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Abstract

We examine Stokes drift and wave-induced transport of floating marine litter on the surface of a rotating ocean with a turbulent

mixed layer. Due to Coriolis–Stokes forcing and surface wave stress, a second-order Eulerian-mean flow forms, which must be

added to the Stokes drift to obtain the correct Lagrangian velocity. We show that this wave-driven Eulerian-mean flow can

be expressed as a convolution between the unsteady Stokes drift and an ‘Ekman–Stokes kernel’. Using this convolution we

calculate the unsteady wave-driven contribution to particle transport. We report significant differences in both direction and

magnitude of transport when the Eulerian-mean Ekman–Stokes velocity is included.
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Key Points:7

• Marine litter studies include surface wave transport by Stokes drift but have ne-8

glected wave-induced Eulerian-mean flows in the upper ocean.9

• We present a model of the Eulerian-mean Ekman–Stokes response to time-varying10

Stokes drift for use in marine litter transport models.11

• Using buoy data we show the unsteady Ekman–Stokes flow significantly alters both12

magnitude and direction of near-surface transport.13
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Abstract14

We examine Stokes drift and wave-induced transport of floating marine litter on the sur-15

face of a rotating ocean with a turbulent mixed layer. Due to Coriolis–Stokes forcing and16

surface wave stress, a second-order Eulerian-mean flow forms, which must be added to17

the Stokes drift to obtain the correct Lagrangian velocity. We show that this wave-driven18

Eulerian-mean flow can be expressed as a convolution between the unsteady Stokes drift19

and an ‘Ekman–Stokes kernel’. Using this convolution we calculate the unsteady wave-20

driven contribution to particle transport. We report significant differences in both di-21

rection and magnitude of transport when the Eulerian-mean Ekman–Stokes velocity is22

included.23

Plain Language Summary24

In transport models for floating marine litter, surface wave effects are often included by25

simply superimposing their Stokes drift (the small net drift induced by waves) upon wind-26

driven flows and currents. However, due to Earth’s rotation and turbulent dissipation27

in the ocean’s surface mixed layer, the Stokes drift also drives additional Eulerian-mean28

flows. To obtain the correct transport velocity, the wave-induced Eulerian-mean flow must29

be added to the Stokes drift. We develop a model that enables estimation of this wave-30

induced Eulerian-mean flow from measurements or predictions of the wave field and ap-31

ply our model to buoy data. Accounting for the Eulerian-mean flow significantly alters32

predictions of transport of floating marine litter.33

1 Introduction34

Floating marine debris, including plastic pollution, has rapidly become one of the35

most pressing environmental problems (Eriksen et al., 2014), particularly for marine ecosys-36

tems (Lavender Law, 2017). Although consensus exists about the longevity of plastic in37

the marine environment (Andrady, 2011) and the relatively large buoyancy of a signif-38

icant share of plastic produced (Geyer et al., 2017), with both factors contributing to39

their long-distance transport, the total plastic budget of the world’s oceans is poorly un-40

derstood. A significant mismatch exists between the estimated amount of land-generated41

plastic that enters coastal waters (5-12 million tonnes yr−1, Jambeck et al. (2015)) and42

the estimated total amount of plastic floating at sea (less than 0.3 million tonnes, Cózar43

et al. (2014); Eriksen et al. (2014); van Sebille et al. (2015)). Similarly, the amount of44

plastics measured at sea over the last few decades (Lebreton et al., 2019; Ostle et al., 2019;45

Wilcox et al., 2020) has not kept pace with growth in global plastic production (Gold-46

stein et al., 2012; Geyer et al., 2017). To understand this mismatch, an improved under-47

standing of the physical processes governing the transport and dispersion is required (van48

Sebille et al., 2020). This letter focuses on one of these processes: surface waves.49

As a particle undergoes its periodic motion beneath surface waves, it experiences50

a Lagrangian-mean velocity in the waves’ direction known as Stokes drift (Stokes, 1847).51

More generally, Stokes drift is the difference between the average Lagrangian flow ve-52

locity of a fluid parcel and the average Eulerian flow velocity of the fluid measured at53

a fixed spatial location (e.g. Bühler (2014); van den Bremer & Breivik (2017)). Surface54

gravity waves on the open ocean are mostly caused by winds. At any location and time,55

the wave field is a superposition of waves that have been generated by earlier winds at56

another location. Wave models, such as WAM and WaveWatch-III (Tolman, 2009), have57

been developed to predict wave fields and thus Stokes drift (Webb & Fox-Kemper, 2011;58

Breivik et al., 2014).59

A recent and growing body of literature is examining the role of Stokes drift in the60

transport and dispersion of floating plastic pollution. Iwasaki et al. (2017) showed that61

in the Sea of Japan, Stokes drift pushed microplastics closer to the coast. Delandmeter62
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& van Sebille (2019) and Onink et al. (2019) report a similar result in Arctic regions.63

Dobler et al. (2019) demonstrated that Stokes drift fundamentally changes transport pat-64

terns in the South Indian Ocean by shifting the convergence regions to the west, caus-65

ing leakage into the South Atlantic rather than the South Pacific. Waves may also al-66

low particles to cross strong circumpolar winds and currents (Fraser et al., 2018).67

Crucially, the above studies have simply superimposed the Stokes drift obtained68

from the local wave field onto the Eulerian current field obtained from ocean general cir-69

culation models or observations. In doing so, they have ignored the fact that the Eule-70

rian flow is itself modified by surface waves: on the rotating Earth, the Coriolis force as-71

sociated with the Stokes drift drives an Eulerian-mean current in the turbulent upper-72

ocean boundary layer (Ursell, 1950; Hasselmann, 1970; Xu & Bowen, 1994; Lewis & Belcher,73

2004), as noted in Onink et al. (2019). Together, the Stokes drift and this wave-induced74

Eulerian current form the Lagrangian velocity with which marine litter is transported.75

It is this wave-induced Eulerian current, which we call the Ekman–Stokes flow, that this76

letter examines.77

We derive a model for computing the unsteady Eulerian-mean Ekman–Stokes re-78

sponse to a time-varying Stokes drift, taking into account the correct wave stress bound-79

ary condition and the Coriolis–Stokes forcing. We do so for the case of constant eddy80

viscosity in the turbulent upper-ocean layer and a quasi-monochromatic (or narrow-banded)81

wave field. The product of this letter is an Ekman–Stokes convolution kernel, which can82

readily be used to predict the wave-induced Eulerian-mean flow in the turbulent upper-83

ocean boundary layer and hence the Lagrangian transport of floating marine debris. This84

kernel is a low-computational-cost alternative to fully coupled general circulation and85

wave models, which include the effect of waves in both the Coriolis–Stokes forcing and86

the surface boundary condition (Breivik et al., 2015). Using sample wave field data from87

buoys, we show that accounting for the Eulerian-mean Ekman–Stokes response to a time-88

varying Stokes drift considerably alters the trajectories of drifting objects.89

2 Unsteady Ekman–Stokes flow90

We consider a homogeneous, incompressible ocean of constant depth d, described
by horizontal coordinates x and y, and a vertical coordinate z measured upwards from
the undisturbed water level. The governing equations are

∂tu+ u ·∇u+ f × u = −∇p+ ν∇2u, ∇ · u = 0, (1a)

w |z=η = ∂tη + uH|z=η ·∇Hη, n̂ · ↔

τ · ŝ|z=η = 0, (1b)

w |z=−d = 0, (1c)

where z = η(x, y, t) denotes the free surface elevation, u is the three-dimensional ve-91

locity vector, f the Coriolis vector, AH ≡ (Ax, Ay, 0) the horizontal component of any92

A, and
↔

τ the stress tensor with components τij = −(p− p0)δij + ν(∂iuj + ∂jui), with93

p0 the atmospheric pressure and ν is the turbulent eddy viscosity, both taken constant.94

The unit vectors n̂ and ŝ are normal and tangential to the free surface respectively, so95

the dynamic boundary condition is a stress-free condition.96

2.1 Wave-averaged mean-flow equations97

We assume the wave steepness is small, α ≡ kA ≪ 1, where A is the peak wave98

amplitude of η and k the peak wavenumber, and solve (1) to O(α2) using a Stokes ex-99

pansion u = u1 + u2 + · · · , where the subscript denotes the order in α. We focus on100

deep-water waves (kd ≫ 1).101

Linear wave dynamics arises at O(α), where we ignore viscous effects, neglecting102

a thin vorticity boundary layer of thickness δν =
√

2ν/ω under the (generally satisfied)103
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assumption kδν ≪ 1. Consequently, we ignore viscous damping of waves as they prop-104

agate. In contrast, we must retain the Coriolis force since, as demonstrated by Hassel-105

mann (1970), O(f/ω) corrections put horizontal and vertical velocity components out106

of quadrature, with impact on the wave-averaged dynamics.107

Integrating the O(α2) equations over a wave period, we obtain the wave-averaged
mean flow equations (e.g. Huang, 1979)

∂tu− fvL = −∂xp+ ν∇2u, ∂tv + fuL = −∂yp+ ν∇2v, (2a)

∂tw = −∂zp+ ν∇2w, ∂xu+ ∂yv = −∂zw, (2b)

where the overbar denotes a time average, uL = u+uS is the Lagrangian (or particle-108

transport) velocity, with u = u2 the Eulerian-mean velocity and uS the Stokes drift,109

and the horizontal component of the Coriolis vector introduces only higher-order cor-110

rections to the flow. Without the shear and pressure terms, equations (2a) and (2b) cor-111

respond to those considered by Hasselmann (1970). The Coriolis terms include the Coriolis–112

Stokes forcing −f ẑ×uS (Hasselmann, 1970; Polton et al., 2005), which drives an Eu-113

lerian ‘anti-Stokes flow’, cancelling the Stokes drift and exciting inertial oscillations, and114

explains Ursell (1950)’s prediction of zero net drift for periodic waves in a rotating frame.115

We focus on the horizontal momentum equations (2a) in the Stokes layer, that is,
the top O(k−1)-deep layer of the ocean where the Stokes drift and hence the Coriolis–
Stokes forcing are localised. One of the boundary conditions is provided by averaging
the condition of zero tangential stress in (1b) (Longuet-Higgins (1953), Ünlüata & Mei
(1970), Xu & Bowen (1994) and Seshasayanan & Gallet (2019)); it is given by

∂zuH|z=0 = ∂zuSH|z=0. (3)

Examining the viscous but non-rotating case, Longuet-Higgins (1953) originally showed116

that vorticity is transported from the viscous boundary layers into the fluid interior, af-117

fecting the mass transport profile (Ünlüata & Mei, 1970; Xu & Bowen, 1994; Seshasayanan118

& Gallet, 2019). Additional Eulerian-mean wave-induced transport, known as boundary-119

layer streaming, occurs in the boundary layer (e.g. (Grue & Kolaas, 2017)). The con-120

tributions of Hasselmann (1970) and Longuet-Higgins (1953) (and the theory of wind-121

driven currents of Ekman (1905)) were unified by Xu & Bowen (1994) into a model of122

wave (and wind-) driven flow in finite-depth water.123

In the Stokes layer, vertical gradients dominate over horizontal ones. It follows from
(2b) that the vertical velocity component can be neglected and hence p is z-independent.
Introducing the complex notation U = u+iv as in Huang (1979), we obtain the Ekman–
Stokes equations

(∂t + if − ν∂2
z )U = −ifUS(x, z, t), ∂zU = ∂zUS(x, z, t)

∣

∣

∣

∣

z=0

, lim
z→−∞

U = 0, (4a,b,c)

where the two boundary conditions follow from (3) and the requirement that the solu-124

tion can be matched to a weak Eulerian flow outside the Stokes layer. The Eulerian Ekman–125

Stokes velocity solving (4) is driven by the Stokes drift in two ways, via the Coriolis–Stokes126

forcing in the fluid interior (Polton et al., 2005) and via the wave stress condition (4b).127

Note that a surface wind stress could be added to the boundary condition (4b); by128

linearity, the wind-driven Ekman velocity would simply be superimposed in convolution129

form on the wave-driven velocity we obtain (for example, Madsen (1978) Eq. (21) for linearly-130

varying ν(z)). Assuming the wind stress is greater than the wave stress so that the lat-131

ter can be omitted, Lewis & Belcher (2004) derive solutions to (4) for non-constant vis-132

cosity, but do not account for time-dependence of the wave-induced Eulerian response133

arising from the time-variation of the surface wave field and the associated Stokes drift.134
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2.2 Solution by Laplace transform135

We solve (4) by Laplace transform, assuming that the Stokes drift US has a time-
independent vertical structure exp(2kz), corresponding to a quasi-monochromatic wave
field, but an otherwise arbitrary time dependence. Denoting the Laplace transform by
a tilde, with

g̃(s) = L{g(t)} =

∫ ∞

0

g(t)e−stdt, g̃(s) = L−1 {g̃(s)} =
1

2πi

∫ γ+i∞

γ−i∞

g̃(s)estds, (5a,b)

where γ is a real number such that the contour path of integration is in the region of con-
vergence of g̃(s), we find

Ũ = 2k

(

1 +
if

s+ if − 4k2ν

) ŨSe
z
√

(s+if)/ν

√

(s+ if)/ν
− if ŨSe

2kz

s+ if − 4k2ν
. (6)

This is the sum of a particular solution – the second term – which can be interpreted136

as a partial anti-Stokes flow, varying over the Stokes depth δS = (2k)−1, and a homo-137

geneous solution – the first term – varying over the Ekman depth δE =
√

2ν/f , which138

includes a contribution driven by the vertical shear of the Stokes drift through the bound-139

ary condition (4b) (second term in the brackets in (6)).140

A special case of (6) occurs if US approaches a steady value US as t → ∞. Then
U tends to the time-independent solution (e.g. Seshasayanan & Gallet (2019))

U =
(1− i)D

2
US

(

1 +
1

1 + iD2/2

)

e(1+i)z/δE − USe
2kz

1 + iD2/2
, (7)

where D ≡ δE/δS is the fixed ratio of Ekman to Stokes depths. In the limit D → 0+,141

equation (7) tends to −US exp(2kz): up to an inertial oscillation this is the so-called ‘anti-142

Stokes’ Eulerian-mean flow, predicted by Hasselmann (1970) to be induced by periodic143

waves in a rotating, inviscid ocean. Viscosity acts to reduce the shear in the anti-Stokes144

flow, so that a nonzero Lagrangian-mean velocity remains.145

2.3 Ekman–Stokes kernel146

We now use the Laplace convolution theorem to write the unsteady solution for the
Ekman–Stokes mean flow as a function of time for arbitrary Stokes drift as

U(x, z, t) = US|z=0 ∗K (z, t) , (8)

where ∗ denotes convolution in time and

K(z, t) = L−1

{

2kez
√

(s+if)/ν

√

(s+ if)/ν
+

if

s+ if − 4k2ν

(

2kez
√

(s+if)/ν

√

(s+ if)/ν
− e2kz

)}

. (9)

The convolution kernel K(z, t), which we will term the Ekman–Stokes kernel, can be eval-
uated by deforming the integration contour involved in the inverse Laplace transform
to obtain (see supplementary material)

K(z, t) = 2k
√
νe−ift e

−z2/(4νt)

√
πt

− ife(4k
2ν−if)t

∑

±

e±2kz

2
erfc

(√
4k2νt± z√

4νt

)

, (10)

where
∑

±
denotes the sum of the plus and minus terms and we use the complementary

error function erfc(x) = 1 − erf(x). An equivalent form emphasising the dependence
on wave parameters uses the scaled error function erfcx(t) = et

2

erfc(t) and reads

K(z, t) = 2k
√
νe−ift e

−z2/(4νt)

√
πt

− ife−ift e
−z2/(4νt)

2

∑

±

erfcx

(√
4k2νt± z√

4νt

)

. (11)
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Limit Behaviour Theory

t → ∞ 2k
√
νe−ift/

√
πt
[

1− if/(4k2ν)
(

1− (1 + 2k2z2)/(4k2νt)
)]

long-time limit
t → 0+ 8νk2δ(z/δS)− ife2kz short-time limit
ν → 0+ −ife−ifte2kz Hasselmann (1970)

f → 0+ 2k
√
νe−z2/(4νt)/

√
πt Longuet-Higgins (1953)

Table 1. Asymptotic behaviour of the Ekman–Stokes kernel K(z, t).

The Ekman–Stokes kernel K captures the (Eulerian-mean) flow response to the Stokes147

drift. The 1/
√
t describes the establishment of an Ekman spiral driven by the wave-induced148

surface stress; the if terms describe the impact of the Coriolis–Stokes forcing. Note that149

the dimension of K(z, t) is time−1.150

Several limits of the kernel are of interest; they are given in dimensional terms in
Table 1. The limits ν → 0+ and f → 0+ are best understood by rewriting (11) in terms
of the dimensionless parameters D = δE/δS, ζ = 2kz and τ = ft to obtain

K (ζ, τ) /f = De−iτ e
−ζ2/(2D2τ)

√
2πτ

− i

2

∑

±

e−iτ−ζ2/(2D2τ) erfcx

(

D

√

τ

2
± ζ√

2D2τ

)

. (12)

When D ≫ 1, e.g. because f → 0+, the Coriolis–Stokes sum term in (12) is negligi-151

ble and the flow becomes the Longuet-Higgins (1953) response to the wave stress at the152

surface. In contrast, for D ≪ 1, e.g. as ν → 0+, the anti-Stokes result of Hasselmann153

(1970) is approached but non-uniformly in ζ. This singular behaviour arises since for any154

nonzero D the shear condition at the surface cannot be met by an exact anti-Stokes flow,155

resulting in a thin layer of depth ∼
√

ν/f near the surface where cancellation of the Stokes156

drift is imperfect (e.g. Seshasayanan & Gallet (2019)). Over long times τ → ∞, the157

Coriolis–Stokes terms decay on the viscous rather than the inertial timescale, despite ow-158

ing their existence to Earth’s rotation.159

The magnitude and argument of the dimensionless kernel K(ζ, τ) are shown in Fig-160

ure 1 for D = 1. The magnitude is largest towards (τ, ζ) = (0, 0) due to the singular161

behaviour discussed above. The kernel has the character of an amplitude-decaying in-162

ertial oscillation with period 2π/f with an orientation in the horizontal plane that os-163

cillates with the inertial period. Equation (11) together with the convolution in time (8)164

is the key result of this letter. Taking as inputs a time series of Stokes drift and estimates165

of the peak wavenumber k, Coriolis parameter f and turbulent viscosity ν, these equa-166

tions produce a time series of the associated (Eulerian-mean) Ekman–Stokes current at167

any vertical elevation z, which can simply be added to the time series of the Stokes drift168

to give the Lagrangian-mean current relevant for marine litter transport. An open-source169

implementation in Python is provided as supplementary material.170

3 Sample calculations of the Ekman–Stokes flow171

3.1 Idealised storm172

To demonstrate the use of the Ekman–Stokes kernel, we calculate the Eulerian re-173

sponse to a Gaussian Stokes drift profile lasting approximately 24 hours to represent an174

idealised storm. Specifically, we set uS(z = 0) = u∗
S
exp(−(t− t∗)2/(σ2)) (and vS = 0)175

with σ = 6 hrs and magnitude u∗
S
= 0.070 m/s being reached at t∗ = 24 hrs. Choos-176

ing f = 1.0× 10−4 s−1 and ν = 1.0× 10−2 m2s−1 (D = 1.1), we set U(z = 0, t = 0) =177

0 and evaluate the response for 1 week.178

–6–
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Figure 1. Ekman–Stokes kernel K(ζ, τ ) for D = 1 (with f = 1× 10−4s−1): (a) magnitude and

(b) argument as a function of depth and time, and (c) hodograph at the surface (ζ =0) with time

(in days) shown in red. In panel (a) we have saturated the colour scale, as the kernel is singular

at (ζ, τ ) = (0, 0).

Figure 2. Top: Time series of wave-induced velocities formed in response to an idealised

24-hr Gaussian storm in the Northern Hemisphere showing the two components and magnitude

of the Stokes drift US (black), Eulerian-mean velocity U (blue) and Lagrangian velocity UL (red).

Bottom: Wave roses for US, U , and UL, with radial distance representing the fraction of time

during which the velocity has a given direction, and colour indicating magnitude in m/s.

–7–
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Figure 3. Top: Time series (14/05/00 15:41 − 22/05/00 09:41 UTC) of wave-induced veloci-

ties computed from buoy data from San Nicolas Island (33.22◦ N, 119.88◦ W), with colours as in

Fig. 2. Bottom: Corresponding wave roses, as in Fig. 2.

In figure 2 we plot the u and v components and magnitudes, respectively, of the179

second-order currents over a week-long period. The sum of Stokes drift (black) and Ekman–180

Stokes flow (blue) gives the Lagrangian (transport) velocity (red). Beneath, wave roses181

are plotted for these second-order currents. The angular direction corresponds to the an-182

gle of propagation of the current (separated into 30 bins), the radius of each bar repre-183

sents the percentage of time during which the velocity has a given direction, and the colour184

scale divides the data into velocity amplitude ranges. Fig. 2 shows that the Stokes drift185

is reduced by a (delayed) partial ‘anti-Stokes’ flow in the opposing direction, a transverse186

component arises on the same time scale, and damped inertial oscillations are formed187

which remain after the storm has ceased. The resulting Lagrangian current is deflected188

by the large transverse component of the Ekman-Stokes flow, to the right in the North-189

ern Hemisphere (and to the left in the Southern Hemisphere). )190

3.2 Buoy data191

We use half-hourly records for the San Nicolas Island buoy (33.22◦ N, 119.88◦ W)
obtained from CDIP (the Coastal Data Information Project) and estimate the Stokes
drift using the formula

US = g−1ω3
pA

2
p exp(2kz) exp (iθp) , where Ap = HS/4. (13)

where θp is the peak wave direction, Hs is the significant wave height, and ωp is the peak192

frequency calculated from the peak period Tp. By making a quasi-monochromatic ap-193

proximation, we assume the wavenumber spectrum is peaked about k = mean(kp) =194

mean(ω2
p/g), to leading order. We integrate (11) using the Stokes drift (13) by a trape-195

zoidal rule with time-step equal to the buoy sampling time. We define the surface value196

of the kernel as limz→0− K(z, t) instead of directly setting z = 0, so that the singular197

behaviour at (0, 0) is avoided.198

–8–
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Figure 4. Particle paths at the surface (z=0) computed for the San Nicolas Island buoy

using our Ekman–Stokes convolution kernel. Columns: two different time samples. Rows: dif-

ferent values of turbulent viscosity. The paths shown are obtained using the Stokes drift (black),

Eulerian-mean velocity (blue) and Lagrangian-mean velocities (red). The dashed lines ignore

time dependence of the Stokes drift and show the response to the average of the Stokes drift over

the periods considered. All paths begin at (∆x,∆y) = (0, 0). Numbers beside each line denote

the number of days elapsed.

As in figure 2, the top panels of figure 3 show the u and v components and mag-199

nitudes of the second-order currents. The largest Stokes drift at San Nicolas Island over200

this time period is in a South-Southeasterly direction, though a share of very small val-201

ues arising from small-amplitude waves are also seen to propagate West-Southwest (cf.202

bottom-left panel, figure 3). In contrast, the Ekman–Stokes contribution is much more203

directionally-spread at all velocity amplitudes due to excited inertial oscillations. Super-204

imposing the two flows leads to a directionally-spread Lagrangian drift which veers to205

the right of the Stokes drift.206

To find the displacement associated with the unsteady flows, we simplify the prob-207

lem by taking the wavenumber and Stokes drift time series to be uniform in space, which208

is valid for the relatively small accumulated displacements considered. Particle displace-209

ments are computed by time integrating the velocities obtained from our Ekman–Stokes210

kernel and are plotted in figure 4. Panels (a) and (c) show displacements over one week211

in February 2003 and (b) and (d) over a week in May 2000, with (b) corresponding to212

velocities plotted in figure 3. Line colours are consistent with figures 2 and 3. Straight213

dotted lines represent steady solutions i.e. (7) multiplied by time elapsed, with US =214

mean (US). Evidently, the steady approximation causes errors in the prediction of net215

particle displacement. Instead of simply following the black trajectory being transported216

by the Stokes drift alone, we predict the particle will follow the red trajectory, being trans-217

ported by the Lagrangian velocity, the sum of the Stokes drift and the wave-induced Ekman–218

Stokes flow. For both time samples, the Lagrangian displacement is to the right of the219

displacement by the Stokes drift, as for the velocities. In the Southern Hemisphere, it220

will lie to the left of the Stokes drift.221

–9–
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We anticipate that the realistic range for viscosity is O(10−3)-O(10−2) m2s−1, es-222

timated from the vertical mixing coefficient SM = 0.30 in Mellor & Blumberg (2004)223

by using the law of the wall. Comparing (c) and (d) with (a) and (b), the particle dis-224

placement is reduced and inertial oscillations are more pronounced for the smaller vis-225

cosity ν = 10−3m2s−1 in (c) and (d), since the directly opposing anti-Stokes flow in-226

creases in magnitude as viscosity decreases. For both values of ν (and values between227

them) the displacement is significantly altered in both magnitude and direction when228

the Ekman–Stokes flow is included.229

4 Discussion and conclusions230

Our analysis has demonstrated the need to add a so-called Ekman–Stokes flow to231

the Stokes drift to properly estimate the wave-induced Lagrangian-mean flow which trans-232

ports floating marine litter. We have derived an Ekman–Stokes convolution kernel which233

can readily be used to predict the wave-induced Eulerian-mean flow in the turbulent upper-234

ocean boundary layer on a rotating Earth. It incorporates three important effects: the235

surface wave stress, the Coriolis–Stokes forcing, and unsteadiness of the forcing and re-236

sponse.237

We properly account for the wave stress at the surface. This is often neglected (e.g.238

Lewis & Belcher (2004); Polton et al. (2005); Onink et al. (2019)), though it may be of239

the same magnitude as the wind stress (Seshasayanan & Gallet, 2019). Including the wave240

stress will yield more accurate predictions of the Lagrangian drift, particularly when wind241

and waves are misaligned. Our model also incorporates the Coriolis–Stokes forcing which242

induces a partial anti-Stokes flow and alters the response over the Ekman depth δE =243
√

2ν/f (cf. Polton et al. (2005)). Our results demonstrate that for realistic values of eddy244

viscosity of 10−3–10−2m2s−1 there is only partial cancellation of the Stokes drift by an245

anti-Stokes flow. Perhaps most importantly, our approach shows that unsteadiness of the246

Stokes drift and the induced Eulerian response can be readily incorporated into mod-247

els of Lagrangian drift using a simple convolution. As passage times of storms are typ-248

ically O(1/f), time variability of the problem is crucial for accurate predictions of drift.249

Future work should improve our model in the following ways. For simplicity we have250

assumed a constant eddy viscosity, although our Ekman–Stokes kernel could be adapted251

for linearly-increasing eddy viscosity (Madsen (1977), Lewis & Belcher (2004)), which252

provides a more accurate representation of turbulence in the upper-ocean boundary layer.253

Additionally, Shrira & Almelah (2020) have presented a solution method accounting for254

time-dependence of the eddy viscosity due to processes such as mixed-layer restratifica-255

tion or wave breaking (Price & Sundermeyer, 1999). Parametrisations of turbulent vis-256

cosity should thus account for both time and depth variation.257

In real oceans, wave spectra are broad-banded, leading to a more strongly sheared258

but depth-persistent Stokes drift than for a monochromatic spectrum (Webb & Fox-Kemper,259

2011). When complete information about the wave spectrum is available, the Ekman–260

Stokes kernel can be used to evaluate the contribution of each wavenumber to the Eulerian-261

mean velocity, which can then be summed to obtain a complete response. However, shear262

of the Stokes drift for realistic broad-banded spectra can be approximated using a monochro-263

matic profile with a modified depth dependence (see e.g. Breivik et al. (2014)). Alter-264

native Stokes drift depth-profiles would result in a different wave stress and functional265

form of the Coriolis–Stokes term in our Ekman–Stokes kernel.266

Finally, we note that Seshasayanan & Gallet (2019) have recently shown that the267

steady Ekman–Stokes spiral is unstable to perturbations. Future work should consider268

the importance of this instability in the real ocean and how it might interact with un-269

steadiness of the Stokes drift.270
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Contour integration8

To carry out the Laplace inversion in (9) in the main paper, we group the two terms
in the round bracket, noting that the second term, which is proportional to exp(2kz),
gives an exponentially-growing solution ∝ exp(4k2νt) if inverted by itself. This may be
seen by closing the contour to the left and applying Cauchy’s theorem. Using L’Hôpital’s
rule on the grouped terms shows that s = 4k2ν−if is a removable singularity. Defin-
ing S = s+if we perform the integration along the contour shown in Figure A1; since
the function is analytic within the enclosed region, we have by Cauchy’s Theorem

1

2πi

∮ (
2kez
√

(s+if)/ν√
(s+ if)/ν

+
if

s+ if − 4k2ν

(
2kez
√

(s+if)/ν√
(s+ if)/ν

− e2kz
))

estds = 0. (1)

The contribution of the arcs C1 and C2 disappears as R→∞, while the contribution
of the small circle Cε disappears as ε→ 0+. Applying Cauchy’s Theorem, the inverse
Laplace transform equals minus the sum of the line integrals either side of the branch
cut, L+ and L-. Changing variables to b =

√
|S|/ν and accounting for the behaviour

of the square root when the branch cut is crossed, it is easy to see that

√
S/ν =

√
−|S|/ν =

{
+ib above the branch cut

−ib below the branch cut
. (2)

The inverse transform is equal to the real integral

L−1
{

2kez
√

(s+if)/ν√
(s+ if)/ν

+
if

4k2ν − if − s

(
2kez
√

(s+if)/ν√
(s+ if)/ν

− e2kz
)}

=
e−ift

π

∫ ∞
−∞

2k
√
νe−b

2t cos
(
bz/
√
ν
)
db− ife−ift

π

∫ ∞
−∞

2k
√
νe−b

2t cos (bz/
√
ν)

b2 + 4k2ν
db. (3)

The first of these is a Gaussian integral while the second may be evaluated explicitly by9

using Eq. No. 3.954 in Gradshteyn & Ryzhik (2014, p. 504), resulting in the analytic ex-10

pression (10) in the main paper.11
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Figure 1. Integration contour for the Laplace inversion of the Ekman–Stokes kernel (??). The

branch cut of the square root lies along the negative real axis. As R → ∞, the line segment Lγ

tends to the Browmwich contour used for the inverse Laplace transform.
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