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Abstract

Satellite data show substantial drops in nitrogen dioxide (NO2) during COVID-19 physical distancing. To attribute NO2 changes

to NOx emissions changes over short timescales, one must account for meteorological effects. We find that meteorological

patterns were especially favorable for low NO2 in much of the U.S. in spring 2020, complicating comparisons with spring 2019.

Meteorological variations between years can cause column NO2 differences of ˜15% over monthly timescales. After accounting

for sun angle and meteorological considerations, we calculate that NO2 drops ranged between 9.2 – 43.4% among twenty cities

in North America, with a median of 21.6%. Of the studied cities, largest NO2 drops (>30%) were in San Jose, Los Angeles,

and Toronto, and smallest drops (<12%) were in Miami, Minneapolis, and Dallas. These normalized NO2 changes can be used

to highlight locations with greater activity changes and better understand the sources contributing to adverse air quality in

each city.
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Abstract 25 

Satellite data show substantial drops in nitrogen dioxide (NO2) during COVID-19 physical 26 

distancing.  To attribute NO2 changes to NOX emissions changes over short timescales, one must 27 

account for meteorological effects. We find that meteorological patterns were especially 28 

favorable for low NO2 in much of the U.S. in spring 2020, complicating comparisons with spring 29 

2019.  Meteorological variations between years can cause column NO2 differences of ~15% over 30 

monthly timescales.  After accounting for sun angle and meteorological considerations, we 31 

calculate that NO2 drops ranged between 9.2 – 43.4% among twenty cities in North America, 32 

with a median of 21.6%.  Of the studied cities, largest NO2 drops (>30%) were in San Jose, Los 33 

Angeles, and Toronto, and smallest drops (<12%) were in Miami, Minneapolis, and Dallas.  34 

These normalized NO2 changes can be used to highlight locations with greater activity changes 35 

and better understand the sources contributing to adverse air quality in each city. 36 

Plain-Language Summary 37 

The current paradigm of disentangling emissions from meteorological influences on air pollution 38 

by averaging over many months has insufficient temporal granularity to quantify short-term 39 

emission changes.  We developed two novel methods to account for weather impacts on daily 40 

pollution levels during COVID-19 precautions. Once we accounted for favorable weather 41 

conditions that in some cases kept air pollution low independent of tail-pipe emissions, 42 

calculated air pollutant emission reductions varied dramatically (9 – 43%) among twenty North 43 

American cities.  Results can be used to understand factors contributing to inconsistent NO2 44 

changes during physical distancing, which can inform the effectiveness of COVID-19 protocols 45 

and aid future policy development.  These methodologies will allow us to respond more quickly 46 

in future unintended experiments when emissions change suddenly. 47 



1. Introduction 48 

Nitrogen dioxide (NO2) is unique due to its relatively short photochemical lifetime which varies 49 

from 2-6 h during the summer daytime (Beirle et al., 2011; de Foy et al., 2014; Laughner & 50 

Cohen, 2019; Valin et al., 2013) to 12-24 h during winter (Beirle et al., 2003; Shah et al., 2020).  51 

As a result, tropospheric NO2 concentrations are strongly correlated with local NOX emissions, 52 

which are often anthropogenic in origin.  However, due to the effects of meteorology and sun 53 

angle on the NO2 abundance, NO2 can vary by a factor of two simply due to seasonal changes 54 

(Pope et al., 2015; Wang et al., 2019).  Therefore, satellite data are typically averaged over long 55 

timeframes (~seasonal/annual) to assess changes in NOX emissions (Duncan et al., 2016; Geddes 56 

et al., 2016; Georgoulias et al., 2019; Hilboll et al., 2013, 2017; Kim et al., 2009; Krotkov et al., 57 

2016; Lamsal et al., 2015; McLinden et al., 2016; VanDerA et al., 2008). 58 

With the COVID-19 crisis, there is now broad interest in rapid assessments of NOx emission 59 

changes on short timescales in locations that have implemented stay-at-home orders or other 60 

physical distancing measures.  Using satellite data in this instance can be advantageous due to its 61 

global coverage at immediate timescales. However, current methods of averaging satellite NO2 62 

data over many months to minimize random daily effects of weather will not provide the 63 

temporal granularity needed to quantify short-lived NOX emission changes. 64 

Preliminary satellite-based studies indicate that NO2 dropped substantially in China following 65 

stringent COVID-19 physical distancing actions (F. Liu et al., 2020; Zhang et al., 2020). Similar 66 

declines have also been seen over northern Italy (ESA, 2020b) and India (ESA, 2020a). 67 

Although lockdown measures – and adherence to them – have been looser in the U.S. than in 68 

China, India, and Italy, preliminary analyses show that NO2 amounts are declining across U.S. 69 

cities as well (NASA, 2020). These declines have, in some cases in the media (Holcombe & 70 

O’Key, 2020; Plumer & Popovich, 2020), been attributed to the emission changes during 71 

lockdowns, without accounting for the potentially substantial influences of meteorology and 72 

seasonality. Accounting for natural NO2 fluctuations are especially important during spring, a 73 

time when the NO2 concentrations and lifetimes are quickly changing due to transitioning 74 

meteorology, sun angle, and snow cover.   75 

Understanding how NOx emissions have changed in response to physical distancing measures 76 

requires new methods to account for sun angle and meteorological conditions over very short 77 



time scales (days/weeks), as opposed to the traditional method of averaging over seasons and 78 

years. Here, we use three different methods to assess the NO2 decreases associated with COVID-79 

19 lockdowns.  We combine TROPOMI NO2 data with ERA5 re-analysis and a regional 80 

chemical transport model to determine the effects of the sun angle and meteorological factors – 81 

such as wind speed and wind direction – on NO2 column amounts.  The NO2 changes after this 82 

“normalization” are more likely to represent the NOx emissions changes due to COVID-19. 83 

2. Methods  84 

2.1 TROPOMI NO2 85 

TROPOMI was launched by the European Space Agency (ESA) for the European Union’s 86 

Copernicus Sentinel 5 Precursor (S5p) satellite mission on October 13, 2017.  The satellite 87 

follows a sun-synchronous, low-earth (825 km) orbit with a daily equator overpass time of 88 

approximately 13:30 local solar time (VanGeffen et al., 2019).  TROPOMI measures total 89 

column amounts of several trace gases in the Ultraviolet-Visible-Near Infrared-Shortwave 90 

Infrared spectral regions (Veefkind et al., 2012).  At nadir, pixel sizes are 3.5 × 7 km2 (reduced 91 

to 3.5 × 5.6 km2 on August 6, 2019) with little variation in pixel sizes across the 2600 km swath.   92 

Using a differential optical absorption spectroscopy (DOAS) technique on the radiance 93 

measurements in the 405 – 465 nm spectral window, the top-of-atmosphere spectral radiances 94 

can be converted into slant column amounts of NO2 between the sensor and the Earth’s surface 95 

(Boersma et al., 2018).  In two additional steps, the slant column quantity can be converted into a 96 

tropospheric vertical column content, which is the quantity used most often to further our 97 

understanding of NO2 in the atmosphere (Beirle et al., 2019; Dix et al., 2020; Goldberg et al., 98 

2019; Griffin et al., 2019; Ialongo et al., 2020; Reuter et al., 2019; Zhao et al., 2020). 99 

2.2 Meteorological Dataset 100 

We use ERA5 meteorology((C3S), 2017) for the wind speed and direction in our analysis.  When 101 

filtering the data based on wind, we use the average 100-m winds during 16 – 21 UTC, which 102 

approximately corresponds to the TROPOMI overpass time over North America. To downscale 103 

the ERA5 re-analysis, which is provided at 0.25° × 0.25°, we spatially interpolate daily averaged 104 

winds to 0.01° × 0.01° using bilinear interpolation.  Due to our dependence on 0.25° × 0.25° 105 



meteorology, any microscale features (e.g., sea breezes) will not be accounted for, but these 106 

effects should be minor for our particular analysis.  107 

2.3 Calculation of NO2 Changes 108 

We calculate the NO2 changes using three different methods.  In Method 1, we compare an 109 

average of March 15, 2020 – April 30, 2020 to the same timeframe of 2019; this year-over-year 110 

comparison is used most often in satellite studies quantifying long-term changes in NOX 111 

emissions.  In Method 2, we develop a strategy to account for varying weather patterns without 112 

the use of a chemical transport model.  In this method, we normalize each day’s NO2 observation 113 

to a day with “standard” meteorology – similar to standard temperature and pressure (STP) 114 

conditions in a laboratory setting.  We do this by accounting for four different day-varying 115 

effects; these are sun angle, wind speed, wind direction, and day-of-week. In all cases, we 116 

normalize city-specific conditions to those that are climatological on April 15th. Finally, in 117 

Method 3, we infer a TROPOMI NO2 column amount under normal circumstances using the 118 

GEM-MACH regional chemical transport model, and then compare the actual TROPOMI 119 

columns to the theoretical columns. Methods 2 & 3, both account for year-varying meteorology, 120 

while Methods 1 does not. A detailed description of Methods 2 & 3 can be found in the 121 

Supplemental.  122 



3. Results 123 

3.1 Sun Angle & Meteorological Relationships 124 

In the top row of Figure 1, we show 2019 NO2 column densities during the low sun-angle “cold” 125 

season (January – March, October – December) and high sun-angle “warm” season (May – 126 

September) in the continental United States and southern Canada.   127 

 128 
Figure 1. Effects of meteorology and sun angle on column NO2. Top panels show (a) TROPOMI 129 
NO2 during the warm season (May – Sept 2019), (b) during the cold season (Jan – Mar, Oct – 130 
Dec 2019), and (c) the monthly variation in 7 U.S. cities normalized to Jan 2019. Middle panels 131 
show (d) TROPOMI NO2 when winds are < 2 m/s, (e) when winds are > 8 m/s, and (f) variations 132 
in NO2 as a function of wind speed for seven cities normalized to stagnant conditions. Bottom 133 
panels show (g) TROPOMI NO2 when winds are southwesterly, (h) when winds are 134 
northeasterly, and (i) variations as a function of wind direction for seven cities normalized to 135 
southwesterly winds. 136 
 137 
Column NO2 is larger during the cold season than during the warm season over the majority of 138 

our domain, despite NOX emissions generally peaking during the middle of the warm season due 139 

to a heavy air conditioning load (Abel et al., 2017; He et al., 2013).  The larger NO2 140 

concentrations during the winter are instead due to the longer NO2 lifetime during the cold 141 

season, primarily due to slower photolysis rates.  When NOX is emitted during the warm season, 142 
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it is transformed into other chemical species, such as O3 and HNO3, more quickly than during the 143 

winter.  We find that in most near-urban locations column NO2 amounts are 1.5 – 3 times larger 144 

during the winter than during the summer, and can vary substantially between city. 145 

In a next step, we account for wind speed and wind direction in the spatiotemporal variation of 146 

NO2 columns. In the middle and bottom panels of Figure 1, we demonstrate the effects of wind 147 

speed and wind direction on the NO2 in our domain. Increases in wind speed yield NO2 148 

decreases due to quicker dispersion away from the city centers.  For example, in New York City, 149 

Washington DC, Atlanta, and Chicago, all cities with relatively flat topography and located in 150 

the eastern United States, increasing wind speeds from nearly stagnant to > 8 m/s decreases NO2 151 

by 30 – 60%.  Conversely, in Denver and Los Angeles, cities with more heterogeneous 152 

topography and with general isolation from an agglomeration of cities, show a stronger 153 

dependence on wind speed; increasing wind speeds from nearly stagnant to > 8 m/s decreases 154 

NO2 by 70 – 85%.  In both instances, these examples show the strong dependence of wind speed 155 

on local NO2 amounts.  156 

Similarly, wind direction has a large role in the local NO2 amounts, although the effects of wind 157 

direction are non-linear.  Generally, northwest winds yield the cleanest conditions in most U.S. 158 

cities, but the effects of other wind directions are more nuanced. For example, southwesterly 159 

winds yield the worst air quality in New York City, while northeasterly winds yield the largest 160 

NO2 in Washington, D.C. This is due to the fact that the other city lies upwind in each opposing 161 

scenario.  Changes in wind direction, given the same wind speed, can yield differences in NO2 in 162 

major cities by up to 70%, and must be accounted for if properly attributing NO2 changes to NOX 163 

emissions.  Climatological patterns for all cities are shown in the Supplemental Material (Figures 164 

S1-S3). 165 

While 2-m air temperature and boundary layer depth may be affecting the NO2 concentrations, 166 

these are not independent of the aforementioned factors: sun angle, wind speed and wind 167 

direction. In fact, sun angle, wind speed, and wind direction are by themselves highly skilled 168 

predictors of near-surface temperatures and boundary layer depth in most instances.  Since we 169 

are focused on mostly clear-sky days, clouds have limited effects here.  Previous day’s 170 

precipitation may also be a contributing factor to daily NO2 amounts, but in many areas, the wind 171 



direction will partially account for this, since northwest winds usually follow large rain events in 172 

most areas. 173 

3.2 Effects of COVID-19 physical distancing on NO2 174 

In order to quantify rapid changes in NOX due to COVID-19 physical distancing, we calculate 175 

NO2 changes in North American cities using three different methods and a reference method.  176 

The results for all cities are shown in Table 1.   177 

Table 1. Percentage drop in column NO2 as observed by TROPOMI. Cities are listed by largest 178 
to smallest reduction as determined by the median of all three methods. 179 

 180 
The reference method, Method 0, compares the pre-lockdown and post-lockdown periods and 181 

represents the “true” NO2 change; however, this method does not account for seasonal changes 182 

and, thus, is not considered in the medians/means.  183 

In Method 1, we compare an average of March 15, 2020 – April 30, 2020 to the same timeframe 184 

of 2019.  In Figure 2, we show difference and ratio plots between these two years (i.e., Method 185 

Reference case Account for sun-
angle only

Method 0 Method 1 Method 2 Method 3

City Name

Δ between 
months

2020 only
(Jan-Feb vs.     

Mar 15 - Apr 30)

Δ between years  
2019 vs. 2020 

(Mar 15 - Apr 30)

Using ERA5 
analogs to account 

for meteorology   
2019 vs. 2020

(Mar 15 - Apr 30)

Using GEM-
MACH to infer 
NO2, 2020 only

(Mar 15 - Apr 30) 
San Jose 65.2% 43.4% 40.7% 43.5% 42.5% 43.4%
Los Angeles 66.1% 32.6% 32.5% 38.6% 34.6% 32.6%
Toronto 60.4% 31.0% 17.0% 42.0% 30.0% 31.0%
Philadelphia 50.3% 36.6% 30.7% 22.1% 29.8% 30.7%
Denver 25.8% 29.2% 23.4% 39.1% 30.6% 29.2%
Atlanta 39.6% 35.2% 27.4% 20.2% 27.6% 27.4%
Detroit 35.5% 29.9% 22.8% 15.6% 22.8% 22.8%
Boston 40.3% 22.8% 23.5% 17.8% 21.4% 22.8%
Washington DC 42.9% 31.4% 21.2% 6.7% 19.8% 21.2%
Montreal 12.5% 3.3% 20.9% 30.2% 18.1% 20.9%
New York City 32.7% 20.2% 20.0% 17.9% 19.4% 20.0%
New Orleans 41.7% 13.5% 19.6% 22.5% 18.5% 19.6%
Las Vegas 66.7% 9.5% 18.4% 42.0% 23.3% 18.4%
Houston 38.9% 26.3% 15.6% 1.9% 14.6% 15.6%
Chicago 31.0% 23.6% 14.9% 3.5% 14.0% 14.9%
Phoenix 43.9% 12.8% 14.8% 35.4% 21.0% 14.8%
Austin 34.3% 14.5% 9.4% 16.1% 13.3% 14.5%
Dallas 41.9% 11.9% 3.6% 16.7% 10.7% 11.9%
Miami 27.9% 16.1% -1.6% 11.0% 8.5% 11.0%
Minneapolis 0.1% 14.3% 9.2% 8.1% 10.5% 9.2%

Mean of each method 39.9% 22.9% 19.2% 22.5% 21.6% 21.6%

Account for sun-angle & meteorology

Mean of  
Methods 1-3

Median of 
Methods 1-3



1).  The largest decreases in NO2 are near the major cities in North America.  We also find 186 

regional decreases in the eastern North America.  Conversely, the central and northwestern 187 

United States have seen little change between years, which is likely due to the high fraction of 188 

NO2 attributed to biogenic sources and long-range transport.  We also observe substantial 189 

decreases near retired electricity generating units in the western U.S. (Storrow, 2019)   190 

 191 
Figure 2. TROPOMI NO2 differences between 2019 & 2020, using March 15 – April 30, 2020 192 
as the post-COVID-19 period. Plots are showing (a) the absolute difference and (b) the ratio 193 
between years. 194 
 195 

In Figure 3, we demonstrate Method 2.  Here, we show the 2019 and 2020 28-day running 196 

TROPOMI NO2 medians after accounting for sun angle and meteorology.  In this figure, the 197 

January values are uniformly lower than their true values (Figure S4) because we are 198 

normalizing to April meteorological conditions (i.e., sun angle is higher in April as compared to 199 

January).  In New York City, we calculate a 20.0% drop in NO2 due to COVID-19 precautions.  200 

We find that there is no difference between Method 2 – which accounts for meteorology – and 201 

Method 1 – which only accounts for sun angle.  This suggests that varying meteorological 202 

conditions in New York City, while different between years, may not have had a strong biasing 203 

effect.  However, in Washington D.C. we find favorable conditions in 2020 as compared to 2019 204 

because we observe substantially different NO2 drops before (31.4%) and after (21.2%) 205 

correcting for the meteorology. These results are corroborated by the wind speed and direction 206 

(Figure S5).  In 2019, winds were on average southwesterly, while in 2020, winds had more of a 207 

northwesterly and therefore cleaner component.  Of all cities analyzed, we find that Miami had 208 

the most favorable conditions for low NO2 in 2020 as compared to 2019; in 2020, winds were 209 

ba



stronger from the south – in this case a cleaner air mass – than in 2019, which had relatively 210 

stagnant winds.  Conversely, in Montreal, New Orleans, and Las Vegas, meteorological 211 

conditions appeared to be unfavorable in 2020 as compared to 2019. 212 

 213 
Figure 3. Trends in TROPOMI NO2 since January 1 in 2019 and 2020 after accounting for 214 
meteorological variability and sun angle. The lines represent the 28-day rolling median value 215 
(50th percentile) in a 0.4° × 0.4° box centered on the city center for the largest cities (New York 216 
City, Los Angeles, Chicago, Toronto, Houston) and 0.2° × 0.2° box in all other cities. 217 
 218 
In Figure 4, we demonstrate Method 3, in which we account for meteorology and chemical 219 

interactions using a chemical transport model.  We create a theoretical TROPOMI column NO2 220 

using ECCC’s regional operational air quality forecast model (Moran et al., 2009; Pendlebury et 221 

al., 2018), which accounts for typical seasonal emission changes but not for any impacts due to 222 

the COVID-19 lockdowns; this helps provide expected NO2 levels with a business as usual 223 

scenario.  Around mid-March there is often a divergence between the expected and observed 224 

NO2 in the major cities.  Using this method, largest NO2 reductions due to COVID-19 225 

precautions are in Toronto, San Jose, and Las Vegas.  Similar to Method 2, we find that NO2 226 

changes are generally smaller in the Northeastern U.S. and Florida as compared to Method 1 227 

after accounting for meteorology.  In fifteen of the twenty studied cities, we find that Methods 2 228 

& 3, which utilize independent meteorological datasets, show similar biasing effects of 229 

meteorology (favorable vs. unfavorable) when compared to Method 1.  230 
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Time series (28-day rolling medians after normalizing for sun angle and meteorology) 



 231 
Figure 4. Trends in TROPOMI NO2 since January 1, 2020. The actual observed columns are 232 
shown in black, while the “expected” columns - using GEM-MACH to infer NO2 in the absence 233 
of lockdowns – is shown in blue. The lines represent the 28-day rolling median value (50th 234 
percentile) in a 0.4° × 0.4° box centered on the city center for the largest cities (New York City, 235 
Los Angeles, Chicago, Toronto, Houston) and 0.2° × 0.2° box in all other cities. 236 
 237 

4. Discussion 238 

Here we demonstrate two methodologies, Methods 2 & 3, to account for time-varying effects of 239 

meteorology on NO2 concentrations. There are two main advantages for using Methods 2 & 3 to 240 

assess rapid changes in NOX as compared to a year-to-year comparison of the same month or 241 

seasonal period.  Year-over-year technological improvements in the United States are generally 242 

causing NOX emissions to decrease over time, although we find a statistically insignificant NO2 243 

increase of 0.6% in our cities between 2019 and 2020 in the January – February average.  244 

Accounting for year-over-year changes would be more important if comparing 2020 values to 245 

years preceding 2019.   246 

Perhaps more importantly, there are often different seasonal patterns between years, even when 247 

averaged over the entire season.  Many longer-term meteorological patterns in North America 248 

can be attributed to the El Nino South Oscillation (ENSO) or the North Atlantic Oscillation 249 

Time series (28-day rolling medians) 
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(NAO).  In particular relevance to this analysis, the January – March 2019 period had a 250 

persistently negative NAO 251 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/month_nao_index.shtml) which 252 

allowed Arctic air to more readily intrude into the northern US than during more typical winters 253 

(https://www.ncdc.noaa.gov/sotc/national/201902).  In January – March 2020, there was a 254 

consistently positive NAO which limited the influence of cold and relatively clean Arctic air in 255 

eastern North America, but instead yielded cloudier and wetter conditions.  Similarly, ENSO can 256 

affect air quality in cities (Edwards et al., 2019; Shen & Mickley, 2017), but this had a minor 257 

effect between 2019 (Oceanic Niño Index: +0.8) and 2020 (Oceanic Niño Index: +0.5). 258 

5. Conclusions  259 

We estimate that NOX emissions temporarily dropped between 9 – 43% in North American cities 260 

due to COVID-19 precautions, with a median drop of 21.6% before and after COVID-19 261 

physical distancing.  If the sun angle is not accounted for, then the median NO2 drop is 39.9%; 262 

this represents the true change of NO2 in cities, but is not analogous to a change in NOX 263 

emissions.  Our reported median drop of 21.6% is marginally lower than the 22.9% in a simple 264 

year-to-year comparison, which suggests that 2020 meteorology was slightly favorable for lower 265 

NO2, although these effects are most pronounced in the Northeastern United States and Florida.  266 

A deficiency of our method is our reliance on a single satellite instrument and algorithm.  It is 267 

known that the operational TROPOMI NO2 algorithm underestimates tropospheric vertical 268 

column NO2 in urban areas due to its reliance on a global model to provide shape profiles for the 269 

air mass factor (AMF); investigating the effects of the AMF bias on trends will be the subject of 270 

future work. Also, there may be a clear-sky bias (Geddes et al., 2012) associated with TROPOMI 271 

retrievals, but the results presented here are generally consistent with studies using ground 272 

monitors over the coincident region (Bekbulat et al., 2020) and the reported CO2 emissions 273 

reductions due to COVID-19 precautions (Le Quéré et al., 2020).  274 

The estimates of NO2 changes using our Methods appear to be reasonable given a quick bottom-275 

up emissions calculation.  Assuming that passenger vehicles traffic dropped by ~50%, and that 276 

all other sources only dropped modestly ~10 – 25%, NOX reductions between 10 – 35% would 277 

be expected.  San Jose, Los Angeles and Toronto appear to have reductions at the high end of 278 

this range, while Miami, Minneapolis, and Dallas have values near the lowest end; further work 279 



will look into why these cities have reductions on the ends of the spectrum.  Rapid assessments 280 

of NO2 changes – after normalized for seasonal and meteorological factors – can be used to 281 

highlight locations with greater changes in activity and better understand the sources contributing 282 

to adverse air quality in each city. 283 
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1. TROPOMI NO2  

1.1 Air Mass Factors and Uncertainty Estimates 

The slant tropospheric column is converted to a vertical column using a quantity known as the air 

mass factor (Palmer et al., 2001).  The air mass factor is the most uncertain quantity in the 

retrieval algorithm (Lorente et al., 2017), and is a function of the surface reflectance, the NO2 

vertical profile, and scattering in the atmosphere among other factors (Lamsal et al., 2014).  

Using accurate and high-resolution data (spatially and temporally) as inputs in calculating the air 

mass factor can significantly reduce the overall errors of the air mass factor (Choi et al., 2019; 

Goldberg et al., 2017; Laughner et al., 2016, 2019; Lin et al., 2015; Liu et al., 2019; Russell et 

al., 2011; Zhao et al., 2020) and thus the tropospheric vertical column content.   

Operationally, the TM5-MP model (1 × 1° resolution) (Williams et al., 2017) is used to provide 

the NO2 vertical shape profile and the climatological Lambertian Equivalent Reflectivity (0.5 × 

0.5° resolution) (Kleipool et al., 2008) is used to provide the surface reflectivities.  The 

operational air mass factor calculation does not explicitly account for aerosol absorption effects, 

which are accounted for in the effective cloud radiance fraction.  While the operational product 

does have larger uncertainties in the tropospheric column contents than a product with higher 

spatial resolution inputs, we limit our analysis to relative trends, which dramatically reduces this 

uncertainty.  The uncertainty in any daily measurement in the operational slant column data has 

been assigned to be approximately 5.7 × 1014 molecules-cm-2 (van Geffen et al., 2020). This 

equates to roughly a 5-10% uncertainty over polluted areas. However, because we are averaging 

over many days (~20-40), we assume that random errors will cancel due to the large number of 

observations used. This leaves only the systematic errors. Here, we assign the AMFs and 

tropospheric vertical column contents a systematic uncertainty of 20% in the trends (McLinden 

et al., 2014).  This systematic uncertainty may be largest over areas with changing snow cover, 

such as Minneapolis, Chicago, Toronto, and Montreal.  We calculate total uncertainty as the 

quadrature of the uncertainty associated with this potential systematic bias and the standard 

deviation of the three Methods. These are listed in Table S1. 



1.2 Re-gridding of TROPOMI NO2  

For our analysis we re-grid the operational TROPOMI tropospheric vertical column NO2, with 

native pixels of approximately 3.5 × 7 km2, to a newly defined 0.01° × 0.01° grid (approximately 

1 × 1 km2) centered over the continental United States (CONUS; corner points: SW: 24.5° N, 

124.75° W; NE: 49.5° N, 66.75° W).  Before re-gridding, the data are filtered so as to use only 

the highest quality measurements (quality assurance flag (QA_flag) > 0.75).   

2. Description of Methodologies 2 & 3 

2.1 Method 2: Normalization of Daily TROPOMI NO2 using ERA5 

We use TROPOMI NO2 data from 2018 – 2019 as analog data to normalize 2020 data.  

Essentially, our method is searching through the 2018 – 2019 archive to find a meteorological 

analog to the current conditions and then adjusting the current day’s conditions based off that 

analog.   

For each day of the record, we modify the original observed TROPOMI NO2 based on its value 

compared to a "baseline" which we set as a weekday in April with 3 m/s southwest winds. For 

each day, n, and each city, i, the normalized NO2, 𝑁𝑂#$ , is calculated as follows: 

𝑁𝑂#$
%,' =

𝑁𝑂#%,'
𝑓*+*,-%,'

 

The subscript i represents a city-specific average within a 0.4° × 0.4° box (i.e., ~20 km radius) 

surrounding the city center. 

The four adjustment factors are: sun angle, wind speed, wind-direction, and day-of-week.  While 

other conditions affect NO2 amounts they are either interrelated to the aforementioned factors or 

can be considered secondary.  Each of the four individual factors are multiplied together to get a 

"total adjustment factor".  The “total adjustment factor”, ftotal is calculated for each day, n, and 

each city, i, as follows: 

𝑓*+*,-%,' = .𝑓/0%1,%2-34%.𝑓5,61+7183394%.𝑓8'%51/:3354%,'[𝑓8'%515'<]%,' 



For the sun angle factor, we calculate this using a cosine fit. For each julian date, n, the sun angle 

factor (fsun-angle) can be calculated as follows:  

𝑓/0%1,%2-3% =
0.75 + 0.25 ∗ 𝑐𝑜𝑠 H2𝜋 𝑛 + 11365 N

0.75 + 0.25 ∗ 𝑐𝑜𝑠 H2𝜋 𝑛5 + 11365 N
 

At the winter solstice, December 21st (n = -11 or n = 354) the numerator value is 1 and at the 

summer solstice, June 21st (n = 171) the numerator value is 0.5. The variable nd represents the 

normalization day, in this case April 15th (nd = 105).  The aforementioned equation is only valid 

for locations north of the Tropic of Cancer (23.4°N). 

For the wind speed factor, we fit a third-order polynomial using analog winds speeds from the 

2018 – 2019 TROPOMI time frame. Wind speeds of 5 m/s would yield a correction factor of 1. 

Values larger than 1 represent winds slower than 5 m/s and values smaller than 1 represent winds 

faster than 5 m/s. This fit allows us to calculate a correction factor given any city-specific wind 

speed. 

For the wind direction factor, we calculate a correction factor normalized to southwest winds. 

Wind directions are grouped into the following categories: 0 – 90 º are southwest, 90 – 180 º are 

northwest, 180 – 270 º are northeast, and 270 – 360 º are southeast.  Once the wind speed is 

grouped into a specific category, the factor is defined based on its relation to the climatological 

wind direction; northwest for New York City and Washington D.C., and northeast for Los 

Angeles. Daily winds which are typical of the climatological wind direction yield a correction 

factor of 1.  

Lastly, for the day-of-week factor, we assume 15% lower values on Saturdays and 30% lower 

values on Sundays. We assume all weekdays have similar emissions rates to each other. 

Weekdays have a factor of 1, Saturdays a factor of 0.85 and Sundays a factor of 0.70. These 

assumptions are broadly consistent with literature demonstrating day-of-week NOX emissions 

patterns. 



As an example, a stagnant day in January may be lowered by a factor of ~2 to "normalize" to a 5 

m/s April weekday, whereas a very windy weekend day in April might be increased by a factor 

of 1.5 to account for the faster than normal winds and the weekend effect. 

Method 3: Normalization of Daily TROPOMI NO2 using a CTM 

We infer expected NO2 columns (Vex) during the lock-down period (tcovid) using the output from 

the GEM-MACH model(Moran et al., 2009; Pendlebury et al., 2018).  The operational version of 

the model, used in this study, has a 10 × 10 km2 grid cell size with 80 vertical levels (from the 

surface to about 0.1 hPa), provides hourly output, and includes emissions, chemistry, dispersion, 

and removal processes of 41 gaseous and eight particle species. The emissions used in the model 

are processed using the Sparse Matrix Operator Kernel Emissions (SMOKE)(Coats, n.d.) and 

account for seasonal changes; changes in emissions due to the COVID-10 lock-downs are not 

considered in the model framework. 

In a first step the GEM-MACH NO2 vertical levels in the boundary layer (up to approximately 2 

km) are summed to a column amount using the model’s pressure and temperature profile(Côté et 

al., 1998). Since the GEM-MACH model currently does not contain any NOx sources in the free 

troposphere (such as aircraft or lightning emissions), the NO2 model concentrations decrease to 0 

above the planetary boundary layer (PBL).  A free tropospheric column (from 2 km to 12 km) is 

added to the GEM-MACH PBL vertical column densities (VCDs) using a monthly GEOS-Chem 

run (0.5x0.67⁰ resolution, version v8-03-01; http://www.geos-chem.org)(Bey et al., 2001; 

McLinden et al., 2014). The model VCDs are then mapped in space and time to the TROPOMI 

observations, and treated like the observations, where data with qa<0.75 are filtered and 

averaged over the city center using a 28-day running mean.  

The expected VCDs (Vex) are the 28-day running means of the modelled VCDs (VM) during the 

lockdown period (tcovid). Vex is scaled to remove any bias between the model and satellite (VT) 

for the pre-lockdown period (tpre, between February 1st and March 1st  2020): 

𝑉3Q(𝑡T+U'5) = 𝑉W(𝑡T+U'5) ∙ 𝑚𝑒𝑎𝑛\
𝑉]^𝑡:<3_
𝑉W^𝑡:<3_

`. 



Depending on the city, some dates within the tpre time period may not be considered for the 

scaling, if there is a strong divergence between the model and the observations. 

The estimated NO2 drop is the average of the difference between the expected VCDs, Vex(tcovid), 

and the observed TROPOMI VCDs, VT(tcovid), between March 28th and April 16th, 2020 using 

the daily 28-day running means as shown in Figure 4. 



3. Supplemental Figures 
 

 
Figure S1. Frequency of daily maximum 2-m temperature within each bin, according to the 
ERA5 re-analysis. Each bar is a different city as noted by list in top left. 
 

 
Figure S2. Frequency of 100-m afternoon (16Z-21Z) wind speed within each bin, according to 
the ERA5 re-analysis. Each bar is a different city as noted by list in top left. 



 
Figure S3. Frequency of 100-m afternoon (16Z-21Z) wind direction within each bin, according 
to the ERA5 re-analysis. Each bar is a different city as noted by list in top left. 
 

 
Figure S4. Trends in TROPOMI NO2 since January 1 in 2019 and 2020. The lines represent the 
28-day rolling median value (50th percentile) in a 0.4° × 0.4° box centered on the city center for 
the largest cities (New York City, Los Angeles, Chicago, Toronto, Houston) and 0.2° × 0.2° box 
in all other cities. 
 
 



 
Figure S5. Average 100-m afternoon (16Z-21Z) wind speed and direction for March 15 – April 
30 in (left) 2019, (center) 2020, (right) difference between the two years, according to the ERA5 
re-analysis. 
 
 

4. Supplemental Table 
 
Table S1. Uncertainties associated with our methodology. Uncertainties are calculated as the 
quadrature of any potential systematic bias (20%) and the standard deviation of Methods 1 – 3.  
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