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Abstract

A primary task of a network-based, earthquake early warning system is the prompt event detection and location, needed to

assess the magnitude of the event and its potential damage through the predicted peak ground shaking amplitude using empirical

attenuation relationships. Most of real-time, automatic earthquake location methods ground on the progressive measurement

of the first P-wave arrival time at stations located at increasing distances from the source but recent approaches showed the

feasibility to improve the accuracy and rapidity of the earthquake location by using the additional information carried by the

P-wave polarization or amplitude, especially unfavorable seismic network lay-outs. Here we propose an evolutionary, Bayesian

method for the real-time earthquake location which combines the information derived from the differential P-wave arrival times,

amplitude ratios and back-azimuths measured at a minimum of two stations. As more distant stations record the P-wave the

posterior pdf is updated and new earthquake location parameters are determined along with their uncertainty. To validate the

location method we performed a retrospective analysis of mainshocks (M>4.5) occurred during the 2016-2017 Central Italy

earthquake sequence by simulating the typical acquisition layouts of in-land, coastal and linear array of stations. Results show

that with the combined use of the three parameters, 2-4 sec after the first P-wave detection, the method converges to stable

and accurate determinations of epicentral coordinates and depth even with a non-optimal coverage of stations. The proposed

methodology can be generalized and adapted to the off-line analysis of seismic records collected by standard local networks.
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Abstract  1 

 2 

A primary task of a network-based, earthquake early warning system is the prompt event 3 

detection and location, needed to assess the magnitude of the event and its potential damage 4 

through the predicted peak ground shaking amplitude using empirical attenuation 5 

relationships. Most of real-time, automatic earthquake location methods ground on the 6 

progressive measurement of the first P-wave arrival time at stations located at increasing 7 

distances from the source but recent approaches showed the feasibility to improve the 8 

accuracy and rapidity of the earthquake location by using the additional information carried by 9 

the P-wave polarization or amplitude, especially unfavorable seismic network lay-outs. 10 

Here we propose an evolutionary, Bayesian method for the real-time earthquake location 11 

which combines the information derived from the differential P-wave arrival times, amplitude 12 

ratios and back-azimuths measured at a minimum of two stations. As more distant stations 13 

record the P-wave the posterior pdf is updated and new earthquake location parameters are 14 

determined along with their uncertainty. To validate the location method we performed a 15 

retrospective analysis of mainshocks (M>4.5) occurred during the 2016-2017 Central Italy 16 

earthquake sequence by simulating the typical acquisition layouts of in-land, coastal and linear 17 

array of stations. 18 

Results show that with the combined use of the three parameters, 2-4 sec after the first P-wave 19 

detection, the method converges to stable and accurate determinations of epicentral 20 

coordinates and depth even with a non-optimal coverage of stations. The proposed  21 
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methodology can be generalized and adapted to the off-line analysis of seismic records 22 

collected by standard local networks. 23 

1 Introduction 24 

 25 

When an earthquake happens, the determination of its hypocentral coordinates and origin time 26 

is a standard, routine operation for any near-fault seismological observatory, and is typically 27 

performed within a couple of minutes from the earthquake occurrence, when most or all the 28 

phase arrival times at the stations are available. 29 

The earthquake location is the most common example of a non-linear inverse problem, 30 

requiring the use of multiple data, spatially distributed around the source, to provide a unique 31 

and well constrained solution. When included in an automatic, real-time process of earthquake 32 

source parameter determination, the constraint of achieving a fast and robust solution even 33 

using a poor initial arrival-time data-set represents a further complexity to be managed. 34 

Some proposed location methods solve the related inverse problem within a probabilistic frame 35 

and the maximum likelihood solution with its uncertainty are provided in the form of an 36 

posterior probability density function (e.g. NLLoc, Lomax et al., 2009; or NLDiffLoc, De Landro et 37 

al., 2015). Prior constraints are also adopted to optimize the process and to rapidly converge to 38 

a unique solution. 39 

When dealing with real-time applications for Earthquake Early Warning Systems (EEWS), which 40 

asks for very fast source parameter estimates (within a few seconds), the earthquake location 41 

procedure becomes a sensitive issue which requires the adoption of dedicated, non-trivial 42 

algorithmic solutions. These must account for the continuous and evolutionary waveform data 43 
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availability in real-time, depending on the geometry and distribution of the seismic stations 44 

around the epicenter, as well as on the velocity of propagation of seismic waves across the 45 

network. 46 

Nevertheless, an effective early warning system must provide reliable estimates of the location 47 

and size of an ongoing event, in the shortest possible time. The correct determination of 48 

hypocentral coordinates and origin time is essential a) to identify the source area and the 49 

causative fault of the ongoing event, b) to assess the earthquake impact (together with the 50 

earthquake magnitude) and predict the expected ground shaking and potential damage in the 51 

target area and c) to estimate the available lead-time at sensitive target infrastructures to be 52 

protected in order to start emergency operations and security actions addressed to secure the 53 

population, building and industrial facilities.  54 

Several approaches for the real-time location have been developed and various parameters 55 

have been proposed in order to gain constraint on the solution, when few observed data are 56 

available. In the Elarms methodology (Allen, 2007), for example, at the arrival of the first 57 

trigger, the event is positioned at that unique station and the depth is fixed to the typical depth 58 

of the events in the region. When two and three stations trigger the event, the epicenter 59 

location is fixed as the centroid position between the triggered stations. Finally, when four 60 

stations have recorded the P-wave, a grid search method is used to locate the event, searching 61 

for the minimum misfit between predicted and observed arrival times. Horiuchi et al. (2005) 62 

first introduced the concept of not-yet triggered stations to constrain the event location when 63 

only two stations are available. In their approach, the initial solution is constrained using the 64 

estimated Equal Differential Time (EDT) surface (Font et al., 2004; Lomax, 2005), i.e., the quasi-65 
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hyperbolic surface on which the difference in calculated travel time to a pair of stations is equal 66 

to the difference in observed arrival times for the two stations. The EDT shape in the 3D 67 

medium is progressively updated as more stations record the P-wave arrival time. In this 68 

approach the not-triggered stations provide a constraint which allows to further delimitate the 69 

probabilistic volume containing the hypocenter. Satriano et al. (2008) then introduced an 70 

evolutionary, probabilistic approach for the real-time earthquake location, also based on the 71 

EDT formulation, on the concept of triggered and not-yet-triggered stations and on the use of 72 

the Voronoi cell associated to each available station, allowing to constrain the initial hypocenter 73 

location even with just one recorded P-wave arrival. More recently other authors (Noda et al., 74 

2012; Eiserman et al., 2015; Liu and Yamada, 2014) introduced new observed parameters to 75 

constrain the real-time earthquake location in early warning applications.  76 

Previous attempts of using single station back-azimuth (BAZ) determinations showed that these 77 

measures can be affected by large uncertainties, possibly preventing their use for EEW 78 

(Lockman and Allen, 2005). 79 

Noda et al. (2012) have proposed a new approach to improve the accuracy of BAZ estimations 80 

with a variable-length time window which is determined by the first half cycle of the initial P-81 

wave. Using the Japanese K-NET strong-motion dataset they showed that the estimation, using 82 

this new approach, can be significantly improved both in accuracy of BAZ estimation and speed. 83 

Eiserman et al. (2015) evaluated the robustness of three independent real-time back-azimuth 84 

(BAZ) determination schemes, through the offline analysis of southern California earthquake 85 

records and found that the three methods provide equivalent levels of accuracy. After passing 86 

the P-wave signals through specifically designed algorithms for checking the signal coherency 87 
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and signal-to-noise quality they show that BAZ estimates can be achieved in real time, with an 88 

optimal error of less than 15°.  89 

In their method for identification of multiple events for EEWS, Liu and Yamada(2014) and Wu et 90 

al.(2015) use both P- and S-wave travel-times and amplitudes to constrain the earthquake 91 

location and magnitude of events occurring in an aftershock sequence. In a Bayesian, 92 

probabilistic frame, they consider the possibility of having more than one event occurring at 93 

any given time, by introducing a new posterior probability density function which jointly uses 94 

time and amplitude information from triggered and not-triggered stations. 95 

Here we propose a Bayesian, multiparametric approach for the real-time earthquake location 96 

(M-PLOC). The proposed methodology exploits the continuous waveform data streaming from 97 

dense three component networks deployed in the source zones of potential damaging 98 

earthquakes and is specifically conceived for real-time seismic hazard analysis and EEW 99 

applications. The approach combines three different observed parameters (differential arrival 100 

times, amplitude ratios and back-azimuth estimates) measured in progressive (or fixed) time 101 

windows after the first P-wave arrival. The most probable estimates of hypocenter coordinates 102 

and origin time are provided as soon as the first stations trigger the event and are progressively 103 

updated as the P-wavefront expands across the network and new portions of signals are 104 

acquired by more and more distant stations.  105 

We first describe the details of the methodology and then present the results of its application 106 

to a set of events recorded during the 2016-2017 Central Italy seismic sequence. During the 107 

testing phase, we perform jackknife simulation experiments with optimal/non-optimal data 108 
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acquisition lay-outs, by changing the geometry, coverage and number of stations and discuss 109 

the performance of the method for the different situations.  110 

2 Method 111 

 112 

Let us assume that the EEW seismic network is composed of N sensor probes, with the 113 

capability to detect the arrival of the first P-wave arrival and to measure the arrival time, the P-114 

wave polarization direction (angle from the North) and peak displacement amplitude in 115 

progressively expanded time windows (unit window length of 1 sec, maximum window length 116 

of 5 sec). 117 

We assume that the arrival time (𝑡𝑖), back-azimuth (𝛼𝑖) and peak displacement amplitude (𝑃𝐷𝑖) 118 

are available at station 𝑖 (𝑖 = 1, . . , 𝑁) in a fixed time window of 1 sec, after the first P-wave is 119 

detected at the station, although a minimum of two stations are required to get the first 120 

location estimate. 121 

As the P-wavefront expands spatially from the hypocenter, more stations record the P-wave 122 

arrival and additional arrival times, polarization and amplitude data can be used to constrain 123 

the earthquake location. In this sense, the proposed location is evolutionary, by including more 124 

and more data as the time increases since the earthquake origin. 125 

At any time after the recording of a 1sec P-wave time window at N stations (minimum N=2), the 126 

multiple data-sets that will be used for earthquake location are: 127 

- differential first P-wave arrival times 𝛥𝑡𝑖𝑗 at any couple of stations 𝑖, 𝑗 128 

- peak displacement amplitude ratios 𝛥𝑃𝐷𝑖𝑗 = 𝑙𝑜𝑔 
𝑃𝐷𝑖

𝑃𝐷𝑗
  at any couple of stations 𝑖, 𝑗  129 

- measurements of BAZ from P-wave polarizations at the available N stations  130 



A Bayesian Method for Real-time Earthquake Location  

 

8 

 

The methods for the real-time measurement of P-wave arrival times, polarization and peak 131 

displacement amplitude) for earthquake location are described in the following paragraph. We 132 

assume that measurements are available with the associated error estimate. 133 

 134 

Real-Time measurement of differential P-wave arrival times, polarizations and peak 135 

displacement amplitude ratios  136 

The algorithm processes the three-component, ground acceleration data streams recorded by 137 

an accelerometer seismic network. In its offline version, the real-time data acquisition of the 138 

vertical component of ground motion is simulated using local files (SAC - Seismic Analysis Code 139 

format) with the packetization of data-stream set at 0.5 seconds. A preliminary removal of the 140 

mean value and linear trend of the signal is operated when the first P-wave arrival is detected 141 

(automatically or provided from the header of SAC files).  142 

In real-time mode, as soon as two stations have been triggered by the earthquake signal and 143 

the automatic P-phase picking is available, the differential P-wave arrival times is therefore 144 

computed as the difference of arrival times at each triggered station. For more than two 145 

available P-arrival times, all possible differential time combinations are evaluated and used for 146 

the event location. 147 

First P-wave arrival times at each station are obtained through an automatic picking procedure 148 

based on a recursive STA/LTA trigger-based strategy, e.g. the FilterPicker method by Lomax et 149 

al.(2012) 150 

 151 
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The back-azimuth BAZ, i.e. the angle from the North of the epicenter-to-station direction, is 152 

then estimated in a P-wave time window length of 0.5 seconds, this value having been set upon 153 

preliminary tests with variable widow lengths. A polarization analysis is applied to the three 154 

component P-amplitude signal, band-pass filtered in the frequency band 0.5-3 Hz (see d) and e) 155 

in Figure 1). A Moving Average (MA) approach has been used as first proposed by Nakamura 156 

(1988) and furtherly modified by Eiserman et al. (2015). In this approach, the BAZ evaluated at 157 

the ending point 𝑛 of the P-wave discrete-time series, is defined following a recursive formula: 158 

𝐵𝐴𝑍𝑛 = 𝑔[𝜃𝑛(𝑅𝑍𝐸
𝑛 , 𝑅𝑍𝑁

𝑛 ), 𝑠𝑖𝑔𝑛(𝑅𝑍𝑁
𝑛 )] (1) 159 

  160 

where: 161 

𝜃𝑛 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑅𝑍𝐸

𝑛

𝑅𝑍𝑁
𝑛 ) + 𝜋 162 

with: 163 

𝑅𝑍𝐸
𝑛 = 𝛼 𝑅𝑍𝐸

𝑛−1 + 𝐴𝑍
𝑛 𝐴𝐸

𝑛  164 

𝑅𝑍𝑁
𝑛 = 𝛼 𝑅𝑍𝑁

𝑛−1 + 𝐴𝑍
𝑛 𝐴𝐸

𝑛  165 

𝛼 is a smoothing parameter smaller but close to the unity (𝛼 = 0.99), 𝐴𝑍
𝑛, 𝐴𝑁

𝑛  and 𝐴𝐸
𝑛  are the 166 

amplitudes of the Vertical, North and East component of n-th sample, respectively. The 167 

recursive formula (1) provide the BAZ as a weighted average of the values estimated in a 168 

progressively expanded P-wave time window, with weights given by the recorded vertical 169 

amplitude. The factor 𝛼 ensure that series terms nearby to the n-th sample contribute more 170 

than distant ones.  The function 𝑔 is defined as (Eisermann et al., 2015):    171 

𝑔(𝜑) = {
𝜑 + 𝜋  𝑖𝑓 𝑅𝑍𝑁

𝑛 < 0 
𝜑    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 172 



A Bayesian Method for Real-time Earthquake Location  

 

10 

 

This flip condition removes the 180° ambiguity in the BAZ definition. Finally, similarly to 173 

Eisermann et al. (2015), a muting condition has been applied to reject low signal-to-noise 174 

amplitudes in the weighted recursive formula (1).  175 

In a time window of 2 seconds, the ground acceleration waveform is integrated once and the 176 

linear-trend of the signal is removed in order to get the peak velocity amplitude (Pv) within the 177 

considered time window. The parameter Pv at the first two stations is measured within a time 178 

window with the same length after the first P-arrival (see d) and e) in Figure 1) and used to 179 

compute the logarithm of their amplitude ratio to be used for the event location. As for the 180 

differential times, the peak velocity amplitude ratio is computed for any couple of stations for 181 

which Pv has been measured. 182 

 183 

Recursive use of the Bayesian method for model parameter estimation using multiple data sets  184 

Let us recall the general formulation of the Bayes formula for a general model parameter vector 185 

(𝒎) to be determined using a single data-set vector (𝒅): 186 

 187 

𝑃(𝒎|𝒅) =
𝑃(𝒅|𝒎)𝜌(𝒎)

𝑝(𝒅)
 (2) 188 

Where  189 

𝑃(𝒎|𝒅) is the posterior probability density function (pdf) of parameters given the data; 190 

𝑃(𝒅|𝒎) is the conditional pdf of data given the model parameters; 191 

𝜌(𝒎) is the prior pdf on model parameters; 192 

𝑝(𝒅) is the data marginal likelihood (𝑝(𝒅) = ∫ 𝑃(𝒅|𝒎)𝜌(𝒎) 𝑑𝒎), e.g. the posterior pdf 193 

normalization factor. 194 



A Bayesian Method for Real-time Earthquake Location  

 

11 

 

In our earthquake location problem using multiple data-sets, we propose the recursive use of 195 

Bayes’ formula, where the posterior pdf of m given an initial data-set is used as prior 196 

information for obtaining the posterior pdf of m given the second data-set, which is in turn set 197 

as the prior pdf for the final posterior pdf given the third data-set.  198 

Let us consider N stations and define the differential P-times as the initial data-set for our 199 

recursive Bayesian approach: 200 

𝒅𝟏 ≡ (𝛥𝑡12, … , 𝛥𝑡𝑁1) 201 

The components of the model parameter vector are the cartesian coordinates of the 202 

hypocenter location: 203 

𝒎 ≡ (𝑥, 𝑦, 𝑧) 204 

The conditional probability 𝑃(𝑚) can be defined as the likelihood function for differential time 205 

residuals according (Tarantola & Valette, 1982): 206 

𝑃(𝒅𝟏|𝒎) = 𝑐𝑜𝑛𝑠𝑡 𝑒
− 

∑ ∑ (Δ𝑡𝑖𝑗−Δ𝜏𝑖𝑗(𝒎))
2

𝑁
2

𝑁−1
1

2𝜎𝑇
2

 (3)
 207 

 208 

Where 𝛥𝜏𝑖𝑗 is the theoretical differential time, computed for a given model parameter vector 209 

m, and 𝜎𝑇
2  is a theoretical estimate of the variance for differential times. In case the error 𝜎𝑖  on 210 

single differential P-times is measured from data, its squared-inverse can be used in the above 211 

formula as a weighting factor of the summation term. 212 

Let us note that the differential arrival time between two stations 𝑖 and 𝑗 depends only on the 213 

differential travel-times 𝑡𝑜𝑖 − 𝑡𝑜𝑗 and not on the event origin time 𝑡𝑜: 214 

∆𝑡𝑖𝑗 = (𝑡𝑜 + 𝑡𝑜𝑖(𝑥, 𝑦, 𝑧)) − (𝑡𝑜 + 𝑡𝑜𝑗(𝑥, 𝑦, 𝑧)) = 𝑡𝑜𝑖 − 𝑡𝑜𝑗 215 
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𝑡𝑜𝑖 and 𝑡𝑜𝑗 are the travel times from the earthquake hypocenter to stations 𝑖 and 𝑗 , 216 

respectively.  217 

The origin time corresponding to the hypocenter at (x, y, z) is given by: 218 

𝑇𝑜 =
∑ (𝑡𝑖 − 𝑡𝑜𝑖(𝑥, 𝑦, 𝑧))𝑁

𝑖

𝑁
 (4) 219 

𝜎𝑇𝑜 = √
∑ (𝑡𝑖 − 𝑡𝑜𝑖(𝑥, 𝑦, 𝑧) − 𝑇𝑜)2𝑁

1

𝑁
 (5) 220 

 221 

Where 𝑡𝑖  are the measured arrival times at the N stations for which the P-picking is available 222 

and 𝜎𝑇𝑜 is the estimated uncertainty on 𝑇𝑜. 223 

According to the Bayes’ theorem, the posterior pdf for P-times is therefore: 224 

𝑃(𝒎|𝒅𝟏) = 𝑐𝑜𝑛𝑠𝑡  𝑃(𝒅𝟏|𝒎)𝜌(𝒎) (6) 225 

Lacking prior information about the most likely volumes of seismicity distribution, 𝜌(𝒎) can be 226 

set as the uniform pdf over the volume where earthquakes are expected to occur. This volume 227 

should correspond to the grid volume for pdf computation. 228 

In our recursive Bayesian method, (6) is set as the prior pdf for the posterior pdf of m given the 229 

differential P-amplitudes data-set 𝒅𝟐 ≡ (𝛥𝑃𝐷12, … , 𝛥𝑃𝐷𝑁1). In this case the conditional pdf of 230 

P-amplitudes is defined: 231 

𝑃(𝒅𝟐|𝒎) = 𝑐𝑜𝑛𝑠𝑡 𝑒
− 

∑ ∑ (Δ𝑃𝐷𝑖𝑗−Δ𝑃𝐷′
𝑖𝑗(𝒎))

2
𝑁
2

𝑁−1
1

2𝜎𝐴
2

 (7)
 232 

Where Δ𝑃𝐷𝑖𝑗 is the theoretical differential P-amplitude at stations 𝑖 𝑎𝑛𝑑 𝑗 , computed for a 233 

given model parameter vector m, and 𝜎𝐴
2 is a theoretical estimate of the variance for the log of 234 
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the amplitude ratio. The theoretical values of this quantity are determined using the 235 

attenuation relations of the form: 236 

log 𝑃𝐷 = 𝐴 + 𝐵 𝑀 + C log 𝑅 237 

where R is the source-to-receiver distance and M is the earthquake magnitude. The theoretical 238 

differential amplitude for stations i and j is therefore:  239 

Δ𝑃𝐷′𝑖𝑗 = log 𝑃𝐷𝑖 − log 𝑃𝐷𝑗 = 𝐶 (log 𝑅𝑖 − log 𝑅𝑗) 240 

Applying the Bayes’ theorem and setting 𝜌(𝒎) = 𝑃(𝒎|𝒅𝟏) , the posterior pdf for differential P-241 

amplitudes can be written as: 242 

𝑃(𝒎|𝒅𝟐, 𝒅𝟏) = 𝑐𝑜𝑛𝑠𝑡  𝑃(𝒅𝟐|𝒎)𝑃(𝒎|𝒅𝟏)243 

= 𝑐𝑜𝑛𝑠𝑡  𝑒
− 

∑ ∑ (Δ𝑃𝐷𝑖𝑗−Δ𝑃𝐷′𝑖𝑗(𝒎))2𝑁
2

𝑁−1
1

2𝜎𝐴
2

𝑒
− 

∑ ∑ (Δ𝑡𝑖𝑗−Δ𝜏𝑖𝑗(𝒎))2𝑁
2

𝑁−1
1

2𝜎𝑇
2

                                (8) 244 

Finally, we consider the third data-set, the P-polarization measurements at the N available 245 

stations. In this case we define the conditional pdf as follows: 246 

𝑃(𝒅𝟑|𝒎) = 𝑐𝑜𝑛𝑠𝑡 𝑒
− 

∑ (𝛼𝑖−𝛼𝑖
′)

2𝑁
1

2𝜎𝛼
2

 (9)
 247 

Following the same approach used for the previous data-sets, we can define the posterior pdf 248 

for P-polarization, which accounts for both differential arrival times and amplitudes: 249 

𝑃(𝒎|𝒅𝟑, 𝒅𝟏, 𝒅𝟐) = 𝑐𝑜𝑛𝑠𝑡 𝑃(𝒅𝟑|𝒎)𝑃(𝒎|𝒅𝟐, 𝒅𝟏) = 250 

= 𝑐𝑜𝑛𝑠𝑡 𝑒
− 

∑ (𝛼𝑖−𝛼𝑖
′)

2𝑁
1

2𝜎𝛼
2

𝑒
− 

∑ ∑ (Δ𝑃𝐷𝑖𝑗−Δ𝑃𝐷′
𝑖𝑗(𝒎))

2
𝑁
2

𝑁−1
1

2𝜎𝐴
2

𝑒
− 

∑ ∑ (Δ𝑡𝑖𝑗−Δ𝜏𝑖𝑗(𝒎))
2

𝑁
2

𝑁−1
1

2𝜎𝑇
2

 (10)
 251 

Equation (10) provides the pdf for the model parameter 𝒎, given the three-different data-sets. 252 

Its numerical computation requires the regular sampling of the discretized volume where 253 

earthquakes are expected to occur. The constant in eq. 10 has to be evaluated numerically, but 254 

setting the condition: 255 
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∫ 𝑃(𝒎|𝒅𝟑, 𝒅𝟏, 𝒅𝟐) 𝑑𝒎 = 1 256 

Once (10) is determined, the maximum likelihood solution can be obtained for the earthquake 257 

location: 258 

𝒎𝐵𝐸𝑆𝑇 ∶  𝑃(𝒎𝑩𝑬𝑺𝑻|𝒅𝟑, 𝒅𝟏, 𝒅𝟐) = max[𝑃(𝒎|𝒅𝟑, 𝒅𝟏, 𝒅𝟐)] (11) 259 
 260 

 261 

Errors on parameters can be estimated from the cross-section probabilities as defined below: 262 

𝑃(𝒎|𝒅𝟑, 𝒅𝟏
𝒃𝒆𝒔𝒕, 𝒅𝟐

𝒃𝒆𝒔𝒕) 263 

𝑃(𝒎|𝒅𝟑
𝒃𝒆𝒔𝒕, 𝒅𝟏, 𝒅𝟐

𝒃𝒆𝒔𝒕) 264 

𝑃(𝒎|𝒅𝟑
𝒃𝒆𝒔𝒕, 𝒅𝟏

𝒃𝒆𝒔𝒕, 𝒅𝟐) (12) 265 

where 𝒅𝟏
𝒃𝒆𝒔𝒕, 𝒅𝟐

𝒃𝒆𝒔𝒕, 𝒅𝟑
𝒃𝒆𝒔𝒕 are the parameters of the maximum likelihood solution. These pdfs 266 

allow to measure the maximum likelihood model parameter vector and the interval of 267 

parameters associated with 31% and 68% significance levels (e.g. the parameter values at the 268 

31% and 68% level of the cumulative pdf), which corresponds to ±1𝜎 case of normal pdfs.  269 

 270 

3 Inversion strategies for optimizing the real-time computation of posterior and marginal           271 

pdfs  272 

 273 

We implemented a software platform written in Python (https://www.python.org/) that 274 

manages the inversion code and is able to simulate the real-time data streaming. The 275 

computational efficiency is optimized using a multi-parallel computational approach in order to 276 

process each single station in parallel during the whole simulation. This approach guaranties a 277 

rapidity in the solution estimation that is generally provided in a time less than 0.5 second 278 

(source and network lay-outs of the application study illustrated in section 4), that is the usual 279 

https://www.python.org/
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packet length during real-time transmission for modern data-loggers. The software pre-280 

computes the theoretical travel time-table for a distributed grid of sources in the 3D medium 281 

(calculated using The TauP Toolkit by Crotwell et al.,1999), BAZ and P-amplitudes (through pre-282 

existing empirical attenuation relationships) in order to minimize the computational cost during 283 

the software runs. 284 

When new data are available, the code estimates a new term in the sum at the exponents of 285 

equations (3), (7) and (9). This event triggers a re-calculation of the total probability density 286 

function matrix (equation (10)). Finally, the pdf matrix is used to estimate the maximum 287 

likelihood solution and errors associated with the 31% and 68% level of the cumulative cross-288 

section pdfs. 289 

4 Retrospective analysis of mainshocks of the 2016-2017 Central Italy Earthquake sequence  290 

The events of the Central Italy seismic sequence that occurred between August 2016 and 291 

January 2017 have been used to test and demonstrate the algorithm performance. From the 292 

whole sequence (about 135 earthquakes) we selected 27 events with moment magnitude 293 

larger than 4.2, being this magnitude range of more interest for EEW applications. We 294 

considered a volume of 80x100x20 km3, which contains the selected events and 63 stations 295 

belonging to the Italian Strong Motion Network (Rete Accelerometrica Nazionale - RAN), 296 

operated by the Dipartimento della Protezione Civile (DPC), and to the Italian National Seismic 297 

Network, operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV,  Fig. 3a). The 298 

data-set includes the mainshocks of the sequence, the Mw 6 Amatrice event occurred on 299 

August, 24 2016, the two M5.9 and M5.4 events occurred on 26 October 2016, located near 300 

Visso (northeast of Norcia), the Mw 6.5 Norcia event on 30 October 2016, and the Mw 5.5, 301 
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January 18, 2017 earthquake located south of the town of Amatrice (Chiaraluce et al., 2017). 302 

The details about the event origin times, locations, magnitudes and number of recording 303 

stations can be found in table S1 in Supporting information (SI).  304 

In this work we considered different station/event distributions in order to analyze different 305 

potential scenarios. We simulated the following configurations by downgrading the initial dense 306 

network configuration. In detail: 307 

- a dense network of 63 stations, station inter-distance of about 20 km, deployed in the 308 

entire target area, and all the selected events (Fig. 3a) (“In-land” scenario); 309 

- a network of 24 stations located in the western sector of the area, and 23 events 310 

located in the eastern sector of the area (Fig. 3b) (“Off-Shore” scenario); 311 

- a network of 15 stations deployed along a linear configuration, and 22 events recorded 312 

by a minimum of 4 stations of the linear network (Fig. 3c) (“Linear array” scenario). 313 

The first simulated scenario represents a standard network aimed at locating the seismicity 314 

within local distances (<100 km of aperture); the second scenario represents a case of a coastal 315 

network detecting and locating the seismicity occurring off-shore or outside-the-network as in 316 

the case of near-coastal seismicity in Japan or Mexico; the third scenario represents a linear 317 

seismic array aimed at locating the seismicity for early warning application using a set of sensor 318 

deployed following a “barrier” configuration (e.g Western Iberian Peninsula, Mexico coastline) 319 

or along an high speed train rail. 320 

The INGV bulletin locations (http://terremoti.ingv.it/), obtained by considering the dense INGV-321 

RSN network, has been chosen as the reference solution, to which we compared the solutions 322 

http://terremoti.ingv.it/
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obtained by the three network configurations. For the earthquake locations we used the 1D 323 

crustal velocity model obtained by Lii et al. (2007) for central Italy, parameterized on a 3D grid 324 

with a cell size of 0.6x0.6x0.8 km3.  325 

In order to simulate the real-time scenario, the P-arrival times have been obtained by an 326 

automatic picking procedure based on a recursive STA/LTA trigger-based strategy. We used a 327 

STA window of 0.5 s, a LTA window of 5 s and a threshold STA/LTA value of 10. We verified that, 328 

with the chosen picker parameters, the difference between manual and automatic picks were 329 

on average smaller than 0.2 s (see figure S1 of SI). 330 

We performed an optimization analysis in order to set properly the standard deviations of the 331 

three variance factors in the probability distribution (i.e. 𝜎𝑇 for differential times, 𝜎𝛼 for P-332 

polarization and 𝜎𝐴 for P-amplitudes ratios in eq. 10) and the length of the time-windows to be 333 

used to measure the P-peak amplitude and the BAZ from the P-polarization. The choice of the 334 

time-window length has been done considering the requirement for a rapid but reliable 335 

estimate of the parameters. By considering the “in-land” configuration, we constructed the 336 

distributions of the difference between the calculated BAZ and the reference one (e.g the one 337 

obtained by considering the reference INGV bulletin location, see Fig. S2 of SI), and, similarly, 338 

the distribution of the calculated amplitude ratios and the reference one (see Fig. S3 of SI). We 339 

built these distributions by varying the window length between 0.5 s and 3 s and choosing the 340 

one for which the differences were minimized (i.e. 0.5 s for the BAZ and 2 s for the amplitude). 341 

The standard deviations of the chosen distributions were used to infer the variances 𝜎𝛼 and 𝜎𝐴 342 

of the two probability distributions (i.e. 60° for BAZ and 0.4 for the log P-amplitude ratio). For 343 
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the 𝜎𝑇 of differential times we considered a value of twice (since we used the differential times) 344 

the mean of distribution of the difference between the automatic and the manual P-wave picks 345 

(i.e. 0.3 s, see Fig. S1 of SI).        346 

During the simulations all three observed parameters (differential arrival times, back-azimuths 347 

and amplitude ratios) have been used to constrain the earthquake location parameters. Their 348 

measures are available at different times for each record and station. The differential arrival 349 

times are estimated when the time of the first P-reading is available at a minimum of two 350 

stations. The BAZ is estimated 0.5 sec after the P-wave pick, while the amplitude ratios are 351 

estimated 2 sec after that the P-wave picking time is available at a minimum of two stations.   352 

As an example of the algorithm operation, Figure 4 shows the temporal evolution of the 353 

predicted hypocenter location (i.e. epicentral location, depth and origin time) of the Mw 4.2 354 

event occurred on 31 October 2016 in the station configuration “in-land”. Panels a-b-c show the 355 

evolution of the location accuracy, defined as the deviation of epicentral (Fig. 4a) and vertical 356 

(Fig. 4b) location and origin time (Fig. 4c) from the reference value of INGV revised bulletin, 357 

with the time measured from origin. Panel d displays the flow of information as a function of 358 

the time from the origin of the event, showing when arrival times, BAZ and amplitude ratios are 359 

available during the simulation. Once the first two picks are available, after about 2.6 s from the 360 

origin time, the first location is provided. The location accuracy improves with the time due to 361 

the addition of new data, but already after 4.1 s from the origin time, with only four available 362 

picks and the integration of 3 BAZs and 1 amplitude ratio, the predicted location is within a few 363 

kilometers and the origin time is within 0.2 s from the reference one.   364 
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Figure 5 shows, for the same event, the normalized probability and its cross-sections in 365 

correspondence of the maximum, for four different times indicated by the red numbers in 366 

panels a-b-c of Fig. 4. The decreasing in time of location errors (error bars in Fig. 4a-b) indicates 367 

that the probability distribution is increasingly narrow and peaked around the reference 368 

location (Fig.5). Figure 6 shows, as an aggregate plot, the location accuracy for all the analyzed 369 

events in each tested configuration (In-land, Off-shore and Linear array) as a function of the 370 

number of available stations. The grey dashed lines in each panel are drawn in correspondence 371 

of the 16th and the 84th percentile of the distribution (i.e. within 1𝜎). From this figure it is 372 

possible to understand how the system can produce stable and reliable estimates of the 373 

earthquake parameters as a function of the amount of data in the different scenarios. The 374 

availability of data as a function of time from the event origin strongly depends on the 375 

station/source configuration. 376 

With reference to results obtained for the In-land configuration, the hypocenter locations of all 377 

the considered events are well constrained (i.e. within 5 km from the reference location) 378 

starting from the very first estimates, with less than 6 stations, within the first 5-6 seconds after 379 

the event origin time (see Fig. 6a-c and Fig. S4 in SI). The epicentral and vertical errors (Fig. 6b-380 

d) decrease in accordance with the decrease of location deviation from the reference value. 381 

Finally, the origin times are within 1.5 s from the reference ones with at least 5-6 stations for 382 

most of the events (Fig. 6e). 383 

Considering the “Off-Shore” network lay-out of configuration, the location accuracy is smaller 384 

than 5 km with about 6-7 stations for the most of events (Fig. 6f-h), despite of the worst 385 
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azimuthal coverage of the stations compared to the one in In-land configuration. For 4 events, 386 

data from at least 9 stations must be available in order to have a well constrained epicentral 387 

estimate. As expected, for the considered events the depth is less constrained using the Off-388 

shore configuration, but with about 7 stations the depth accuracy is within 5 km. Concerning 389 

the origin time, its deviation from the reference one is on average smaller than 1 s with 3-4 390 

stations, i.e. within 4 s from the event origin time. On average, 6-7 P arrival-time readings are 391 

available within 7 s from the origin time (see Fig. S4 in SI).  392 

In the “Linear array” scenario, the epicenter and depth locations are within 5 km from the 393 

reference ones whit about 7-8 stations for all the considered events. Concerning the origin 394 

time, its median deviation from the reference one is lower than 1 s with at least 4 stations for 395 

all the considered events. On average, P-data from 4 stations are available within 2-3 s and 7-8 396 

stations within 10 s from the origin time (see Fig. S4 in SI). 397 

 Due to the time-delay at which the different observed parameters are available at each station, 398 

we expect that differential arrival times (early information) are predominant in constraining the 399 

earthquake location at the very beginning of the analysis and the weight of the other 400 

parameters starts to be relevant as soon as few observations are available at more than two 401 

stations. In order to understand the influence on the retrieved solution of the different 402 

parameter data-sets we compare in Fig. 7 and Fig. 8 the accuracy in retrieving the epicenter 403 

location and depth in two specific time windows (i.e. 2 and 4 sec from the first P-wave picking 404 

at the network) by using only differential arrival times (panels a-d-g), the differential arrival 405 

times and back-azimuths (panels b-c-h), and all three observed parameters together (panel c).  406 
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In order to have a homogeneous metrics to measure the accuracy in the different cases we 407 

computed the cumulative normalized frequency of the observed parameter residual distribution 408 

and report the parameter residual value associated with the 68% (red values and dashed lines 409 

in each panel of Fig. 7 and 8) and 95% (blue values and dashed lines in each panel of Fig. 7 and 410 

8) levels of the distribution. 411 

This analysis shows that the location accuracy, especially for the epicenter parameter, 412 

significantly improves the solution obtained with differential times only when integrated by 413 

BAZs and amplitude ratios, for all three tested configurations. After 2 seconds from the first P 414 

arrival (Fig. 7), for the network lay-out In-land, the 68% residual epicenter value decreases from 415 

16 km to 4 km, and the value associated with the 95% level decreases from 60 km to 44 km. For 416 

the Off-shore network configuration, the decrease concerned only the 95% residual value, that 417 

passed from 44 km to 24 km. Finally, concerning the Linear array configuration, a clear 418 

improvement in the epicenter location is shown by the decreasing of both the 68% residual 419 

value, which passed from 25 km to 10-12 km, and the 95% value, which passed from 83 km to 420 

44 km. Concerning the depth parameter, the integration of BAZs and amplitude parameters 421 

does not affect the depth accuracy. For the In-land configuration, the 68% and 95% residual 422 

values are, respectively, 5-6 km and 9 km. While, for the Off-shore configuration, the 68% and 423 

95% residual values slightly increase from 7 km to 8 km and from 9 km to 10 km, respectively; 424 

for the Linear array configuration, the 68% residual values passed from 2.5 km to 7 km and the 425 

95% residual values is 10 km. 426 



A Bayesian Method for Real-time Earthquake Location  

 

22 

 

The results of this comparative analysis with the addition of BAZs and amplitude ratios to 427 

differential time were very similar to the ones obtained by the integration of the BAZ alone, 428 

which indicates a relatively high weight of BAZ  with respect to amplitude ratio for the real-time 429 

location in the short window of 2 seconds from the first P-pick. Indeed, after 2 seconds from 430 

the first P pick, only few amplitude ratio data are generally available in all the considered 431 

network configurations.   432 

Four seconds after the first P-wave arrival time, the differential times are the most influential 433 

parameter for the location in the different network configurations. In fact, the histograms 434 

obtained by using only differential arrival times (Fig. 8a and d) are very similar to the ones 435 

obtained by using the differential arrival times and BAZs (Fig. 8b and e) and by using all three 436 

observed parameters together (Fig. 8c and f). But in the least favorable configuration (i.e., the 437 

“Linear array”), BAZs and amplitude ratios show to be relevant to reduce the uncertainty on the 438 

epicentral location. With the additional use of BAZs and amplitude ratios the 68% epicenter 439 

residual value passes from 13 km to 8 km, while the 95% value from 28 km to 15 km. Beside, in 440 

terms of depth accuracy, the results clearly indicated that, as it is expected, the BAZ usage may 441 

improve the epicenter location but it does not affect the depth. In fact, the histograms of depth 442 

residuals obtained by using only the differential times (Fig. 8a-d-g, left panel) are very similar to 443 

the ones obtained by using the integrated data-set (Fig. 8b-c-h and c-f-i, left panels). Despite 444 

this, the histograms of depth residuals at 4 seconds after the first pick show significant 445 

improvements respect to the ones at 2 seconds after first pick. In details, for the “In-land” 446 

configuration, the 68% residual value decreases from 6 km to 4 km; for the “Off-shore” 447 

configuration the 68% and 95% residual values decrease from 7-8 km to 2 km and from 9-10 km 448 
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to 5-6 km;  for the “Linear array” configuration the 68% and 95% residual values decrease from 449 

7 km to 6 km and from 10-11 km to 9 km. 450 

Finally, we compared the performance of the proposed algorithm with that of another method 451 

for real-time earthquake location in regional EEWS, the RTLOC method (Satriano et al., 2008) 452 

implemented in the PRESTo EW platform (Satriano et al., 2011). RTLOC is based on the real-453 

time measures of P-wave differential times at a dense seismic network and uses an 454 

evolutionary and probabilistic approach to provide the maximum likelihood hypocenter 455 

solution as a function of the time from the first recorded P-wave arrival time. It has been tested 456 

with a dense seismic network (ISNet network, 28 stations with average inter-distance of about 457 

10-15 km), providing reliable estimates of earthquake location within 5-6 s from the event 458 

origin (Satriano et al. 2008).  459 

We compared the performance of RTLOC and our location method in the case of the “Off-460 

shore” and “Linear array” network configurations, i.e. the ones in which we expect that the 461 

integration of BAZs and amplitude ratios could improve the location accuracy. We chose for the 462 

comparison the location accuracy at 3 second after the first P pick, so to guarantee at least 3 P 463 

picks, 2-3 BAZs and 1-2 amplitude ratios for each location. The results of the comparison, in 464 

terms of epicentral location and depth accuracy are shown in Fig. 9 for the “Off-shore” (a-b 465 

panels) and “Linear array” (c-d panels) configurations. As for the previous figures, we computed 466 

the cumulative normalized frequency of the observed parameter residual distribution and 467 

report the parameter residual value associated with the 68% (red values and dashed lines in 468 

each panel of Fig. 9) and 95% (blue values and dashed lines in each panel of Fig. 9) levels of the 469 
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distribution. From these values it can be inferred that the presented location method is more 470 

suitable than RTLOC in cases of unfavorable station/event distribution. In fact, with reference to 471 

the “Off-shore” configuration, the value associated with the 68% of epicenter residual decrease 472 

from 5 km of RTLOC (red value in b, left panel) to 3 km of our M-PLOC (red value in a, left 473 

panel), while the depth residual decreases from 4 km (red value in b, right panel) to 3 km (red 474 

value in b, right panel), respectively. The values associated with the 95% of epicenter and depth 475 

residuals increase of 1 km with our technique (blue values in a-b panels). For the “Linear array” 476 

configuration, the value associated with the 68% of epicenter residual decreases from 11 km of 477 

RTLOC (red value in d, left panel) to 6 km of M-PLOC (red value in c, left panel), while the depth 478 

residual remains at 6 km (red value in d-c, right panels) with the two methods. The values 479 

associated with the 95% of epicenter and depth residuals decrease of 1 km with M-PLOC (blue 480 

values in c-d panels). 481 

  

4 Discussion  482 

The proposed methodology is a real-time location technique suitable to constrain the 483 

hypocenter coordinates and origin time in Earthquake Early Warning applications. The 484 

approach is based on the probabilistic, Bayesian combination of differential arrival times, 485 

amplitude ratios and back-azimuth estimates, which are continuously measured on the 486 

recorded P-wave signals and updated with the passing of time, as new portions of seismograms 487 

and more recording stations in the source area become available.  488 

Dedicated algorithms, suitable to work in real-time, have been developed to measure the three 489 

parameters on limited portions of the P-wave signals, when no other source information is 490 
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available. In principle, the measurement of P-wave arrival times, amplitudes and signal 491 

polarization are relatively simple and do not require sophisticated approaches. When dealing 492 

with real-time applications, however, these measurements become non-trivial and their 493 

accuracy may critically depend on a number of factors, such as the quality of recorded signals 494 

and unknown contaminating effects of the propagation medium. In this context, the combined 495 

use of three parameters can be strongly advantageous to constrain the source location, if these 496 

parameters are correctly measured, as well as largely inconvenient, if incorrect real-time 497 

estimates are used. For example, in the case of a poor signal quality with low signal-to-noise 498 

ratio and in the absence of any other source information allowing to properly set the suitable 499 

parameters (i.e., filters and threshold levels), the real-time, automatic P-wave picking operation 500 

may generate erroneous phase detections, with consequent bias for the whole location 501 

method. Furthermore, a reliable (1D or 3D), pre-defined velocity model is needed for the 502 

computation of theoretical P-wave travel times at the available stations, to be compared with 503 

observed phase arrivals when solving the inverse problem. The real-time measurement of 504 

amplitudes is ideally straightforward, although it is critically dependent on the correct 505 

knowledge of attenuation relationships with distance, used to compare the observed 506 

amplitudes at pairs of stations. Finally, both amplitude and polarization measurements are 507 

sensitive to high frequency heterogeneities and local site amplifications, which are not 508 

accounted for the simplified assumption of a 1D attenuating medium. It is therefore relevant to 509 

get reliable estimates of the uncertainty on real-time measured quantities so to weigh them 510 

when used for location parameter estimation. Our proposed probabilistic approach accounts 511 

for the different uncertainties related to the estimates of differential times, amplitude ratios 512 
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and  back-azimuths, which are taken into account through the variance factors 𝜎𝑇
2, 𝜎𝐴

2 and 𝜎𝛼
2 of 513 

the pdf in eq.6. Although we assumed constant variance factors in our analysis, more in 514 

general, these factors could be replaced by single data variances, as inferred from real-time 515 

measurements.  516 

The proposed approach is Bayesian in the sense that it provides as output a multi-dimensional 517 

Probability Density Function, evaluated at each time step, starting from the first P-wave 518 

detection. This allows to estimate the maximum likelihood parameters (i.e., the most probable 519 

solution for the hypocentral coordinates and origin time of the event) along with their 520 

uncertainty, that can be used to monitor the progressive convergence of the real-time solutions 521 

toward the final estimates.  522 

The combination of different observed quantities ensures redundancy and robustness to the 523 

approach, so that reliable location solutions are retrieved even with a limited number of 524 

available data. Furthermore, one of the key features of the multi-parametric approach used 525 

here is the possibility of assigning a relative weight to each of the 3 parameters through the 526 

variance factors of the pdf (eq.6). A high uncertainty parameter is associated with a nearly flat 527 

and smooth pdf, while a high accurate parameter shows a peaked pdf concentrated around the 528 

most likely parameter value. The variance factors are set from the statistical uncertainty on 529 

times, amplitudes and BAZ, separately, that can be prior estimated through data-driven 530 

analyses. This probabilistic framework has the main advantage of combining different 531 

observables into a single estimator, while letting the best parameter (i.e., the one with smaller 532 

statistical uncertainty) drive the search for the optimal solution.  533 
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The location method proposed here works with differential observables, which are jointly 534 

measured at pairs of stations at each time. This allows to determine reliable earthquake 535 

locations as soon as two stations have recorded the P-wave arrival and to achieve accurate 536 

solutions when a few seconds of P-wave signals are recorded at few stations (3 to 5).  537 

This is confirmed by the retrospective analysis of mainshocks of the 2016-2017 Central Italy 538 

earthquake sequence, whose results are summarized in Figures 6-9. Overall, after few iterations 539 

the method converges to stable solutions, in terms of both epicentral coordinates and source 540 

depth, as it can be seen from Figure 6. By considering the “In-land” configuration, the epicentral 541 

locations indeed are well constrained (i.e. within 5 km from the reference location) with about 542 

5-6 stations (Fig. 6a), typically 5-6 sec after the event origin in the analyzed cases. With the 543 

same number of stations, the difference in depth estimate with INGV catalogue is nearly stable 544 

around zero, varying between ±5 km from the reference estimate (Fig. 6c) and the origin times 545 

are within 1.5 s from the reference ones (Fig. 6e).  546 

Similar results are observed even with a non-optimal coverage of stations (“Off-shore” 547 

configuration), in which, about 6-7 stations are necessary to converge to stable solutions, with 548 

epicentral and depth error smaller than 5 km and a deviation from the reference origin time of 549 

about 1s (Figure 6 f-j). On average, 7 sec after the event origin in the analyzed cases. 550 

The major strength of the proposed approach is the ability of providing correct location 551 

solutions, even in non-optimal network geometries and in unfavorable station distributions. 552 

This is the case of events outside the area covered by the stations, which are distributed only by 553 

one side of the epicenter, or the case of linear arrays. In this last case, for example, standard 554 

location techniques using phase arrival times are often not suitable to constrain the hypocenter 555 
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position, or provide strongly undetermined solutions, with large uncertainties in both epicentral 556 

position and depth. The combined use of times, amplitudes and BAZ makes the proposed 557 

method suitable to work in disadvantageous conditions of sparse networks, with a limited 558 

number of recording nodes and/or poor azimuthal coverage. Indeed, in the linear array 559 

configuration, the majority of the analyzed events require 7-8 stations, available on average 560 

after 10 s from origin time, to constrain the location solution, both in terms of epicentral 561 

estimates and of source depth and origin time (Fig. 6k-o).  562 

A tangible confirmation of the convenient use of three parameters is provided in Fig. 7-8. Here 563 

the differences of epicentral position and depth with respect to the reference solutions, are 564 

compared when using only times (panes a-d-g), times and amplitudes (panels b-e-h) and times 565 

plus amplitudes and BAZs (panels c-f-i), for the three network configurations. The cumulative 566 

normalized frequency of the residual distributions is characterized by the 68% and 95% levels 567 

(red and blue dashed line, respectively) and the associated difference to the reference 568 

parameter at these levels is also reported in each panel. While for the in-land and for the off-569 

shore configurations comparable results are obtained with different input parameters, in the 570 

case of a linear array, the joint use of times, amplitudes and BAZ significantly improves the 571 

convergence to the real solution at very short times (Fig.7-8).   572 

A relevant result for all the tested network configurations is that the decrease of uncertainties 573 

in real-time estimates (panels b, d, g, i, l, n in Fig. 6) is associated to the convergence of the 574 

solution toward the reference parameters (panels a, c, f, h, k, m in Fig. 6) from INGV catalogue 575 

obtained in optimal distance and azimuth coverage conditions. This suggests the possibility to 576 
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use in real-time the estimated parameter uncertainty vs the station number (or time from the 577 

event origin) to assess the reached convergence to the final solution and stop further iterations. 578 

As compared to another real-time location method, RTLOC (Satriano et al, 2008), which uses 579 

only the P-wave arrival times, the proposed multi-parametric approach turns out to provide 580 

better constrained location solutions, since the very first available data. This is especially true in 581 

the unfavorable case of the “Linear array” distribution, where the joint use of three parameters 582 

strongly reduces the difference to the reference solutions, as it can be seen from the 583 

cumulative normalized frequency (and its 68-95% levels) of Fig. 9.  584 

From the computational point of view, the proposed approach is efficient and optimized for 585 

running in real-time applications, where the earthquake location has to be retrieved in a very 586 

short time (around 1 sec) after data acquisition. The methodology proposed here does not 587 

require complex computational structures and can be easily integrated in other regional, 588 

network-based EEW approaches.  589 

 590 
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5 Conclusions 591 

In this article we propose a new method for earthquake location to be implemented in 592 

network-based earthquake early warning systems. The main conclusions of our study are: 593 

- the method combines in a Bayesian probabilistic framework three observed quantities, 594 

measured at a minimum of two stations, in a time window of 0.5-2 sec width, the P-595 

wave differential arrival time, the P-wave amplitude ratio and the back-azimuth 596 

orientation;  597 

- the method is evolutionary since it updates the estimates of the earthquake 598 

coordinates, depth and origin time along with their uncertainties as the P-wavefront 599 

propagates through a dense network of receivers; 600 

- the relative weighting of the different parameters is implicitly accounted by their 601 

conditional pdf where the variance factors are set from the statistical uncertainty on 602 

times, amplitudes and BAZ, separately, that can be prior estimated through data-driven 603 

analyses;  604 

- the method has been validated through a retrospective analysis of the mainshocks of 605 

the 2016-2017 Centraly Italy sequence, considering three different sub-networks that 606 

simulated the typical “In-land”, “Off-shore” and “Linear array” network lay-outs; 607 

- Results show that precise solutions are obtained within 2-4 sec from the first recorded 608 

P-wave and that the integration of the three observed quantity allow to improve the 609 

accuracy of the solution, relative to the use of arrival times only, especially in non-610 

optimal and unfavorable network configurations;   611 
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- As compared to other EW location method, (e.g. RTLoc in PRESTo platform), which uses 612 

only the P-wave arrival times, the proposed multi-parameteric approach turns out to 613 

provide better constrained location solutions, since the very first available data. 614 
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Figure captions  703 

 704 

Figure 1.  Figure shows an example of parameters estimation on records of the same 705 

earthquake at station RTL and FOS. a) The BAZ was estimated as mean value of 706 

estimations in a time window of 0.5 sec after the P-wave arrival time (red signal in 707 

panels b and c) only for the samples that  exceed a prefixed signal-to-noise threshold of 708 

3. In this case, the Best estimation of BAZ is about 51°, very close to the real one of 47°. 709 

d) and e) are the vertical components of velocity, derived from the integration of 710 

acceleration, where two different P wave arrivals are detected and the ∆T estimation is 711 

provided. After 2 sec of P picks two different estimation of Pv (red circles) are provide to 712 

evaluate the differential amplitude in order to integrate the information of ∆T and Baz 713 

in the inversion algorithm. 714 

Figure 2 A block diagram of software platform that represents the workflow of 715 

algorithm from parameters estimation to the final solution. 716 

Figure 3. Map of the station/event distributions used in the analyzed scenarios. a) A 717 

dense network of 63 stations (grey triangles), station inter-distance of about 20 km, 718 

deployed in the entire target area, and all the selected 27 events (black stars). The Mw 719 

6.5, 2016 Norcia earthquake in Central Italy is included (red star). b) A network of 24 720 

stations (grey triangles) located in the western sector of the area, and 23 events located 721 

in the eastern sector of the area (black stars). The Norcia earthquake was included (red 722 

star). c) A network of 15 stations (gray triangles) deployed along a linear configuration, 723 

and 22 events recorded by a minimum of 4 stations of the linear network (black stars). 724 

The Norcia earthquake is included (red star). 725 

Figure 4.  M-PLOC location example. a) Temporal evolution of M-PLOC performance in 726 

terms of difference between obtained and reference epicentral location (a), depth 727 

location (b) and origin time determination (c). The d panel indicated the number of 728 

parameters available for the correspondent location. The grey curve is representative of 729 

the P picks availability, the red curve of the BAZs and the turquoise of the amplitudes. 730 

The red numbers indicate the time at which are obtained the correspondent probability 731 

distributions in Figure 5.  732 
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Figure 5. Relative location probability distribution after 2.6 s (a), 3.1 s (b), 4.1 s (c) and 733 

9.1 s (d) from origin time. For each snapshot, was shown the normalized location 734 

probability, the stations used for the location (black triangles), the reference event 735 

location (white star) and the predicted hypocenter (black star). The dashed vertical and 736 

horizontal lines represent the uncertainty intervals in the three directions. Moreover, in 737 

the other three panels was shown the location probability in the cross-sections in 738 

correspondence of the optimal solution (maximum of probability).  739 

Figure 6. Aggregate plot of the evolution of M-PLOC location accuracy as a function of 740 

the number of stations for the three configurations: “In-land” (a-e); “Off-shore” (f-j) and 741 

“Linear array” (k-o). The panels a-f-k represent the epicentral location accuracy, the 742 

panels b-g-l the epicentral error evolution, the pane c-h-m the depth location accuracy, 743 

the panels d-i-n the depth error evolution and the panels e-j-o the origin time 744 

estimation accuracy. The light grey area in each panel represents the curve dispersion. 745 

The grey dashed lines in each panel are drawn in correspondence of the 16th and the 746 

84th percentile of the distribution (i.e. within one sigma).  747 

Figure 7.Comparison between the algorithm performance after 2 second from the first P 748 

pick by using different data type combinations: only differential times (a, d, g), 749 

differential times and BAZs (b, e, h) and differential times plus differential amplitude 750 

and BAZs (c, f, i). The epicentral and in-depth location accuracy (difference between the 751 

estimated and the reference one) is shown also for the different station/event 752 

configurations: “In-land” (a, b, c),”Off-shore” (d, e, f) and “Linear array” (g, h, i). In each 753 

panel, the dark grey curve is the cumulative histogram of the distribution, and the 754 

dashed vertical lines represent the values correspondent to the 68% (red) and the 95% 755 

(blue) of the cumulative histogram. 756 

Figure 8. Comparison between the algorithm performance after 4 second from the first 757 

P pick by using different data type combinations: only differential times (a, d, g), 758 

differential times and BAZs (b, e, h) and differential times plus differential amplitude 759 

and BAZs (c, f, i). The epicentral and in-depth location accuracy (difference between the 760 

estimated and the reference one) is shown also for the different station/event 761 

configurations: “In-land” (a, b, c), “Off-shore” (d, e, f) and “Linear array” (g, h, i). In each 762 

panel, the dark grey curve is the cumulative histogram of the distribution, and the 763 

dashed vertical lines represent the values correspondent to the 68% (red) and the 95% 764 

(blue) of the cumulative histogram. 765 

   766 

Figure 9. Comparison between the performance at 3 seconds after the first P pick of M-767 

PLOC (a, b) and RTLOC (c, d). The epicentral and depth location accuracy (difference 768 

between the estimated and the reference one) is shown for the “Off-shore” (a-c) and 769 

“Linear array” (b-d) configurations. In each panel, the dark grey curve is the cumulative 770 

histogram of the distribution, and the dashed vertical lines represent the values 771 

correspondent to the 68% (red) and the 95% (blue) of the cumulative histogram.   772 
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Date Time Lat. Lon. Depth 
(Km) 

M # Stat.  
A 

# Stat.  
B 

# Stat.  
C 

20160824 01:36:32 42.698 13.233 8.1 6.0 38 15 10 

20160824 01:56:00 42.614 13.275 4.8 4.4 15 8 5 

20160824 02:33:29 42.792 13.151 8.0 5.4 36 16 9 

20160824 03:40:11 42.617 13.245 10.6 4.2 17 11 4 

20160824 04:06:50 42.769 13.125 7.6 4.3 20 14 / 

20160824 17:46:09 42.663 13.222 10.0 4.4 17 10 5 

20160825 03:17:16 42.753 13.208 9.5 4.5 16 10 5 

20160825 12:36:05 42.596 13.290 10.0 4.3 20 11 / 

20160826 04:28:25 42.600 13.290 10.9 4.8 19 10 5 

20160828 15:55:35 42.820 13.238 8.7 4.4 17 10 / 

20161026 17:10:36 42.880 13.127 8.7 5.4 57 23 14 

20161026 19:18:05 42.909 13.129 7.5 5.9 55 21 13 

20161026 21:42:01 42.861 13.128 9.5 4.6 27 13 7 

20161027 03:50:24 42.986 13.127 8.9 4.4 19 10 / 

20161027 08:21:45 42.873 13.100 9.3 4.4 24 10 6 

20161029 16:24:33 42.814 13.096 11.1 4.2 27 / 7 

20161030 06:40:17 42.832 13.111 9.2 6.5 63 25 15 

20161030 07:13:05 42.698 13.235 10.8 4.5 26 10 / 

20161030 13:34:54 42.803 13.165 9.2 4.5 20 12 5 

20161031 03:27:40 42.766 13.085 10.6 4.2 28 / 7 

20161031 07:05:44 42.841 13.129 10.0 4.2 25 13 5 

20161101 07:56:39 43.000 13.158 9.9 4.7 34 13 8 

20161103 00:35:01 43.029 13.049 8.4 4.8 38 / 9 

20170118 09:25:40 42.547 13.262 9.2 5.1 46 20 13 

20170118 10:14:09 42.529 13.282 9.1 5.5 48 20 13 

20170118 10:25:23 42.494 13.311 8.9 5.4 45 20 12 

20170118 13:33:36 42.477 13.281 10.0 5.0 49 20 13 

 

Table S1. Table that contains the detailed information about the earthquakes of the Central 
Italy sequence used in the different station/source configurations. The event locations and 

magnitudes are taken from the INGV bulletin (http://terremoti.ingv.it/). The last three columns 
refer to the number of stations that recorded the event in each simulated configuration A, B 

and C. The “/” symbol indicates that the event was not used in the configuration. 
 
 
 
 
 



 
Figure S1. Histograms of the distribution of the difference between the automatic and the 

manual P picks.  
 
 
 
 



 
 

Figure S2. Histograms of the distribution of the difference between the BAZAzimuth calculated 
for different window length between 0.5 s and 3 s, and the reference one (obtained from the 
reference INGV location). In each panel were shown the mean value (red vertical line) and the 

standard deviation of the distribution (dashed black vertical lines). 
 
 
 
 



 
Figure S3. Histograms of the distribution of the difference between the differential P-wave 

amplitude ratio calculated for different window length between 0.5 s and 3 s, and the reference 
one (obtained from the reference INGV location). In each panel were shown the mean value 
(red vertical line) and the standard deviation of the distribution (dashed black vertical lines). 

 
 
 



 
Figure S4. Temporal evolution of station number from event origin time, for the different 

simulated configurations: In-land (a); Off-shore (b) and Linear array (c) . The red lines represent 
the median curves. 
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