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Abstract

We discuss improving forecasts of winds in the lower stratosphere using machine learning to post-process the output of the

European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System. We post-process global three-

dimensional predictions, and demonstrate distilling the analog ensemble (AnEn) method into a deep neural network which

reduces post-processing latency to near zero maintaining increased forecast skill. This approach reduces the error with respect

to ECMWF high-resolution deterministic prediction between 2-15% for wind speed and 15-25% for direction, and is on par

with ECMWF ensemble (ENS) forecast skill to hour 60. Verifying with Loon data from stratospheric balloons, AnEn has 20%

lower error than ENS for wind speed and 15% for wind direction, despite significantly lower real-time computational cost to

ENS. Similar performance patterns are reported for probabilistic predictions, with larger improvements of AnEn with respect

to ENS. We also demonstrate that AnEn generates a calibrated probabilistic forecast.
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Key Points:8

• An analog ensemble generates accurate predictions of lower-stratosphere winds and9
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• Distilling the analog ensemble into a deep neural network allows scaling histor-13

ical forecasts without slowing post-processing speed.14
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Abstract15

We discuss improving forecasts of winds in the lower stratosphere using machine learn-16

ing to post-process the output of the European Centre for Medium-Range Weather Fore-17

casts (ECMWF) Integrated Forecast System. We post-process global three-dimensional18

predictions, and demonstrate distilling the analog ensemble (AnEn) method into a deep19

neural network which reduces post-processing latency to near zero maintaining increased20

forecast skill. This approach reduces the error with respect to ECMWF high-resolution21

deterministic prediction between 2-15% for wind speed and 15-25% for direction, and22

is on par with ECMWF ensemble (ENS) forecast skill to hour 60. Verifying with Loon23

data from stratospheric balloons, AnEn has 20% lower error than ENS for wind speed24

and 15% for wind direction, despite significantly lower real-time computational cost to25

ENS. Similar performance patterns are reported for probabilistic predictions, with larger26

improvements of AnEn with respect to ENS. We also demonstrate that AnEn generates27

a calibrated probabilistic forecast.28

Plain Language Summary29

We demonstrate improvements in predicting winds in the stratosphere using ma-30

chine learning. Our approach uses predictions and analyses from the European Centre31

for Medium-Range Weather Forecasts (ECMWF). By comparing how previous forecasts32

differed from what the winds ultimately were over many data points, we are able to mod-33

ify the current forecast in a way that improves prediction of the winds observed by Loon34

high altitude balloons in the stratosphere.35

A common barrier to using approaches like this to generate global predictions is36

processing a large amount of information quickly enough to be useful. We demonstrate37

that by using machine learning we are able to perform many of the slow calculations ahead38

of time, and that these forecast improvements can be deployed in real applications.39

1 Introduction40

This paper discusses forecasting stratospheric winds by post-processing numerical41

weather prediction models using machine learning techniques. Specifically, a new vari-42

ant of the analog ensemble (AnEn; Delle Monache et al., 2013) algorithm that heavily43

leverages deep neural networks is proposed. The methodology is tested against analy-44

sis data and a dataset of observations of stratospheric winds from Loon (http://www.loon45

.com) high altitude balloons (Candido, 2020).46

Our focus on winds in the lower stratosphere is driven by Loon’s need to predict47

the trajectory of high altitude balloons drifting through the stratosphere. Loon is a com-48

pany that provides connectivity to people in underserved (often remote and rural) lo-49

cations by placing telecommunications on these balloons. These high altitude platforms50

can change altitude, and are navigated using a machine learning approach to synthesize51

in situ observations of winds (from the balloon movements) and wind forecasts. Improved52

forecast accuracy and reliable uncertainty quantification of the forecasts, which are both53

key results of the approach we present, determine the navigation efficiency of balloons.54

Because this navigation system is a real-time operational system (that has navigated bal-55

loons for over 1 million hours of flight through the stratosphere), the amount of data to56

be downloaded from operational forecast centers, the compute needed to utilize that data57

in real-time operations, and the length of time required to do the post-processing, are58

also important factors that drive the quality of the system’s operation. These concerns59

led to the development of a less expensive model in post-processing and distilling the com-60

putational burden of the post-processing process into a neural network. It is expected61

that the approach proposed here to allow the real-time execution of postprocessing meth-62

ods as the analog ensemble across millions of grid points and several lead times for global63

–2–



manuscript submitted to Geophysical Research Letters

predictions, can be applied to several other atmospheric variables and parameters. (See64

below for the range of applications for which the analog ensemble method has already65

been implemented.)66

Recently, with the availability of increased computation resources suitable for the67

execution of neural networks (e.g., on graphics processing units) and access to large train-68

ing data sets, machine learning algorithms have been successfully explored to generate69

weather predictions and to postprocess numerical weather predictions (e.g., Tao et al.,70

2016; Gagne II et al., 2017; Rasp & Lerch, 2018; Scher, 2018; Chapman et al., 2019; Lagerquist71

et al., 2019; Burke et al., 2020). It has also been shown that machine learning can sup-72

port the decision-making process associated with high-impact weather phenomena (McGovern73

et al., 2017) and it can be leveraged to enhance our physical understanding of atmospheric74

processes (Gagne II et al., 2019; McGovern et al., 2019).75

Analog-based methods, which are a type of machine learning, have been explored76

for decades (Lorenz, 1969) to develop predictions for a range of weather parameters. The77

basic idea is to find situations from the past similar to the current one and use what un-78

folded in these situations to estimate the future evolution of a parameter (Klausner et79

al., 2009; Panziera et al., 2011) or to infer the errors of today’s prediction from a dynam-80

ical model’s past performance (Delle Monache et al., 2013), an ensemble of model runs81

(Hamill & Whitaker, 2006), or other methods (Mahoney et al., 2012; Cervone et al., 2017).82

One of the challenges of finding these similar situations is the size of the histori-83

cal dataset available to the algorithm. Van den Dool (1994) estimated that when match-84

ing fields over large spatial domains (e.g., the northern hemisphere) a training dataset85

1030 years long would be needed to find matches with a degree of analogy below obser-86

vational errors. However, Van den Dool (1994) also indicated that if the matching prob-87

lem can be reduced to a few degrees of freedom, a much shorter historical dataset can88

be sufficient.89

We apply one such approach, the AnEn (Delle Monache et al., 2011, 2013), to the90

prediction of lower-stratosphere winds. In our case, matching to analogous situations is91

performed independently at each grid location and lead time over two parameters: wind92

speed and direction. Forecast improvements are demonstrated with only two years of pre-93

vious forecasts. Versions of the AnEn have been applied successfully for the prediction94

of weather parameters (Delle Monache et al., 2013; Nagarajan et al., 2015; Eckel & Delle Monache,95

2016; Frediani et al., 2017; Keller et al., 2017; Sperati et al., 2017; Plenkovi et al., 2018;96

Yang et al., 2018), tropical cyclone intensity (Alessandrini et al., 2018), air quality (Djalalova97

et al., 2015; Huang et al., 2017; Delle Monache et al., 2020), and renewable energy (Mahoney98

et al., 2012; Alessandrini, Delle Monache, Sperati, & Nissen, 2015; Alessandrini, Delle Monache,99

Sperati, & Cervone, 2015; Vanvyve et al., 2015; Junk et al., 2015; Cervone et al., 2017;100

Davò et al., 2016; Ferruzzi et al., 2016; Shahriari et al., 2020), but this is the first ap-101

plication of the approach to stratospheric winds.102

A common issue with real world use of an AnEn-based system is achieving the post-103

processing speed that is needed in an operational environment. We outline how a dis-104

tributed computing system can apply the conventional AnEn globally using the past two105

years of forecasts in around 20 minutes. We demonstrate that this can be even more ef-106

ficient by distilling the entire AnEn into a deep neural network (DNN). Distilling, in the107

machine learning community, refers to training a DNN to memorize and thus mimic an-108

other model. It has been used in reinforcement learning (Rusu et al., 2015), to compress109

an ensemble of predictions into a single model (Hinton et al., 2015; Bucilu et al., 2006),110

and to approximate a more complex neural network with a simpler one (Ba & Caruana,111

2014). In all cases, the idea is to achieve a more computationally efficient version of a112

skillful, but perhaps inconvenient model.113
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Since the distilling process is performed offline (in advance), it does not impact real-114

time operations regardless of the size of the historical dataset. This is a key factor given115

that the skill of the AnEn tends to improve with a larger historical dataset.116

2 Methods117

In this section, we review the AnEn algorithm and discuss how it can be implemented118

at a global scale using distributed computing. We then discuss distilling the AnEn into119

a DNN. We use the former method to demonstrate that the much more efficient latter120

method achieves equivalent performance despite being significantly more desirable for121

use in a production system.122

2.1 Conventional Analog Ensemble Algorithm123

The AnEn estimates a probability distribution over a forecast parameter, such as124

wind speed or direction, given a forecast, previous forecasts made by the same model,125

and corresponding ground truth for those previous forecasts. A search for analogous sit-126

uations, i.e., previous forecasts we consider to be similar to the current forecast, is per-127

formed and ground truth corresponding to these analogous forecasts is used to construct128

an ensemble (Delle Monache et al., 2013). We report (below) the skill of the analog en-129

semble and its mean, which we use to generate probabilistic and deterministic predic-130

tions, respectively.131

Let f(y|xf ) be the probability distribution of the observed value y of some predicted132

quantity given a model prediction xf . The vector xf = (xf1 , x
f
2 , · · · , x

f
k) contains k pre-133

dictors from the model forecast, typically including a forecast value for y and other fields134

considered to be related or providing context on similarity. In the results reported be-135

low, xf includes wind speed and direction.136

AnEn is a nearest-neighbor algorithm using a learned distance function. The clos-137

est analogs to xf from previous forecasts are selected, typically restricting to xi at the138

same grid point, i.e., forecasts for the same latitude, longitude, and pressure and made139

for the same lead time. Each forecast has a corresponding ground truth referred to as140

yi. We denote the set of forecast and observation tuples at a grid point as P. We rank141

every xi ∈ P by a distance function142

d(xf , xi) =

k∑
j=0

wP
j

σP
j

∣∣∣xfj − xij∣∣∣ (1)

where σP
j is a normalization factor, e.g., the standard deviation, to bring all elements143

of x into a uniform numeric range and wP
j is per-feature weight. The weight and nor-144

malization factors are chosen independently for every grid point to optimize the root-145

mean square-error (RMSE) of the ensemble mean on the training dataset using a leave146

one out cross-validation, with the removed (xi, yi) used as (xf , y).147

The N analogs with the smallest distance to xf form an ensemble forecast. We use148

25 analogs in the results below. The weighted ensemble mean can be used as a deter-149

ministic prediction (Delle Monache et al., 2011). We sort the candidate analogs by d(xf , xi)150

and compute the weighted mean on the first N analogs151

ŷwm = α

N∑
j=0

yi

max(d(xf , xi), ε)
(2)

where α is one over the sum of the weights and ε is a very small constant which guards152

against almost exact matches producing larger weights than can be represented numer-153

ically.154
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This procedure is designed for cases where there is a plurality of analogous situ-155

ations, but in the case of a rare forecast that is, e.g., larger than most samples in the train-156

ing, then the AnEn will predict a reversion to the mean and likely not produce a skill-157

ful forecast. Similar to Alessandrini et al. (2019) we apply a bias correction term to our158

forecast of wind speed.159

ŷbc = α

N∑
j=0

yi

max(d(xf , xi), ε)
+
(
yf − ŷwm

)
m (3)

where m is a learned parameter to correct for systematic forecast bias.160

2.2 Global Scale with Distributed Computing161

While the calculation described above at a particular grid point is tractable, a bar-162

rier to operationalizing a global AnEn system is processing the corpus of analogs, which163

can easily grow to 100’s of terabytes of data for three-dimensional global predictions over164

several years. The AnEn algorithm provides a natural partitioning as execution is in-165

dependent for each grid point and lead time. However, the data is not natively parti-166

tioned as both every historical forecast and the current prediction contain a piece of data167

needed to post-process every grid point. The challenge is to organize the data so that168

the calculations can be efficiently executed across many datacenter computers. We use169

the MapReduce paradigm (Dean & Ghemawat, 2004), which allows the computation to170

run on a distributed computing (cloud) infrastructure like Google’s Flume (Chambers171

et al., 2010). We describe the mechanics of this technique and provide pseudo-code in172

the supporting information.173

Using this technique at appropriate scale, one can post-process a stratospheric wind174

forecast in 10-20 minutes. In our case, we use 100’s to 1000’s of datacenter machines.175

We create a 3D forecast with 20 pressure levels and 0.5-degree resolution in latitude and176

longitude over 20 lead times. This adds up to the AnEn being applied at around 100 mil-177

lion grid points with analogs from around 3 years of prior forecasts, e.g., around 2196178

candidate analogs per grid point. A rough estimate (ignoring inter-process overhead) of179

trying to do this work on a single machine by multiplying the number of workers by the180

10-20 minute compute time highlights why an implementation on a single machine is likely181

easily too slow for an operational post-processing system.182

Despite being able to achieve appropriate scale, this is an expensive computation183

that grows proportional to corpus size. Post-processing would take significantly longer184

in the case of a much larger historical corpus. In the next section we discuss distilling185

this computation into a DNN to address this issue.186

2.3 Distilling the Analog Ensemble Into a Deep Neural Network187

Every value of the analog ensemble mean, ŷbc, corresponds to an HRES prediction188

of wind speed and direction, xf , which has been used to generate the analogs included189

in the set P. A DNN can be used to learn, a.k.a., to memorize or distill, the function190

mapping the wind speed and direction of the HRES forecast to the resulting analog en-191

semble mean. An example function for a particular grid point is shown in Figure 1. The192

AnEn mean wind speed values (ŷbc; color shading on the isosurface), are shown for each193

HRES forecast xf wind speed (distance from the origin) and direction forecast (rotation194

around z-axis). The plot is roughly conical, and would be exactly conical if AnEn post-195

processing had no effect. Some deformation from the perfect cone is introduced by the196

AnEn algorithm, which we denote by h, i.e., ŷbc = hP(xf ).197

Generating this figure does not require actual new, unseen HRES forecasts. We in-198

stead plot the response of the AnEn in anticipation of potential HRES forecasts. Much199

the same in the learning process, the response curve can be learned by the DNN in ad-200
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Figure 1. The output of the AnEn is a function mapping xf to ŷbc. The plot in (a) shows the

speed prediction for a particular P swept over speed (distance from origin) and direction (rota-

tion around z-axis). For speed, this function will typically look like a cone. Taking a top-down

view of this plot, we see in (b) the identity operator, i.e., no AnEn post-processing. In (d) we

see the same cone as (a) from the top down. Finally (f) shows the output of the distilled AnEn.

Note that it resembles the transformation applied by the conventional AnEn but is not expected

to be identical as the function is generalized across multiple P. The plots in (c) and (e) show the

difference (m s−1) between the adjacent plots.
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vance of receiving a forecast and when the times comes to post-process the operational201

forecast we do not require access to the corpus of potential analogs. This makes the dis-202

tilled AnEn significantly faster than AnEn and more efficient when handling a new fore-203

cast in real-time.204

In this study we distill hP by training over all grid points. We train the DNN to205

learn the function ŷdistilled = ĥ(k, xf ), where k is a specific grid point. Because hP varies206

from grid point to grid point, we add the grid point parameters (latitude, longitude, pres-207

sure altitude, and lead time) as arguments to ĥ so that the DNN can learn different post-208

processing transformations at different grid points.209

While we discuss results on ensemble mean below, this procedure is not specific to210

the mean. For example, we have distilled both the ensemble mean of speed and direc-211

tion (analyzed below), and ensemble forecasts for both quantities into a single DNN with212

multiple outputs (not shown). The results presented below use a DNN with 10 train-213

able fully-connected ReLu layers 50 units wide trained with stochastic gradient descent214

in TensorFlow (Abadi et al., 2015). Full details on the DNN architecture, training pa-215

rameters, and non-standard data flow, which is conceptually similar to a replay buffer216

in deep reinforcement learning (Lin, 1992; Mnih et al., 2015), can be found in the sup-217

porting information.218

We are able to demonstrate a good approximation (next section) for forecast speed219

and direction within a few billion training examples. Because the training procedure220

can be performed once (or perhaps periodically, but infrequently) prior to using the net-221

work in the operation pipeline, the training time is not particularly important to opti-222

mize. Our unoptimized implementation was able to train the network used in our results223

within a few days on a single CPU (being fed from a distributed data flow). The spe-224

cific DNN architecture and the data flow to supply training with examples are outlined225

in greater detail in the supporting information.226

Once a network is trained it can be applied point-based, i.e., at a particular place227

and time with the HRES forecast as input. It adds only a few milliseconds to the real-228

time computational cost needed to look up forecast data, because the computation per-229

formed is a forward (inference) pass through a deep network, i.e., a simple mathemat-230

ical expression is executed. More study is required to optimize the balance between gen-231

eralization across different grid points and fitting the particular nuance of a given dataset.232

3 Results233

We present the forecast skill of the AnEn and distilled AnEn aggregated over a half234

year of forecasts from July to December, 2019, compared against the ECMWF Integrated235

Forecast System’s high-resolution forecast (HRES) and the ensemble forecast (ENS). We236

also provide a year long comparison at a different time period (October, 2017 to Septem-237

ber, 2018) against the HRES and a persistence ensemble that provides an equivalent re-238

sult in the supporting information (see Figure S8).239

Comprehensive ground truth measurements of winds throughout the stratosphere240

are not currently available, so to evaluate the quality of the various forecasts we use two241

proxies for ground truth. The first proxy is the HRES analysis which provides an ‘ob-242

servation’ comprehensively across all grid points. The second proxy is true observations243

from Loon high altitude balloons. This dataset of 10.5 million observations, largely con-244

centrated in the lower latitudes, is significantly more sparse as it only allows us to com-245

pare forecasts at places and times where a Loon balloon was present. Taken together,246

these two comparisons characterize the quality of our method.247

To summarize the detailed results that follow, the AnEn and distilled AnEn im-248

prove the ECMWF Integrated Forecast System’s high-resolution forecast (HRES) of winds249
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in the lower stratosphere. The AnEn methods also produce a skillful probabilistic fore-250

cast that is able to quantify the forecast uncertainty, which is an advantage over using251

the raw deterministic HRES forecast. The ENS ensemble mean outperforms the AnEn252

methods when evaluating using the HRES analysis as ground truth, but underperforms253

the AnEn methods on the sparser observations from real Loon flights. The AnEn method254

has a significantly reduced computational cost of creating or using a 51-member ensem-255

ble forecast. Overall the results that follow indicate the AnEn methods are very com-256

petitive when both considering practical implications, and on the merits of forecast skill257

alone.258

Our region of interest is the lower stratosphere, from around 48 to 145 hPa. We259

apply the technique globally and consider the lead times forecast in the HRES which range260

from 12 hours to 10 days in the future. The results reported in this section are in lat-261

itudes below 70 degrees. Results at higher latitudes are similar, but not shown. Our train-262

ing dataset is the HRES forecasts produced from July, 2016, to June, 2019. We use this263

to choose weights used in the analog matching process. The validation period is over the264

HRES forecasts produced from July, 2019, to December, 2019. The data available in the265

AnEn matching includes all the forecasts in the training dataset plus any additional fore-266

casts between the beginning of the validation time period but prior to the current fore-267

cast. This simulates operational use of an AnEn system. To evaluate the distilled AnEn268

we only use a DNN distilled from the training dataset. In practice, one would distill the269

AnEn into a new DNN from time to time to incorporate additional forecasts into the train-270

ing corpus, but that has not been attempted in this study.271

Figure 2 shows a comparison of the aggregated add[ldm]deterministic forecast er-272

ror of the HRES, ENS, AnEn, and distilled AnEn grouped by lead time. Note that 90%273

bootstrap confidence intervals are omitted because they are very small because for each274

metric computed and for each lead time we have almost 2 billions and more than 10.5275

millions ground truth / prediction pairs when using HRES and Loon data, respectively.276

The reader can find a view of the these confidence intervals in Figures S4 and S5 of the277

supporting information. Figure 2(a) shows the evaluation performed using the HRES278

operational analysis as the ground truth field. The centered root-mean-square (CRMSE)279

is the portion of the RMSE measuring the random (or anomaly) differences between two280

fields (Taylor, 2001). The AnEn methods have a lower CRMSE than HRES across all281

lead times for wind direction, and after hour 84 for wind speed. The AnEn methods have282

the same skill as ENS up to hour 60 and are competitive for longer lead times, which283

is remarkable considering that AnEn realtime computation cost, given that it is based284

on HRES, is significantly lower than ENS. The correlation between the fields and the285

ground truth is either preserved or improved with the analog-based methods when com-286

pared to HRES. The remaining portion of RMSE is the bias, which in this study is sig-287

nificantly lower than CRMSE for all the prediction systems analyzed (not shown). The288

large reductions of CRMSE for both wind speed and direction obtained with AnEn con-289

firm the ability to tackle conditional biases, which is a result of the algorithm being de-290

signed to learn the error of the current prediction from the errors of analogous past fore-291

casts. The ability of the distilled approach to reproduce AnEn deterministic skill is re-292

markable, as shown by the minimal differences between the two AnEn versions across293

the different metrics and cases considered.294

Figure 2(b) shows the results when the measurements from Loon stratospheric bal-295

loons are used as ground-truth. This is a much smaller dataset and lacks global cover-296

age, but is real in situ observations from the stratosphere. (see Figure S2 of the support-297

ing information for the geographical distribution of Loon’s measurements). For the con-298

venience of the reader, we provide basic statistical breakdowns and ranges of the obser-299

vations in the dataset overlapping with our validation period in Figure S1 of the sup-300

porting information. The AnEn methods exhibit lower CRMSE than HRES, and signif-301

icantly lower than ENS for both wind speed and direction. AnEn correlation is signif-302
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icantly higher than ENS for wind speed and better than HRES for wind direction. The303

better performance of AnEn compared to ENS when using Loon data can be explained304

by the fact that AnEn, by design, is an excellent downscaling method. This is more ev-305

ident when making a comparison with data that has a high spatial and temporal reso-306

lution, like Loon in situ observations. On the other hand, that is a disadvantage for the307

coarser ENS.308

We turn our attention to probabilistic forecasts. We compare the ensemble fore-309

cast generated by the AnEn on stratospheric winds to the ENS. Figure 3 shows the con-310

tinuous ranked probability score (CRPS), rank histogram, and binned-spread/skill plot311

across different lead times for the AnEn and ENS. We show these metrics for wind di-312

rection forecasts using the HRES analysis (left) and Loon data (right) as ground truth.313

Results for wind speed are qualitatively similar, and are shown in Figure S3 of the sup-314

porting information.315

The CRPS provides an assessment of the quality of a probabilistic forecast that is316

not necessarily of a binary event (Hersbach, 2000). It is the probabilistic equivalent of317

the mean absolute error for deterministic predictions, and a zero indicates a perfect fore-318

cast. Similarly to the deterministic results with HRES analysis as the ground truth, AnEn319

is competitive with ENS up to hour 60 and better then HRES at all lead times. How-320

ever, when this performance metric is calculated against the Loon data, AnEn is signif-321

icantly better even of ENS, reducing the latter CRPS between 7 and 70%.322

The rank histogram estimates the statistical consistency of an ensemble (Anderson,323

1996). For a perfect ensemble, the observation will appear to be drawn from the same324

distribution as the ensemble members. The rank histogram is flat in that case. The ENS325

has a U-shaped rank histogram with both ground-truth data sets, which indicates a lack326

of spread. With HRES as the ground-truth, the AnEn rank histogram instead is closer327

to the ideal flat shape, though it exhibits for the first few lead times a dome shape in-328

dicating an excess spread. This may reflect that the AnEn is including a few analogs that329

have a larger match distance at early lead times. Against Loon data, AnEn has a rank330

histogram significantly closer to the ideal shape, being U-shaped but less so than ENS.331

The binned-spread/skill plot (van den Dool, 1989; Wang & Bishop, 2003) (which332

is only applicable to probabilistic predictions) characterizes, perhaps, the most impor-333

tant attribute of an ensemble system: the ability to quantify uncertainty while account-334

ing for the flow-dependent error characteristics. This is approximated by analyzing the335

spread-skill relationship across different spread bins. A perfect ensemble results in a di-336

agonal line. Against the HRES analysis, AnEn is closer to the diagonal than ENS, al-337

though both system exhibit a good spread-skill relationship. However, when Loon mea-338

surements are used as ground-truth, AnEn exhibits a significantly better ability to char-339

acterize the prediction uncertainty. The ENS diagram is horizontal for most bins and340

lead times, which reflects a lack of a spread-skill relationship for the ECMWF ensem-341

ble system when predicting wind direction.342

Figure 4(a) shows an example of the difference in forecast wind speed between the343

(distilled) AnEn-based forecast and the HRES across a constant-pressure slice of the strato-344

sphere. Figure 4(b) shows the percent change. In this particular example, which was ar-345

bitrarily chosen at random, the largest percent changes are made in the tropics. This346

tends to be a common pattern. Most regions we have analyzed see forecast improvements347

with the AnEn when compared to HRES and the largest improvements are at latitudes348

below 23 degrees. The arrows in Figure 4(b) indicate the flow of the wind direction vec-349

tor field at this pressure level.350
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(a)  

 

(b)  

Figure 2. A deterministic wind speed and direction forecast skill comparison between HRES

and the means of ECMWF ENS, AnEn, and Distilled AnEn over all lead times is shown using as

ground truth (a) HRES analysis and (b) Loon observations of stratospheric winds. The metrics

are computed for each lead time across the available observation-prediction pairs from all the grid

points in latitudes below 70 degrees.
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       (a)           (b)  

Figure 3. Probabilistic forecast evaluation metrics comparing the AnEn forecast of wind di-

rection to forecasts produced by a ENS. Results with HRES analysis as ground truth are shown

on the left (a), while results against Loon’s measurements are on the right (b). From top to

bottom, the metrics shown are CRPS, rank histogram, and binned-spread skill.
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(a) (b)

Figure 4. Differences between the HRES and distilled AnEn forecast of wind speed worldwide

at 50 hPa for 2019-10-20 18:00 UTC with a 5 day lead time. (a) shows the difference between the

two forecasts and (b) shows the absolute relative change (absolute value of change between the

two forecasts as a percentage of the HRES forecast) between the two forecasts with the direction

field overlaid.

4 Discussion351

The analog ensemble (AnEn) and distilled AnEn improve the European Centre for352

Medium-Range Weather Forecasts (ECMWF) high-resolution (HRES) deterministic fore-353

cast of winds in the lower stratosphere in our evaluation over half a year of forecasts us-354

ing both global ECMWF analyses and a smaller set of observations from Loon high al-355

titude balloons as ground truth. The AnEn is also competitive with ECMWF ensem-356

ble (ENS) system up to hour 60 for deterministic and probabilistic forecasts when HRES357

analysis is used as ground truth and significantly better when the performance metrics358

are computed against Loon’s dataset of true ground truth observations. In particular,359

AnEn is able to quantify the prediction uncertainty, as evident from the analysis of the360

probabilistic systems spread-skill relationship, while ENS lacks such attribute, partic-361

ularly for wind direction predictions. This is true, despite AnEn being computationally362

cheaper in real-time.363

Physics-based numerical weather models, such as the ECMWF’s HRES, are mar-364

vels of engineering and science and produce high quality forecasts of many meteorolog-365

ical fields in a coupled and principled manner. However, improvements can sometimes366

come at great cost, both in research time and in computation and power. Pure machine367

learning techniques, i.e., end to end learned model-free forecasting, hold promise but are368

limited due to training on a small number of observations and a limited ability to ex-369

trapolate beyond that training data.370

For example, a weakness of an analogs-based approach is new situations. If not han-371

dled properly, post-processing can reduce forecast skill. We found a specific example of372

this in our experiments which covered a period of vortex breakdown over North Amer-373

ica during February, 2018. Because there was only a single Northern hemisphere win-374

ter in our training corpus and it did not exhibit a large vortex breakdown over North375

America, the algorithm was not able to find analogs with sufficiently high wind speed.376

When testing the method without the bias correction term of Equation (3), the method377

decreased forecast skill. While bias correction acts as a stop-gap in this scenario, the de-378

sired approach would be to extend the historical corpus to be long enough to find anal-379

ogous vortex breakdown scenarios.380
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Recently there have been several contributions exploring the potential of machine381

learning for weather and climate predictions (e.g., Tao et al., 2016; Gagne II et al., 2017;382

McGovern et al., 2017; Rasp & Lerch, 2018; Scher, 2018; Chapman et al., 2019; Gagne II383

et al., 2019; Lagerquist et al., 2019; McGovern et al., 2019; Burke et al., 2020). However,384

although there have been encouraging attempts to develop pure machine learning weather385

forecasting methods (e.g., Weyn et al., 2019), those may still be out of reach given the386

relatively low number of available learning examples compared to the number of degrees387

of freedom in the atmosphere. Currently, successful attempts have been reported only388

in replacing individual physical processes (e.g., O’Gorman & Dwyer, 2018).389

The AnEn distilling procedure can be seen through two lenses. One can consider390

the distilled AnEn as an approximation of the conventional AnEn, i.e., a highly efficient391

implementation of the conventional technique. A second lens is that the DNN is the learn-392

ing technique and the process of distilling the AnEn is a data augmentation method to393

increase the number of examples used to train the network. One may prefer to distill an394

AnEn over directly training a DNN to improve forecasts because DNNs have a high ca-395

pacity (the complexity of the function the model can encode) and, unfortunately, there396

are limited numbers of forecast-ground truth pairs that are available for training. The397

lack of training data is exacerbated by growing the number of outputs we want the DNN398

to produce, e.g., a probability distribution over our forecast field. The AnEn has been399

shown to generalize well as a machine learning algorithm, i.e., to provide an improved400

forecast when deployed on long validation periods on unseen meteorological forecasts.401

The distilled AnEn bootstraps training a DNN off the AnEn, effectively combining the402

AnEn’s strength of being able to generate forecasts with a relatively small corpus of train-403

ing examples with the DNNs ability to memorize this complex correction function with404

a significantly smaller amount of data.405

This may be a pragmatic compromise. It seems there is a large opportunity for ma-406

chine learning by relying on the extremely high quality numerical weather models and407

making improvements in post-processing. The authors believe there is potential in this408

fused approach. This paper provides an example of how machine learning can contribute409

to increasing forecast skill and uncertainty quantification. As forecasts are asked to be410

simultaneously faster, more granular, and more accurate, the physics-based models can411

continue to do the heavy lifting and machine learning post-processing can improve fore-412

cast quality to alleviate some issues of scale.413
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Introduction

The supplemental data here covers a few disparate sets of material. The first two

sections provide additional technical detail on the methods of the paper that are not

necessary to understand the approach, but are useful when replicating the results. We

then share statistical breakdowns of the Loon observations which can also be derived by
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processing the data set at (Candido, 2020), but we include for convenience here. The

following three sections contain views of our results that we do not include in the main

text, but are of interest to some readers of early drafts of this paper. Finally, we present

an additional validation set that leads to similar conclusions as the results in the main

text. We include this for completeness as some of our early discussions of this work used

this validation set, rather than the newer validation set that allows us to compare against

the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble system

(ENS).

Computing the Conventional Analog Ensemble with MapReduce

A barrier to operationalizing a global analog ensemble (AnEn) system is processing the

corpus of analogs, which can easily grow to 100’s of terabytes of data for three-dimensional

global predictions over several years. The AnEn algorithm provides a natural partitioning

as execution is independent for each P (grid point and lead time). Every historical forecast

and the current prediction contain a piece of data for every grid point. The challenge is

to organize the data so that the calculations can be efficiently executed across many

datacenter computers.

Our approach is to use the MapReduce paradigm (Dean & Ghemawat, 2004), which

allows the computation to run on a distributed computing (cloud) infrastructure like

Google’s Flume (Chambers et al., 2010). The idea is to break the computation into

two subsequent Map and Reduce phases, each of which operate many times in parallel

on different portions of the data and output key-value pairs. Once written this way,

the framework can handle scheduling the program’s execution across many machines and

moving the various subsets of data to the appropriate machines.
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The above procedure is accomplished as follows. Let latitude, longitude, pressure, and

forecast lead time be the tuple k, which is unique for each grid point. The first Map

phase scans all historical forecast files and generates a key-value pair (k, tf ) → xi for each

grid point and (k, tf ) → yi for each analysis point. The k corresponds to the location

and forecast lead time for the particular xi (past forecast) and tf (calendar time being

forecast). For every yi we generate multiple key-value pairs corresponding to a k for every

lead time the system will forecast.

Notice that the above rule gives each forecast-observation pair a unique key. Prior to

the reduce phase all identical keys are grouped into one Reduce call by the MapReduce

framework. The Reduce phase joins these xi and yi pairs into a single record and saves

them as new key-value pairs k → (xi, yi). This first MapReduce gives us a historical

corpus. This corpus could be built in advance of receiving a new forecast to post-process.

The second MapReduce groups the data by grid point and runs the AnEn algorithm.

A Map phase on the forecast data file from the ECMWF generates key-value pairs k → xf

for each grid point. The historical corpus key-value pairs are used directly. Note that

xf and every set of candidate analogs {(xi, yi)} for a grid point have the same key. The

data is grouped by key and fed to the Reduce phase that has all the data needed to apply

equations (1) and (3) to generate the forecast.

Details of Training a Distilled Analog Ensemble Model

This section describes the low-level technical details of the distillation process.

Our training corpus is prepared by using a MapReduce similar to what is described

in the previous section to process the set of forecast data files (both the 00Z and 12Z

epochs) archived during the training period. Rather than running the AnEn algorithm
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logic, i.e., equations (1) and (3), at each grid point given a new forecast, we instead save

the candidate analogs (forecast-observation pairs) for a given grid point in a single record.

These records are stored together on disk for retrieval by the training system, i.e., we have

a set of records where each record corresponds to a unique latitude, longitude, pressure,

and lead time grid point and contains all the viable forecast-observation pairs at this

location at the appropriate lead time.

This data set is used to feed the training process of our deep neural network (DNN). We

use a distributed architecture. We train our DNN based on the output of the AnEn, not

directly from these forecast-observation pairs. Thus, we need to sample a hypothetical

forecast to generate a training example of an input-output pair for the AnEn system. We

use 10 datacenter worker processes that sample uniformly among grid points in records on

disk, sample a hypothetical wind speed and wind heading forecast, and construct the input

to the DNN (corresponding to this grid point and forecast) and the output (of the AnEn

algorithm). In the results presented in this paper, we sample heading uniformly and wind

speed from a beta distribution with α = 1.2, β = 3, and a coefficient of 100. Effectively

this creates a weighted distribution of wind speeds which seems generally applicable to

the pressure altitudes ranges of interest in the stratosphere.

Unlike many applications, we do not simply loop over the dataset on disk a fixed number

of times or until training error stabilizes. This is because every time we touch a record we

sample a new forecast and generate a new input-output pair. Saving these pairs on disk

versus generating them online during training is an engineering trade-off, and we have

chosen the latter approach.
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These examples from the 10 worker processes are injected into a reservoir datacenter

process, whose job is essentially to receive new examples, store them in a limited size

buffer, and respond to requests (from the learning process) for samples. Rather than

choosing a circular buffer or some other first-in, first-out structure, we use a flat data

array of 1 million examples and, for each new example, sample an index in the array at

random to replace. This means some examples will persist in the buffer longer, and some

for a shorter period of time. The typical dwell time of an example in the buffer can be

characterized probabilistically. The learning process repeatedly queries the reservoir for

batches of training examples, which are selected uniformly at random from examples in

the data array. A slowly changing flow of examples where each batch (on average) tends

to be drawn from disparate parts of the function mapping being learned is conceptually

similar to the replay buffer in deep reinforcement learning (Lin, 1992; Mnih et al., 2015).

We use the Tensorflow (Abadi et al., 2015) library to create and train our DNN. Our

network has inputs of latitude, longitude, pressure altitude, forecast lead time, forecast

direction, and forecast speed. We transform these into a graph layer that is normalized

using the following code snippet where the array ‘domain’ represents the inputs described

above.

nlat = tf.multiply(domain[:, 0], 1. / 90.0)

coslng = tf.cos(tf.multiply(domain[:, 1], np.pi / 180.0))

sinlng = tf.sin(tf.multiply(domain[:, 1], np.pi / 180.0))

npre = tf.multiply(tf.subtract(domain[:, 2], 4799.), 1. / (14432. - 4799.))

nlea = tf.multiply(tf.subtract(domain[:, 3], 43200.), 1. / (864000. - 43200.))

coshead = tf.cos(domain[:, 4])
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sinhead = tf.sin(domain[:, 4])

nspeed = tf.multiply(domain[:, 5], 1. / 100.)

normalized_domain = tf.transpose(

tf.stack([nlat, coslng, sinlng, npre, nlea, coshead, sinhead, nspeeed]))

We do this to avoid the discontinuity in longitude being present in our DNN, and to

make our inputs have roughly the same order of magnitude (which is a domain trick to

decrease training time).

At this point the network consists of 10 fully-connected hidden layers with ReLu activa-

tion functions. Each layer has a width of 50 elements. These plus an ultimate layer con-

taining the ultimate post-processed speed and heading forecast (width 2, fully-connected,

no activation function) comprise the trained layers of the DNN. We can also include ad-

ditional network outputs such as forecast uncertainty (standard deviation of the forecast)

or ensemble members. This is not discussed in this paper.

To train the network we use stochastic gradient descent with a learning rate of 0.0001

and batch size 100. We train until the root mean square error between the DNN forecasts

and the AnEn mean forecasts (from the training examples) stabilizes. In the distilled

AnEn used to generate the results in this paper, we trained the DNN with about 6 billion

examples.

This network architecture was not tuned for efficiency, but instead chosen to demon-

strate how a fairly standard and basic deep learning approach could be used to implement

this algorithm.

Statistics of the Loon Data Set
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The following plots show the distribution of Loon’s approximately 10.5 million observa-

tions used for one of the comparisons between algorithms shown in the main text of the

paper. This is the intersection of Loon’s dataset of observations of stratospheric winds

from Loon (http://www.loon.com) high altitude balloons (Candido, 2020) and the region

and time period for the validation paper used in our study.

Figure S1 shows the distribution of the data over pressure altitude and latitude.

Figure S2 shows the geographical distribution of the data.

Probabilistic Evaluation Metrics for Wind Speed

In the main text of the paper we presented the CRPS, Spread Skill, and Rank Histogram

plots for comparing the ensemble systems predictions on wind direction, an omitted plots

for wind speed given a similar pattern on skill between the approaches. We include the

figures for wind speed in Figure S3.

Confidence Intervals on Deterministic Evaluations

Figures S4 and S5 show the same data as in Figure 2(a) in the main text, but include

box plot views of the 90% bootstrap confidence intervals.

Algorithm Skill Comparison By Geography

Figure S6 show the CRMSE averaged across all lead times grouped by geography. One

can observe that the Distilled AnEn has higher skill (lower CRMSE) than the baseline

ECMWF HRES generally across the stratosphere globally.

Results for an Earlier Validation Period

Our original analysis of the methods included a comparison of AnEn mean against

the ECMWF high-resolution deteriministic forecast (HRES) and, for the probabilistic

predictions, against a persistence ensemble (PeEn) over a year long validation period
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from October, 2017 to September, 2018. However, to add a comparison to the ECMWF

ENS in a revised version of the manuscript, we changed our validation period in the main

text due to data availability.

The PeEn is a simple way to generate an ensemble that consists of selecting the last N

available ground-truth values to generate an N -member ensemble. It has been used in,

e.g., Alessandrini, Delle Monache, Sperati, and Cervone (2015) and Cervone, Clemente-

Harding, Alessandrini, and Monache (2017), as a probabilistic baseline forecast and can

be interpreted as the probabilistic extension of a deterministic persistence forecast.

For the results shown in in Figures S7 and S8 the training dataset is the HRES forecasts

produced from July, 2016, to September, 2017. We use this to choose weights used in the

analog matching process. The validation period is over the HRES forecasts produced from

October, 2017, to September, 2018. The data available in the AnEn matching includes all

the forecasts in the training dataset plus any additional forecasts between the beginning

of the validation time period but prior to the current forecast. This simulates operational

use of an AnEn system. To evaluate the distilled AnEn we only use a DNN distilled from

the training dataset.

Please refer to the main text of the paper where the relevance of the metrics shown in

the below figures are explained in greater detail, albeit for a different validation period.
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Figure S1. Distribution of Loon’s measurements as a function of pressure altitude and

latitude.

Figure S2. Geographical distribution of Loon’s measurements.
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              (a)               (b)  

Figure S3. Probabilistic forecast evaluation metrics comparing the AnEn forecast of

wind speed to forecasts produced by a ENS. Results with HRES analysis as ground truth

are shown on the left (a), while results against Loon’s measurements are on the right (b).

From top to bottom, the metrics shown are CRPS, rank histogram, and binned-spread

skill. May 27, 2020, 10:04pm
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Figure S4. CRMSE for wind direction predictions including boxplots showing the

bootstrap 90% confidence intervals.
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Figure S5. CRMSE for wind speed predictions including boxplots showing the boot-

strap 90% confidence intervals.
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Figure S6. Geographical distribution of CRMSE for the distilled AnEn prediction of

wind speed with HRES analysis as ground truth.
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Figure S7. A deterministic wind speed and direction forecast skill comparison between

the HRES, AnEn, and Distilled AnEn over all lead times is shown using as ground truth

(a) HRES analysis and (b) Loon observations of stratospheric winds.
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Figure S8. Probabilistic forecast evaluation metrics comparing the AnEn forecast

of wind direction to forecasts produced by HRES, AnEn mean, and PeEn using HRES

analysis as the ground truth. From top to bottom, the metrics shown are CRPS, rank

histogram, and binned-spread skill.
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