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Abstract

A growing number of coastal eco-geomorphologic modeling studies have been conducted to understand coastal marsh evolution

under sea level rise (SLR). Although these models quantify marsh topographic change as a function of sedimentation and erosion,

their representations of vegetation dynamics that control organic sedimentation differ. How vegetation dynamic schemes and

parameter values contribute to simulation outcomes is still not quantified. Additionally, the sensitivity of modeling outcomes

on parameter selection in the available formulations has not been rigorously tested to date, especially under the influence of

an accelerating SLR. This knowledge gap severely limits modeling accuracy and the estimation of the vulnerability of coastal

marshes under SLR. In this paper, we used coastal eco-geomorphologic models with different vegetation dynamic schemes to

investigate the eco-geomorphologic feedbacks of coastal marshes and parametric sensitivity under SLR scenarios. We found

that marsh accretion rate near the seaward boundary can keep pace with moderate and high rates of SLR, while interior marsh

regions are vulnerable to a high rate of SLR. The simulations with different vegetation schemes exhibit diversity in elevation

and biomass profiles and parametric sensitivity. We also found that the model parametric sensitivity varies with rates of future

SLR. Vegetation-related parameters and sediment diffusivity, which are not well measured or discussed in previous studies, are

identified as some of the most critical parameters. Our findings provide insights to appropriately choose modeling presentations

of key processes and feedbacks for different coastal marsh landscapes under SLR, which has practical implications for coastal

ecosystem management and protection.
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Key Points: 21 

 Spatial variations in marsh accretion rates must be evaluated to assess marsh resilience to 22 

sea level rise  23 

 The evolution of simulated marsh elevations, biomass profiles, and parametric 24 

sensitivities depend on how vegetation is modelled  25 

 Model parametric sensitivity varies with rates of future sea level rise 26 

  27 
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Abstract 28 

A growing number of coastal eco-geomorphologic modeling studies have been conducted to 29 

understand coastal marsh evolution under sea level rise (SLR). Although these models quantify 30 

marsh topographic change as a function of sedimentation and erosion, their representations of 31 

vegetation dynamics that control organic sedimentation differ. How vegetation dynamic schemes 32 

and parameter values contribute to simulation outcomes is still not quantified. Additionally, the 33 

sensitivity of modeling outcomes on parameter selection in the available formulations has not 34 

been rigorously tested to date, especially under the influence of an accelerating SLR. This 35 

knowledge gap severely limits modeling accuracy and the estimation of the vulnerability of 36 

coastal marshes under SLR. In this paper, we used coastal eco-geomorphologic models with 37 

different vegetation dynamic schemes to investigate the eco-geomorphologic feedbacks of 38 

coastal marshes and parametric sensitivity under SLR scenarios. We found that marsh accretion 39 

rate near the seaward boundary can keep pace with moderate and high rates of SLR, while 40 

interior marsh regions are vulnerable to a high rate of SLR. The simulations with different 41 

vegetation schemes exhibit diversity in elevation and biomass profiles and parametric sensitivity. 42 

We also found that the model parametric sensitivity varies with rates of future SLR. Vegetation-43 

related parameters and sediment diffusivity, which are not well measured or discussed in 44 

previous studies, are identified as some of the most critical parameters. Our findings provide 45 

insights to appropriately choose modeling presentations of key processes and feedbacks for 46 

different coastal marsh landscapes under SLR, which has practical implications for coastal 47 

ecosystem management and protection.  48 

Keywords: Landscape evolution, Eco-geomorphologic model, Coastal marsh, Sea level rise, 49 

Accretion, Vulnerability 50 
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1 Introduction 51 

Coastal marshes are unique landscapes that connect terrestrial and aquatic systems and 52 

provide important ecosystem services, such as sustaining wildlife habitats, protecting shorelines, 53 

attenuating floods, storing carbon, and filtering contaminants (Barbier et al., 2011; Costanza et 54 

al., 1997; FitzGerald & Hughes, 2019; Roulet, 1990; Tiner, 2013). Intensified climate change, 55 

especially accelerating sea level rise (SLR), and reduced sediment transport to the coastal zone 56 

threaten the stability of coastal marsh ecosystems (Cahoon & Guntenspergen, 2010; Ratliff et al., 57 

2015; Scavia et al., 2002; Yousefi Lalimi et al., 2020). The vertical accretion rate for coastal 58 

marsh surfaces is the difference between the sedimentation rate and the surface erosion rate and 59 

is controlled by complex eco-geomorphologic interactions at multiple scales.  To survive, the 60 

vertical accretion rate  must at least keep pace with the rate of  relative SLR (i.e. SLR + 61 

subsidence rate, Burkett & Kusler, 2000; Day et al., 2008; Kirwan et al., 2010; Marani et al., 62 

2007; Reed, 1995). Therefore, investigating how eco-geomorphologic processes respond to SLR 63 

is a prerequisite for understanding the sustainability and resilience of coastal ecosystem structure 64 

and functions to SLR.  65 

The term eco-geomorphology, which highlights the interactions between landscapes and 66 

ecosystems, can be traced back to the concept of bio-geomorphology in the pioneering study by 67 

Viles [1988], who explicitly considered the interactive roles of biota and geomorphology in 68 

landscape development. Later, a more comprehensive description of the linkage between coastal 69 

hydrology, vegetation dynamics, and geomorphology was gradually established by early-stage 70 

modeling studies (Allen, 2000; D’Alpaos et al., 2007; French, 1993; Kirwan & Murray, 2007; 71 

Marani et al., 2007; Morris et al., 2002; Mudd et al., 2004, 2009; Randerson, 1979; van Wijnen 72 

& Bakker, 2001). The diagram presented in Figure 1 includes the key components that control 73 
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the eco-geomorphologic feedbacks in coastal ecosystems and provides a conceptual framework 74 

for model development and analysis. Here, the state and dynamics of a hydro-eco-geomorphic 75 

system is described in terms of three variables (marsh elevation, vegetation biomass, and ocean 76 

drivers including saltwater intrusion, tide, wave, storm surge, and sea level rise (SLR)) and three 77 

sediment fluxes (inorganic sediment deposition, organic soil production, and erosion) (Allen, 78 

2000; Marani et al., 2007, 2010). The elevation of marshland with respect to the mean sea level, 79 

which may change over time, is controlled by accretion through inorganic sediment deposition, 80 

organic soil production, and erosion, as well as by land subsidence (soil compaction and 81 

sediment decomposition) and SLR. Tidal currents, waves, and storm surges directly drive 82 

sediment dynamics via sediment deposition and erosion. Changes in tidal currents affect the 83 

frequency and duration of flooding of marsh plants, and therefore changes soil salinity, oxygen 84 

and sulfide availability affecting plant growth (Silvestri & Marani, 2004). Vegetation plays a 85 

critical role in decreasing water velocity and dissipating wave energy, thereby reducing sediment 86 

erosion and increasing deposition (Carus et al., 2016; Ghisalberti & Nepf, 2005; Moller et al., 87 

2014; Nepf, 1999; Yang et al., 2012). Vegetation also contributes to sedimentation by directly 88 

trapping suspended sediment and by producing organic matters in soil (Mudd et al., 2004). 89 

Changes in marsh elevation produce changes in water levels on marshland, thereby affecting 90 

marsh plant development (Morris et al., 2002; Mudd et al., 2004).  91 

Using this conceptual framework, a number of mathematical models have been 92 

developed to describe and understand the evolution of coastal marshes under SLR (e.g., Allen, 93 

2000; Best et al., 2018; Da Lio et al., 2013; D’Alpaos et al., 2007; Duvall et al., 2019; French, 94 

1993, 2006; Kirwan et al., 2010; Kirwan, Temmerman, et al., 2016; Kirwan, Walters, et al., 95 

2016; Kirwan & Murray, 2007; Kirwan & Temmerman, 2009; Marani et al., 2007, 2013; 96 
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Mariotti & Fagherazzi, 2010; Morris & Bowden, 1986; Mudd et al., 2009; Rogers et al., 2012; 97 

Schile et al., 2014; Schuerch et al., 2018; Stralberg et al., 2011; van Wijnen & Bakker, 2001). 98 

Although these models vary in complexity, all provide insights into coastal marsh vulnerability 99 

under SLR, especially for understanding whether the accretion rate of marshland can keep pace 100 

with the rate of SLR.  101 

In terms of their representation of vegetation-related processes, some studies assumed 102 

static vegetation with a constant influence of vegetation on hydrodynamics and sedimentation 103 

(Allen, 1995; D’Alpaos et al., 2011; French, 1993; Mudd et al., 2009; Rogers et al., 2012; Schile 104 

et al., 2014; Stralberg et al., 2011; van Wijnen & Bakker, 2001). Other studies modeled more 105 

detailed vegetation-water-land interactions by considering vegetation density, height, and 106 

submergence condition and how they impact water flow and sediment transport (e.g., Da Lio et 107 

al., 2013; D’Alpaos et al., 2007; Duvall et al., 2019; Mudd et al., 2004, 2009; Temmerman et al., 108 

2005). Morris et al. (2002) first proposed a clear relationship between marsh vegetation biomass 109 

and its depth below mean highest tide level based on the field observation on the coastal marsh 110 

in South Carolina, USA. Other studies extended this work to explicitly integrate quantitative 111 

representations for vegetation dynamics into coastal marsh evolution by assuming 1) a linear 112 

relationship between Spartina-dominant vegetation and its ponding condition  (Belliard et al., 113 

2015; D’Alpaos et al., 2007), 2) a nonlinear relationship between Spartina-dominant vegetation 114 

and its ponding condition (Kirwan & Murray, 2007; Mariotti & Fagherazzi, 2010), or 3) a linear 115 

relationship between multiple vegetation species and their ponding condition (Belliard et al., 116 

2015; D’Alpaos et al., 2007, 2019; Marani et al., 2004, 2013; Silvestri et al., 2005). The detailed 117 

explanations are presented in Subsection 2.1.    118 
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Many of these modeling studies evaluated the vulnerability of coastal marshes under SLR 119 

by using a lumped approach, where they treated coastal marshes as a single point or only focused 120 

on the marsh near the seaward boundary without an examination of the marsh spatial variation 121 

from the ocean to the upland in responding to SLR (D’Alpaos et al., 2011; French, 2006; Kirwan 122 

et al., 2010; Kirwan & Temmerman, 2009; Mudd et al., 2009; Temmerman et al., 2003; van 123 

Wijnen & Bakker, 2001). Other  studies investigated the spatial and temporal variation of coastal 124 

marsh evolution under SLR (D’Alpaos et al., 2007; D’Alpaos & Marani, 2016; Kirwan, Walters, 125 

et al., 2016; Marani et al., 2013; Ratliff et al., 2015). However, the response of coastal marsh 126 

evolution under SLR to varying representations of vegetation dynamic processes is still not well 127 

understood, especially in terms of the co-evolution of coastal marsh elevation and vegetation. 128 

Furthermore, as the complexity and sophistication of these coastal models continues to increase, 129 

there is a critical knowledge gap in how sensitive model predictions are to model 130 

parameterizations under different SLR conditions. This knowledge is critical for developing 131 

effective model parameterizations, and designing field studies to constrain those model 132 

parameters under different SLR scenarios. Currently, this knowledge gap limits our confidence 133 

in the application of these types of models to inform coastal wetland management and protection. 134 

In this study, we use two coastal eco-geomorphic models with different vegetation 135 

dynamic representations to investigate the eco-geomorphologic feedbacks in coastal marshes 136 

under future SLR conditions to address the following two questions:  137 

1) How will the selection of vegetation representations result in spatial and temporal 138 

variations in eco-geomorphologic outcomes of coastal marshes under SLR?   139 

2) How will the different vegetation representations and different rates of SLR affect 140 

model parametric sensitivity?  141 
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To address these questions we simulate the evolution of a one-dimensional coastal marsh 142 

transect using two well-established coastal eco-geomorphologic models from D’Alpaos et al. 143 

(2007) and Mariotti and Fagherazzi (2010). Specifically, under  two commonly-used future 144 

global mean SLR scenarios (SLR=0.01 m/yr and SLR=0.005 m/yr, corresponding to RCP 4.5 145 

and RCP 8.5 scenarios in Phase 5 of the Coupled Model Intercomparison Project (CMIP5) 146 

(Spencer et al., 2016), we explored three different dependencies of vegetation biomass on 147 

elevation above mean sea-level: linear and non-linear formulations for the Spartina-dominant 148 

vegetation (D’Alpaos et al., 2007; Mariotti & Fagherazzi, 2010; Morris et al., 2002); and the 149 

mixed-species linear function (D’Alpaos et al., 2007). After comparing the spatial and temporal 150 

variations of coastal marsh evolution under SLR with different vegetation equations, we used a 151 

global sensitivity approach to evaluate the sensitivity of eco-geomorphologic processes to model 152 

parameterizations spanning a wide range of the parameters.  153 

The paper begins by introducing process representation in Section 2, followed by model 154 

introduction, study site, experiment design, and model setting in Section 3. Then we analyze the 155 

marsh evolution and model sensitivity under different rates of sea level rise, vegetation schemes, 156 

and maximum organic soil production rates in Section 4. Finally, we discuss the implications of 157 

this study for understanding the vulnerability of coastal marsh under SLR, guiding data-model 158 

integration, representation, and uncertainties. These results should provide valuable insights to 159 

appropriately choose process representations in modeling and identify key parameters for 160 

different coastal marsh landscapes under SLR.  161 

2. Background: process representation in eco-geomorphologic models 162 

In general, the current generation of eco-geomorphologic models represents topographic 163 

change of coastal marsh as the net balance of sediment erosion and deposition (Fagherazzi et al., 164 
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2012). Based on mass conservation, the spatially-averaged dynamics of topographic elevation in 165 

a coastal landscape can be expressed as 166 

𝑑𝑧

𝑑𝑡
=

1

1−𝑝
(𝐷 − 𝐸) − 𝑅,                                                          (1) 167 

where 𝑧 is the surface elevation relative to the mean sea level with the dimension of [L]; 𝑡 is 168 

time [T];  𝑝 is the porosity of bed sediment; 𝐷 and 𝐸 represent local sediment deposition and 169 

erosion rates with the dimensions of [L/T], respectively; and 𝑅 is the rate of sea level rise [L/T].  170 

However, the way each term in Eq. 1 is modeled may vary. For the erosion term (𝐸) in 171 

Eq. 1, it may consist of erosion due to bed shear stress induced by currents and waves and/or 172 

due to wave breaking (Carniello et al., 2005; Marani et al., 2010; Mariotti & Fagherazzi, 2010; 173 

Van Rijn, 1993), namely, 174 

𝐸 = 𝐸𝑠ℎ𝑒𝑎𝑟 + 𝐸𝑏𝑟𝑒𝑎𝑘,                                                                    (2) 175 

where 𝐸𝑠ℎ𝑒𝑎𝑟 is the erosion due to bed shear stress. Erosion occurs when the bed shear stress 176 

(𝜏0) exceeds the critical shear stress for erosion (𝜏𝑒), viz 177 

𝐸𝑠ℎ𝑒𝑎𝑟 = {
𝛼 (

𝜏0

𝜏𝑒
− 1)       𝑖𝑓 𝜏0 > 𝜏𝑒

0                        𝑖𝑓 𝜏0 < 𝜏𝑒
,                                                 (3) 178 

where 𝛼 is the erosion coefficient. 𝐸𝑏𝑟𝑒𝑎𝑘 in Eq. 2 is the erosion due to wave breaking. 179 

According to Mariotti and Fagherazzi (2010), 𝐸𝑏𝑟𝑒𝑎𝑘 is a function of wave power dissipated by 180 

breaking: 181 

𝐸𝑏𝑟𝑒𝑎𝑘 = {
𝛽 (

𝑃

𝑃𝑐𝑟
− 1) /𝑑                𝑖𝑓 𝑃 > 𝑃𝑐𝑟

          0                            𝑖𝑓 𝑃 < 𝑃𝑐𝑟
,                                                 (4) 182 
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where 𝛽 is the wave erosion coefficient; 𝑃 is the wave power per unit area; 𝑃𝑐𝑟 is the threshold 183 

of wave power for wave erosion; and 𝑑 is the spatial interval over which wave breaking occurs. 184 

The sedimentation rate, 𝐷 in Eq. 1, is given by 185 

𝐷 = 𝐷𝑠 + 𝐷𝑡 + 𝐷𝑜,                                                          (5) 186 

where 𝐷𝑠 is the inorganic sediment settling rate [L/T], which is a function of settling velocity 187 

(𝑤𝑠) (Cao et al., 2020), suspended sediment concentration (𝐶), bed shear stress (𝜏0) due to 188 

water flow, and critical shear stress for sedimentation (𝜏𝑑) (Krone, 1962), namely, 189 

𝐷𝑠 = {
𝑤𝑠𝐶 (1 −

𝜏0

𝜏𝑑
)   𝑖𝑓 𝜏0 < 𝜏𝑑

0                        𝑖𝑓 𝜏0 > 𝜏𝑑
.                                                   (6) 190 

𝐷𝑡 in Eq. 5 is the inorganic sediment trapping rate due to the effect of vegetation canopy [L/T], 191 

which can be represented by an empirical form 192 

𝐷𝑡 = 𝐶𝑈𝜖𝑑𝑠𝑛𝑠min [ℎ𝑠, ℎ𝑤]                                                      (7) 193 

where 𝑈 is the water flow velocity [L/T]; 𝜖 is a capture efficiency of vegetation stems, ℎ𝑤 is the 194 

water flow depth [L], and several vegetation characteristics, such as plant stem diameter (𝑑𝑠), 195 

stem density (𝑛𝑠), and vegetation height (ℎ𝑠) (Mudd et al., 2004; Palmer et al., 2004). 196 

Additionally, 𝐷𝑜 in Eq. 5 is the organic matter production rate [L/T], which is a function of 197 

plant biomass, viz 198 

𝐷𝑜 = 𝐾𝑏
𝐵

𝐵𝑚𝑎𝑥
,                                                                   (8) 199 

where 𝐾𝑏 is the maximum production rate of below ground organic material; 𝐵 is the biomass 200 

at the current time; and 𝐵𝑚𝑎𝑥 is the maximum vegetation biomass. The growth of coastal marsh 201 

vegetation is controlled by several factors related to nutrient inputs (e.g., nitrogen and 202 
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phosphorous) and soil environmental stress (e.g., oxygen availability, salinity, and sulfide 203 

concentration) (Silvestri & Marani, 2004) Morris et al. (2002) proposed a relation between 204 

vegetation biomass and the depth of the marsh surface below the mean highest tidal level based 205 

on observations at a coastal marsh in South Carolina. Based on this relation, several empirical 206 

functions were derived to represent equilibrium vegetation biomass under different ponding 207 

conditions. The empirical function can be expressed as a linear (D’Alpaos et al., 2007) or a 208 

parabolic (Morris et al., 2002) function of salt marsh elevation relative to tide level. For the 209 

linear dependency, current modeling studies also considered the different response of marsh 210 

species to sea level change (see Fig. 2). For example, the lowland area with frequent flooding is 211 

more favorable for salt-tolerant and flood-tolerant species, such as Spartina alterniflora. 212 

Quantitatively, the biomass equation can be written as (see the blue line in Fig. 2) 213 

𝐵1 = {
(
𝑀𝐻𝑇𝐿−𝐷𝑏𝑖𝑜𝑚𝑖𝑛−𝑧)

𝐷𝑏𝑖𝑜𝑚𝑎𝑥−𝐷𝑏𝑖𝑜𝑚𝑖𝑛
)𝐵𝑚𝑎𝑥  𝑖𝑓 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 ≤ 𝑧 ≤ 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 

       0                                        𝑖𝑓 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 > 𝑧 𝑜𝑟 𝑧 > 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛
,      (9) 214 

where 𝐵1 is the time-averaged belowground biomass density [M/L
2
]; 𝐵𝑚𝑎𝑥 is the maximum 215 

biomass density [M/L
2
]; 𝑀𝐻𝑇𝐿 represents the mean highest tide level [L]; 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 and 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 216 

are the highest and lowest depth below MHTL, respectively, which bounds the upper and lower 217 

limits of vegetation growth range (D’Alpaos et al., 2007). 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 and 𝑀𝐻𝑇𝐿 −218 

𝐷𝑏𝑖𝑜𝑚𝑎𝑥 represent the elevations of the upper and lower boundaries for vegetation growth (the 219 

dashed lines in Fig. 2). Whereas, some mixed species on marshland prefer higher elevation 220 

region with less flooding and better aerated soil (see the orange line in Fig. 2), namely 221 

𝐵2 =

{
 
 

 
 
                        0                          𝑖𝑓 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 > 𝑧                                       

(
𝑧−(𝑀𝐻𝑇𝐿−𝐷𝑏𝑖𝑜𝑚𝑎𝑥)

𝐷𝑏𝑖𝑜𝑚𝑎𝑥−𝐷𝑏𝑖𝑜𝑚𝑖𝑛
)𝐵𝑚𝑎𝑥     𝑖𝑓 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 ≤ 𝑧 ≤ 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 

𝐵𝑚𝑎𝑥                         𝑖𝑓 𝑧 > 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛                        
       

,           (10) 222 
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where 𝐵2 is the time-averaged belowground biomass density for mixed species [M/L
2
] 223 

(D’Alpaos et al., 2007). Besides these linear functions, a parabolic formulation describes that 224 

the plant biomass goes to zero when the marsh surface elevation reaches the upper (𝑀𝐻𝑇𝐿 −225 

𝐷𝑏𝑖𝑜𝑚𝑖𝑛) or lower bound (𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥), and the biomass reaches its peak at a certain 226 

elevation between 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 and 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥  (see the yellow line in Fig. 2): 227 

𝐵3 = {
                        0                          𝑖𝑓 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 > 𝑧 𝑜𝑟 𝑧 > 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 

𝐵𝑚𝑎𝑥(𝑎𝐷 + 𝑏𝐷
2 + 𝑐)   𝑖𝑓 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 ≤ 𝑧 ≤ 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 

,                 228 

(11) 229 

where 𝐵3 is the time-averaged belowground biomass density [M/L
2
] (Morris, 2006); D is the 230 

ratio between 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 − 𝑧 and 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛; a, b, and c are fitting coefficients.  231 

The representation of marsh hydrodynamics driven by tides and waves is also an 232 

essential part of eco-geomorphologic modeling because both erosion and sedimentation are 233 

fundamentally tied to surface water flow (Scheidegger, 1961). The shallow water equations, 234 

derived from the depth-integrated Navier–Stokes equations, have been widely used to compute 235 

hydrodynamics in coastal regions where the water horizontal length scale is much greater than 236 

the vertical length scale (Vreugdenhil, 2013). Specifically, the shallow water equations consist 237 

of two conservation equations: 1) conservation of mass and 2) conservation of momentum. 238 

Namely, in a one-dimensional (1-D) domain,  239 

𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑠𝑠: 
𝜕𝜂

𝜕𝑡
+
𝜕(𝜂𝑢)

𝜕𝑥
= 0,                                 (12) 240 

and 241 

𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚: 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕(𝑢)

𝜕𝑥
= −𝑔

𝜕(ℎ)

𝜕𝑥
− 𝑔

𝑢|𝑢|

𝐶2ℎ
= 0,         (13) 242 
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where ℎ is the water surface elevation = land surface elevation (𝑧) + local water flow depth (𝜂) 243 

[L], thus ℎ varies not only depending on the change in water depth, but also the simultaneous  244 

morphological change; 𝑢 is the flow velocity [L/T]; 𝑔 is the gravitational acceleration [L/T
2
]; 245 

𝑥 is the spatial direction along the 1-D domain [L]; and C is the Chezy’s friction coefficient.  246 

3 Methodology 247 

3.1 Numerical model  248 

We used a 1-D version of the coastal eco-geomorphologic model developed by 249 

D’Alpaos et al. (2007) (hereinafter referred to as D-model) focusing on the interaction between 250 

land and ocean without lateral water and sediment fluxes, such as tidal channels.  The D-model 251 

integrates all the hydro-eco-geomorphologic components introduced in Fig. 1, including 252 

sediment settling (Eq. 6), sediment trapping (Eq. 7), vegetation organic matter production (Eq. 253 

8), and sediment erosion (Eq. 3), except sediment erosion due to waves which is of minimal 254 

importance for this problem. Because the effect of waves in controlling the spatial and temporal 255 

variation of coastal marsh evolution was well studied by Duvall et al. (2019) and Mariotti and 256 

Fagherazzi (2010), and vegetation can significantly mitigate waves if the waves are not too 257 

strong, wave-induced erosion is not a focus in this study. We focused on conditions with regular 258 

semi-diurnal tidal cycle and background SLR. For the representation of vegetation biomass, the 259 

original D-model included functions (e.g., Eqs. 9 and 10) that assume a linear relationship 260 

between annual averaged biomass and the elevation relative to mean sea level and considered 261 

different responses of Spartina and mixed vegetation species (see details in Subsection 2.1). To 262 

have a comprehensive understanding of the differences of the eco-geomorphologic feedbacks 263 

under different representations of vegetation dynamics, we integrated the nonlinear function 264 
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(e.g., Eq. 11) into the D-model as well. For the computation of hydrodynamics, the D-model 265 

uses an approach similar to the kinematic-wave form that assumes a balance between water 266 

surface slope and friction in the momentum equation (Eq. 13) (D’Alpaos et al., 2007; Rinaldo et 267 

al., 1999). The detail of the hydrodynamic component is referred to the supplementary 268 

information S1 and D’Alpaos et al. (2007), and the detail for the sediment transport component 269 

is referred to Section 2 above and D’Alpaos et al. (2007).  270 

To demonstrate that the D-model appropriately captures the behavior of coastal 271 

evolution under SLR, we conducted some of the same simulations by using another well-272 

established coastal eco-geomorphologic model developed by Mariotti and Fagherrazi (2010) 273 

(hereinafter referred to as M-model). Similar to the D-model, the M-model integrates all the 274 

hydro-eco-geomorphological components introduced in Fig. 1, including sediment settling (Eq. 275 

6), sediment trapping (Eq. 7), vegetation organic matter production (Eq. 8), and sediment 276 

erosion (Eq. 3), as well as sediment erosion due to waves (Eq. 4). To make the simulations from 277 

the D- and M-model comparable, we turned off the process of erosion due to waves in the M-278 

model. For the representation of vegetation biomass, the M-model uses the Spartina-dominant 279 

nonlinear function, the same function we added to the D-model. An introduction to the M-280 

model and its simulation results may be found in the supplementary information S2 and in 281 

Mariotti and Fagherazzi (2010).  282 

3.2 Numerical Experiment 283 

We used a 1-D transect based on a marsh platform along the Delaware Bay, USA, as a 284 

prototype for our simulations (the black solid line in Fig. 3c). Marsh surface elevation in the 1-285 

D transect is at a level close to MHTL (gray dashed line in Fig. 3c), consistent with 286 

observations in Delaware Bay based on the CoNED coastal elevation database (Danielson et al., 287 
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2016) and NOAA (National Oceanic and Atmospheric Administration) tide observations 288 

(NOAA, 2001), which indicates that the landscape is at or close to an equilibrium state under 289 

the current sea level conditions (D’Alpaos et al., 2007).  290 

This study simplifies the 1-D transect topography by using a linear interpolation of the 291 

observed topography (red line in Fig. 3c) as the initial land surface elevation for the numerical 292 

experiments. The origin of the 1-D model domain is placed at the seaward boundary (x=0), 293 

whereas the upland boundary is located at x=L. Water and sediment can only flow through the 294 

seaward boundary with zero flux flowing through the upland boundary. The current mean sea 295 

level (MSL) is at -0.13 m above NAVD88 (North American Vertical Datum of 1988), and the 296 

averaged tide amplitude is about 0.8 m based on the NOAA tide and current observation at 297 

station Cape May, NJ [8536110] (the red star in Fig. 3b). We used a constant suspended 298 

sediment concentration (C0=20 mg/L) at the ocean boundary (x=0). The value of C0 falls at the 299 

lower bound of the range of sediment concentration used in the previous coastal eco-300 

geomorphologic modeling studies (e.g., Kirwan, Walters, et al., 2016). Thus, this study makes a 301 

conservative prediction of coastal marsh change under SLR. However, a comparable numerical 302 

experiment with the same model settings but with a higher suspended sediment concentration 303 

(C0=100 mg/L) was also conducted, and the results can be found in the supplementary 304 

information.  305 

In order to speed-up simulations to geomorphologically relevant time scales, the 306 

simulations adopted a morphological scaling factor (MSF, e.g., Lesser et al. (2004); Roelvink 307 

(2006); Zhang et al (2016)), which effectively assumes that changes in the topographic profile 308 

over time scales smaller than the scaling factor do not appreciably affect the flow field and the 309 

eco-geomorphic dynamics. Hence, elevation change is computed offline by applying sediment 310 
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fluxes determined in a tidal cycle, assumed to be constant for a period of time equal to the MSF. 311 

Thus, in this study, the simulations were run for 500 years (consistent with the simulation time 312 

in D’Alpaos et al. (2007) to make sure the landscape reaches an equilibrium state) with a spatial 313 

interval of 1 m and a time interval of 10 minutes for hydrodynamics and MSF=50 for the eco-314 

geomorphologic change. The same numerical settings were applied to the M-model simulations 315 

in the supplementary information.   316 

We designed several focused numerical experiments to characterize eco-317 

geomorphologic feedbacks under different representations of vegetation dynamics and SLR 318 

scenarios for the future 500 years. We adopted two commonly used future global mean SLR 319 

scenarios from global climate model predictions, including (1) the relatively low SLR rate 320 

(0.005 m/yr) (Da Lio et al., 2013; Ganju et al., 2020; Kirwan & Temmerman, 2009; Spencer et 321 

al., 2016) and (2) the relatively high rate of SLR (0.01 m/yr) (Ganju et al., 2020; Kirwan, 322 

Walters, et al., 2016; Orson et al., 1985; Spencer et al., 2016). In addition, we considered three 323 

different representations of vegetation dynamic processes, such as the Spartina-dominant linear 324 

function, Spartina-dominant nonlinear function, and mixed species linear function. Also, in 325 

simulating vegetation organic soil production, we incorporated two different rates of maximum 326 

organic production rates: 1) 𝐾𝑏 = 0.003 𝑚/𝑦𝑟, a commonly used maximum organic production 327 

rate under current climate (Mudd et al., 2009) and 2) 𝐾𝑏 = 0.009 𝑚/𝑦𝑟, a larger maximum 328 

organic production rate used in the previous modeling studies (e.g., Mariotti & Fagherazzi, 329 

2010), reflecting the increase of belowground biomass productivity under elevated atmospheric 330 

CO2 in the future (Ratliff et al., 2015). Scenario details are listed in Table 1. The parameters for 331 

these individual simulations are listed in the fourth column in Table 2.  332 
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3.3 Sensitivity analysis 333 

There are many sensitivity analysis approaches available to understand parametric 334 

sensitivity of model behavior (see Song et al. (2015) for a detailed review).  In this study, we 335 

used a widely applied sensitivity analysis approach, the Fourier Amplitude Sensitivity Test 336 

(FAST) technique (Cukier et al., 1973; Xu & Gertner, 2011, 2008a).  FAST is computationally 337 

efficient and can be used for both nonlinear and non-monotonic relationships between 338 

parameters and model outputs (Xu & Gertner, 2011). FAST uses a periodic sampling strategy to 339 

assign a characteristic periodic signal for each parameter. Within FAST, a Fourier 340 

transformation is used to decompose the variance in model outputs into partial variance 341 

contributions by individual model parameters based on the assigned signals. The ratio of partial 342 

variance contributed by a specific parameter to the total variance of a model output is defined as 343 

the first-order sensitivity index to measure the importance of each model parameter. The FAST 344 

analysis has been incorporated into a software tool, the UASA ToolBox 345 

(https://sites.google.com/site/xuchongang/uasatoolbox) by Xu and Gertner (2008b) and 346 

provides a rigorous way of defining, executing, and analyzing experiments for model 347 

parametric sensitivity.  348 

This study selected 11 common parameters that have been used in many coastal eco-349 

geomorphologic models including the D and M models (see the list of the parameters in Table. 350 

2). Based on this selection, the UASA ToolBox was used to generate 1,100 groups of 351 

parameters for the model ensemble simulations to quantify the models’ individual parametric 352 

sensitivities. The range of each parameter is estimated based on our literature survey and 353 

empirical knowledge. However, because there is not enough data to derive informative 354 

probability density distributions, we used a uniform distribution for our sensitivity analysis. 355 
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Model sensitivity is defined in terms of relevant quantitative metrics describing the final 356 

state of the system: 1) the difference between the MHTL and the elevation at the seaward 357 

boundary (MHTL minus elevation, hereinafter referred to as Depth_m), 2) the difference 358 

between the elevations at the seaward and upland boundaries (elevation relief) from each 359 

ensemble simulation under different scenarios, 3) domain averaged sediment fluxes, 4) the 360 

vegetation biomass at the seaward boundary, and 5) the vegetation biomass at the upland 361 

boundary. Notably, the first metric, Depth_m, measures how the landscape elevation (at least 362 

the seaward boundary) responds to SLR. While the second metric (elevation relief) measures 363 

the difference of elevation at the seaward boundary and inland and possible inland depression 364 

on the 1-D profile.  365 

4. Results  366 

4.1 Topographic evolution and sediment fluxes under different SLR rates 367 

4.1.1 Topographic change across individual simulations 368 

We first used twelve individual simulations (cases 1 to 12 in Table. 1) as examples to 369 

compare the elevation change under different vegetation equations for biomass estimation and 370 

SLR scenarios simulated by the D-model over 500 years (see Fig. 4). The corresponding 371 

sediment fluxes at the end of the 500 years are illustrated in Fig. 5. Domain-wide, the elevations 372 

in the cases with a higher maximum organic production rate (Kb) (the first column in Fig. 4) 373 

were higher than the elevation in the lower Kb cases (the second column in Fig. 4). At the 374 

seaward boundary, the relative locations between elevation and MHTL near the seaward 375 

boundary in all vegetation-covered scenarios remained constant after 400 years’ simulation (not 376 

shown at here) due to a balance between sediment fluxes (Fig. 5), which indicate that 1) the 377 
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elevations near the seaward boundary reached a new equilibrium state under future SLR and 2) 378 

the marshland near the seaward boundary kept pace with the rates of SLR. In contrast, the cases 379 

without vegetation showed clear declines of elevation near the ocean boundary (gray dashed 380 

lines in Fig. 4) due to erosion (the black lines in Fig. 5d and k) and lack of organic accretion 381 

and inorganic trapping. The final elevations with vegetation coverage reached the level of 382 

MHTL (solid lines in Fig. 4), except in the high SLR and low Kb scenario (Fig. 4c), where the 383 

elevation was 0.2-0.3 m below the MHTL, and in the low SLR and high Kb scenario (Fig. 4b), 384 

where the simulated marsh surface elevation with the mixed-vegetation equation (hereinafter 385 

referred to as mixed-veg case) was higher than the MHTL.  386 

Moving landward, the marsh elevations declined due to a decrease in sedimentation rate 387 

landward. Some of the marshland became totally submerged in water as the elevation was 388 

below the final mean sea level (final MSL indicated by the blue dashed lines in Fig. 4). With a 389 

higher Kb, a shorter portion of the marshland was below the final MSL because a higher Kb 390 

resulted in a higher organic sedimentation rate, which dominantly contributed to the accretion 391 

rate at the upland area where inorganic sediment from the ocean was restricted to this region.  392 

High SLR caused a larger elevation relief ranging from a maximum of 3.5 m under the 393 

higher Kb case (Fig. 4a) to 5m under the lower Kb case (Fig. 4c), compared to the low SLR 394 

scenarios that only had a maximum elevation relief of 0.48 m in the higher Kb case (Fig. 4b) 395 

and 2.85m in the lower Kb case (Fig. 4d), respectively. Notably, in the lower SLR scenario with 396 

a higher Kb, the elevation slightly declined landward (Solid lines in Fig. 4b), which means that 397 

the net sedimentation rate always kept pace with the rate of SLR as illustrated in Fig. 5h, i, and 398 

j. 399 
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Different vegetation schemes also highlight different influences on the topographic 400 

outcomes. Among all the vegetation cases, the Spartina-nonlinear case showed the highest final 401 

elevation and the least elevation relief due to the highest sedimentation rate throughout the 402 

domain, particularly due to organic soil production in the middle and upper portions of the 403 

transect. In terms of the elevation decline, the decline started earlier in the mixed-veg cases (at 404 

approximately 100 to 200 m from the seaward boundary) than the elevations with Spartina-405 

dominant linear and nonlinear functions (hereinafter referred to as Spartina-linear case and 406 

Spartina-nonlinear case, respectively) which started to decline around 250 to 350 m away from 407 

the seaward boundary (thick and thin black solid lines in Fig. 4). Notably, in the mixed-veg case 408 

under low SLR and high Kb (gray solid line in Fig. 4b), the elevation rose above MHTL and 409 

ended at 1 meter above MHTL. This was because the vegetation growth in the mixed-veg case 410 

is greater at lower inundation levels. Thus, vegetation continued growing even when the 411 

elevation is above the MHTL. The 1-meter height is constrained by the assumption of 1-meter 412 

root depth in the model simulation. If the land surface exceeds 1 m, the vegetation biomass 413 

decreases rapidly because the model assumes that vegetation cannot access enough water in the 414 

soil and the halophytic vegetation species would be out competed by other terrestrial species. In 415 

the Spartina-dominant cases, the Spartina-nonlinear cases showed a starting of elevation decline 416 

closer to the seaward boundary than the elevation decline in the Spartina-linear cases (black 417 

solid lines in Fig 4a, c, and d).  418 

For the contributions of sediment fluxes to marshland accretion, in general, sediment 419 

settling rate contributed more than sediment trapping rate and organic production rate near the 420 

seaward boundary (light blue lines in Fig. 5) in all vegetation-covered cases, except the mixed-421 

veg cases (Fig. 5c, j, and n) where the organic production rate was higher than the other fluxes. 422 
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This is because the mixed-veg case assumes that vegetation can grow better under lower 423 

inundation or no inundation conditions where vegetation organic production always plays a role 424 

in contributing to marsh accretion, but inorganic sediment settling contributes less due to 425 

limited delivery of sediment to marshland. Given that the elevation near the seaward boundary 426 

accreted faster than the inland area, the inundation depth near the seaward boundary was 427 

shallower than the inland, which provided a more favorable condition for mixed vegetation 428 

species to grow near the seaward boundary, resulting in a higher organic production rate there.  429 

Moving landward, the contributions of fluxes to the accretion rate varied spatially across 430 

different Kb cases, SLR conditions, and vegetation schemes (Fig. 5). Under higher Kb, the 431 

organic production rate was dominant (purple lines in Fig. 5a, b, c, h, i, and j), and the spatial 432 

patterns of the sediment fluxes reflected the different assumptions of the vegetation schemes. 433 

For example, the patterns of fluxes were very different between the mixed-veg case and 434 

Spartina-dominant case due to the different assumptions of the favorable growth condition for 435 

vegetation. In contrast, in the lower Kb cases, the low vegetation organic production rate limited 436 

the vegetation effect in controlling accretion rate. Thus, the sediment settling rate was dominant 437 

landward in the lower Kb cases.  We also observed that the vegetation-related fluxes (sediment 438 

trapping and organic production) were overall higher in the high SLR scenarios than in their 439 

corresponding low SLR scenarios.  We did not observe erosion under this regular tidal cycle 440 

and sea level rise condition in the vegetation-covered cases because vegetation reduced water 441 

flow velocity and prevented erosion in these experiments.   442 

4.1.2 Model parametric sensitivity from ensemble simulations 443 

We explored the model parametric sensitivity represented by the ratio of individual 444 

parametric variance to the total variance from the ensemble simulations across different 445 
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combination of parameters spanning wide ranges of their values (see Table. 2). This analysis 446 

captured the overall parametric sensitivity of the eco-geomorphologic processes in the model 447 

and highlighted how different representations of vegetation dynamics and SLR conditions affect 448 

the parametric sensitivity.  449 

4.1.2.1 Parametric sensitivity for topographic change 450 

For the sensitivity of modeled Depth_m (defined as MHTL minus elevation in 451 

Subsection 3.3) to parameterization (Fig. 6a), vegetation-related parameters showed a larger 452 

influence on Depth_m under the higher rate of SLR (e.g., the first three columns in Fig.6a).  453 

While, under the lower rate of SLR, the sediment-related parameters, especially the “sediment 454 

concentration”, were the dominant parameters (the last three columns in Fig. 6a). For the 455 

different vegetation dynamic schemes, the mixed-veg cases were highly sensitive to the 456 

“maximum organic production rate” indicating that the elevation at the seaward boundary 457 

relative to the MHTL was highly dependent on the organic matter production rate regardless of 458 

the rates of SLR because some species in the mixed-veg cases can grow under more prolonged 459 

flooding condition, and the other species are adapted to less frequent and prolonged flooding 460 

condition, such that the vegetation processes can contribute to sedimentation in all conditions. 461 

While, in the Spartina-dominant cases, the vegetation can only grow under more prolonged 462 

flooding condition driven by SLR and tide. Thus, the parametric sensitivities in the Spartina 463 

linear and nonlinear cases (the first, second, fourth, and fifth columns in Fig. 6a) were 464 

controlled by the inundation condition, the sediment settling, and vegetation processes and did 465 

not present a huge difference among parameters, compared to the mixed-veg cases. The 466 

relatively more sensitive parameters are “maximum organic production rate”, “maximum 467 

biomass”, “water depth for plant growth”, “sed concentration”, and “critical shear stress for 468 
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deposition”. Among these parameters, the “maximum organic production rate” was the most 469 

sensitive parameter in the high SLR scenario (the first and second columns inf Fig. 6a). In 470 

contrast, “sediment concentration” was the most sensitive parameter in the low SLR scenarios 471 

(the fourth and fifth columns in Fig. 6a). This is because the high rate of SLR has a larger 472 

potential to cause a higher inundation condition by high tides, a favorable condition for 473 

Spartina to grow. Therefore, the vegetation effect had a larger contribution to sedimentation 474 

than the contribution from vegetation in the low SLR cases.  475 

For the sensitivity of elevation relief, in the high SLR scenario (the first, second, and 476 

third columns in Fig. 6b), the model simulations were more sensitive to the “sediment 477 

diffusivity” parameter, an important parameter in the sediment diffusion equation that controls 478 

how much sediment could propagate landward. “Tide amplitude” was also one of the most 479 

sensitive parameters in the Spartina-linear and -nonlinear cases. The vegetation-related 480 

parameters showed relatively low sensitivity (the first and second columns in Fig. 6b), which 481 

means that the elevation relief under high SLR was more dependent on how much sediment can 482 

propagate landward and deposit. However, in the mixed-veg case, the “maximum organic 483 

production rate” along with “sediment diffusivity” were the most sensitive parameters, which 484 

reflects the tolerance of the growth of mixed vegetation species in different conditions. For the 485 

low SLR scenario (the fourth to sixth columns), the vegetation-related parameters showed 486 

higher sensitivity, which means that the vegetation processes were more dominant to the change 487 

of elevation relief, especially for the Spartina-linear and nonlinear cases. The values of 488 

sensitivity for each parameter in each scenario can be found in Tables S1 and S2. 489 
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4.1.2.2 Parametric sensitivity for sediment fluxes 490 

In terms of the parametric sensitivity of sediment fluxes to model parameterization, the 491 

sensitivities are similar to corresponding vegetation cases under both SLR scenarios. For 492 

example, the Spartina-linear cases (the first to third columns in Fig. 7a and first to third 493 

columns in Fig. 7b) under both the high and low SLR scenarios show a similar parametric 494 

sensitivity for each corresponding sedimentation processes.  495 

Specifically, for the sediment settling process, all the cases (the first, fourth, and seventh 496 

columns in Fig. 7a and the first, fourth, and seventh columns in Fig. 7b) were most sensitive to 497 

the “maximum organic production rate”, which may be because the organic production 498 

influences elevation changes that indirectly control sediment settling process. Besides the 499 

“maximum organic production rate”, the model simulations were also sensitive to some 500 

sediment settling-related parameters, such as “sediment concentration”, “settling velocity”, and 501 

“critical shear stress for deposition”, which are the key parameters directly control sediment 502 

settling process. For the organic soil production by vegetation, all the cases (the second, fifth, 503 

and eighth columns in Fig. 7a and the second, fifth, and eighth columns in Fig. 7b) were most 504 

sensitive to the “maximum organic production rate”, the key parameter in organic soil 505 

production process. For the sediment trapping process, the sensitivity was almost evenly 506 

distributed for each parameter because sediment settling, sediment diffusion and advection, and 507 

vegetation all influence sediment trapping, however, the parameters of “sediment diffusivity” 508 

and “sediment concentration” that control the distribution of sediment concentration showed 509 

slightly higher sensitivity. The values of sensitivity for each parameter in each scenario can be 510 

found in Tables S3 and S4. 511 

4.2 Vegetation dynamics with the change in surface topography 512 
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4.2.1 The spatial and temporal variation of vegetation biomass from individual simulations 513 

The different formulations for vegetation growth in response to inundation conditions 514 

(Fig. 2) lead to distinct patterns in biomass distributions and marsh response to tidal and SLR 515 

induced flooding. Figure 8 showed the spatial variation of vegetation biomass at the end of 500 516 

years in the simulations under the different vegetation dynamic schemes, rates of SLR, and Kbs. 517 

In general, the spatial patterns of vegetation biomass corresponded to the marsh elevation 518 

profiles in Fig. 4. For example, the locations of dramatic declines of vegetation biomass in the 519 

high SLR scenarios are well-aligned with the topographical depression area in Fig. 4a and c. In 520 

this low-lying region, the marsh elevations approach an unfavorable inundation condition for 521 

vegetation growth with high ponding water detrimental to vegetation growth. In contrast, the 522 

spatial variations of vegetation biomass in the low SLR scenarios are smaller with the higher Kb 523 

because the entire domain kept pace with the rate of SLR (see the elevation profiles in Fig. 4b), 524 

which resulted in a more uniform biomass distribution across the marsh. However, with the 525 

lower Kb, the simulation shows an abrupt decrease when the marshland was submerged in water 526 

(Fig. 8d), similar to the final biomass profile in the high SLR scenarios.  527 

For the mixed-veg cases, despite the different locations of the abrupt decreases, they 528 

showed similar patterns under the lower Kb (Fig. 8c and d), but different responses under the 529 

higher Kb (Fig. 8a and b). In the low SLR condition with the higher Kb (Fig. 8b), the mixed 530 

vegetation biomass was relatively uniform and greatly exceeded the linear and non-linear single 531 

species simulations across the entire model domain (the gray dashed line). In contrast, under the 532 

high SLR and higher Kb scenario (Fig. 8a), the mixed vegetation biomass outpaced the single 533 

species within ~150 m from the seaward boundary, but then rapidly decreased landward of this 534 

location to zero.  The Spartina-linear and nonlinear formulations increased approximately 535 
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linearly and then decreased to zero at further locations landward, compared with the mixed-veg 536 

cases. The Spartina-nonlinear cases showed a higher estimated vegetation biomass than the 537 

biomass in the Spartina-linear cases, but the biomass started to decrease to zero closer to the 538 

seaward boundary in the Spartina-nonlinear cases, which reflected the nature of the differences 539 

in the assumptions in the vegetation equations.  540 

In order to examine the temporal evolution of biomass across the marsh, we plotted the 541 

time series at three locations: the seaward boundary, and 100 m and 400 m landward of the 542 

boundary (Figure 9). Across the 12 simulation scenarios, the temporal evolution of biomass 543 

may be divided into three stages, though not all stages are present at all locations or every 544 

scenario. 545 

Rapid change characterizes the first stage. With the exception of mixed vegetation 546 

(Figure 9 c, f, i, and l) all locations exhibited rapid increases in biomass for the first 100 to 200 547 

years of the simulation. During the second stage, biomass continued to adjust but at 548 

significantly slower rates than the first stage. These adjustments are seen at 100 m in the 549 

Spartina linear simulations under both SLR forcings and Kb values (orange circles in Figure a, 550 

d, g, and j) and Spartina nonlinear simulations (orange circles in Figure 9b, e, h, and k). A 551 

dramatic exception to the gradual adjustments in Stage 2 is the 400 m location in the Spartina-552 

linear and -nonlinear rapid SLR (green circles in Figs 9a, b, d, and e) scenarios and the low Kb 553 

scenarios (green circles in Figs. 9d, e, j, and k) in which biomass rapidly drops back to a value 554 

of zero between 250 and 350 years.  555 

The third stage is the period when a system enters a stable state or equilibrium state. In 556 

all the cases, the vegetation biomass did not change, which indicated that a new equilibrium or 557 

quasi-equilibrium state was reached under the new rate of SLR. Examples of this stability 558 
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include the limited changes in vegetation biomass near the seaward boundary and at the 100 m 559 

locations in all the cases. This is because the vertical accretion rate at these locations in all the 560 

cases always kept pace with the rates of SLR.  561 

4.2.2 Parametric sensitivity for vegetation dynamics 562 

After analyzing the spatial and temporal variation of vegetation biomass change, we 563 

computed the sensitivity of biomass estimation at the seaward boundary and upland boundary to 564 

model parameterization based on the ensemble simulations. The biomass estimations were more 565 

sensitive to the vegetation-related parameters, especially the parameters of “maximum organic 566 

production rate” and “maximum biomass” (Fig. 10). For the vegetation biomass at the upland 567 

(the second, fourth, and sixth columns in Fig. 10a and b), “maximum organic production rate” 568 

and “maximum biomass” were the two most dominant parameters that control the estimation of 569 

biomass. However, the vegetation biomass near the seaward boundary was also sensitive to 570 

sediment settling-related parameters. Specifically, in the high SLR scenario, the biomass 571 

estimations near the seaward boundary (the first, third, and fifth columns in Fig. 10a) were also 572 

sensitive to all the other parameters, except the parameters for erosion (e.g., “erosion 573 

coefficient”). In contrast, in the low SLR scenario, the most sensitive sediment settling-related 574 

parameters were only “sediment concentration” and “settling velocity” in the Spartina-dominant 575 

cases (the first and third columns in Fig. 10b). The vegetation biomass estimation near the 576 

seaward boundary in the mixed-veg case was more sensitive to “maximum biomass” and 577 

“maximum organic production rate” than the rest parameters. The values of sensitivity for each 578 

parameter in each scenario can be found in Tables S5 and S6. 579 
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5 Discussion 580 

5.1 Coastal marsh vulnerability under accelerating SLR 581 

5.1.1 Will coastal marsh survive under future SLR? 582 

Our numerical experiments examined the spatial and temporal variation of coastal marsh 583 

evolution under three different representations of vegetation dynamic processes. The results 584 

presented similar features of final elevation profiles under the three vegetation schemes: 1) the 585 

elevation near the seaward boundary kept pace with both the high and low SLR rates (e.g., 586 

0.005m/yr and 0.01m/yr) and the high and low Kb, even with a conservative sediment 587 

concentration (e.g., C0=20 mg/L) at the seaward boundary (Fig. 4) and 2) the elevation 588 

landward declined and part of it drowned in water for the high SLR scenarios and low SLR with 589 

low Kb. The elevation near the seaward boundary started to approach a new equilibrium state 590 

under the rising SL conditions around 100 years (e.g., the cyan circles in Fig. 9a, b, d, e, g, h, j, 591 

and k), which was consistent with the findings in previous studies (D’Alpaos et al., 2011; 592 

Kirwan, Temmerman, et al., 2016; Kirwan & Temmerman, 2009; Temmerman et al., 2003; van 593 

Wijnen & Bakker, 2001). This pattern of lower accretion rates in the interior of marshes has 594 

been previously documented in both modeling (D’Alpaos et al., 2019; Marani et al., 2013; 595 

Ratliff et al., 2015) and field studies (Palinkas & Engelhardt, 2019).  596 

Under climate change, if the maximum organic soil production rate (Kb) increases to a 597 

similar level as the rate (0.009 m/yr) used in this study due to the increase of temperature and 598 

CO2 in the future , the spatial and temporal variations of vegetation biomass are relatively small 599 

and vary within the vegetation growth range (Figs. 8b and 9g, h, and i) under the lower SLR 600 

rate (0.005m/yr). Based on these results, a SLR of 0.005m/yr does not appear to threaten the 601 
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survival of coastal marsh systems characterized by these types of vegetation on a 500-year 602 

scale. However, for a Kb rate commonly observed today (0.003m/yr), all the SLR scenarios 603 

showed clear declines of surface elevation starting near the middle or upper of the domain 604 

(solid lines in Fig. 4a) and continuing to the upland boundary illustrating that the accretion rate 605 

at the inland portion of the coastal marsh cannot keep pace with the high SLR. These inland 606 

areas turned into open water habitats with  degradation and  marsh vegetation mortality 607 

occurring after 200-300 years in these locations (Figs. 8a and 9a and b), which may lead to the 608 

change of coastal marsh ecosystem functions and hydrological regime shift (Ganju et al., 2020).  609 

The simulations above used a conservative sediment concentration rate from the ocean 610 

boundary (C0=20 mg/L), which limited the delivery of sediment landward under the high SLR 611 

rate, resulting the drowning of upland marsh. However, in our simulation with a higher 612 

sediment concentration from the ocean (C0=100 mg/L), more sediment entered the domain and 613 

improved the potential for survival of coastal marshland under high SLR. However, simulations 614 

with the higher sediment concentration delayed, but didn’t prevent upland submergence, which 615 

further demonstrated that coastal marsh is largely vulnerable under the high rate of SLR (0.01 616 

m/yr) (see Figs. S2 and S3 in the supplementary information). Also, we assumed a closed 617 

boundary at the upland. The sediment supply and geomorphologic structure of the upland area 618 

can be an important factor to maintain the accretion rate of high marsh (Kirwan, Walters, et al., 619 

2016; Yousefi Lalimi et al., 2020), which is worth further exploring in a future study.   620 

5.1.2 Marsh vulnerability due to vegetation representation  621 

The experimental cases with different vegetation schemes consistently predicted coastal 622 

marsh vulnerability under future SLR. Under a conservative sediment concentration from the 623 

ocean (C0=20 mg/L), at the seaward boundary, marsh elevation accretion should keep pace with 624 
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future SLR, regardless the rate of SLR and Kb values. Landward, the inland part of the coastal 625 

marsh was resilient under low rate of SLR (0.005m/yr) and simultaneously with the higher Kb, 626 

but potentially vulnerable to collapse under high rate of SLR or with the lower Kb.  627 

Our simulations also highlighted marsh response to increased ponded water depth under 628 

future SLR. The mixed-veg scheme was the most resilient scenario under the lower SLR and 629 

with the higher Kb (gray solid line in Fig. 4b): the marsh accretion rate exceeded the SLR rate 630 

throughout the entire domain due to less inundation condition and high organic soil production 631 

rate. However, the mixed-veg scheme was the most vulnerable scenario under the higher SLR 632 

or with the lower Kb (gray solid line in Figs. 4a, c, and d): the decline of marsh elevation started 633 

within ~150 m of the seaward boundary due to a high inundation condition under the higher 634 

SLR scenario and lower organic soil production rate. Except for the mixed-veg case under the 635 

lower SLR, the Spartina-nonlinear cases predicted larger elevation increases throughout the 636 

domain and less elevation depression (Fig. 4) due to a higher vegetation biomass and its 637 

associated organic soil production rate (Fig.8). However, the vegetation biomass started to 638 

decrease closer to the seaward boundary in the Spartina-nonlinear case, compared with the 639 

Spartina-linear case, which implies that the Spartina-nonlinear case predicted a  higher 640 

unvegetated‐vegetated marsh ratio (UVVR) as defined in Ganju et al. (2017).  641 

In addition, our simulation depicted the evolution of vegetation biomass with the 642 

evolution of marsh landscape (Fig. 9), reflecting some of the plant life-history traits (Schwarz et 643 

al., 2018). The vegetation biomass of our studied marshland varied through different trajectories 644 

at the seaward boundary, mid-marshland, and the upland (Fig. 9). In general, vegetation 645 

biomass at the seaward boundary and mid-land reached an equilibrium state at around 100-200 646 

years and dropped dramatically at the upland with the drowning of marshland, revealing the 647 
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different vegetation responses at different location to boundary drivers and geomorphological 648 

change. Notably, the mixed-vegetation scheme predicted that vegetation landward would die 649 

out quicker under the high SLR rate (Fig. 9c) than the vegetation in the other vegetation cases. 650 

The similarity and distinction of vegetation evolution represented by the different vegetation 651 

schemes can potentially describe different vegetation colonization behaviors and cross-species 652 

competition during the evolution of coastal marsh (D’Alpaos et al., 2019; Schwarz et al., 2018).     653 

5.2 Implication to data-model integration and future coastal eco-geomorphologic modeling 654 

We found that the “sediment concentration” and “tidal amplitude” are the most sensitive 655 

parameters for coastal marsh evolution, which is in agreement with the findings in some prior 656 

studies (D’Alpaos et al., 2007; Kirwan, Walters, et al., 2016; Temmerman et al., 2003). More 657 

importantly, this study also identified additional parameters that are highly sensitive for the 658 

spatial and temporal variations of key landscape characteristics, such as 1) the Depth_m (depth 659 

between MHTL and marsh elevation at the seaward boundary), 2) elevation relief, 3) averaged 660 

sediment fluxes, and 4) vegetation biomass near the seaward boundary and at the upland. These 661 

parameters include “sediment diffusivity”, “maximum organic production rate”, and “maximum 662 

biomass”. Thus, this sensitivity analysis highlights the need for future modeling and field 663 

observations to better measure and parameterize these controls on marsh evolution.  664 

In particular, our sensitivity analysis identified the parameter of “sediment diffusivity” 665 

as one of the most sensitive parameters for predicting marshland evolution, especially 666 

controlling elevation relief, which implies the importance of hydrodynamic process that brings 667 

water and sediment landward and back to ocean. Although the evaluation of coastal 668 

hydrodynamics is outside the scope of this study, a good representation of coastal 669 

hydrodynamics as a function of coastal boundary condition (e.g., tide and wave), topographic 670 
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gradient, and vegetation effect (e.g., influencing surface roughness) is critical for predicting 671 

sediment budget accurately and is worth deeper investigation in future modeling studies (Best et 672 

al., 2018; Duvall et al., 2019).  673 

Our sensitivity analysis also showed the importance of “maximum biomass” and 674 

“organic production rate” for the prediction of marshland elevation changes.  Within most of 675 

the current eco-geomorphologic models, they are fixed through time. However, future climate 676 

changes, higher temperature and CO2 conditions might change the value of these parameters. 677 

For example, the high CO2 might result in a higher maximum biomass due to the CO2 678 

fertilization effects (Langley et al., 2009; Ratliff et al., 2015) and high temperature can lead to 679 

higher decomposition rates and thus a lower organic production rate (Crosby et al., 2017). 680 

Therefore, to improve the prediction accuracy, it is critical to have process-based models that 681 

can incorporate the impact of future climates on vegetation production and litter decomposition. 682 

5.3 Representativeness and uncertainty 683 

In this study, we selected the parameter values and the rates of SLR that were widely 684 

used in previous modeling studies or were established in the literature from field measurements 685 

to ensure that the simulations were realistic and representative. Additionally, the formulations 686 

used to represent the dominant processes were selected from broadly used sedimentation, 687 

erosion, and vegetation dynamic equations. Thus, the individual simulations should reflect 688 

current model capabilities and formulations used to understand process interactions and marsh 689 

response to SLR. Based on the ensemble simulations, we generated a large number of 690 

parameter samples for the sensitivity analysis. Thus, the results of the sensitivity analyses 691 

reasonably reflected the overall sensitivity of the model processes over their physical parameter 692 

ranges. The representativeness of the D-model simulations for eco-geomorphic evolution was 693 
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also supported by simulations from the M-model (see associated results and parametric 694 

sensitivity in Figures. S4 to S8 supplementary information). Both sets of simulations from each 695 

model had consistent elevation profiles under different rates of SLR and Spartina-nonlinear 696 

scheme (M-model only uses the Spartina-nonlinear scheme) and identified similar most 697 

sensitive parameters.  698 

The models used a no-flow boundary condition at the upland boundary, which limits the 699 

water and sediment supply from uplands through upland surface and subsurface environments. 700 

An appropriate consideration of the hydrologic and geomorphologic connectivity with the 701 

upland region may improve the flexibility of our test model in realistically representing a wider 702 

variety of settings, in terms of the relevant hydrodynamic and sediment transport processes 703 

(Wohl et al., 2019; Zhang et al., 2018), especially for intertidal areas  receiving water and 704 

sediment from both riverine and ocean sources (Gleichauf et al., 2014; Wolfram et al., 2016; 705 

Yousefi Lalimi et al., 2020). At the seaward boundary, the models used constant sediment 706 

concentration in rivers/ocean, while variability in this concentration could contribute to the 707 

uncertainty in predictions of the accretion rate on coastal marshes. In addition, a more precise 708 

estimation of sediment concentration in the aquatic systems by using high resolution field 709 

measurements or a high-resolution, process-based coastal ocean model would improve the 710 

predictive capability of coastal marsh eco-geomorphologic models (Stumpf, 1983; Temmerman 711 

et al., 2003).  712 

6 Conclusion  713 

We used a coastal eco-geomorphologic model with different vegetation dynamic 714 

representations to investigate eco-geomorphologic feedbacks on the coastal marsh and changes 715 

in model parametric sensitivity under various future SLR conditions. We conducted model 716 
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simulations by using a standard set of test cases with consistent model settings and parameters. 717 

This study explored coastal marsh evolution under SLR not only from the domain averaged 718 

features, but also from the spatial and temporal variations of key landscape characteristics, such 719 

as the elevation relief and biomass at the seaward boundary and upland. We found that 720 

evaluating the spatial and temporal coastal marsh evolution under different representations of 721 

vegetation dynamic process provides new insights to better understanding the uncertainty of 722 

predicting coastal marshes vulnerability facing future accelerating SLR from different process 723 

representations.  724 

Qualitatively, the three vegetation dynamic schemes (Spartina-linear, Spartina-725 

nonlinear, and mixed vegetation linear equations) produce consistent evaluations of the 726 

vulnerability of the coastal marsh under high and low SLR rates. However, the Spartina-727 

nonlinear scheme predicted the highest vegetation biomass and organic production rate, 728 

yielding the highest accretion rate and elevation, except for the mixed-veg case under the low 729 

SLR. The mixed-veg case represents the most resilient marsh type under low SLR with high Kb, 730 

but is the most vulnerable case under high SLR. Except the mixed-veg case under the low SLR, 731 

all the Spartina-linear cases predicted the largest marsh extent and smallest open water area.  732 

The sensitivity analysis study identified the parameters whose values most critically 733 

affect model outcomes under different SLR conditions. The parametric sensitivity of the eco-734 

geomorphologic models (e.g., the D- and M-model used in this study) were not the same under 735 

the high and low SLR conditions. For example, the most sensitive parameter, such as the 736 

maximum organic production rate, in the simulation under the high SLR, was not the most 737 

sensitive parameter in the low SLR scenario.  The differences in parametric sensitivity 738 

highlighted the importance of evaluating parametric sensitivity under different external drivers. 739 
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The findings in this study provide new insights into how to appropriately model key 740 

processes in different coastal marsh landscapes under SLR and vegetation evolution, which has 741 

practical consequences for coastal ecosystem management and protection. The sensitivity 742 

analysis identified key parameters under different climate change conditions, which serves to 743 

inform future field measurements and modeling studies. 744 
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Table 1. The numerical experiment cases. 1009 

 

Spartina-dominant 

linear function 

Spartina-dominant 

nonlinear function 

Mixed species 

linear function 

High SLR rate 

(0.01 m/yr) and 

High Kb 

(0.009 m/yr) 

Case 1 Case 2 Case 3 

Low SLR rate 

(0.005 m/yr) and 

High Kb 

(0.009 m/yr) 

Case 4 Case 5 Case 6 

High SLR rate 

(0.01 m/yr) and 

Low Kb 

(0.003 m/yr) 

Case 7 Case 8 Case 9 

High SLR rate 

(0.01 m/yr) and 

Low Kb 

(0.003 m/yr) 

Case 10 Case 11 Case 12 

 1010 

Table 2. Key hydro-eco-geomorphic parameters used in the two models and parameter ranges used for 1011 

sensitivity analysis. 1012 

Processes 

Parameter 

description 

Symbol in the 

D model 

Range 

Individual 

simulation 

References 

Erosion 

Erosion coefficient 

(
kg

m2sPa
) 

𝛼 

[2.00E-09, 

4.12E-04] 

1.12E-04 

(D’Alpaos 

et al., 

2007; 

Mariotti & 

Fagherazzi, 

2010) 
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Critical shear stress 

for erosion (Pa) 

τe [0.03, 2] 0.4 

(Thompson 

et al., 

2004) 

Sedimentation 

Critical shear stress 

for deposition (Pa) 

τd [0.05, 2] 0.1 

(Parchure 

Trimbak 

M. & 

Mehta 

Ashish J., 

1985) 

Sediment 

concentration at 

seaward boundary 

(
mg

liter
) 

C0 [1, 800] 20 

(Kirwan et 

al., 2010) 

Suspended sediment 

diffusivity (
m2

s
) 

𝑆𝑒𝑑𝑑𝑖𝑓𝑓 [0.005, 1] 0.3 

(Brush Jr., 

2012) 

Sediment settling 

velocity (
m

s
) 

ws 
[5.00E-05, 

6.00E-04] 

1.00E-04 

(Riazi & 

Türker, 

2019) 

Belowground 

organic production 

(
m

yr
) 

𝐾𝑏 [0, 0.0135] 

0.003 

and 0.009 

(Mariotti & 

Fagherazzi, 

2010; 

Mudd et 

al., 2009, 
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2010) 

Forcing Tidal amplitude (m) AmpTide [0.1, 4] 0.8 

(National 

Ocean 

Service, 

2018) 

Biomass 

Minimum depth 

between MHTL and 

land surface (m) 

Dbiomin [0, 0.1] 0.1 

(Morris, 

2006) 

Maximum depth 

between MHTL and 

land surface (m) 

Dbiomax [0.8, 0.95] 0.8 

(Morris, 

2006) 

Maximum biomass 

(
g

m2) 
Bmax [0, 3000] 2000 

(Mudd et 

al., 2004) 

Hydro-

dynamics 

Chezy coefficient 

(
m0.5

s
) 

CHI 10 10 

(D’Alpaos 

et al., 

2007) 

 

Maximum water 

velocity (
m

s
) 

Umax 0.2 0.2 

(D’Alpaos 

et al., 

2007) 
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 1016 

Figure 1. The linkage of hydro-ecogeomorphologic components in coastal marsh systems. The words in 1017 

red and blue describe the components and sediment fluxes, respectively. 1018 

 1019 

 1020 

Figure 2 The dynamics of vegetation biomass under different marsh inundation depth normalized by the 1021 

vegetation growth range bounded by 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 and 𝑀𝐻𝑇𝐿 − 𝐷𝑏𝑖𝑜𝑚𝑎𝑥.  𝑀𝐻𝑇𝐿 represents the 1022 

mean highest tide level. 𝐷𝑏𝑖𝑜𝑚𝑎𝑥 and 𝐷𝑏𝑖𝑜𝑚𝑖𝑛 are the highest and lowest inundation depth below MHTL, 1023 

respectively. 1024 
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 1025 

Figure 3 The geographic location and the elevation profile of a 1-D transect at Delaware Bay. (a) and (b) 1026 

indicate the location of the 1-D transect. The black solid line in (c) shows the actual elevation profile of 1027 

the 1-D transect. The red line is a simplified elevation profile. The gray dashed lines indicate the MHTL 1028 

(mean highest tide level) and MSL (mean sea level) 1029 

 1030 

 1031 
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 1032 

Figure 4. Elevation profiles after 500 years simulation from the seaward boundary (x axis = 0 m) to the 1033 

upland boundary (x axis = 500 m) for (a) the higher rate of SLR and higher Kb scenario, (b) the lower rate 1034 

of SLR and higher Kb scenario, (c) the higher rate of SLR and lower Kb scenario, and (d) the lower rate of 1035 

SLR and lower Kb scenario. The black dashed lines show the initial elevation profile (0.67 m above 1036 

NAVD88 datum). The thicker and thinner black lines indicate the simulated elevation profiles by using 1037 

Spartina dominant linear equation and Spartina dominant nonlinear equation, respectively. The gray solid 1038 

lines are the elevation profiles by using the mixed vegetation linear equation. The gray dashed lines are 1039 

the simulated elevation profiles without vegetation. The light blue dashed lines indicate the final MHTL 1040 

and MSL. 1041 
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 1042 

Figure 5. Spatial distribution of the sediment fluxes at the end of 500 years in the D-model simulations. 1043 

The plots with various colors represent different fluxes in different scenarios. 1044 

 1045 

 1046 

Figure 6. Parametric sensitivity of simulations under (a) high SLR scenario and (b) low SLR scenario. 1047 

The colors indicate model sensitivity with a high sensitivity coded in dark blue and low sensitivity coded 1048 

in light blue. The values in each grid represents the sensitivity of the model to the corresponding 1049 

parameter and simulation case. 1050 

 1051 
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 1052 

 1053 

Figure 7. Parametric sensitivity of the sediment fluxes under (a) high SLR scenario and (b) low SLR 1054 

scenario. The colors indicate model sensitivity with a high sensitivity coded in dark blue and low 1055 

sensitivity coded in light blue. The value in each grid represents the sensitivity of the model to the 1056 

corresponding parameter, flux, and simulation case. 1057 

 1058 

 1059 

Figure 8. The spatial distribution of vegetation biomass at the end of 500 years throughout the marsh 1060 

domain under (a) the high SLR and higher Kb scenario, (b) the low SLR and higher Kb scenario, (c) the 1061 

higher SLR and lower Kb scenario, and (d) the lower SLR and lower Kb scenario. 1062 
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 1063 

 1064 

 1065 

Figure 9. Temporal variation of vegetation biomass for different vegetation cases in different SLR 1066 

scenarios. The circles in different colors indicate the biomass at different locations of the marsh domain.  1067 

 1068 

 1069 

Figure 10. Parametric sensitivity of vegetation biomass under (a) high SLR scenario and (b) low SLR 1070 

scenario. The colors indicate model sensitivity with a high sensitivity coded in dark blue and low 1071 

sensitivity coded in light blue. The value in each grid represents the sensitivity of the model to the 1072 

corresponding parameter, biomass, and simulation case. 1073 
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