit dimension reduction steps 372 were implemented in order to maintain the interpretation of feature variables within the 373 eventual model structures generated by this approach. Samples were split into 50% train-374 ing and 50% test, and both the features and response variable were standardized to $\mathcal{N}(0,1)$. 375 Other than the bias introduced by constructing variables representing temporal lags and 376 spatial neighborhoods, no empirical or theoretical priors were provided to inform the search. 37 This spatiotemporal construction process also adds redundancy into the feature set, and 378 we rely on the model search (Section 3.2.2) to navigate this redundancy to identify the 379 most informative features while retaining interpretability. 380

381

3.1.4 Model Structural Elements

In addition to the feature variables, the primitive set of functions composing the feasible model structures must also be specified. The primitive set includes the mathematical relationships detailed in Table 1.

To include relational and logical operators in addition to mathematical operators in the primitive set, the functions are strongly typed, meaning that intermediate variables must match data types for the input and output of each component function. Con-

Functions

[float] = add([float], [float])	$[\text{float}] = \sin([\text{float}])$
[float] = subtract([float], [float])	$[\text{float}] = \cos([\text{float}])$
[float] = multiply([float], [float])	[float] = negative([float])
[float] = divide([float], [float])	$[bool] = less_than([float],[float])$
$[float] = if_then_else$	([bool],[float],[float])

Constants

(1, [bool])	(RandInt(0,100)/10.,[float])
(0, [bool])	(RandInt(0,100)/1.,[float])

Table 1. The primitive set functions and constants, as defined for both regression and classification experiments. The space of feasible models is constrained by strong typing. The function RandInt(a, b) generates a uniform random integer on (a, b).

stants are also defined as either boolean or floating point values as indicated in Table 388 1 and appear as terminal nodes in an expression, as do the model inputs (features). Con-389 stants are drawn from a distribution, though the resulting model is deterministic after 300 the constants have been generated. However, the distributions themselves can be included 391 in the primitive set, allowing the automatic construction of stochastic models (M. D. Schmidt 392 & Lipson, 2007). In addition, search over the model space can be biased by providing 393 a specific set of operators, inputs, or constants as seeds (M. D. Schmidt & Lipson, 2009). 394 By defining the primitive set and input space in this way, we ensure that search over the 395 model space covers a broad general space of models, including linear and higher-order 396 combinations of inputs and discontinuous functions. 397

398 3.2 Model Generation

399

3.2.1 Search Objectives

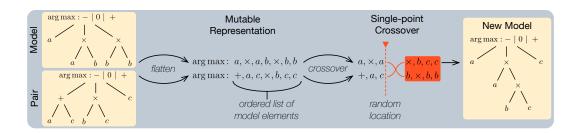
For the regression problem, the performance objective used to train model structures is the mean squared error (MSE), a commonly-used error metric that emphasizes larger residuals. A baseline performance value for MSE on the response variable—standardized to $\mathcal{N}(0, 1)$ —is 1.0, which results from using the average prediction (zero) for every sample. For a given regressor $F : \mathbb{R}^n \to \mathbb{R}^1$:

$$MSE_{train} \coloneqq ave_{x_t \in X_{train}} (\hat{D}_{x_t} - D_{x_t})^2 \tag{3}$$

In the classification experiment, the multi-class output is addressed via ensemble learning, a common method in genetic programming studies (Espejo et al., 2010). The performance objective is the percent of misclassified samples. This is equivalent to 1– *Accuracy*, where accuracy is the percentage of classes predicted correctly. A baseline performance for misclassification percentage for this application is approximately 0.54, which results from predicting the most common class (no change) for every sample. The misclassification percentage can be calculated using the Hamming loss, $l(\hat{y}, y)$, which takes the value 1 for predictions that do not match the response and 0 otherwise. For a given classifier $F : \mathbb{R}^n \to \{Negative, No \ Change, Positive\}$:

$$MCP_{train} \coloneqq ave_{x_t \in X_{train}} l(\hat{D}_{x_t}, D_{x_t}) \tag{4}$$

Though the three classes are relatively balanced in this experiment $\{Negative \sim$ 414 25%, No Change ~ 47\%, Positive ~ 28\%, this simple accuracy metric might pro-415 mote models that perform well on only a subset of classes. This can be a problem par-416 ticularly when classes are not equally represented in the training set (Provost & Fawcett, 417 2001). Multi-class metrics such as the macro/micro-averaged F1-measure (Lipton et al., 418 2014) and receiver operating characteristic (ROC) curve (Fawcett, 2006) can account for 419 class imbalance by weighting measures based on individual class accuracies. However, 420 we find that for this problem, alternate metrics do not significantly change the rank or-421 der of models within each class (see Supplemental Material). In regard to improving re-422 423 gression metrics, the water resources field has thoroughly considered how error metrics for natural process models can incorporate available process knowledge (Gupta et al., 121 2009; Khatami et al., 2019; Lamontagne et al., 2020, e.g.,). These approaches are also 425 relevant in scenarios lacking process knowledge but with known statistical relationships 426 in the error signals. 427


A second objective, model complexity, is formulated and optimized concurrently with the performance objectives above using multi-objective optimization. The complexity metric is taken to be the representation length, a commonly used surrogate for computational or algorithmic complexity of a model (Vanneschi et al., 2010), which in this case is the number of elements (nodes) in the ordered list representing the model. The complexity value is normalized by the maximum depth of recursive function calls in Python (90) to roughly match the scale and precision of the performance objectives.

435

3.2.2 Search Algorithm

The search over candidate model structures and parameterizations employs a cus-436 tomized genetic programming algorithm, an evolutionary approach that encodes math-437 ematical expressions in a tree structure to support symbolic regression. Modular com-438 ponents of the algorithm were drawn from the package Distributed Evolutionary Algo-439 rithms in Python, or DEAP (De Rainville et al., 2012). As depicted in the Model Gen-440 eration panel of Figure 2, mutation and crossover operators act on ordered representa-441 tions of models, where each tree is flattened into an ordered list of elements, to gener-442 ate new structures from promising candidates and explore the model space during op-443 timization. The mutation operator adds a randomly initialized sub-tree of depth 1-2, rep-444 resenting a random addition into the model element list. Single-point crossover randomly 445 selects a location along paired model element lists and exchanges the elements beyond 446 this location to generate a new model, an example of which is depicted in Figure 5. Mu-447 tation explores the model space by introducing new model structures, and crossover ex-448 ploits the attributes of current models by testing new combinations of existing model struc-449 tures. The mutation and crossover operations can result in invalid models according to 450 the strong typing criteria, where intermediate data types among tree operations do not 451 match; these models are discarded before evaluation. 452

⁴⁵³ During training, the performance and complexity objectives are both minimized. ⁴⁵⁴ This has two implications: (1) the minimum complexity (maximum interpretability) model ⁴⁵⁵ is preferred among two models with the same performance, (2) if the space of possible ⁴⁵⁶ models is searched exhaustively, the resulting tradeoffs between models should be the ⁴⁵⁷ minimum complexity model for a given level of performance. The algorithm follows a ⁴⁵⁸ $\mu + \lambda$ evolution strategy, which allows parents to persist in the population. At each gen-⁴⁵⁹ eration, a number of offspring μ are generated from λ parents in the population by ap-

Figure 5. Detailed view of crossover operations, expanded from Figure 2. Two models from the population are used to generate a new model by splitting and recombining the ordered list representations at a random location, a process repeated throughout the search. Mutation operates similarly by adding a random sub-tree at a random location in a single model.

plying mutation and crossover with a given probability. The population is updated by 460 applying deterministic crowding selection analogous to NSGA-II (Deb et al., 2000) to 461 the collection of individuals $\mu + \lambda$, selecting λ individuals to be used as parents in the 462 next generation. The use of deterministic crowding for selection is intended to promote 463 diversity within populations by spacing out models along the Pareto front. This ensures that no single model dominates in all objectives and is therefore used to generate all new 465 individuals in the next generation. Separately from the population, an archive of Pareto-466 approximate model structures is maintained and updated through strict non-dominated 467 sorting of the archive and population together in each generation, with no crowding distance selection applied. This archive represents the best approximation of the Pareto front 469 at each iteration of the optimization (including the final result), and allays degradation 470 known to occur in populations when using deterministic crowding for selection. 471

Experiments were run using the UC Davis College of Engineering HPC1 Cluster 472 with 96 processors, employing DEAP package support for distributed computing. Each 473 population of models contains 96 individuals, and each tree is initialized randomly with 474 depth 1-3. Trials run for a maximum of 20,000 generations with a stagnation convergence 475 criterion of 2,500 generations, which will stop the algorithm if performance improvements 476 are not detected during this time. Performance improvements can be found throughout 477 the optimization, but can become exceedingly small as models start to overfit. As in many 478 high-dimensional sampling problems, it is not possible to prove that the global optimum 479 has been reached. Though the algorithm is likely to comprehensively sample low-complexity 480 models, the size of the primitive set (number of inputs, constants, and functions) dic-481 tates that the sampling coverage of possible models decreases at least factorially with 482 additional model primitives (Knuth, 2011). Combinatorial expansion reflects the curse 483 of dimensionality, and complicates the search for medium- and high-complexity models, 484 though more efficient algorithms are an active area of research (Hadka & Reed, 2013; Vrugt 485 & Beven, 2018; Conti et al., 2018, e.g.,). This complexity increases the likelihood of op-486 timization trials getting stuck in local minima as trees grow, and emphasizes the impor-487 tance of appropriately defining the model space during problem definition. To account 488 for this stochasticity in optimization, 21 randomized trials are performed, which includes 489 the initialization of the train-test split. The code to reproduce this study can be found 490 at DOI: 10.5281/zenodo.3887360. 491

This algorithm configuration may generate spurious structure and/or redundant features within the same model. The Supplemental Material includes more details about the feature variables and their correlation. However, the algorithm performs variable selection to some extent when feature variables that lead to improved objective performance are introduced through mutation or crossover, suggesting an informative relationship. Even with correlated features, we expect that over the course of many iterations of the ⁴⁹⁸ mutation operator, and multiple random seeds, the most informative features will oc-⁴⁹⁹ cur most often in the resulting sets of models. This stochasticity in model structural iden-⁵⁰⁰ tification reinforces the need for multiple trials, ensemble averaging across optimization ⁵⁰¹ trials during model evaluation, and summary statistics describing high-complexity re-⁵⁰² gions of the model space, as any one model structure by itself may be subject to feature ⁵⁰³ redundancy.

504

3.3 Model Evaluation

Following the model training, candidate structures are evaluated in three ways: tradeoffs between performance objectives, model behavior in the metric space, and decomposition and sensitivity of the underlying structure and features. The approach to model evaluation taken during this phase depends on modeling decisions during problem definition and model generation. In these experiments, the feature data and primitive set together define a combinatorially large space of possible models, creating substantial uncertainty that must be acknowledged in the analysis that follows.

3.3.1 Performance-Complexity Tradeoff

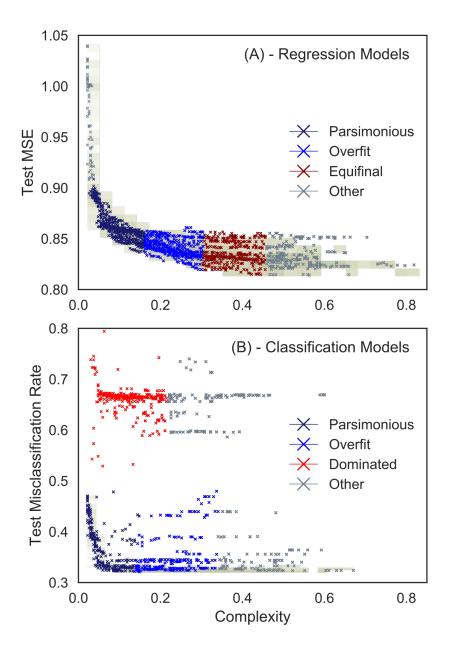
After evaluating performance on the test set, models are placed in a three-dimensional 513 performance-complexity tradeoff, as illustrated under Model Evaluation in Figure 2. Along 514 the Pareto front, training error within a given trial will strictly decrease as complexity 515 increases. However, as complexity of the model increases, test error can diverge from train-516 ing error if the model overfits. If error performance changes relatively little across a broad 517 range of model structures, this is an indicator of equifinality. To investigate this outcome 518 further, candidate models can be clustered into groups with similar behavior. Specifi-519 cally, k-means clustering is used to separate models according to training error, test er-520 ror, and complexity. 521

522

512

3.3.2 Model Decomposition and Sensitivity Analysis

The collection of Pareto-optimal sets of models constitutes a new high-dimensional 523 data set of structured model components and their associated performance metrics. Among 524 many network analysis tools for structural and dynamic analysis of graphical models, 525 model decomposition is a very simple initial step. The driving structural properties of 526 each model—number of metrics, attributes, inputs, functions, and constants—are linked 527 to their behavior cluster as described above. Each model is also tested for its sensitiv-528 ity to individual features and their interactions using Sobol sensitivity analysis with the 529 Python package SALib (Herman & Usher, 2017). The goal of this sensitivity analysis 530 is to determine whether the different clusters of model behavior are influenced by dif-531 ferent feature variables, for example if certain features appear primarily in overfit mod-532 els. To perform this step, each model is re-evaluated with 1000 samples scaled by the 533 cardinality of its unique feature set to ensure sufficient coverage of the sample space. For 534 example, if a model has 5 unique inputs, the model would be tested with 5000 samples 535 for each unique input to appropriately characterize pairwise and total-order sensitivi-536 ties in the Sobol method. 537


538 4 Results

539

4.1 Model Performance-Complexity Tradeoff

Figure 6 shows the tradeoff between model performance and complexity across the Pareto set of candidate model structures for both (a) regression and (b) classification experiments. Each point represents the performance (MSE) on the test data, while the gold background shading shows the distribution of performance for the same set of mod-

els on the training data. Figure 6 highlights four different regions: Parsimonious, Over-544 fit, Equifinal, and Dominated model clusters. These designations are subjective, but sep-545 arate the models for discussion according to their primary evaluation characteristics. Dur-546 ing each trial, initial structure building occurs in the Parsimonious cluster in both Fig-547 ure 6a and 6b. The Overfit clusters in Figure 6 are highlighted as the regions where mod-548 els begin to rely on spurious structure discovered later in the trial. The Equifinal clus-549 ter in Figure 6a represents a region where multiple model structures exist at roughly the 550 same level of performance. The Dominated cluster in Figure 6b represents models that 551 are both relatively complex and do not generalize well to unseen data. 552

Figure 6. Tradeoff between performance (test error) and complexity for model structures across (A) all regression trials and (B) all classification trials. Light gold shading indicates the distribution of the same models evaluated on the training data. Models are clustered according to their behavior in this three-dimensional space (training error, test error, and complexity).

These results indicate several points. First, regression trials in Figure 6a exhibit 553 better robustness to test data, with most models remaining within the region of the train-554 ing error displayed in the gold background. Classification experiments show diminish-555 ing returns to increasing complexity much faster than regression experiments. The progress 556 of the optimization trials is determined by the model structures developed in the Par-557 simonious clusters; insufficient exploration may explain why significant overfitting oc-558 curs in Figure 6b. Equifinal model structures are observed in both cases, as many mod-559 els with increasing complexity demonstrate similar performance. 560

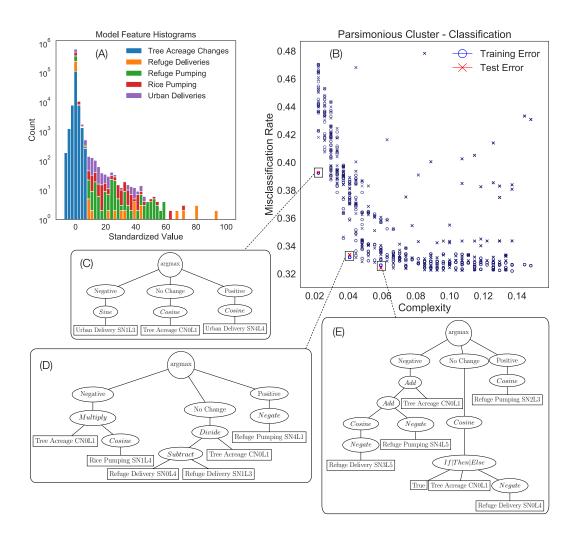
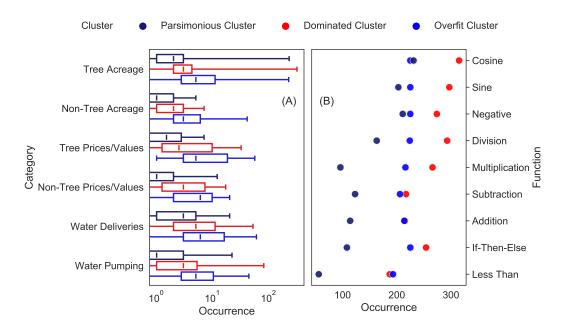


Figure 7. (a) Histograms of standardized feature data $\left(\frac{x-\mu}{\sigma}\right)$ represented in the models; (b) Training and test error for models in the Parsimonious cluster; (c-e) selection of models from the Parsimonious cluster. Feature constructions are annotated as {State/Change | Neighbor 0–5 | Lag 1-5}. In (a), some of these distributions are asymmetric even after standardization; skewed features such as refuge deliveries and pumping occur more infrequently than the relatively balanced tree acreage changes. In (c-e), the arg max operator returns the class {*Negative*, *No Change*, *Positive*} of maximum value for a given sample.

The classification results in Figure 6b show model structures with a variety of macroscopic behavior that can be investigated further. We proceed with the classification results to determine the drivers of model behavior, and also to examine the structure of three models selected from the Parsimonious cluster that perform well on both training


-17-

and test data in Figure 7. These three classification models depend on a variety of fea-565 ture variables and structural elements. Figure 7a displays a histogram of standardized 566 feature data represented in the models to understand any patterns shared among the dis-567 tributions of feature variables selected by the algorithm for these three model structures. 568 While the models occasionally rely on sparse, skewed feature distributions such as non-569 agricultural water use, they mainly rely on tree acreage changes. Specifically, all three 570 models use the acreage change in the previous timestep (lag-1) and same location, in-571 dicating that decision-making agents are informed by past decisions. Additionally, the 572 tree acreage change feature tends to occur closer to the output of each model structure 573 (Figure 7c-e), and as a result is less modified than other features by the sequence of arith-574 metic operations in each model. 575

576

4.2 Feature Occurrence and Sensitivity

Large differences among models regarding the selection of other feature variables 577 indicate that some of these structural components may be spurious. The distribution of 578 features chosen by the algorithm might be a result of their different spatiotemporal res-579 olutions. For example, the lack of consensus on the use of economic data could be due 580 to its coarser resolution in space and limited coverage in time, or the inability of the search 581 method to find informative features beyond the lag-1 tree acreage change. To investi-582 gate this further, we aim to identify the structural drivers separating robust models in 583 the Parsimonious and Overfit Clusters from models that do not generalize well (i.e., the Dominated cluster). First, we start by analyzing the occurrence of features and function 585 primitives among models in each cluster, displayed in Figure 8. 586

Figure 8. Occurrence of feature variables and function primitives among classification models. (A) Distribution of occurrence by feature category; (B) occurrence of functions. The former is a distribution because each feature category contains multiple feature variables, while the functions are not grouped.

Figure 8a shows the distribution of feature occurrence counts in each model cluster, where the features are grouped into categories (y-axis). The boxplots and ranges suggest several key points. All model clusters show a dependence on the group of inputs re-

lated to tree acreage data (all lagged and neighboring states and values for tree crops). 590 The lag-1 tree acreage change in the same location (categorized under Tree Acreage) ap-591 pear in every model across all clusters, indicated by the range of the whiskers at the top 592 of Figure 8a. The Overfit cluster contains more instances of features from each category 593 as compared to the Dominated and Parsimonious clusters, suggesting a higher level of 594 feature complexity overall. Lastly, the largest differences in feature usage between the 595 Parsimonious cluster and the Overfit cluster is in the tree and non-tree prices/values and 596 water pumping feature categories. 597

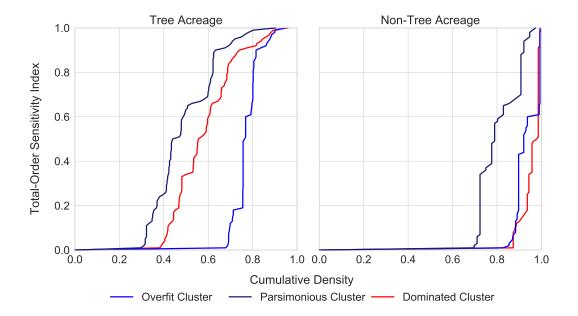

Figure 8b shows the occurrence count of function primitives for models in each clus-598 ter; the primitives are not categorized into groups, so the values are a single count rather 599 than a distribution. The Overfit cluster exhibits a more even distribution of function oc-600 currence across primitives than the Parsimonious and Dominated clusters, suggesting 601 an increase in the diversity of function primitives relative to the Parsimonious cluster. 602 Both the Overfit cluster and Dominated cluster learn a dependence on the two condi-603 tional primitives. Finally, models in the Dominated cluster contain more instances of nearly 604 every function type, particularly deviating from the Overfit and Parsimonious clusters 605 for single-input functions, suggesting a higher level of functional complexity and feature 606 transformations than either the Overfit or Parsimonious clusters. 607

Figure 8a-b together indicate that robustness to test data may be extended for mod-608 els in the Parsimonious cluster by increasing reliance on feature complexity versus func-609 tional complexity. This contrast may also explain why additional complexity in two- and 610 three-input functions for combining features is warranted over single-input functions that 611 merely transform individual features. However, feature occurrence alone does not explain 612 613 which features drive model output. Model responses to feature variable changes are quantified using Sobol sensitivity analysis. Results for total sensitivity indices are presented 614 in Figure 9 as empirical cumulative distributions. The sensitivities are presented for two 615 categories of feature variables, tree acreage and non-tree acreage, across the three clus-616 ters of classification models. 617

Figure 9 shows that over 60% of the tree acreage features (including lagged and 618 neighboring feature occurrences) in models from the Overfit cluster have a total-order 619 sensitivity index near zero, meaning that these features have a negligible effect on the 620 class prediction. Both the Overfit and Dominated models show lower sensitivity to both 621 categories of features relative to the Parsimonious cluster, indicating that the best-performing 622 models are driven by a wider range of features. In the case of tree acreage inputs, over 623 70% of features in the Overfit cluster show small sensitivities ($S_T < 0.2$) compared to 624 less than 50% for the model structures from the Dominated and Parsimonious clusters. 625 However, at least 20% of tree acreage inputs to both the Overfit and Dominated mod-626 els are high $(S_T > 0.8)$, illustrating a high reliance on fewer feature variables, which 627 may reduce the ability of these models to generalize out-of-sample. Conversely, both the 628 Overfit and Dominated models do not show the same high sensitivities to non-tree acreage 629 data that appear in the Parsimonious models. 630

This result confirms the conclusion from Figure 8 that previous tree acreage states 631 and changes are a main driver for this problem. The results also indicate a partition in 632 the information important to the decision problem; since crop switching requires respe-633 cializing and alternate scheduling, it is perhaps unexpected that over 60% of non-tree 634 crop features had negligibly small impacts on the class prediction. Similarly, there were 635 very few features with sensitivity indices greater than 0.6 among the Overfit or Dom-636 inated models. Sensitivity testing was only applied to features selected during the gen-637 eration of each model, so the distributions of sensitivity indices are not affected by the 638 frequency with which a feature is included in each model cluster. 639

Finally, the average total-order sensitivity indices within each feature category and variable construction are displayed across model clusters in Figure 10. Parsimonious mod-

Figure 9. Empirical cumulative distribution of total-order sensitivity indices for two categories of feature variables: tree acreage and non-tree acreage, separated by model cluster (color). Only the feature variables appearing in each model were included in the sensitivity analysis.

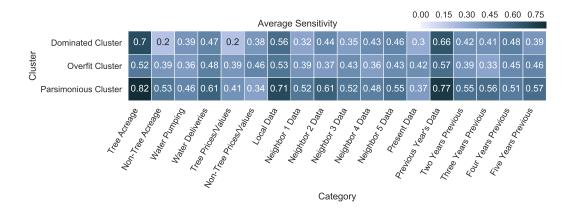


Figure 10. Average total-order sensitivity indices of feature variables across input categories for each cluster of model structures. In the feature grouping labels, "data" refers to the combination of state, change, temporal lags, and spatial neighbors for each type of feature.

els demonstrate elevated sensitivities across many of the feature categories and construc-642 tions. Since Parsimonious models are less complex than either Overfit or Dominated mod-643 els, that their predictions are highly affected by a wide range of input variables makes 644 intuitive sense, as Parsimonious models explain a similar fraction of total variance with 645 fewer features. Parsimonious models are also particularly sensitive to tree acreage fea-646 tures from the previous year, as shown in prior figures. Though we might expect high 647 bias in these Parsimonious models, bias seems to be minimized fairly quickly by selec-648 tive inclusion of feature variables. 649

Models in the Dominated cluster share high average sensitivity for only some fea-650 ture categories but not others, as do models from the Overfit cluster to a lesser degree. 651 Models from the Overfit cluster exhibit relatively equal sensitivities across all feature cat-652 egories as compared to the range of sensitivities represented in the Parsimonious and Dom-653 inated clusters. This, combined with the function occurrence result from Figure 8b, sug-654 gests that the Overfit models avoid becoming overly sensitive to individual features from 655 any one category by over-engineering the function structure, which likely leads to their 656 improved generalization ability over the Dominated models. This result demonstrates 657 how averaging sensitivity to certain categories of features within model clusters can re-658 veal the extent to which models should be sensitive to feature data given target prop-659 erties, such as model robustness to unseen data. However, averaging across the set of mod-660 els may obscure the sensitivities of individual models, the distribution of which is bet-661 ter shown in Figure 9. 662

5 Discussion

There is a distinct need for integrated systems models when descriptions of the phys-664 ical system are incomplete without consideration of the human component (Konar et al., 665 2019; Herman et al., 2020). This must include representations (Schill et al., 2019) and 666 feedbacks (Calvin & Bond-Lamberty, 2018) that may not be implemented in existing model 667 structures. This study proposes methods to automate the exploration of model structure along the canonical tradeoff between performance and complexity to describe hu-669 man behavior. In this illustrative case study focused on agricultural land use and wa-670 ter demand, enumerating the range of model performance with increasing model com-671 plexity by drawing structures from a general, unconstrained space provides context for 672 any prior-informed solutions that might arise in the same context. The relative perfor-673 mance demonstrated here thus forms a basis for the analysis of model structural uncer-674 tainty (Walker et al., 2003) by considering model structures as competing hypotheses 675 (Beven, 2019), which could be compared alongside theory-based models. 676

Generating candidate model structures includes automatic feature selection and 677 requires no prior knowledge of the system's mechanics, constraints, or information re-678 quirements beyond the basic provision of feature data and primitives (Bongard & Lip-679 son, 2007; M. Schmidt & Lipson, 2009), though informing and bounding search through 680 process understanding and structural priors (Knüsel et al., 2019), constrained problem 681 framings (Dobson et al., 2019; Müller & Levy, 2019, e.g.,), and structured generation schemes 682 (Chadalawada et al., 2020; Spieler et al., 2020, e.g.,), and using advanced interpretation 683 tools post-search (Worland et al., 2019; Quinn et al., 2019, e.g.,) could uncover more spe-684 cific emergent phenomena in the data and resulting models. However, framing model struc-685 tural experimentation according to this generic framework enables a baseline contextu-686 alization of the complex integrated systems problem. In this way, a data-driven approach 687 to generating and evaluating model structure can support the design of integrated sys-688 tem models such as agent-based or hydro-economic models.

This case study was encumbered by two primary sources of difficulty: (1) algorith-690 mic search in combined parametric-structural model spaces, and (2) heterogeneous fea-691 ture data across multiple temporal and spatial scales. First, the search space of candi-692 date model structures grows combinatorially with the number of features and primitives, 693 making it extremely unlikely to identify unique optimal solutions. In this study, the sud-694 den failure to improve in performance past a given level of complexity in the classifica-695 tion experiment (Figure 6b), a saturation often interpreted as convergence, could be driven 696 by a structural boundary beyond which improvements could not easily be found. Since 697 search effectiveness is partially determined by the size of the model space, available the-698 ory regarding target or related processes can be used to plausibly constrain model gen-699 eration, reinforcing the need for process knowledge alongside data in data-driven anal-700 ysis (Karpatne et al., 2017; Knüsel et al., 2019). Additionally, studies have argued for 701

an upper limit on the description length of a model (Vanneschi et al., 2010) as done in 702 Chadalawada et al. (2020), though this limit is difficult to identify a priori. Hybrid meth-703 ods, such as evolutionary strategies to approximate a gradient, are promising for tractable 704 search in combined model-parameter spaces (Conti et al., 2018; Miikkulainen et al., 2019), 705 as well as approaches that asynchronously tune parameters and structure (Frankle & Carbin, 706 2018). However, even when appropriately complex models can be identified, their often 707 black-box nature does not guarantee interpretability. The results presented here indi-708 cate how increasing equifinality as a function of complexity can inhibit interpretability. 709 Diminishing returns to model accuracy as complexity increases highlight the importance 710 of parsimony as a key model evaluation and selection mechanism. More strategic anal-711 ysis can be done to interpret the underlying logic behind model predictions, such as ex-712 plaining the importance of features and structure in neural networks (Montavon et al., 713 2018; Worland et al., 2019, e.g.,), and using sensitivity analysis to explicate structural 714 dependence in space and time (Quinn et al., 2019, e.g.,). 715

Second, the performance-complexity tradeoff of candidate model structures is tied 716 to the choice of feature variables at the appropriate scale, and observed with the nec-717 essary accuracy, to generate acceptable test performance (Höge et al., 2018). This is also 718 the case when the relations that would model such data do not exist or are not included 719 in the primitive set (Kearns et al., 1994). This study incorporates land use and economic 720 data across multiple decades and at a relatively fine spatial resolution to derive a sin-721 gle decision model, a task which may be better served by developing an ensemble of func-722 tions across the spatial region. Additionally, while the feature engineering applied to the 723 data helps discern the importance of correlations in space and time, it also obfuscates 724 the resulting model structures by increasing the interdependence among features. This 725 could be resolved in future work with dimension reduction techniques (Giuliani & Her-726 man, 2018; Cominola et al., 2019), potentially at the cost of feature interpretability. The 727 feature data itself may not provide the right signal to adequately model the underlying 728 process in this setting, due to noise in measurement or observation error, or the choice 729 of inadequate features. However, examining multiple problem formulations allows the 730 comparison of relative performance, as in the regression and classification experiments 731 in this study; while classification is the easier problem, it shows higher potential for over-732 fitting and may be underrepresenting the complexity in the data. Many-class classifica-733 tion could provide a middle ground between these two tasks, as well as the incorpora-734 tion of metrics that more realistically reflect model accuracy across classes, such as weight-735 ing by class prevalence (Provost & Fawcett, 2001; Lipton et al., 2014) or adding process-736 informed definitions of model error as objectives (Gupta et al., 2009; Lamontagne et al., 737 2020). Using heterogeneous data to identify the model structure of integrated systems 738 is not simple or straightforward, but the explanation of decisions made by complex be-739 havioral agents based on multiple sources of information is enabled by the methodolog-740 ical template presented here. 741

742 6 Conclusion

This study develops an approach to the inference of model structures and param-743 eterizations from data describing human behavior in water resources systems. Three phases 744 are considered: problem definition, model generation, and model evaluation, demonstrated 745 on a case study of land use decisions in the Tulare Basin, California. No priors are as-746 sumed on the model search space beyond the function primitives and feature data, in-747 cluding some feature engineering to build a high-dimensional dataset reflecting land use, 748 water use, and crop prices. Results indicate a tradeoff between model performance and 749 complexity, with substantial equifinality in model structures that require additional di-750 agnostic analysis. To this end, model structures are clustered according to similar be-751 havior, and driving structural features are diagnosed by considering function importance 752 and input sensitivity. Specific challenges arise due to identifying spatially distributed de-753

cisions from heterogeneous, multi-sectoral data, generally preventing the identification

of a single "best" model from the performance-complexity tradeoff. This provides a ba-

sis for analyzing structural uncertainty under broadly-defined problem contexts, and a

possible path forward for the generation of model components from observed data to sup-

⁷⁵⁸ port integrated representations of human actors in water systems.

759 Acknowledgments

This work was supported by National Science Foundation grant CNH-1716130. All conclusions are those of the authors. We would also like to thank Dr. Giorgos Kourakos and Dr. Helen Dahlke for providing model results from C2VSim IWFM, and Natalie Mall for compiling of the land use data set analyzed here. Lastly, we would like to thank Dr. Julianne Quinn for helpful comments on a preliminary draft. Data and code are available at DOI:10.5281/zenodo.3887360.

766 **References**

767	An, L. (2012). Modeling human decisions in coupled human and natural sys-
768	tems: Review of agent-based models. <i>Ecological Modelling</i> , 229, 25 - 36.
769	Retrieved from http://www.sciencedirect.com/science/article/pii/
770	S0304380011003802 (Modeling Human Decisions) doi: https://doi.org/
771	10.1016/j.ecolmodel.2011.07.010
772	Anderies, J. M. (2015). Understanding the dynamics of sustainable social-ecological
773	systems: Human behavior, institutions, and regulatory feedback networks. Bul-
774	letin of Mathematical Biology, 77(2), 259–280. Retrieved from https://doi
775	.org/10.1007/s11538-014-0030-z doi: 10.1007/s11538-014-0030-z
776	Barto, A. G., & Dietterich, T. G. (2004). Reinforcement learning and its relation-
777	ship to supervised learning. Handbook of learning and approximate dynamic
778	programming, 10, 9780470544785.
779	Bastidas, L. A., Hogue, T. S., Sorooshian, S., Gupta, H. V., & Shuttleworth, W. J.
780	(2006). Parameter sensitivity analysis for different complexity land surface
781	models using multicriteria methods. Journal of Geophysical Research: Atmo-
782	spheres, 111(D20). Retrieved from https://agupubs.onlinelibrary.wiley
783	.com/doi/abs/10.1029/2005JD006377 doi: $10.1029/2005JD006377$
784	Baumberger, C., Knutti, R., & Hirsch Hadorn, G. (2017). Building confidence in
785	climate model projections: an analysis of inferences from fit. WIREs Climate
786	Change, 8(3), e454. Retrieved from https://onlinelibrary.wiley.com/doi/
787	abs/10.1002/wcc.454 doi: 10.1002/wcc.454
788	Berkes, F., & Folke, C. (Eds.). (1998). Linking social and ecological systems: Man-
789	agement practices and social mechanisms for building resilience. Cambridge
790	University Press.
791	Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological
792	modelling. Advances in Water Resources, 16(1), 41 - 51. Retrieved from
793	http://www.sciencedirect.com/science/article/pii/030917089390028E
794	(Research Perspectives in Hydrology) doi: https://doi.org/10.1016/
795	0309-1708(93)90028-E
796	Beven, K. (2019). Towards a methodology for testing models as hypotheses in
797	the inexact sciences. Proceedings of the Royal Society A: Mathematical,
798	Physical and Engineering Sciences, 475(2224), 20180862. Retrieved from
799	https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2018.0862
800	doi: 10.1098/rspa.2018.0862
801	Beven, K., & Binley, A. (1992). The future of distributed models: Model cali-
802	bration and uncertainty prediction. $Hydrological Processes, 6(3), 279-298.$
803	Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/
804	hyp.3360060305 doi: 10.1002/hyp.3360060305

805	Bongard, J., & Lipson, H. (2007). Automated reverse engineering of nonlinear dy-
806	namical systems. Proceedings of the National Academy of Sciences, $104(24)$,
807	9943-9948. Retrieved from https://www.pnas.org/content/104/24/9943
808	doi: 10.1073/pnas.0609476104
809	Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. Re-
810	trieved from https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:
811	1010933404324
812	Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing
813	equations from data by sparse identification of nonlinear dynamical sys-
814	tems. Proceedings of the National Academy of Sciences, 113(15), 3932–
	3937. Retrieved from https://www.pnas.org/content/113/15/3932 doi:
815	10.1073/pnas.1517384113
816	Calvin, K., & Bond-Lamberty, B. (2018, jun). Integrated human-earth system mod-
817	eling—State of the science and future directions. Environmental Research Let-
818	
819	ters, 13(6), 063006. Retrieved from https://iopscience.iop.org/article/
820	10.1088/1748-9326/aac642 doi: 10.1088/1748-9326/aac642
821	Castelletti, A., Galelli, S., Restelli, M., & Soncini-Sessa, R. (2012). Data-driven
822	dynamic emulation modelling for the optimal management of environmental
823	systems. Environmental Modelling & Software, 34, 30 - 43. Retrieved from
824	http://www.sciencedirect.com/science/article/pii/S1364815211002015
825	(Emulation techniques for the reduction and sensitivity analysis of complex
826	environmental models) doi: https://doi.org/10.1016/j.envsoft.2011.09.003
827	Cerda, P., Varoquaux, G., & Kégl, B. (2018). Similarity encoding for learning
828	with dirty categorical variables. <i>Machine Learning</i> , 107(8), 1477–1494.
829	Retrieved from https://doi.org/10.1007/s10994-018-5724-2 doi:
830	10.1007/s10994-018-5724-2
831	Chadalawada, J., Herath, H. M. V. V., & Babovic, V. (2020). Hydrologi-
832	cally informed machine learning for rainfall-runoff modeling: A genetic
833	programming-based toolkit for automatic model induction. Water Re-
033	programming based toolkit for automatic model induction. "Water He
024	sources Research 56(4) e2019WR026933 Betrieved from https://
834	sources Research, 56(4), e2019WR026933. Retrieved from https://
835	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933
835 836	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933
835 836 837	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water
835 836 837 838	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. <i>Water Resources Research</i> , 53(1), 316-327.
835 836 837 838 839	<pre>agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/</pre>
835 836 837 838 839 840	<pre>agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 doi: 10.1002/2016WR019473</pre>
835 836 837 838 839	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods,
835 836 837 838 839 840	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based
835 836 837 838 839 840 841	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4),
835 836 837 838 839 840 841 841	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/
835 836 837 838 839 840 841 842 843	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198
835 836 837 838 839 840 841 842 843 844	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198
835 836 837 838 839 840 841 842 843 844 844	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based
835 836 837 838 839 840 841 842 843 844 845 846	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Wa-
835 836 837 838 839 840 841 842 843 844 845 846 846	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51(4), 2515-2542. Retrieved from https://
835 836 837 838 839 840 841 842 843 844 845 846 846 847 848	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51(4), 2515-2542. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017200 doi:
835 836 837 838 840 841 842 843 844 845 846 846 847 848	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51(4), 2515-2542. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017200
835 836 837 838 840 841 842 843 844 845 846 845 846 847 848 849	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51(4), 2515-2542. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017200 doi: 10.1002/2015WR017200 Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M. F.,
835 836 837 838 840 841 842 843 844 845 846 845 846 847 848 849 850	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51(4), 2515-2542. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017200
835 836 837 838 840 841 842 843 844 845 846 845 846 847 848 849 850 851	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51(4), 2515-2542. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017200 doi: 10.1002/2015WR017200 Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M. F.,
835 836 837 838 840 841 842 843 844 845 846 847 848 849 850 851 852 853	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/ doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Wa- ter Resources Research, 51(4), 2515-2542. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017200 doi: 10.1002/2015WR017200 Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M. F., Wang, Z. (2002). Earth system models of intermediate complexity: Closing
835 836 837 838 840 841 842 843 844 845 846 847 846 847 848 849 850 851 852	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/ doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Wa- ter Resources Research, 51(4), 2515-2542. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017200 doi: 10.1002/2015WR017200 Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M. F., Wang, Z. (2002). Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Climate Dynamics, 18(7),
835 836 837 838 840 841 842 843 844 845 846 847 848 849 850 851 852 853	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51(4), 2515-2542. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/1002/2015WR017200 Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M. F., Wang, Z. (2002). Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Climate Dynamics, 18(7), 579-586. Retrieved from https://doi.org/10.1007/s00382-001-0200-1
835 836 837 838 840 841 842 843 844 845 846 845 846 845 850 851 852 853 854	 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026933 (e2019WR026933 10.1029/2019WR026933) doi: 10.1029/2019WR026933 Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019473 doi: 10.1002/2016WR019473 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Rasmussen, R. M. (2015a). A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017198 doi: 10.1002/2015WR017198 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Marks, D. G. (2015b). A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51(4), 2515-2542. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/1002/2015WR017200 doi: 10.1002/2015WR017200 Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M. F., Wang, Z. (2002). Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Climate Dynamics, 18(7), 579-586. Retrieved from https://doi.org/10.1007/s00382-001-0200-1

860	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
861	10.1029/2019WR024897 doi: 10.1029/2019WR024897
862	Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley, K., & Clune, J. (2018).
863	Improving exploration in evolution strategies for deep reinforcement learning
864	via a population of novelty-seeking agents. In Advances in neural information
865	processing systems (pp. $5027-5038$).
866	Curry, D. M., & Dagli, C. H. (2014). Computational complexity measures for many-
867	objective optimization problems. Procedia Computer Science, 36, 185 - 191.
868	Retrieved from http://www.sciencedirect.com/science/article/pii/
869	S187705091401326X (Complex Adaptive Systems Philadelphia, PA November
870	3-5, 2014) doi: https://doi.org/10.1016/j.procs.2014.09.077
871	Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-
872	dominated sorting genetic algorithm for multi-objective optimization: NSGA-
873	II. In (pp. 849–858). Springer.
874	De Rainville, FM., Fortin, FA., Gardner, MA., Parizeau, M., & Gagné, C.
875	(2012). DEAP: A Python framework for evolutionary algorithms. In <i>Pro</i> -
876	ceedings of the 14th annual conference companion on genetic and evolutionary
877	computation (p. 85–92). New York, NY, USA: Association for Computing Ma-
878	chinery. Retrieved from https://doi.org/10.1145/2330784.2330799 doi:
879	10.1145/2330784.2330799
880	Dobson, B., Wagener, T., & Pianosi, F. (2019). How important are model struc-
881	tural and contextual uncertainties when estimating the optimized performance
882	of water resource systems? Water Resources Research, 55(3), 2170-2193.
883	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
884	10.1029/2018WR024249 doi: 10.1029/2018WR024249
885	Eker, S., Rovenskaya, E., Obersteiner, M., & Langan, S. (2018). Practice and per-
886	spectives in the validation of resource management models. Nature Communi-
887	cations, 9(1), 5359. Retrieved from https://doi.org/10.1038/s41467-018
888	-07811-9 doi: 10.1038/s41467-018-07811-9
889	Espejo, P. G., Ventura, S., & Herrera, F. (2010). A survey on the application of ge-
890	netic programming to classification. IEEE Transactions on Systems, Man, and
891	Cybernetics, Part C (Applications and Reviews), $40(2)$, 121-144.
892	Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,
893	27(8), 861-874. Retrieved from http://www.sciencedirect.com/science/
894	article/pii/S016786550500303X doi: https://doi.org/10.1016/j.patrec.2005
895	.10.010
896	Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse,
897	trainable neural networks.
898	Friedman, J. H. (1997). On bias, variance, 0/1—loss, and the curse-of-
899	dimensionality. Data Mining and Knowledge Discovery, $1(1)$, 55–77.
900	Retrieved from https://doi.org/10.1023/A:1009778005914 doi:
901	10.1023/A:1009778005914
902	Giuliani, M., & Herman, J. D. (2018). Modeling the behavior of water reservoir
903	operators via eigenbehavior analysis. Advances in Water Resources, 122 , 228 -
904	237. Retrieved from http://www.sciencedirect.com/science/article/pii/
905	30309170817311193 doi: https://doi.org/10.1016/j.advwatres.2018.10.021
906	Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-
907	natural systems analysis of irrigated agriculture under changing climate.
908	Water Resources Research, 52(9), 6928-6947. Retrieved from https://
909	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019363 doi:
910	10.1002/2016WR019363
911	Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N.,
912	Schwarz, N. (2017). Theoretical foundations of human decision-making
913	in agent-based land use models –a review. $Environmental Modelling &$
914	Software, 87, 39–48. Retrieved from http://www.sciencedirect.com/

915 916	science/article/pii/S1364815216308684 doi: https://doi.org/10.1016/j.envsoft.2016.10.008
917	Gunaratne, C., & Garibay, I. (2017). Alternate social theory discovery using ge-
918	netic programming: Towards better understanding the artificial anasazi.
919	In Proceedings of the genetic and evolutionary computation conference
919	(p. 115–122). New York, NY, USA: Association for Computing Machin-
	ery. Retrieved from https://doi.org/10.1145/3071178.3071332 doi:
921 922	10.1145/3071178.3071332
	Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposi-
923	tion of the mean squared error and NSE performance criteria: Implications
924	for improving hydrological modelling. Journal of Hydrology, 377(1), 80–91.
925	Retrieved from http://www.sciencedirect.com/science/article/pii/
926 927	S0022169409004843 doi: https://doi.org/10.1016/j.jhydrol.2009.08.003
	Gupta, H. V., & Nearing, G. S. (2014). Debates - the future of hydrological
928	sciences: A (common) path forward? Using models and data to learn: A
929	systems theoretic perspective on the future of hydrological science. Wa-
930	ter Resources Research, $50(6)$, $5351-5359$. Retrieved from https://
931	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR015096 doi:
932	10.1002/2013WR015096
933	,
934	Gupta, H. V., & Razavi, S. (2018). Revisiting the basis of sensitivity analysis for
935	dynamical earth system models. Water Resources Research, 54(11), 8692-
936	8717. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
937	10.1029/2018WR022668 doi: 10.1029/2018WR022668
938	Hadka, D., & Reed, P. (2013). Borg: An auto-adaptive many-objective evolutionary
939	computing framework. Evolutionary Computation, 21(2), 231-259. Retrieved
940	from https://doi.org/10.1162/EVCO_a_00075 (PMID: 22385134) doi: 10
941	$.1162/EVCO_a_00075$
942	Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-azuara, J., Lund,
943	J. R., & Howitt, R. E. (2009). Hydro-economic models : Concepts, design,
944	applications, and future prospects. Journal of Hydrology, 375(3-4), 627–643.
945	Retrieved from http://dx.doi.org/10.1016/j.jhydrol.2009.06.037 doi: 10.1016/j.jhydrol.2009.06.037
946	10.1016/j.jhydrol.2009.06.037
947	Haussler, D., & Warmuth, M. (1993). The Probably Approximately Correct (PAC)
948	and other learning models. In A. L. Meyrowitz & S. Chipman (Eds.), Founda- tions of Imperiate accuration. Machine Learning (pp. 201–212) — Bestern MA
949	tions of knowledge acquisition: Machine learning (pp. 291–312). Boston, MA:
950	Springer US. Retrieved from https://doi.org/10.1007/978-0-585-27366-2 _9 doi: 10.1007/978-0-585-27366-2_9
951	
952	Herman, J., Quinn, J., Steinschneider, S., Giuliani, M., & Fletcher, S. (2020).
953	Climate adaptation as a control problem: Review and perspectives on dy- namic water resources planning under uncertainty. Water Resources Re-
954	1 0 0
955	<pre>search, 56(2). Retrieved from https://www.scopus.com/inward/record .uri?eid=2-s2.0-85081030619&doi=10.1029%2f2019WR025502&partnerID=</pre>
956	40&md5=402e907ca2b2d2e9a1275d3cc0c4e0e6 (cited By 1) doi: 10.1029/
957	40amd5-402e907ca2b2d2e9a1275d5cc0c4e0e6 (cned By 1) doi: 10.1029/ 2019WR025502
958	
959	Herman, J., & Usher, W. (2017). SALib: An open-source Python library for Sen-
960	sitivity Analysis. Journal of Open Source Software, 2(9), 97. Retrieved from
961	https://doi.org/10.21105/joss.00097 doi: 10.21105/joss.00097 Häre M. Wähling T. & Novak W. (2018) A primer for model selection: The
962	Höge, M., Wöhling, T., & Nowak, W. (2018). A primer for model selection: The
963	decisive role of model complexity. Water Resources Research, 54(3), 1688-
964	1715. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
965	10.1002/2017WR021902 doi: 10.1002/2017WR021902
966	Hogue, T. S., Bastidas, L. A., Gupta, H. V., & Sorooshian, S. (2006). Evaluating
967	model performance and parameter behavior for varying levels of land surface model complexity. Water Resources Research, $42(8)$. Retrieved from https://
968	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005WR004440 doi:
969	$a_{\text{b}}a_{\text{b}}a_{\text{b}}b_{\text{b}}$, $a_{\text{b}}a_{\text{b}}b_{\text{b}}$, $a_{\text{b}}b_{b}b_{\text{b}$

	10 1020 /200 KWD 00 / / / 0
970	10.1029/2005WR004440 Howitt, R. E., Medellín-Azuara, J., MacEwan, D., & Lund, J. R. (2012). Calibrating
971	disaggregate economic models of agricultural production and water manage-
972	ment. Environmental Modelling & Software, 38, 244–258. Retrieved from
973	http://www.sciencedirect.com/science/article/pii/S136481521200196X
974 975	doi: https://doi.org/10.1016/j.envsoft.2012.06.013
976	Hsu, Kl., Gupta, H. V., & Sorooshian, S. (1995). Artificial neural network mod-
970	eling of the rainfall-runoff process. Water Resources Research, 31(10), 2517-
978	2530. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
979	10.1029/95WR01955 doi: 10.1029/95WR01955
980	Huang, GB., Chen, L., Siew, C. K., et al. (2006). Universal approximation using
981	incremental constructive feedforward networks with random hidden nodes.
982	<i>IEEE Trans. Neural Networks</i> , 17(4), 879–892.
983	Jasechko, S., & Perrone, D. (2020). California's Central Valley groundwater
984	wells run dry during recent drought. <i>Earth's Future</i> , 8(4), e2019EF001339.
985	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
986	10.1029/2019EF001339 (e2019EF001339 2019EF001339) doi: 10.1029/
987	2019EF001339
988	Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly,
989	A., Kumar, V. (2017). Theory-guided data science: A new paradigm for
990	scientific discovery from data. IEEE Transactions on Knowledge and Data
991	Engineering, $29(10)$, $2318-2331$.
992	Kearns, M. J., Schapire, R. E., & Sellie, L. M. (1994). Toward efficient agnostic
993	learning. Machine Learning, 17(2), 115–141. Retrieved from https://doi
994	.org/10.1007/BF00993468 doi: 10.1007/BF00993468
995	Khatami, S., Peel, M. C., Peterson, T. J., & Western, A. W. (2019). Equifinality
996	and flux mapping: A new approach to model evaluation and process repre-
997	sentation under uncertainty. Water Resources Research, 55(11), 8922-8941. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
998 999	10.1029/2018WR023750 doi: 10.1029/2018WR023750
1000	Kleijnen, J. P. C. (2015). Response surface methodology. In M. C. Fu (Ed.), Hand-
1000	book of simulation optimization (pp. 81–104). New York, NY: Springer New
1002	York. Retrieved from https://doi.org/10.1007/978-1-4939-1384-8_4 doi:
1003	10.1007/978-1-4939-1384-8_4
1004	Klotz, D., Herrnegger, M., & Schulz, K. (2017). Symbolic regression for the esti-
1005	mation of transfer functions of hydrological models. Water Resources Research,
1006	53(11), 9402-9423. Retrieved from https://agupubs.onlinelibrary.wiley
1007	.com/doi/abs/10.1002/2017WR021253 doi: $10.1002/2017WR021253$
1008	Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., & Woods, R. A.
1009	(2020). A brief analysis of conceptual model structure uncertainty us-
1010	ing 36 models and 559 catchments. Water Resources Research, $56(9)$,
1011	e2019WR025975. Retrieved from https://agupubs.onlinelibrary
1012	.wiley.com/doi/abs/10.1029/2019WR025975 (e2019WR025975
1013	10.1029/2019WR025975) doi: 10.1029/2019WR025975
1014	Knüsel, B., Zumwald, M., Baumberger, C., Hirsch Hadorn, G., Fischer, E. M.,
1015	Bresch, D. N., & Knutti, R. (2019). Applying big data beyond small problems in climate research. Nature Climate Change, 9(3), 196–202.
1016	Retrieved from https://doi.org/10.1038/s41558-019-0404-1 doi:
1017 1018	10.1038/s41558-019-0404-1
1018	Knuth, D. E. (2011). The art of computer programming: Combinatorial algorithms,
1019	part 1 (1st ed.). Addison-Wesley Professional.
1021	Konar, M., Garcia, M., Sanderson, M. R., Yu, D. J., & Sivapalan, M. (2019). Ex-
1022	panding the scope and foundation of sociohydrology as the science of coupled
1023	human-water systems. Water Resources Research, 55(2), 874-887. Retrieved
1024	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

1025	2018WR024088 doi: 10.1029/2018WR024088
1026	Kourakos, G., Dahlke, H. E., & Harter, T. (2019). Increasing groundwater avail-
1027	ability and seasonal base flow through agricultural managed aquifer recharge in
1028	an irrigated basin. Water Resources Research, 55(9), 7464-7492. Retrieved
1029	<pre>from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/</pre>
1030	2018WR024019 doi: 10.1029/2018WR024019
1031	Koza, J. R. (1992). Genetic programming: On the programming of computers by
1032	means of natural selection. Cambridge, MA, USA: MIT Press.
1033	Koza, J. R. (1995). Survey of genetic algorithms and genetic programming. In
1034	Wescon conference record (pp. 589–594).
1035	Lamontagne, J. R., Barber, C. A., & Vogel, R. M. (2020). Improved estima-
1036	tors of model performance efficiency for skewed hydrologic data. <i>Water</i>
1037	Resources Research, 56(9), e2020WR027101. Retrieved from https://
1038	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR027101
1039	(e2020WR027101 2020WR027101) doi: 10.1029/2020WR027101
1040	Lipton, Z. C. (2018, June). The mythos of model interpretability. Queue, 16(3),
1041	31-57. Retrieved from https://doi.org/10.1145/3236386.3241340 doi: 10
1042	.1145/3236386.3241340
1043	Lipton, Z. C., Elkan, C., & Naryanaswamy, B. (2014). Optimal thresholding of
1044	classifiers to maximize F1 measure. In T. Calders, F. Esposito, E. Hüllermeier,
1045	& R. Meo (Eds.), Machine learning and knowledge discovery in databases (pp.
1046	225–239). Berlin, Heidelberg: Springer Berlin Heidelberg.
1047	Ljung, L. (2017). System identification. In Wiley encyclopedia of electri-
1048	cal and electronics engineering (p. 1-19). American Cancer Society. Re-
1049	trieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/
1050	047134608X.W1046.pub2 doi: 10.1002/047134608X.W1046.pub2
1051	Lund, J. R. (2015). Integrating social and physical sciences in water manage-
1052	ment. Water Resources Research, 51(8), 5905-5918. Retrieved from https://
1053	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017125 doi:
1054	10.1002/2015WR017125
1055	Lusch, B., Kutz, J. N., & Brunton, S. L. (2018). Deep learning for universal linear
1056	embeddings of nonlinear dynamics. Nature Communications, $9(1)$, 4950. Re-
1057	trieved from https://doi.org/10.1038/s41467-018-07210-0 doi: 10.1038/
1058	s41467-018-07210-0
1059	Malek, Ž., & Verburg, P. H. (2020). Mapping global patterns of land use decision-
1060	making. Global Environmental Change, 65, 102170. Retrieved from
1061	http://www.sciencedirect.com/science/article/pii/S0959378020307536
1062	doi: https://doi.org/10.1016/j.gloenvcha.2020.102170
1063	Mall, N. K., & Herman, J. D. (2019, oct). Water shortage risks from perennial
1064	crop expansion in California's Central Valley. Environmental Research Letters,
1065	14(10), 104014. Retrieved from https://doi.org/10.1088%2F1748-9326%
1066	2Fab4035 doi: 10.1088/1748-9326/ab4035
1067	Marston, L., & Konar, M. (2017). Drought impacts to water footprints and vir-
1068	tual water transfers of the Central Valley of California. Water Resources Re-
1069	search, 53(7), 5756-5773. Retrieved from https://agupubs.onlinelibrary
1070	.wiley.com/doi/abs/10.1002/2016WR020251 doi: $10.1002/2016WR020251$
1071	Mason, E., Giuliani, M., Castelletti, A., & Amigoni, F. (2018). Identifying and
1072	modeling dynamic preference evolution in multipurpose water resources sys-
1073	tems. Water Resources Research, 54(4), 3162-3175. Retrieved from https://
1074	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR021431 doi:
1075	10.1002/2017 WR021431
1076	Melsen, L. A., Vos, J., & Boelens, R. (2018). What is the role of the model in socio-
1077	hydrology? Discussion of "Prediction in a socio-hydrological world". Hydrolog-
1078	ical Sciences Journal, 63(9), 1435-1443. Retrieved from https://doi.org/10
1079	.1080/02626667.2018.1499025 doi: 10.1080/02626667.2018.1499025

1080	Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., oth-
1081	ers (2019). Evolving deep neural networks. In Artificial intelligence in the age
1082	of neural networks and brain computing (pp. 293–312). Elsevier.
1083	Monier, E., Paltsev, S., Sokolov, A., Chen, Y. H. H., Gao, X., Ejaz, Q., Haigh,
1084	M. (2018). Toward a consistent modeling framework to assess multi-sectoral climate impacts. <i>Nature Communications</i> , $9(1)$, 660. Retrieved from https://
1085	
1086	doi.org/10.1038/s41467-018-02984-9 doi: 10.1038/s41467-018-02984-9
1087	Montana, D. J. (1995). Strongly typed genetic programming. Evolutionary Compu- tation, 3(2), 199-230. Retrieved from https://doi.org/10.1162/evco.1995
1088	.3.2.199 doi: 10.1162/evco.1995.3.2.199
1089	Montáns, F. J., Chinesta, F., Gómez-Bombarelli, R., & Kutz, J. N. (2019). Data-
1090	driven modeling and learning in science and engineering. Comptes Rendus
1091	Mécanique, 347(11), 845 - 855. Retrieved from http://www.sciencedirect
1092 1093	.com/science/article/pii/S1631072119301809 (Data-Based Engineering
1093	Science and Technology) doi: https://doi.org/10.1016/j.crme.2019.11.009
1095	Montavon, G., Samek, W., & Müller, KR. (2018). Methods for interpreting and
1095	understanding deep neural networks. Digital Signal Processing, 73, 1 - 15.
1097	Retrieved from http://www.sciencedirect.com/science/article/pii/
1098	S1051200417302385 doi: https://doi.org/10.1016/j.dsp.2017.10.011
1099	Müller, M. F., & Levy, M. C. (2019). Complementary vantage points: Integrat-
1100	ing hydrology and economics for sociohydrologic knowledge generation. Wa-
1101	ter Resources Research, 55(4), 2549-2571. Retrieved from https://agupubs
1102	.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR024786 doi: 10.1029/
1103	2019WR024786
1104	Müller, M. F., Yoon, J., Gorelick, S. M., Avisse, N., & Tilmant, A. (2016). Im-
1105	pact of the Syrian refugee crisis on land use and transboundary freshwater
1106	resources. Proceedings of the National Academy of Sciences, 113(52), 14932–
1107	14937. Retrieved from https://www.pnas.org/content/113/52/14932 doi:
1108	10.1073/pnas.1614342113
1109	Muneepeerakul, R., & Anderies, J. M. (2020). The emergence and resilience of self-
1110	organized governance in coupled infrastructure systems. Proceedings of the Na-
1111	tional Academy of Sciences, 117(9), 4617–4622. Retrieved from https://www
1112	.pnas.org/content/117/9/4617 doi: 10.1073/pnas.1916169117
1113	Nearing, G. S., & Gupta, H. V. (2015). The quantity and quality of information in hydrologic models. Water Resources Research, 51(1), 524-538. Retrieved
1114	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
1115 1116	2014WR015895 doi: 10.1002/2014WR015895
1110	Nearing, G. S., Ruddell, B. L., Bennett, A. R., Prieto, C., & Gupta, H. V. (2020).
1118	Does information theory provide a new paradigm for earth science? Hy-
1119	pothesis testing. Water Resources Research, 56(2), e2019WR024918.
1120	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/
1121	abs/10.1029/2019WR024918 (e2019WR024918 2019WR024918) doi:
1122	10.1029/2019WR024918
1123	Nelson, K. S., & Burchfield, E. K. (2017). Effects of the structure of water rights
1124	on agricultural production during drought: A spatiotemporal analysis of
1125	California's Central Valley. Water Resources Research, 53(10), 8293-8309.
1126	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
1127	10.1002/2017WR020666 doi: 10.1002/2017WR020666
1128	Pande, S., McKee, M., & Bastidas, L. A. (2009). Complexity-based robust hydro-
1129	logic prediction. Water Resources Research, 45(10). Retrieved from https://
1130	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008WR007524 doi:
1131	10.1029/2008 WR007524
1132	Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wa-
1133	gener, T. (2016). Sensitivity analysis of environmental models: A systematic
1134	review with practical workflow. Environmental Modelling & Software, 79, 214

1135	- 232. Retrieved from http://www.sciencedirect.com/science/article/
1136	pii/S1364815216300287 doi: https://doi.org/10.1016/j.envsoft.2016.02.008 Prestele, R., Arneth, A., Bondeau, A., de Noblet-Ducoudré, N., Pugh, T. A. M.,
1137	Sitch, S., Verburg, P. H. (2017). Current challenges of implementing
1138	anthropogenic land-use and land-cover change in models contributing to
1139	climate change assessments. Earth System Dynamics, 8(2), 369–386. Re-
1140	trieved from https://esd.copernicus.org/articles/8/369/2017/ doi:
1141	10.5194/esd-8-369-2017
1142	Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environ-
1143 1144	ments. <i>Machine Learning</i> , 42(3), 203–231. Retrieved from https://doi.org/
1144	10.1023/A:1007601015854 doi: 10.1023/A:1007601015854
1146	Pruyt, E., & Islam, T. (2015). On generating and exploring the behavior
1147	space of complex models. System Dynamics Review, 31(4), 220-249.
1148	Retrieved from https://www.scopus.com/inward/record.uri?eid=
1149	2-s2.0-84955562469&doi=10.1002%2fsdr.1544&partnerID=40&md5=
1150	0eab6d448ea9b3acdb34d7b1553d2ebb (cited By 9) doi: 10.1002/sdr.1544
1151	Quade, M., Abel, M., Shafi, K., Niven, R. K., & Noack, B. R. (2016, Jul). Prediction
1152	of dynamical systems by symbolic regression. Phys. Rev. E, 94, 012214. Re-
1153	trieved from https://link.aps.org/doi/10.1103/PhysRevE.94.012214 doi:
1154	10.1103/PhysRevE.94.012214
1155	Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–
1156	106. Retrieved from https://doi.org/10.1007/BF00116251 doi: 10.1007/
1157	BF00116251
1158	Quinn, J. D., Reed, P. M., Giuliani, M., & Castelletti, A. (2019). What is control-
1159	ling our control rules? Opening the black box of multireservoir operating poli-
1160	cies using time-varying sensitivity analysis. Water Resources Research, 55(7),
1161	5962-5984. Retrieved from https://agupubs.onlinelibrary.wiley.com/
1162	doi/abs/10.1029/2018WR024177 doi: $10.1029/2018WR024177$
1163	Quinn, J. D., Reed, P. M., Giuliani, M., Castelletti, A., Oyler, J. W., & Nicholas,
1164	R. E. (2018). Exploring how changing monsoonal dynamics and human pres-
1165	sures challenge multireservoir management for flood protection, hydropower
1166	production, and agricultural water supply. Water Resources Research, 54(7),
1167	4638-4662. Retrieved from https://agupubs.onlinelibrary.wiley.com/
1168	doi/abs/10.1029/2018WR022743 doi: 10.1029/2018WR022743
1169	Reed, P., Hadka, D., Herman, J., Kasprzyk, J., & Kollat, J. (2013). Evolutionary
1170	multiobjective optimization in water resources: The past, present, and fu-
1171	ture. Advances in Water Resources, 51, 438 - 456. Retrieved from http://
1172	www.sciencedirect.com/science/article/pii/S0309170812000073 (35th
1173	Year Anniversary Issue) doi: https://doi.org/10.1016/j.advwatres.2012.01.005
1174	Robinson, D. T., Brown, D. G., Parker, D. C., Schreinemachers, P., Janssen, M. A.,
1175	Huigen, M., Barnaud, C. (2007). Comparison of empirical methods for building agent based models in land use science. <i>Journal of Land Use Science</i>
1176	building agent-based models in land use science. Journal of Land Use Science,
1177	2(1), 31-55. Retrieved from https://doi.org/10.1080/17474230701201349 doi: 10.1080/17474230701201349
1178	Ruddell, B. L., Drewry, D. T., & Nearing, G. S. (2019). Information theory for
1179	
1180	model diagnostics: Structural error is indicated by trade-off between functional and predictive performance. <i>Water Resources Research</i> , 55(8), 6534-6554.
1181	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
1182	10.1029/2018WR023692 doi: 10.1029/2018WR023692
1183	Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2017). Data-driven dis-
1184 1185	covery of partial differential equations. Science Advances, 3(4). Retrieved from
1185	https://advances.sciencemag.org/content/3/4/e1602614 doi: 10.1126/
1180	sciadv.1602614
1188	Schill, C., Anderies, J. M., Lindahl, T., Folke, C., Polasky, S., Cárdenas, J. C.,
1189	Schlüter, M. (2019). A more dynamic understanding of human be-

1190	haviour for the anthropocene. Nature Sustainability, $2(12)$, 1075–1082.
1191	Retrieved from https://doi.org/10.1038/s41893-019-0419-7 doi:
1192	10.1038/s41893-019-0419-7
1193	Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Wi-
1194	jermans, N. (2017). A framework for mapping and comparing behavioural
1195	theories in models of social-ecological systems. <i>Ecological Economics</i> , 131,
1196	21-35. Retrieved from http://www.sciencedirect.com/science/article/
1197	pii/S0921800915306133 doi: https://doi.org/10.1016/j.ecolecon.2016.08.008
1198	Schlüter, M., Orach, K., Lindkvist, E., Martin, R., Wijermans, N., Bodin, Ö., &
1199	Boonstra, W. J. (2019). Toward a methodology for explaining and theoriz-
1200	ing about social-ecological phenomena. Current Opinion in Environmental
1201	Sustainability, 39, 44-53. Retrieved from http://www.sciencedirect.com/
1202	science/article/pii/S1877343519300491 doi: https://doi.org/10.1016/ j.cosust.2019.06.011
1203	•
1204	Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experi-
1205	mental data. Science, 324(5923), 81-85. Retrieved from https://science .sciencemag.org/content/324/5923/81 doi: 10.1126/science.1165893
1206	,
1207	Schmidt, M. D., & Lipson, H. (2007). Learning noise. In Proceedings of the 9th annual conference on genetic and evolutionary computation
1208	(p. 1680–1685). New York, NY, USA: Association for Computing Machin-
1209	ery. Retrieved from https://doi.org/10.1145/1276958.1277289 doi:
1210 1211	10.1145/1276958.1277289
1212	Schmidt, M. D., & Lipson, H. (2008, 07). Data-Mining Dynamical Systems:
1212	Automated Symbolic System Identification for Exploratory Analysis. In
1214	(Vol. Volume 2: Automotive Systems; Bioengineering and Biomedical Tech-
1215	nology; Computational Mechanics; Controls; Dynamical Systems, p. 643-
1216	649). Retrieved from https://doi.org/10.1115/ESDA2008-59309 doi:
1217	10.1115/ESDA2008-59309
1218	Schmidt, M. D., & Lipson, H. (2009). Incorporating expert knowledge in evolu-
1219	tionary search: A study of seeding methods. In Proceedings of the 11th annual
1220	conference on genetic and evolutionary computation (p. 1091–1098). New York,
1221	NY, USA: Association for Computing Machinery. Retrieved from https://doi
1222	.org/10.1145/1569901.1570048 doi: 10.1145/1569901.1570048
1223	Schmidt, P. J., Emelko, M. B., & Thompson, M. E. (2020). Recognizing structural
1224	nonidentifiability: When experiments do not provide information about impor-
1225	tant parameters and misleading models can still have great fit. <i>Risk Analysis</i> ,
1226	40(2), 352-369. Retrieved from https://onlinelibrary.wiley.com/doi/
1227	abs/10.1111/risa.13386 doi: 10.1111/risa.13386
1228	Shen, C. (2018). A transdisciplinary review of deep learning research and its rele-
1229	vance for water resources scientists. Water Resources Research, 54(11), 8558-
1230	8593. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2018WR022643 doi: 10.1029/2018WR022643
1231	
1232	Sivapalan, M., Savenije, H. H. G., & Blöschl, G. (2012). Socio-hydrology: A new sci- ence of people and water. <i>Hydrological Processes</i> , 26(8), 1270-1276. Retrieved
1233 1234	from https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.8426 doi:
1234	10.1002/hyp.8426
1236	Spieler, D., Mai, J., Craig, J. R., Tolson, B. A., & Schütze, N. (2020). Auto-
1230	matic model structure identification for conceptual hydrologic models. Wa-
1238	ter Resources Research, 56(9), e2019WR027009. Retrieved from https://
1239	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR027009
1240	(e2019WR027009 10.1029/2019WR027009) doi: 10.1029/2019WR027009
1241	Stehfest, E., van Zeist, WJ., Valin, H., Havlik, P., Popp, A., Kyle, P., Wiebe,
1242	K. (2019). Key determinants of global land-use projections. Nature Com-
1243	munications, 10(1), 2166. Retrieved from https://doi.org/10.1038/
1244	s41467-019-09945-w doi: 10.1038/s41467-019-09945-w

1245	Sun, B., & Robinson, D. T. (2018). Comparison of statistical approaches for mod-
1246	elling land-use change. Land, 7(4). Retrieved from https://www.mdpi.com/
1247	2073-445X/7/4/144 doi: 10.3390/land7040144
1248	Sun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld,
1249	J., Buchmann, C. M. (2016). Simple or complicated agent-based mod-
1250	els? A complicated issue. Environmental Modelling & Software, 86, 56 - 67.
1251	Retrieved from http://www.sciencedirect.com/science/article/pii/
1252	S1364815216306041 doi: https://doi.org/10.1016/j.envsoft.2016.09.006
1253	Thober, J., Müller, B., Groeneveld, J., & Grimm, V. (2017). Agent-based modelling
1254	of social-ecological systems: Achievements, challenges, and a way forward.
1255	Journal of Artificial Societies and Social Simulation, 20(2), 8. Retrieved from http://jasss.soc.surrey.ac.uk/20/2/8.html doi: 10.18564/jasss.3423
1256	U.S. Bureau of Labor Statistics. (2019). Producer price indexes - PPI databases.
1257	(data retrieved from https://www.bls.gov/ppi/data.htm)
1258	USDA National Agricultural Statistics Service - California Field Office. (2019).
1259 1260	County Ag commissioners' data listing. (data retrieved from https://
1200	www.nass.usda.gov/Statistics_by_State/California/Publications/
1262	AgComm/index.php)
1263	Valiant, L. (2013). Probably Approximately Correct: Nature's algorithms for learning
1264	and prospering in a complex world. USA: Basic Books, Inc.
1265	Vanneschi, L., Castelli, M., & Silva, S. (2010). Measuring bloat, overfitting and func-
1266	tional complexity in genetic programming. In Proceedings of the 12th annual
1267	conference on genetic and evolutionary computation (p. 877–884). New York,
1268	NY, USA: Association for Computing Machinery. Retrieved from https://doi
1269	.org/10.1145/1830483.1830643 doi: 10.1145/1830483.1830643
1270	Verburg, P. H., Alexander, P., Evans, T., Magliocca, N. R., Malek, Z., Rounsev-
1271	ell, M. D., & van Vliet, J. (2019). Beyond land cover change: towards a
1272	new generation of land use models. Current Opinion in Environmental Sus-
1273	tainability, 38, 77-85. Retrieved from http://www.sciencedirect.com/
1274	science/article/pii/S1877343518301362 doi: https://doi.org/10.1016/
1275	j.cosust.2019.05.002
1276	Vrugt, J. A., & Beven, K. J. (2018). Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM(LOA) algorithm. <i>Journal of</i>
1277	Hydrology, 559, 954–971. Retrieved from http://www.sciencedirect.com/
1278 1279	science/article/pii/S0022169418301021 doi: https://doi.org/10.1016/
1280	j.jhydrol.2018.02.026
1281	Vu, T. M., Probst, C., Epstein, J. M., Brennan, A., Strong, M., & Purshouse, R. C.
1282	(2019). Toward inverse generative social science using multi-objective genetic
1283	programming. In Proceedings of the genetic and evolutionary computation
1284	conference (p. 1356–1363). New York, NY, USA: Association for Computing
1285	Machinery. Retrieved from https://doi.org/10.1145/3321707.3321840
1286	doi: 10.1145/3321707.3321840
1287	Wagener, T., & Pianosi, F. (2019). What has global sensitivity analysis ever done
1288	for us? A systematic review to support scientific advancement and to inform
1289	policy-making in earth system modelling. Earth-Science Reviews, 194, 1 -
1290	18. Retrieved from http://www.sciencedirect.com/science/article/pii/
1291	S0012825218300990 doi: https://doi.org/10.1016/j.earscirev.2019.04.006
1292	Walker, W., Harremoës, P., Rotmans, J., van der Sluijs, J., van Asselt, M., Janssen,
1293	P., & von Krauss, M. K. (2003). Defining uncertainty: A conceptual ba-
1294	sis for uncertainty management in model-based decision support. Inte-
1295	grated Assessment, 4(1), 5-17. Retrieved from https://doi.org/10.1076/ iaij.4.1.5.16466 doi: 10.1076/iaij.4.1.5.16466
1296	Williams, T. G., Guikema, S. D., Brown, D. G., & Agrawal, A. (2020). Assessing
1297 1298	model equifinality for robust policy analysis in complex socio-environmental
1290	systems. Environmental Modelling & Software, 104831. Retrieved from

1300	http://www.sciencedirect.com/science/article/pii/S1364815220308884
1301	doi: https://doi.org/10.1016/j.envsoft.2020.104831
1302	Worland, S. C., Steinschneider, S., Asquith, W., Knight, R., & Wieczorek, M.
1303	(2019). Prediction and inference of flow duration curves using multioutput
1304	neural networks. Water Resources Research, 55(8), 6850-6868. Retrieved
1305	<pre>from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/</pre>
1306	2018WR024463 doi: 10.1029/2018WR024463
1307	Zaniolo, M., Giuliani, M., Castelletti, A. F., & Pulido-Velazquez, M. (2018). Au-
1308	tomatic design of basin-specific drought indexes for highly regulated water
1309	systems. Hydrology and Earth System Sciences, 22(4), 2409–2424. Retrieved
1310	from https://www.hydrol-earth-syst-sci.net/22/2409/2018/ doi:
1311	10.5194/hess-22-2409-2018

Supporting Information for "Toward data-driven generation and evaluation of model structure for integrated representations of human behavior in water resources systems"

Liam Ekblad¹, Jonathan D. Herman¹

¹Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

Contents of this file

- 1. Table S1 Feature data used in study
- 2. Figure S1 Correlation heatmap for input data
- 3. Figure S2 Model results accuracy vs. alternative metrics
- 4. Figure S3 Model results complexity vs. alternative metrics

Land Feature Data	Water Feature Data	Economic	Feature Data
Tree Crops Non-Tree Crops	Non-Ponded Crop Deliveries	Alfalfa	Almond
	Non-Ponded Crop Pumping	Apricot	Beeswax
	Rice Crop Deliveries	Cotton	Grape
	Rice Crop Pumping	Honey	Milk
	Urban Deliveries	Nectarine	Pistachio
	Urban Pumping	Plum	Walnut
	Refuge Deliveries	Wheat	
	Refuge Pumping		
	Total Pumping		

:

Table S1.	Feature data used to generate models during the experiment.	

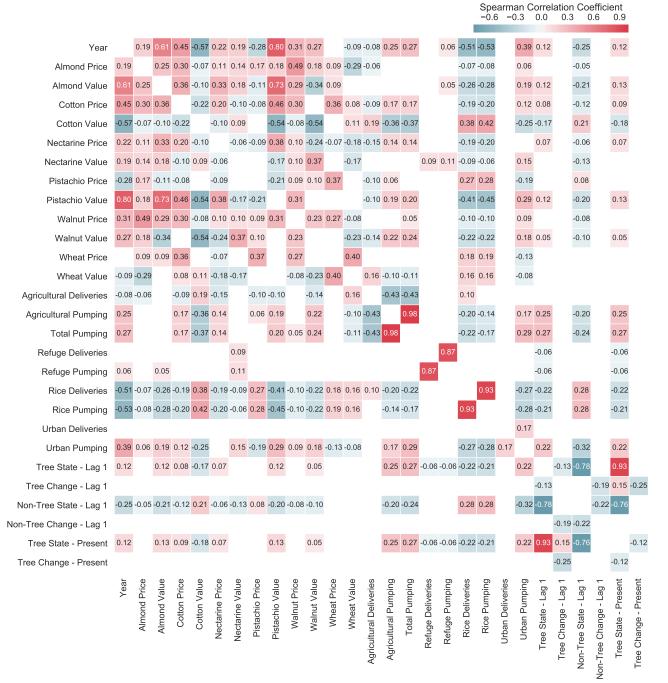


Figure S1. Nonlinear correlations for a subset of the features represented in the table above.

:

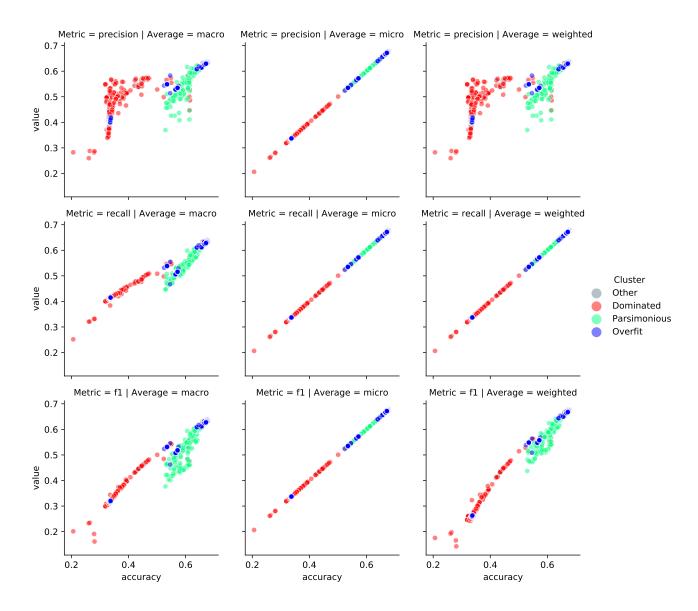
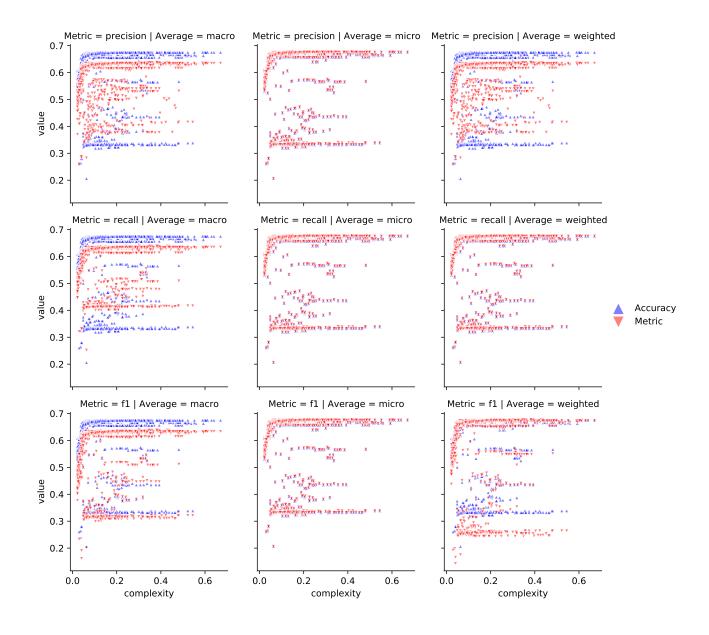



Figure S2. Visualization of classification model performance metrics in relation to the simple accuracy metric used in the paper.

Figure S3. Visualization of the effect of classification model performance metric selection on the resultant performance-complexity tradeoff.