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Abstract

The increasing frequency of very high temperatures driven by global warming has motivated growing interest in how the

probability distribution of summertime temperatures will evolve in the future. Climate models predict increasing temperature

variance in global warming simulations, but given their biased representations of historical temperature variability, it is important

to use simple models to evaluate and understand these predictions. In this study we show that the projections of increasing

temperature variance are indeed credible and are driven primarily by the magnitude of local warming. A simple analytic theory

based on the surface energy and water budgets reproduces the increased midlatitude summertime temperature variance shown

by state of the art climate models using only the local change in summertime mean temperature and relative humidity. The

relative contributions of local warming and relative humidity changes to the increases in summertime temperature variance are

roughly equal.
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Key Points:5

• Summertime temperature variance over land increases with local mean temper-6

ature in contemporary global climate models.7

• A theoretical model captures these increases using only projected changes in tem-8

perature and relative humidity from global climate models.9

• Uncertainties in plant processes and climate sensitivity control the spread of cli-10

mate model summertime temperature variance change.11
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Abstract12

The increasing frequency of very high temperatures driven by global warming has mo-13

tivated growing interest in how the probability distribution of summertime temperatures14

will evolve in the future. Climate models predict increasing temperature variance in global15

warming simulations, but given their biased representations of historical temperature vari-16

ability, it is important to use simple models to evaluate and understand these predictions.17

In this study we show that the projections of increasing temperature variance are indeed18

credible and are driven primarily by the magnitude of local warming. A simple analytic19

theory based on the surface energy and water budgets reproduces the increased midlat-20

itude summertime temperature variance shown by state of the art climate models us-21

ing only the local change in summertime mean temperature and relative humidity. The22

relative contributions of local warming and relative humidity changes to the increases23

in summertime temperature variance are roughly equal.24

Plain Language Summary25

Extreme summertime temperatures are a focal point for the impacts of climate change.26

Climate models project increasing summertime temperature variance in simulations driven27

by anthropogenic CO2 forcing. If credible, these increases imply that extreme summer-28

time temperatures will become even more frequent than a simple shift in the contem-29

porary probability distribution would suggest. Given the impacts of extreme tempera-30

tures on public health, food security, and the global economy, it is of great interest to31

understand whether the projections of increased temperature variance are credible. In32

this study, we find that the large increases in summertime temperature variance projected33

by climate models are credible, predictable from first principles, and driven by local changes34

in summertime mean temperature and relative humidity.35

1 Introduction36

How will summertime land surface temperature variability evolve as the climate37

changes? This question is of paramount importance, not only for a more complete un-38

derstanding land-atmosphere interaction, but for a more nuanced projection of how the39

frequency of heat waves and droughts will change in the future. Complicating our un-40

derstanding of temperature variability over land is the fact that contemporary climate41

models show significant biases in their representations of summertime temperature vari-42

ability. The ratio of the multi-model-mean (MMM) summertime temperature variance43

in 41 global climate models participating in the Coupled Model Intercomparrison Project44

Phase 6 (CMIP6, Eyring et al., 2016) to the variance observed over the last 20 years of45

the historical period (1995-2014) is shown in Fig. 1. The supplementary information con-46

tains a list of all models in the ensemble (Table S1). The models over-predict the sum-47

mertime temperature variance by at least 20% over a considerable fraction of the mid-48

latitudes; a similar value was found in an analysis of the CMIP5 ensemble (Vargas Zep-49

petello, Tétreault-Pinard, et al., 2020).50

Debate over the dominant controls on summertime temperature variability is preva-51

lent throughout the climate modelling literature. Studies of atmospheric dynamics have52

argued that thermal advection and steep gradients in land-ocean temperatures are re-53

sponsible for shaping the distributions of above-boundary layer temperatures (Schneider54

et al., 2015; Linz et al., 2020). However, Holmes et al. (2016) found that thermal advec-55

tion can explain only a small fraction of the increases in summertime temperature vari-56

ance projected in CMIP5 models in global warming simulations. As atmospheric dynam-57

ics provides relatively little insight on how the contemporary pattern of summertime tem-58

perature variance will evolve in a changing climate, local processes related to surface soil59

moisture have been shown to contribute a significant amount of variability in climate mod-60

els (e.g., Koster et al., 2006; Berg et al., 2014; Vogel et al., 2017). Donat et al. (2017)61
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Figure 1. Summertime temperature variance bias defined as the ratio of the multi-model-

mean variance from 41 CMIP6 models from 1994-2014 of historical simulations to observed

temperature variance from gridded weather station observations from the same period (Willmott

& Matsuura, 2001).

documented the connection between surface fluxes, soil moisture, and temperature vari-62

ability in the CMIP5 ensemble, but also pointed out that changes in extreme temper-63

atures represented in the models driven by the anthropogenic emissions during the his-64

torical period have not been observed; a problem that is likely linked to the biases in tem-65

perature variance documented Fig. 1. The biases in contemporary models and the con-66

sensus that soil moisture and surface fluxes are of paramount importance to tempera-67

ture variability over land justify using simple models to understand the evolution of sum-68

mertime temperature variance in a warming world.69

In recent work, Vargas Zeppetello, Battisti, and Baker (2020) used the local sur-70

face energy and water budgets to derive a simple equation for summertime temperature71

variance as a function of monthly variability in shortwave radiation F and precipitation72

P:73

σ2(T ′) =
1

Γ2

[
σ2(F ′)− 2ζF ′LP ′ + ζ2σ2(LP ′)

]
. (1)

In Eq. 1, primed quantities represent deviations from monthly mean values in June,74

July, and August while σ2 terms represent the variance, or average of the squares of these75

primed anomaly terms. Barred terms indicate summertime mean averages. The short-76

wave variance, precipitation variance and covariance between monthly anomalies in these77

two terms will be referred to as “forcing components” and are illustrated in the supple-78

mentary information (Fig. S1). Importantly, terms F ′ and P ′ are not independent, they79

are anti-correlated and the term F ′LP ′ is negative and acts to increase the overall tem-80

perature variance. Γ [W m−2 K−1] is a damping parameter that scales linearly with mean81

soil moisture, reflecting the fact that climatologically wet regions use more incident en-82

ergy for evapotranspiration, thereby reducing surface temperature fluctuations (Seneviratne83

et al., 2010, and references therein). ζ (unitless) is a dryness index between zero and one84

that amplifies temperature variance associated with precipitation in dry regions. Precipitation-85

induced soil moisture anomalies preferentially amplify temperature variability in dry re-86

gions due to a combination of evapotranspiration’s sensitivity to soil moisture in regions87

with low soil moisture and high atmospheric demand for water vapor (Seneviratne et al.,88

2010; Vargas Zeppetello et al., 2019). A brief derivation of this equation is found in the89

Appendix, and evaluation of the equation’s capacity to replicate summertime temper-90

ature variance in the CMIP6 ensemble is provided in the supplementary information (Fig.91

S2).92
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Temperature Variance Sensitivity93

In this section, we perform a sensitivity analysis of Eq. 1 to provide insight into94

how temperature variance will evolve as the climate warms. The partial derivative of Eq. 195

with respect to mean summertime temperature T is:96

∂σ2(T ′)

∂T
=

2

Γ2

[
ζ
∂ζ

∂T
σ2(LP ′)−F ′LP ′ ∂ζ

∂T
− Γ

∂Γ

∂T
σ2(T ′)

]
. (2)

This partial differentiation ignores potential contributions to changing temperature vari-97

ance from the forcing components, summertime mean soil moisture, and model param-98

eters. Thus, Eq. 2 represents only the change in temperature variance associated with99

climatological warming. Changes in the forcings parameters σ2(F) and σ2(P) are shown100

in the supplementary information (Fig. S3), but those changes could also be induced by101

local warming impacting boundary layer clouds over land (Laguë et al., 2019) and thus102

may not constitute a completely independent forcing on the land surface. Eq. 2 ignores103

changes in soil moisture; some authors attribute more extreme temperature variability104

in climate change simulations to large scale land surface drying (Vogel et al., 2017), but105

Berg et al. (2016) have shown that soil moisture changes in models are largely seasonal,106

reflecting an increased amplitude of the cycle of climatological precipitation minus evap-107

otranspiration. Thus, soil moisture changes may also not constitute a purely indepen-108

dent forcing on the land surface in the same way as the climatological warming. The par-109

tial derivative in Eq. 2 provides a thermodynamic estimate based on purely local changes110

associated with atmospheric water vapor demand realized through the two parameters111

ζ and Γ:112

∂ζ

∂T
=

α

(V + α)2

(
dqs

dT
(1− RH)− qs

∂RH

∂T

)
, (3)

∂Γ

∂T
=

Lρam

rs

(
d2qs

dT
2 (1− ζ)− dqs

dT

∂ζ

∂T

)
. (4)

In Eq. 3, α is a constant composed of various parameters that we assume are spatially113

invariant across the land surface (see Eq. A7), m is the mean soil moisture, and V is the114

summertime mean atmospheric water vapor demand calculated as V = qs(T )(1−RH)115

where T and RH are the surface temperature and relative humidity, respectively.116

The differentials in Eqs. 3 and 4 reflect different impacts of mean temperature change117

on local thermodynamics that impact the energetics of evapotranspiration. The change118

in ζ with mean temperature reflects the tendency towards a more arid climate both through119

increasing summertime mean saturation specific humidity qs directly through the Clausius-120

Clapeyron’s temperature dependence and modulating the climatological relative humid-121

ity RH. The change in Γ expresses the change in the land surface’s capacity to mute forced122

energy perturbations due to changes in the climatological mean evapotranspiration.123

Impact of Climate Change on Temperature Variance124

To calculate the change in temperature variance expected purely from local warm-125

ing, we calculate the derivatives in Eqs. 3 and 4 using CMIP6 MMM climatological V ,126

m, qs, and RH from the end of the historical period (1995-2014). We approximate ∂RH
∂T

127

by dividing the local MMM relative humidity change at the end of the 21st century by128

the local MMM warming ∆T . After calculating these derivatives, we substitute them129

into Eq. 2 and compute the total change in temperature variance as:130

∆σ2(T ′) =
∂σ2(T ′)

∂T
∆T . (5)

Figure 2a shows the CMIP6 multi-model-mean change in temperature variance be-131

tween 2080-2099 of the SSP585 scenario and 1995-2014 of the historical simulations, while132
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Figure 2. The changes in variance of summertime monthly mean temperatures over the 21st

century (2080-99 of the SSP585 emissions scenario minus 1995-2014 of the historical simulations)

in the CMIP6 ensemble mean and (b) predicted from Eq. 5. Stippling in panel (a) shows regions

where more than 75% of the models in the ensemble agree on the sign of the variance change.

Fig. 2b shows the pattern of temperature variance change predicted by Eq. 5. The three133

contributions to temperature variance change on the right-hand-side of Eq. 2 are shown134

in the supplementary information (Fig. S4). The first two terms contribute most of the135

change, suggesting that increased aridity with warming acts to amplify the evapotran-136

spiration anomalies in regions with high precipitation variability. The final term is a small137

residual and does not contribute much to the spatial pattern shown in either panel of138

Fig. 2.139

Given the simplicity of our calculation, the agreement between the two projections140

is surprisingly good; the increases in summertime temperature variance shown in Fig. 2141

represent a 30-50% increase from the historical period (a map of the increases represented142

as a percentage is shown in Fig. S5). The Central United States, Europe, and East Asia143

all stand out as regions where the projected impacts of increasing surface temperature144

variance will be particularly impactful for international food security (Tigchelaar et al.,145

2018). Further, public health crises driven by extreme heat waves have devastated Eu-146

rope multiple times since the start of the 20th century (Schär et al., 2004; Grumm, 2011);147

our result suggests that these heat waves will grow more severe in a warming world as148

the mean and variance of summertime temperatures increase. The agreement between149

our simple model and the CMIP6 ensemble suggests that despite the large biases present150

in the temperature variance in the CMIP6 model simulations of the historical period,151

the changes projected by the climate models are credible and should be accounted for152

in policy that seeks to make populations and food systems throughout the midlatitudes153

more resilient to extreme temperature shocks.154
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The calculation in Eq. 5 reveals the impact of climatological warming on temper-155

ature variance and does not include potential changes in shortwave radiation, precipi-156

tation, soil moisture, and model parameters. Another method of calculating the expected157

temperature variance is to subtract one realization of Eq. 1 that uses the forcings and158

mean state variables taken from the end of the SSP585 scenario from another that uses159

the forcings and mean state variables taken from the end of the historical period. This160

calculation, shown in the supplementary information (Fig. S6), displays the same over-161

all pattern of temperature variance change but poorer overall agreement than the cal-162

culation based only on local warming shown in Fig. 2b. This suggests that large scale163

soil moisture drying or changes in underlying model parameters may compensate for the164

reduction in radiative and precipitation forcing shown in Fig. S3. Overall, our results165

indicate that local climatological warming is the dominant control on changes in sum-166

mertime temperature variance.167

In our simple model we have assumed the variance in summertime temperature is168

due to local (one dimensional) forcing. This assumption is supported by previous stud-169

ies that demonstrate variability in atmospheric temperature advection does not contribute170

significantly to summertime temperature variability on monthly time scales, except for171

parts of far western Europe and near the marginal sea ice in the Arctic (e.g. Holmes et172

al., 2016). In these regions, the projected increase in the climatological land-sea temper-173

ature difference should enhance the variance associated with temperature advection. This174

may explain why the change in temperature variance predicted by our simple model slightly175

underestimates the increase in temperature variance projected by the CMIP6 models in176

western Europe and in the coastal regions of the Arctic.177

The Importance of Relative Humidity in Temperature Variance Pro-178

jections179

Using only changes in local summertime temperature and relative humidity, our180

diagnostic model reproduces the projected changes in summertime temperature variance181

in the CMIP6 models. The multi-model mean change in relative humidity is shown in182

Fig. 3a; stippling shows grid cells where more than 75% of the models agree on the sign183

of the change. Changes in North America and Eurasia are particularly large and robust184

across models, to understand the relative contribution of local relative humidity changes185

to the increased temperature variance, we can artificially set ∂RH
∂T

= 0 in Eq. 3 and186

recalculate ∆σ2(T ′).187

The dots in Figs. 3b-c show the temperature variance changes predicted by the full188

version of Eq. 2 (orange) and the artificial prediction where relative humidity changes189

are excluded from the analysis (blue) as a function of the MMM value of ∆σ2(T ′). In190

both regions, relative humidity changes are equally important as local warming to the191

projected increase in temperature variance. Both local warming and decreasing relative192

humidity act to amplify the local atmospheric water vapor demand. In regions where193

soil moisture is plentiful due to large annually averaged rainfall (like Eurasia and the cen-194

tral United States) increased atmospheric demand for water vapor allows for large evap-195

otranspiration anomalies that amplify the atmospheric forcing variance, and therefore196

temperature variance.197

Relative humidity changes are of first-order importance to the increased summer-198

time temperature variance projected by climate models in the CMIP6 ensemble, but to199

what extent does local warming control changes in relative humidity over land? Byrne200

and O’Gorman (2018) have argued that the change in relative humidity over land sur-201

faces is primarily a product of the differential warming over land and ocean. If this were202

true, the dominant control of model climate sensitivity on the regional warming patterns203

found across contemporary climate models suggests that model differences in surface warm-204

ing should account for differences in the change in local relative humidity over land. Fig-205

ures 4a-b show the changes in local relative humidity as a function of local temperature206

changes averaged across the two boxed regions in Fig 3a. Nearly half the variance in rel-207

–6–
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Figure 3. Panel (a) shows CMIP6 multi-model-mean difference in summertime mean relative

humidity at the end of the SSP585 experiment and the end of the historical experiment. Stip-

pling shows grid cells where 75% of models agree on the sign of the change. Panels (b) and (c)

show comparisons between our simple model’s prediction of temperature variance change (y-axis)

and the multi-model-mean values (x-axis) in North America and Eurasia, respectively (regions

are defined by the black boxes in panel (a)). Orange dots show the calculation when the change

in relative humidity is accounted for, blue dots show the calculation when the value of ∂RH
∂T

is

artificially set to zero.
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Figure 4. Average summertime mean changes in relative humidity across North America

(a) and Eurasia (b) between the end of the SSP585 experiment (2080-2099) and the end of the

historical period (1995-2014) and as a function of average summertime warming across models

participating in the CMIP6 (see legend). The table inset shows the fraction of the inter-model

variance in the change in local relative humidity that is explained by local (top) warming, the

carbon-concentration feedback parameter (middle) β, and the carbon-climate feedback parameter

(bottom) γ from Arora et al. (2019).

ative humidity changes across models (46%) is explained by the local warming over North208

America, while in Eurasia 31% of the variance is explained by local warming. While lo-209

cal warming is clearly a strong predictor of local changes in relative humidity, other mech-210

anisms are required to explain the inter-model spread within the CMIP6 ensemble.211

Plant Activity and Summertime Temperatures212

Arora et al. (2019) have calculated sensitivity parameters that quantify the global213

response of the carbon cycle to increasing CO2 and temperatures in ten of the models214

analyzed in Fig. 4. Such parameters necessarily combine numerous plant physiological215

responses to increasing temperature and atmospheric CO2 such as increased leaf area,216

stomatal closure, and a changing growing season start date. The carbon-concentration217

feedback parameter β quantifies global ecosystem response to a change in atmospheric218

CO2: a high β value implies a large increase in land carbon uptake by the land surface219

in response to increasing CO2 emissions. One pathway of interest for this study is an in-220

creased leaf area driven by a higher atmospheric CO2 concentration which would increase221

the mean evapotranspiration in the midlatitudes. The carbon-climate feedback param-222

eter γ quantifies the global ecosystem response to changing mean temperature. The ta-223

ble inset in Fig. 4 shows that of the two parameters, the carbon-concentration feedback224

value β explains a larger fraction of the inter-model spread of relative humidity change225

in both Eurasia and North America, comparable to the spread explained by local warm-226

ing.227

–8–
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Across models, the vegetation response to increasing atmospheric CO2 is impor-228

tant for the projections of future carbon sequestration and for changes in local relative229

humidity and, by extension, temperature variance. In models with a large carbon-concentration230

feedback parameter β, the vegetation response to the increased CO2 concentration com-231

pensates for local warming, likely by increasing leaf area and evapotranspiration thereby232

reducing the impacts of local warming on relative humidity. Models with a larger leaf233

area response will therefore exhibit smaller changes in temperature variance due to the234

mitigating effects on the climatological relative humidity. Differences in the plant response235

to warming (quantified by the γ parameter values from Arora et al. (2019)) explain more236

than 10% of the model spread in the climatological relative humidity change in North237

America; this suggests that modeled plants that are more sensitive to warming mitigate238

the increase in temperature variance associated with warming by reducing the climato-239

logical drying of the atmosphere perhaps by way of earlier leaf-out dates in springtime240

(Xu et al., 2020).241

In general, the spread in the climatological local warming combined with the plant242

response to climate change explains nearly all of the inter-model differences in the pro-243

jected change in land summertime relative humidity in North America, where we have244

already demonstrated that the remote influence of thermal advection on temperature vari-245

ance is negligible (see Fig. 3b; Holmes et al. (2016)). Over western Eurasia, some of the246

unexplained variance in relative humidity changes may be due to model differences in247

temperature advection, but even here we find a large portion of the inter-model spread248

in the projected change in summertime relative humidity is explained by the combina-249

tion of local land warming and the plant response to climate change.250

Conclusions251

A diagnostic model based on monthly equilibrium considerations of the land sur-252

face energy and water budgets shows that changes in summertime temperature variance253

across the midlatitudes are driven in roughly equal parts by local mean warming and de-254

creases in relative humidity. We have shown that despite the high biases in summertime255

temperature variance present in the CMIP6 models’ representation of the historical pe-256

riod (Fig. 1), the model projections of large increases in monthly averaged summertime257

temperature variance are credible and explained primarily by local warming and its im-258

pact on climatological relative humidity.259

We have identified two major uncertainties in how summertime temperature vari-260

ance will change: first, the magnitude of local warming which is primarily controlled by261

model climate sensitivity. Second, the plant physiological response to CO2 emissions and262

how that response changes with mean climate warming. We have shown that models with263

strong land-carbon cycle responses to increasing atmospheric CO2 simulate smaller re-264

ductions in relative humidity than do models with weak land-carbon responses, indicat-265

ing that plant activity mitigates the projected reductions in relative humidity that are266

driven by increasing temperature.267

The combination of local warming and plant responses to climate change are the268

primary contributors to how summertime temperature variability will increase in the fu-269

ture. The diagnostic model and the CMIP6 MMM predict that changes in summertime270

temperature variance will be greater than 1◦C2 across much of Eurasia and central North271

America, representing a 30-50% increase in temperature variance in these regions. Though272

an assessment of the impacts these kinds of increases in variability would have on the273

frequency of food shocks and deadly heatwaves is outside the scope of this study, the com-274

pounding impacts of a mean warming and increasingly temperature variability warrant275

future study and likely serious policy attention.276
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Appendix A Methods277

This section presents a derivation of Eq. 1, but interested readers can find a more278

detailed presentation in Vargas Zeppetello et al. (Vargas Zeppetello, Battisti, & Baker,279

2020). We begin our derivation by considering the equilibrium land surface energy and280

water budgets:281

0 = F ′ − F ′LW − LE′ −H ′ −G′ (A1)

0 = P ′ − E′ −R′ − I ′ . (A2)

All terms in Eq A1 are given in [W m−2], while all terms in Eq. A2 are given in [kg H2O282

m−2 s−1]. F is the net downward shortwave radiation incident at the land surface, while283

FLW is the net upward surface longwave radiation flux. LE and H are the upward tur-284

bulent fluxes of latent and sensible heat respectively, while G is the flux of energy down-285

ward into the soil column. R and I are the surface runoff and infiltration moisture fluxes286

respectively, E is the net evapotranspiration, and L is the latent enthalpy of vaporiza-287

tion.288

We assume that the sum of monthly net longwave, sensible heat, and ground heat289

flux anomalies is linearly proportional to temperature fluctuations, thus:290

F ′LW +H ′ +G′ = νT ′ . (A3)

Here, ν [W m−2 K−1] is a parameter that controls the response of two-meter air tem-291

perature T ′ to a radiative forcing F ′ in the absence of evapotranspiration anomalies (see292

Eq. A1).293

The sum of runoff and infiltration anomalies is assumed to be linearly proportional294

to soil moisture fluctuations, thus:295

R′ + I ′ = µm′ . (A4)

The fractional surface saturation m is a unitless number between zero and one that des-296

ignates the fraction of available pore space in the evapotranspiration-accessible portion297

of the soil column that is occupied by liquid water. To ensure proper scaling between298

runoff, infiltration, and precipitation we set the “surface moisture capacity” µ [kg m−2 s−1]299

to be:300

µ = ησ(P) , (A5)

where σ(P) is the summertime standard deviation in monthly averaged precipitation at301

each grid cell and η is a unitless parameter that controls the mass of liquid water required302

to effectively change the soil’s fractional saturation m that we assume to be constant ev-303

erywhere across the land surface.304

Total evapotranspiration is given by:305

E =
ρa
rs
mV . (A6)

In Eq. A6, ρa [kg air m−3] is the density of air, rs [s m−1] is the “bulk surface resistance”306

parameter, V [kg H2O kg air−1] is a measure of the atmospheric demand for water va-307

por qs(T )−q where qs is the saturation specific humidity at the two-meter air temper-308

ature T , and q is the boundary layer specific humidity. We can now define the α param-309

eter used in Eq. 3:310

α =
rsµ

ρa
. (A7)

The first order terms in a Taylor expansion of Eq. A6 are:311

E′ =
ρa
rs

[m′V +m
dqs
dT

T ′] , (A8)

–10–
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where barred terms indicate summertime mean values. In Eq. A8, we have made use of312

observations and model results that show that anomalies in V are overwhelmingly due313

to anomalies in surface temperature (van Heerwaarden et al., 2010). By substituting Eq. A8314

into Eq. A2, we obtain:315

m′ =
1

µ+ δ
[P ′ − ρam

rs

dqs
dT

T ′] , (A9)

where we have defined316

δ =
ρaV

rs
(A10)

as the climatological mean potential evapotranspiration, or the mean evapotranspira-317

tion E expected for m = 1, or saturated soils. Note that δ increases exponentially with318

T according to the Clausius-Clapeyron relationship. Combining Eq. A9 with Eqs. A1319

and A8, we obtain:320

T ′ =
1

Γ
[F ′ − ζLP ′] , (A11)

where ζ = (1 + µ/δ)−1 ⊂ [0, 1] is a dryness index and Γ−1 is the “moist surface cli-321

mate sensitivity”:322

Γ = ν +
Lρam

rs

dqs
dT

(1− ζ) . (A12)

By squaring Eq. A11 then taking a time average, we arrive at our equation for summer-323

time temperature variance given in Eq. 1:324

σ2(T ) =
1

Γ2

[
σ2(F)− 2F ′LP ′ζ + σ2(LP)ζ2

]
. (A13)
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Figure S1:  Forcing components used in Eq. 1.  All terms given in W2m-4. 
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Figure S2:  Top panel shows the ratio of temperature variance predicted by Eq. 1 using the 

forcing components from the CMIP6 ensemble (see Fig. S1) to the temperature variance in the 

CMIP6 ensemble for the last 20 years of the historical simulations. Bottom panel shows the 

probability distribution of this variance ratio north of 25˚N for the CMIP6 ensemble (blue), and the 

variance ratio evaluating the diagnostic equation’s accuracy in two other datasets (Observations 

and ERA5 reanalysis) analyzed in Vargas Zeppetello et al. (in press). 

 Importantly, while all three realizations of the diagnostic equations use different forcing 

values and aim to reproduce dataset-specific patterns of temperature variance, all use the same 

three parameter values for i) dry surface temperature sensitivity (n), ii) surface resistance (rs), and 

iii) soil moisture sensitivity (µ). 
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Figure S3:  Changes in the forcing components between the end of the SSP585 scenario (2080-

2099) and the end of the historical period (1995-2014). All values listed in W2m-4; dots show the 

grid cells where more than 75% of the models in the ensemble agree on the sign of the change. 

Note that the colorbars are different for each plot. 
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Figure S4:  Changes in temperature variance associated with each term in Eq. 2. The top panel 

shows temperature variance changes associated with amplification of precipitation forcing (first 

term in Eq. 2), the middle panel shows the changes associated with amplification of the 

covariance forcing component (second term in Eq. 2), and the bottom panel shows the changes 

associated with the amplification of the base state temperature variance (third term in Eq. 2).  
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Figure S5:  CMIP6 MMM temperature variance change between the end of SSP585 and the end 

of the historical period shown as a percentage departure from the historical period. 

 
 

 
Figure S6: Panel a) is a reproduction of Fig. 2a from the main paper showing the change in 

temperature variance in the CMIP6 multi-model-mean between the end of the SSP585 scenario 

and the end of the historical simulations. Panel b) shows the temperature variance change 

predicted by the diagnostic model taking into account the forcing changes shown in Fig. S3 as 

well as the summertime warming and relative humidity changes. The agreement is slightly worse 

than the purely thermodynamic prediction shown in the main paper, for an explanation, see 

comment above. 
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Comment on Fig. S6: 
 
The partial derivative taken in Eq. 2 gives the change in temperature variance due only to local 

warming. Other drivers of temperature variance certainly exist, and additional sensitivity tests of 

this diagnostic model are shown in Vargas Zeppetello et al. (2020). Figure S6b shows the 

temperature variance change calculated by subtracting two realizations of Eq. 1 with different 

values for the forcing components and local summertime mean state variables. We find that the 

approach presented in the main paper agrees more accurately with the CMIP6 multi-model-

mean. This suggests that changes in environmental parameters used in the model or large scale 

changes in the underlying soil moisture distribution compensate for the changes in the forcing 

components shown in Fig. S3. These model parameters cannot be estimated from the standard 

model output and were therefore not considered in our study. However the differences between 

Figs. S6a, S6b, and 2b indicate that changes in the forcing components, environmental 

parameters, and underlying soil moisture distribution are of second order importance to the 

changes associated with local warming outlined in the main paper. 
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Model 

Name 

Institution Model 

Name 

Institution 

ACCESS-
CM2 

Commonwealth Scientific 

and Industrial Research 

Organization (Australia) 

GISS-E2-1-

G-CC 

Ibid. 

ACCESS-
ESM1-5 

Ibid. GISS-E2-1-

H 

Ibid. 

AWI-CM-

1-1-MR 

Max Planck Institute 

(Germany) 

HadGEM3-
GC31-LL 

Hadley Centre for Climate 

Prediction and Research (U.K.) 

BCC-

CSM2-

MR 

Beijing Climate Center HadGEM3-

GC31-MM 

Ibid. 

CAMS-

CSM1-0 

Chinese Academy of 

Meteorological Sciences 

INM-CM4-8 Institute for Numerical 

Mathematics (Russia) 

CanESM
5 

Environment and Climate 

Change Canada 

INM-CM5-0  

CESM2 National Center for 

Atmospheric Research 

(U.S.A.) 

IPSL-
CM6A-LR 

Institut Pierre Simon Laplace 
(France) 
 

CESM2-
WACCM 

Ibid. MCM-UA-

1-0 

University of Arizona 

CNRM-
CM6-1 

National Centre for 

Meteorological Research 

(France) 

MIROC6 Japan Agency for Marine-Earth 

Science and Technology 
 

CNRM-
CM6-1-
HR 

Ibid. MIROC-
ES2L 

Ibid. 

CNRM-
ESM2-1 

Ibid. MPI-ESM-

1-2-HAM 

Max Planck Institute (Germany) 

E3SM-1-1 Department of Energy 

(U.S.A.) 

MPI-ESM1-
2-HR 

Ibid. 

E3SM-1-

1-ECA 

Ibid. MPI-ESM1-
2-LR 

Ibid. 

EC-
Earth3 

European Centre for Medium 

Range Weather Forecast 

MRI-
ESM2-0 

International Centre for 

Theoretical Physics (Italy) 

EC-
Earth3-
Veg 

Ibid. NESM3 Nanjing University of Information 

Science and Technology 

FGOALS-

f3-L 

Institute of Atmospheric 

Physics (China) 

NorCPM1 Bjerknes Centre for Climate 

Research (Norway) 

FIO-ESM-

2-0 

First Institute of 

Oceanography 

NorESM2-
LM 

Ibid. 

GFDL-

CM4 

Geophysical Fluid Dynamics 

Laboratory (U.S.A) 

NorESM2-
MM 

Ibid. 

GFDL-
ESM4 

Ibid. Sam0-

UNICON 

Seoul National University  

GISS-E2-
1-G 

NASA Goddard Institute for 

Space Studies (U.S.A.) 

UKESM1-
0-LL 

U.K. Met. Office 

 
Table S1:  A list of models from the CMIP6 ensemble and their associated modelling institution. 

All models ran historical simulations, bolded models ran the SSP585 scenario 

 


